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a b s t r a c t 

Periodic pattern mining is a popular data mining task, which consists of identifying pat- 

terns that periodically appear in data. Traditional periodic pattern mining algorithms are 

designed to find patterns in a single sequence. However, in several domains, it is desirable 

to discover patterns that are periodic in many sequences. An example of such application 

is market basket analysis. Given a database of sequences of transactions made by cus- 

tomers, discovering sets of items that are periodically bought by customers can help un- 

derstand customer behavior. To discover periodic patterns common to multiple sequences, 

this paper extends the traditional problem of mining periodic patterns in a sequence. Two 

novel measures are defined called the standard deviation of periods and the sequence peri- 

odic ratio. Two algorithms are proposed to mine these patterns efficiently called MPFPS BFS 

and MPFPS DFS , which perform a breadth-first search and depth-first search, respectively. 

Because the sequence periodic ratio is neither monotone nor anti-monotone, these algo- 

rithms rely on a novel upper-bound called boundRa and two novel search space pruning 

properties to find periodic patterns efficiently. The algorithms have been evaluated on mul- 

tiple datasets. Results show that they are efficient and can filter numerous non periodic 

itemsets to identify periodic patterns. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

Frequent Pattern Mining (FPM) is a popular data mining problem, which consists of finding frequently appearing patterns

in a database [6,19,20] . FPM has been initially proposed for analyzing customer transaction databases to identify frequent

purchases made by customers. Nowadays, FPM is used in many other fields for various tasks such as community discov-

ery [6] , image classification [11] , malware detection [9] , e-learning [37] and activity monitoring [34] . Many algorithms have

been developed to efficiently mine frequent patterns and various measures have been proposed to identify interesting pat-

terns [20] . A limitation of traditional FPM algorithms is that they ignore the sequential ordering between transactions or
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Table 1 

A customer sequence database. 

ID Sequence 

0 〈 ( bread, milk ), ( apple ), ( bread, apple, milk ), ( kiwi, peach ), ( bread, milk, egg ) 〉 
1 〈 ( apple, milk ), ( bread, apple, milk ), ( wine, egg ), ( bread, milk, pen ), ( kiwi ), ( bread, milk, egg ) 〉 
2 〈 ( bread, milk ), ( pen, book ), ( wine, bread, milk ), ( kiwi, peach ), ( bread, milk, peach )( pen, book ) 〉 
3 〈 ( egg, wine ), ( kiwi, pen, book ), ( wine, bread ), ( kiwi, egg, peach ) 〉 
4 〈 ( bread, apple, milk ), ( apple, wine ), ( bread, milk ), ( egg ), ( bread, kiwi, milk ), ( pen, book ) 〉 
5 〈 ( milk, egg, apple ), ( pen, book ), ( wine, milk ), ( apple, peach ) 〉 
6 〈 ( apple, peach ), ( pen, book, apple ), ( egg, pen, book ), ( kiwi, apple ) 〉 
7 〈 ( apple, pen, book, milk ), ( peach, kiwi ), ( egg, milk, bread ), ( kiwi, apple, milk ) 〉 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

events in a database. Thus, these algorithms can be used to find frequent associations between items or events but provide

no information about their order. For example, frequent itemset mining algorithms can discover that several customers buy

some sets of items frequently but information about the order of these purchases is ignored. In many domains such as

bioinformatics [45] , e-learning [22,48] , text-analysis [39] and energy reduction in smarthomes [40] , considering the sequen-

tial ordering is important and can be used to reveal more meaningful patterns. For instance, in market basket analysis, it

can be found that many customers have the same sequential behavior over time. Identifying patterns having information

about the sequential order can be used to improve sales and marketing strategies. 

In recent years, numerous studies have proposed algorithms to find patterns that take the order of events or transactions

into account. One of the most popular task is Sequential Pattern Mining (SPM), which generalizes the problem of frequent

itemset mining to find frequent subsequences in a set of sequences of transactions [2,10,22,39,40,45,48] . Even though many

SPM algorithms have been developed and various extensions of SPM have been proposed and used in many applications,

a major limitation of SPM algorithms is that they cannot be used to discover patterns that recurrently appear in the data.

However, recurring patterns are found in many domains [24,42] . For example, in a gene sequence, a set of DNA molecules

may carry tremendous information if it appears regularly after several DNA molecules. Detecting sets of repeating DNA

molecules is necessary to find what leads to some external expressions. Another example, is to identify products that are

regularly bought by some customers (e.g. every week or month) to promote the sale of groups of items. 

To find recurring patterns in a sequence, the task of periodic pattern mining was proposed [3,4,17,18,29,30,42,43] . To dis-

cover periodic patterns, the user generally needs to set a parameter called the maximum period threshold, and provide a

sequence of transactions. Then, a periodic pattern mining algorithm outputs all patterns such that the number of transac-

tions or events between two occurrences of the pattern is never greater than the maximum period threshold. For example,

consider that the maximum period threshold is set to two weeks. It could then be found in a sequence of activities made

by a user that the user goes to cinema at least once every two weeks. 

Although periodic pattern mining has many applications [43] , it is designed to find patterns in a single sequence. How-

ever, periodic patterns also appear in sets of sequences (a sequence database). For example, it is desirable to discover pe-

riodic behavior of not just one customer, but common to several customers. To our best knowledge, only one algorithm,

named PHUSPM, was proposed to mine periodic patterns in a sequence database [8] . However, this algorithm simply ap-

plies the same periodicity measures as algorithms for discovering patterns in a single sequence. As a result, PHUSPM treats

a sequence database as a single sequence to find patterns that regularly appear from the point of view of sequences but not

transactions contained in these sequences. Thus, PHUSPM does not consider whether a pattern is periodic in each sequence.

But finding patterns that are periodic in several sequences is useful. For example, consider sequences of customer transac-

tions in a retail store, such as the one illustrated in Table 1 . This database contains seven sequences, each representing a

customer. The first sequence means that a customer bought the items bread and milk together, then apple , then bread with

apple and milk , followed by kiwi and peach , followed by bread, milk and egg . The PHUSPM algorithm could find that bread

and milk are periodically sold by the store (appear periodically in the database when considering all customers) but would

fail to find that many customers periodically buy bread and milk. Finding such information is useful for designing effective

sale and marketing strategies to target a group of customers based on their common periodic behavior. 

To address the above limitations of previous work, this paper proposes the task of mining Periodic Frequent Patterns

common to multiple Sequences (PFPS), which considers the periodicity of patterns in each sequence and their frequency

in the overall database. Moreover, an efficient algorithm is presented to mine PFPS. The contributions of this paper are as

follows: 

• The problem of mining periodic frequent patterns common to multiple sequences is defined, and its properties are stud-

ied. Note that an early version of this work was published in a conference paper [16] . 

• To evaluate the periodicity of patterns in each sequence, a new measure is defined, which is the standard deviation

of periods, to find patterns that occur with regularity. Moreover, a novel periodicity measure named Sequence Periodic

Ratio (SPR) is defined to find patterns that are periodic in multiple sequences. To effectively reduce the search space,

an upper-bound on the SPR called boundRa is developed and two novel pruning properties are proposed. The proposed

measures allows to find patterns that are periodic in many sequences (intra-sequence periodicity). This is different from

the PHUSPM algorithm, which evaluate periodicity between sequences (inter-sequence periodicity). This is illustrated 
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Fig. 1. Illustration of (A) inter-sequence periodicity of { bread, milk } as measured by PHUSPM and (B) intra-sequence periodicity as measured by the pro- 

posed algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in Fig. 1 for the itemset { bread, milk }, where inter-sequence periodicity is evaluated vertically ( Fig. 1 A), while intra-

sequence periodicity is evaluated horizontally ( Fig. 1 B). Thus, while PHUSPM finds that { bread, milk } is regularly sold

when considering all customers, the proposed measures allows to find that several customers each regularly buy { bread,

milk }. 

• Two algorithms, respectively named MPFPS BFS and MPFPS DFS , are presented to efficiently find all periodic frequent pat-

terns common to multiple sequences, which relies on a novel PFPS-list structure to avoid repeatedly scanning the

database. 

• An experimental evaluation on several real and synthetic datasets reveals that the proposed algorithms are efficient and

can filter many non periodic patterns. Thus, a small set of patterns can be shown to the user. 

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3 defines the problem of min-

ing patterns that are periodic in multiple sequences. Section 4 presents the proposed algorithms. Section 5 describes the

experimental evaluation. Finally, Section 6 draws the conclusion and discusses future work. 

2. Related work 

This section provides an overview of related work related to itemset mining, pattern mining in sequences and periodic

pattern mining. 

2.1. Frequent itemset mining 

Discovering patterns in databases is an important subfield of data mining. One of the most important pattern min-

ing problem is Frequent Itemset Mining (FIM). Given a parameter called the minimum support ( minsup threshold) and a

customer transaction database, FIM consists of discovering all sets of itemsets (itemsets) purchased by at least minsup cus-

tomers [1,20] . The occurrence frequency of an itemset is called its support. In the last decades, FIM has been applied in

many fields such as e-learning, malware detection and image classification. To discover frequent itemsets, the Apriori al-

gorithm was first designed [1] . This algorithm explores the search space of itemsets using a breadth-first search. It first

generates patterns each containing an item, and then combines them to generate patterns containing two items. This pro-

cess is then repeated recursively to find larger patterns. For each generated pattern, Apriori scans the database to calculate

its support and determine if it is a frequent patterns. Although Apriori can discover all frequent itemsets in a database,

repeatedly scanning the database results in poor performance for large databases. The Eclat [46] algorithm addresses this

issue by creating a vertical structure called id-list for each candidate itemset, which can be built from the id-lists of other

patterns to avoid scanning the database many times. Eclat performs a depth-first search and divides the search space into

equivalence classes [46] . Thereafter, several other FIM algorithms have been proposed. The FP-growth algorithm utilizes a

frequent pattern tree (also called FP-tree) to mine patterns, which is a concise and lossless database representation [26] . The

LCM [44] algorithm utilizes an horizontal database but reduce the cost of database scans by merging identical transactions

and performing database projections.Several other algorithms have been developped in recent years, and several variations

of the itemset mining problem have been proposed [20] . However, most studies on FIM do not consider the ordering be-

tween transactions. 
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2.2. Frequent pattern mining in sequences 

To consider the sequential ordering between transactions, FIM has been extended as the task of Sequential Pattern Mining

(SPM), which consists of discovering subsequences appearing in at least minsup sequences, where minsup is an integer set by

the user [19,41] . The first algorithm for this problem is AprioriAll, which extends Apriori. The mining process of AprioriAll is

mostly the same as Apriori excepts that the order of the last two elements of patterns are considered when generating new

candidate patterns [2] . An improved version of AprioriAll named GSP was then proposed to handle additional constraints

such as time constraints and handling a user-defined taxonomy of items. To reduce the cost of database scans as larger

patterns are explored, the FreeSpan algorithm was developped, which applies the concept of database projection [25] . An

improved version of FreeSpan named PrefixSpan was then introduced to only project suffixes having the same prefix to

obtain projected databases [27] . Similar to the Eclat algorithm for FIM, several sequential pattern mining have adopted a

vertical database representation, such as SPAM [5] , PRISM [23] and CM-SPADE [13] . Sequential pattern mining is an active

research area with numerous applications [19] . 

Studies have also investigated the discovery of many other types of patterns in sequences. Episode mining and episode

rule mining consists of discovering patterns that have a large occurrence count and confidence in a single sequence [36,49] .

The concept of episode rule has also been generalized to multiple sequences in the problem of sequential rule mining, which

consists of discovering rules indicating that if some events occur, some other events will then occur [15,21,28,35] . Among

these studies, some consider finding patterns accross multiple sequences instead of common to multiple sequences [28,35] .

Another emerging topic is to discover recent events in a single sequence to find up-to-date information for decision mak-

ing [33] . Even though, there have been many studies for mining various kinds of patterns in sequences, few are designed to

mine periodic patterns. 

2.3. Periodic pattern mining 

FIM has been extended to discover periodic patterns in a single sequence. A frequent itemset is said to be periodic in

a sequence if it appears multiple times and the time between each occurrence is less than a user-defined maximum peri-

odicity threshold. More efficient algorithms have been designed, and variations of the problem of mining periodic patterns

in a single sequence have been proposed. For example, a study [30] addressed the ”rare item problem” by proposing to

define a minimum support threshold for each item rather than using the same threshold for all items. In another study, an

algorithm named MTKPP was proposed to discover the k periodic patterns that are the most frequent in a sequence [4] . To

avoid the problems that comes with finding frequent patterns appearing periodically in a long sequence, a study [31] intro-

duced a new interestingness measure to discover periodic-frequent patterns that occur almost periodically in a sequence.

Considering the interestingness of mining periodic patterns but also to ignore unimportant events between important ones,

and consider variable length patterns, an algorithm was proposed which lets the user determine the period value and the

number of intermediate events that can be ignored [38] . 

However, a drawback of previous studies is that the maximum periodicity constraint is very strict. If a pattern appears

regularly in a database but appear a single time with a time interval larger than the maximum periodicity threshold, it is

discarded. Thus more flexible measures are needed [18] . 

Although many algorithms have been designed to find periodic patterns in a sequence, they are unable to find periodic

patterns in multiple sequences. An algorithm was proposed [32] that take spatial locations of events into consideration

and the concept of time lag for periodic pattern discovery. It makes use of a user-specified sliding-window to find periodic

patterns in fixed order or non-fixed order. A user-specified period p , which is more like a maximum periodicity threshold

mentioned above, is also used. As a result, it also faces the problem of setting this threshold properly. Moreover, a new

data structure named ALT was presented [7] to allow users to avoid specifying periods in advance. But this study mainly

aims at finding periodic patterns in discrete data sequences, rather than in symbolic sequence datasets, as considered in this

paper. In recent years, an algorithm named PHUSPM [8] was designed to discover patterns in multiple symbolic sequences.

However, that algorithm considers multiple sequences as a sequence, and then simply applies the same periodicity measures

that were designed for mining periodic patterns in a single sequence. As a result, the algorithm does not consider whether a

pattern is periodic in each sequence. Thus, the algorithm is unable to find patterns such that several customers periodically

buy some products every week. This paper addresses this issue by proposing a more general model and algorithm for mining

periodic patterns that are periodic in multiple sequences. 

Note that this paper is about mining periodic patterns in symbolic data (sequences of transactions). Differently from this

paper and the above related work, some studies have considered mining periodic patterns in numeric data (time series). The

techniques for mining periodic patterns in numeric data are different than those for symbolic data, and rely for example, on

the use of the Fourier transform to detect periodicity [12] . 

3. Definitions and problem statement 

This section is divided into three parts. The first subsection presents the traditional problem of discovering periodic pat-

terns in a single sequence. Then, the following subsection extends the traditional problem with a novel measure called the

periodic standard deviation to filter non interesting periodic patterns in a sequence. Finally, the last subsection generalizes
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Fig. 2. An example sequence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that problem to mine patterns that are periodic in multiple sequences of a sequence database using a novel measure called

the sequence periodic ratio. 

3.1. The traditional problem of finding periodic patterns in a single sequence 

The traditional problem of periodic pattern mining is defined for a single sequence [18] . A sequence is formally defined

as follows. 

Definition 1. Let there be a set of items I (symbols). An itemset X is a subset of I , that is X ⊆ I . An itemset containing k

items is said to be a k -itemset. A sequence s is an ordered list of itemsets s = 〈 T 1 , T 2 , . . . T m 

〉 , where T j ⊆ I (1 ≤ j ≤ m ), j is the

transaction identifier of T j , and T j is said to be a transaction. 

For example, consider a set of items I = { a, b, c, d, e } representing products sold in a retail store, and the sequence of

transactions shown in Fig. 2 . This sequence contains eight itemsets (transactions). The first itemset contains three items ( a,

b and c ). It is thus a 3-itemset. 

To find periodic patterns in a single sequence, the concept of periods of an itemset was introduced, which is defined as

follows [18] . 

Definition 2. A sequence s a = 〈 A 1 , A 2 , . . . , A k 〉 is said to be a subsequence of a sequence s b = 〈 B 1 , B 2 , . . . , B l 〉 iff there exist

integers 1 ≤ i 1 < i 2 < . . . < ik ≤ m such that A 1 ⊆ B i 1 , A 2 ⊆ B i 2 , . . . , A k ⊆ B il (denoted as s a � s b ). 

For example, the sequence 〈 ( a, b ), ( a ) 〉 is a subsequence of the sequence depicted in Fig. 2 . 

Definition 3. Consider a sequence s and an itemset X . Let T R (X, s ) = 〈 T g 1 , T g 2 , . . . , T g k 〉 � s be the ordered set of transactions

in which itemset X occurs in sequence s . Two transactions T x and T y in s are said to be consecutive with respect to X if there

does not exist a transaction T z ∈ s such that x < z < y and X ⊆ T z . The period of two consecutive transactions T x and T y for a

pattern X is per(T x , T y ) = y − x . The periods of X in a sequence s are pr(X, s ) = { per 1 , per 2 , . . . , per k +1 } where per 1 = g 1 − g 0 ,

per 2 = g 2 − g 1 , . . . per k +1 = g k +1 − g k , and g 0 = 0 and g k +1 = n, respectively. 

For example, the itemset { a, b } occurs in transactions T 0 , T 2 and T 4 of the sequence s shown in Fig. 2 . Thus,

T R ({ a, b} , s 1 ) = { T 0 , T 2 , T 4 } and the periods of pattern { a, b } are pr({ a, b} , s ) = { 0 , 2 , 2 , 3 } . 
The most widely used measure to assess the periodicity of a pattern in a single sequence is the maximum periodic-

ity [18] . 

Definition 4. The maximum periodicity of an itemset X in a sequence s is defined as maxP r(X, s ) = ar gmax (pr (X, s )) . 

In previous work, a pattern is deemed periodic if its maximum period is smaller than a user-defined maxPr threshold,

and it appears frequently. Formally, the traditional task of mining periodic patterns in a sequence is defined as follows. 

Definition 5. The suppport of an itemset X in a sequence s is the number of transactions containing X in s , that is sup(X, s ) =
| T R (X, s ) | . 
Definition 6. Let there be a sequence s , and two user-defined thresholds, namely the minimum support threshold minSup

and the maximum periodicity threshold maxPr . The traditional problem of mining periodic patterns in a sequence s is to

find each itemset X such that sup ( X, s ) ≥ minSup and maxPr ( X, s ) ≤ maxPr . 

For example, consider the sequence s shown in Fig. 2 and that maxP r = 3 and minSup = 3 . The itemset { a, b } is periodic

since its periods in this sequence are pr({ a, b} , s 1 ) = { 1 , 2 , 2 , 3 } , its maximum period is maxP r({ a, b} , s ) = max { 1 , 2 , 2 , 3 } =
3 ≤ maxP r and sup({ a, b} , s ) = 3 ≥ minSup. 

In previous work, algorithms for the traditional problem have used the following property of the maximum periodicity

measure to reduce the search space. 

Theorem 1. For two itemsets X ⊆ X 

′ in a sequence s, maxPr ( X, s ) ≤ maxPr ( X 

′ , s ) [18] . 

For example, consider the sequence s shown in Fig. 2 and that maxP r = 2 . The itemset { a, b } is not periodic in sequence

s 1 since its maximum period is maxP r({ a, b} , s ) = 3 ≤ maxP r. Thus, all supersets of { a, b } such as { a, b, c } are not periodic

patterns in that sequence and do not need to be considered. 

3.2. Extending the traditional problem with standard deviation 

Although the problem of periodic pattern mining is useful, a limitation is that if maxPr is set to a small value, patterns

may be discarded if they only have greater than maxPr , while if maxPr is set to a large value, patterns having periods that

vary greatly may be considered as periodic. For example, consider the sequence s of Fig. 2 . If minSup = 2 and maxP r = 2 ,
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Table 2 

An example sequence database. 

Sequence_id Sequence 

0 〈 ( a, b, e ), ( a, b, e ), ( a, d ), ( a, e ), ( a, b, c ) 〉 
1 〈 ( c ), ( a, b, c, e ), ( c, d ), ( a, b, c, e ), ( a, b, d ) 〉 
2 〈 ( b, c ), ( a, b ), ( a, c, d ), ( a, c ), ( a, b ) 〉 
3 〈 ( a, b, d, e ), ( a, b, e ), ( a, b, c ), ( a, b, d, e ), ( a, b ) 〉 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the itemset { a, b } is not periodic because its periods are {1,1,3,0} and maxP r({ a, b} ) = 3 > maxP r. Hence, although the item-

set { a, b } always appear with a small period, it is discarded because it has a single period greater than maxPr . If we increase

the maxPr threshold to maxP r = 3 , then the itemset { a, b } is considered periodic. However, the itemset { a, b, e } also become

periodic because its periods are {1,1,3} and maxP r({ a, b, e } ) = 3 ≤ maxP r. But this itemset actually only appear at the begin-

ing of sequence s . It can thus be argued that it should not be considered as a periodic pattern since it has periods that vary

greatly. To avoid finding patterns with periods that vary too much, this paper proposes to consider the standard deviation

of periods. 

Definition 7. The standard deviation of the periods of an itemset X in a sequence s is denoted as stanDev ( X, s ). 

For example, consider the sequence s of Fig. 2 . The periods of itemset { a, b } in s are pr({ a, b} , s ) = { 1 , 2 , 2 , 3 } .
The average period is avgPr ({ a, b }, s ) = (1 + 2 + 2 + 3) / 4 = 2 . The standard deviation is stanDev ({ a, b }, s ) =√ 

[(1 − 2) 2 + (2 − 2) 2 + (2 − 2) 2 + (3 − 2) 2 ] / 4 . 

This paper proposes to use the standard deviation as it is a statistical measure that is commonly used to evaluate the

amount of dispersion or variation among a set of values. A small standard deviation means that values are closer to the

average, and thus that the periods of a pattern should be more stable over time. Note that the algorithms designed in

this paper could be easily modified to use other measures such as the variance to measure variations of periods. But an

advantage of using the standard deviation instead of the variance is that the former is expressed using the same units as

values. The average could also be used without much modifications to the proposed algorithms. 

Based on the above definition, we consider that an itemset X is periodic in a sequence s if it meets the following condi-

tions. 

Definition 8. Let there be three user-specified thresholds maxPer, minSup and maxStd . An itemset X is periodic in a sequence

s if maxPer ( X, s ) ≤ maxPr, sup ( X, s ) ≥ minSup and stanDev ( X, s ) ≤ maxStd . 

For example, the itemset { a, b } is periodic in sequence s for maxStd = 2 . 0 , since stanDe v ({ a, b} , s ) = 0 . 707 . 

3.3. Proposed problem of finding periodic patterns in multiple sequences 

The previous definitions can be used to identify periodic patterns in a single sequence. Finding periodic patterns in a

sequence has several applications such as to analyze a sequence of transactions made by a customer to find the sets of items

that he purchases periodically. The following paragraphs explain how it is extended to discover periodic frequent patterns

common to multiple sequences using a novel measure called the sequence periodic ratio. Analyzing multiple sequences is

useful for example, to discover periodic patterns that are common to many customers. 

Definition 9. A sequence database D is an ordered set of n sequences, denoted as D = 〈 s 1 , s 2 , . . . , s n 〉 . The sequence s i in D

is said to be the i -th sequence of D , and its sequence identifier is said to be i . 

For example, consider the database of Table 2 , containing four sequences, which will be used as running example. The

first sequence ( s 1 ) contains five itemsets. The first itemset contains two items ( a and b ). It is thus a 2-itemset. The sequence

〈 ( a, b ), ( a ) 〉 is a subsequence of s 1 . 

Definition 10. The number of sequences where an itemset X is periodic in a sequence database D is denoted and defined

as numSeq (X ) = |{ s | maxPer(X, s ) ≤ maxP r ∧ sup(X, s ) ≥ minSup ∧ stanDe v (X, s ) ≤ maxStd ∧ s ∈ D }| . The sequence periodic ra-

tio of X in D is defined as ra (X ) = numSeq (X ) / | D | , where | D | is the number of sequences in D . 

For example, the number of sequences where { a, b } is periodic is numSeq ({ a, b} ) = 3 (it is periodic in s 1 , s 2 , and s 4 ). The

total number of sequences is | D | = 4 . Thus, the sequence periodic ratio of { a, b } is ra ({ a, b} ) = 3 / 4 = 0 . 75 . 

Problem statement. Let there be a sequence database D , and four user-defined thresholds, namely the minimum support

threshold minSup , maximum periodicity threshold maxPr , maximum standard deviation threshold maxStd , and minimum se-

quence periodic ratio threshold minRa . An itemset X is a Periodic Frequent Pattern (PFPS) in D if ra ( X ) ≥ minRa . The problem

of mining periodic patterns common to multiple sequences is to find all PFPS. 

For example, Table 3 shows the PFPS found for different thresholds values. The first line uses minSup = 2, maxPr = 3,

maxStd = 5.0 and minRa = 0.3, while the following lines change one parameter with respect to the first line (in bold). It can

be seen that each parameter is useful to reduce the number of patterns, and thus the parameters provide a lot of flexibility

to the user to select the desired patterns. 
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Table 3 

Patterns found for different threshold values. 

No. minSup maxPr maxStd minRa Patterns found 

1 2 3 1.0 0.6 { a }, { e }, { a, e } 

2 3 3 1.0 0.6 { a } 

3 2 1 1.0 0.6 { a } 

4 2 3 1.5 0.6 { a }, { b }, { e }, { a, b }, { a, e }, 

5 2 3 1.0 0.4 { a }, { b }, { c }, { e }, { a, b }, { a, e }, { b, e }, { a, b, e } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The traditional problem of mining periodic patterns [18] is a special case of the proposed problem where the database

contains a single sequence, maxStd = ∞ and minRa = 0 . The proposed problem can be viewed as more challenging than the

traditional problem because multiple sequences must be compared while exploring the search space of itemsets and two

new measures must be taken into account to assess the periodicity in multiple sequences. Traditional algorithms for periodic

pattern mining cannot be directly applied to the proposed problem because their search procedures and data structures are

designed for handling a single sequence. The next section presents two efficient algorithms for the proposed problem. 

4. The proposed algorithms 

This section introduces two efficient algorithms to mine PFPS, named MPFPS BFS (Mining Periodic Frequent Pattern com-

mon to multiple Sequences using a breadth first search), and MPFPS DFS (using a depth first search). These two algorithms

are based on two novel pruning properties and a novel data structure called PFPS-list. This section first presents the novel

properties and data structure and then describes the two proposed algorithms. 

4.1. The pruning strategies 

To find periodic patterns efficiently in multiple sequences, it is necessary to find a way of reducing the search space. For

the traditional problem of mining periodic patterns in a single sequence, Theorem 1 can be used because the maximum

periodicity measure is anti-monotone. For the proposed problem, the ra measure is neither anti-monotone nor monotone

and thus cannot be directly used to reduce the search space. 

Theorem 2. For two itemsets X ⊆ X 

′ , either ra ( X ) < ra ( X 

′ ), ra (X ) = ra (X ′ ) or ra ( X ) > ra ( X 

′ ) . 

Proof. The proof is made by giving an example for each of the three cases. Consider the database of Table 2 and that

minSup = 2 , maxP r = 3 and maxStd = 0 . 8 . It can be found that ra ({ b} ) = 0 < ra ({ b, e } ) = 0 . 25 , ra ({ e } ) = 0 . 25 = ra ({ a, e } ) and

ra ({ e } ) = 0 . 25 > ra ({ d, e } ) = 0 . �

To be able to reduce the search space, this paper introduces a new measure called boundRa that is an upper-bound on

the ra measure and is monotone. 

Definition 11. Given two user-specified thresholds maxPer and minSup , an itemset X is a candidate in a sequence s if

maxPr ( X, s ) ≤ maxPr and sup ( X, s ) ≥ minSup . The number of sequences where an itemset X is a candidate in a sequence

database D is denoted as numCand ( X ), and defined as numCand(X ) = |{ s | maxP r(X, s ) ≤ maxP r ∧ sup(X, s ) ≥ minSup ∧ s ∈ D }| .
The boundRa of X in D is defined as boundRa (X ) = numCand(X ) / | D | . 

The measure boundRa has two important properties that are useful to reduce the search space. 

Theorem 3. For an itemset X, boundRa ( X ) ≥ ra ( X ). 

Proof. For an itemset X : 

ra (X ) = numSeq (X ) / | D | 
= |{ s | maxP r(X, s ) ≤ maxP r ∧ sup(X, s ) ≥ minSup ∧ stanDe v (X, s ) ≤ maxStd ∧ s ∈ D }| / | D | 
≤ |{ s | maxP r(X, s ) ≤ maxP r ∧ sup(X, s ) ≥ minSup ∧ s ∈ D }| / | D | 
= numCand(X ) / | D | 
= boundRa (X ) 

�

Theorem 4. For two itemsets X 

′ ⊆ X, boundRa ( X 

′ ) ≥ boundRa ( X ). 

Proof. Because for any sequence s: 

X 

′ ⊆ X ⇒ maxP r(X 

′ , s ) ≤ maxP r(X, s ) (by Theorem 1)

⇒ sup(X 

′ , s ) ≥ sup(X, s ) ([18])
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Therefore: 

boundRa (X 

′ ) = numCand(X 

′ ) / | D | 
= |{ s | maxP r(X 

′ , s ) ≤ maxP r ∧ sup(X 

′ , s ) ≥ minSup ∧ s ∈ D }| / | D | 
≥ |{ s | maxP r(X, s ) ≤ maxP r ∧ sup(X, s ) ≥ minSup ∧ s ∈ D }| / | D | 
= numCand(X ) / | D | 
= boundRa (X ) 

�

Based on Theorem 4 , if it is found that the boundRa of an itemset is smaller than the minRa threshold, then this itemset

and its supersets are not PFPS and thus do not need to be considered. 

Theorem 5. If boundRa ( X 

′ ) < minRa for an itemset X 

′ , then X 

′ and any superset X ⊃ X 

′ are not PFPS. 

Proof. 

boundRa (X 

′ ) < minRa ⇒ ra (X 

′ ) < minRa (by Theorem 3)

Thus X is not a PFPS. Moreover: 

X ⊃ X 

′ ⇒ boundRa (X ) ≤ boundRa (X 

′ ) (by Theorem 4)

⇒ ra (X ) < minRa (by Theorem 3)

Hence, any superset X of X 

′ is not a PFPS. �

A second pruning theorem is also introduced, which is a variation of the above Theorem. 

Theorem 6. For an itemset X 

′ , if ∃ X 

′′ ⊂ X 

′ such that boundRa ( X 

′′ ) < minRa, X 

′ is not a PFPS. Moreover, for any itemset X ⊃ X 

′ , X
is not a PFPS. 

Proof. 

X 

′′ ⊂ X 

′ ⊂ X ⇒ boundRa (X ) ≤ boundRa (X 

′ ) ≤ boundRa (X 

′′ ) (by Theorem 4)

⇒ boundRa (X ) ≤ boundRa (X 

′ ) < minRa ( since boundRa (X 

′′ ) < minRa )

Hence, boundRa ( X ) < boundRa ( X 

′ ) < minRa and itemsets X and X 

′ are not PFPS. �

4.2. The PFPS-list data structure 

The proposed algorithms explore the search space of itemsets, which contains 2 | I | itemsets. Both algorithms start from

single items, and recursively append an item to each itemset to generate a larger itemset, following the � order. The two

algorithms reduce the search space by exploiting the fact that boundRa is an upper-bound on the ra measure and satisfies

the downward closure property ( Theorem 4 ). To calculate all the measures to evaluate patterns without having to repeatedly

scan the database, the proposed algorithms utilize a novel data structure called PFPS-list. A PFPS-list is created for each

itemset that is visited in the search space. 

Definition 12. Let sequences ( X ) be the set of sequences containing X , that is sequences (X ) = { s | sup(X, s ) > 0 ∧ s ∈ D } , ordered

by ascending sequence identifiers. 

For example, consider the sequence database of Table 2 . The sequences containing itemset { a } are sequences ({ a } ) =
{ s 1 , s 2 , s 3 , s 4 } . 
Definition 13. The PFPS-list LX of an itemset X contains three fields. The i-set field is defined as LX.i − set = X . The sid-list

field is defined as a list LX.sidlist = { v 1 , v 2 . . . v w 

} where w = | sequences (X ) | and v i (1 ≤ i ≤ w ) is the sequence identifier of

the i -th sequence in sequences ( X ). Thus, this field contains the list of identifiers of sequences containing X . The tidlist-list

field is defined as a list LX.tidl ist − l ist = { Z 1 , Z 2 . . . Z w 

} where w = | sequences (X ) | . Let s i be the i -th sequence in sequences ( X )

(1 ≤ i ≤ w ). The value Z i is defined as Z i = { z| X ⊆ T z ∧ 〈 T z 〉 � s i } . In other words, this field stores the list of identifiers of

transactions containing X , for each sequence containing X . 

For example, the PFPS-lists of the itemsets { a } and { e } are shown in Tables 4 and 5 , respectively. 

The information stored in the PFPS-list of an itemset X allows to quickly find the transactions and sequences where

it appears, and thus it provides all the required information to determine if X is periodic without scanning the database.

In particular, the field sid − list can be used to retrieve sequences ( X ), that is all sequences containing X . Then, using this

information, the list of transactions for each sequence s containing X can be obtained from the field tidl ist − l ist . This allows

to calculate the periods of X in s , that is pr ( X, s ), which then allows to calculate sup ( X, s ), maxpr ( X, s ) and stanDev ( X, s ). By

calculating these values for all sequences containing X, boundRa ( X ) and ra ( X ) can also be obtained. 
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Table 4 

The PFPS-list of itemset { a }. 

i-set { a } 

sid-list {0,1,2,3} 

tidlist-list [{0,1,2,3,4}, {1,3,4},{1,2,3,4}, {0,1,2,3,4}] 

Table 5 

The PFPS-list of itemset { e }. 

i-set { e } 

sid-list {0,1,3} 

tidlist-list [{0,1,3}, {1,3,4}, {0,1,3}] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The proposed algorithms scan the database once to construct the PFPS-list of each item. Then, the PFPS-list of any itemset

containing more than one item is obtained by performing an intersection operation on the PFPS-lists of two of its subsets.

In other words, it is unnecessary to scan the database to create the PFPS-list of an itemset having more than one item. The

intersection operation is performed by the Intersect procedure ( Algorithm 1 ). It is based on the concept of extension of an

itemset. 

Algorithm 1: The Intersect procedure. 

Input : LP x and LP y : the PFPS-lists of two extensions P x and P y of an itemset 

output : the PFPS-list LP xy of itemset P xy 

1 LP xy.i - set ← P x ∪ { y } ; LP xy.t idlist - list ← ∅ ; LP xy.sid- list ← ∅ ; 
2 foreach sequence identifier sid ∈ LP x.sid- list such that sid ∈ LP y.sid- list do 

3 tid ListSid P x ← the tid list of sid in LP x.t idlist - list ; 

4 tid ListSid P y ← the tid list of sid in LP y.t idlist - list ; 

5 tid ListSid P xy ← tidListSiP x ∩ tidListSiP y ; 

6 if tid ListSid P xy � = ∅ then 

7 LP xy.sid- list.append(sid) ; LP xy.t idlist - list .append (tid ListSid P xy ) ; 

8 end 

9 end 

10 return LPxy ; 

Definition 14. The extension of an itemset P with an item z is defined as P z = P ∪ { z} . 
The Intersect procedure takes as input the PFPS-lists of two itemsets Px and Py , denoted as LPx and LPy , and outputs

the PFPS-list of the itemset Pxy . The algorithm first initializes an empty PFPS-list LPxy for Pxy (line 1). Then, the algorithm

performs a loop to consider each sequence that appears in both the PFPS-lists of Px and Py . For each such sequence, let

sid be the sequence identifier representing that sequence. That sequence identifier is used to retrieve the lists of identifiers

of transactions containing Px and Py in that sequence, denoted as tidListSidPx and tidListSidPy , respectively (line 3 and 4).

These two lists are then intersected to obtain the list of identifiers of transactions containing Pxy in that sequence, named

tidListSidPxy (line 5). If that latter list is not empty, sid is added to the PFPS-list of Pxy as well as the list of transactions

tidListSidPxy . The procedure returns the PFPS-list of Pxy , which is obtained without scanning the database. 

For example, by applying the Intersect procedure on the PFPS-lists of itemsets { a } and { e }, depicted in Tables 4 and 5 , the

PFPS-list of itemset { a, e } is obtained, shown in Table 6 . 

4.3. The MPFPS BFS algorithm 

The first proposed algorithm is named MPFPS BFS ( Algorithm 2 ) and performs a breadth-first search to discover all PFPS. It

takes as input a database with multiple sequences and the maxStd, minRa, maxPr , and minSup thresholds. MPFPS BFS outputs
Table 6 

The PFPS-list of itemset { a, e }. 

i-set { a, e } 

sid-list {0,1,3} 

tidlist-list [{0,1,3}, {1,3}, {0,1,3}] 
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all the PFPS. The algorithm first read the database to calculate sup ({ i }, s ), pr ({ i }, s ), maxpr ({ i }, s ) and stanDev ({ i }, s ) for each

item i and sequence s (line 1). 

Algorithm 2: The MPFPS BFS algorithm. 

Input : D : a database with multiple sequences, maxStd, minRa, maxP r, minSup: the thresholds. 

output : the set of periodic frequent patterns (PFPS). 

1 Scan each sequence s ∈ D to calculate sup({ i } , s ) , pr({ i } , s ) , maxpr({ i } , s ) and stanDe v ({ i } , s ) for each item i ∈ I; 

2 foreach item i ∈ I do 

3 numSeq ({ i } ) ← |{ s | maxpr({ i } , s ) ≤ maxP r ∧ stanDe v ({ i } , s ) ≤ maxStd ∧ sup({ i } , s ) ≥ minSup ∧ s ∈ D }| ; 
4 ra ({ i } ) ← numSeq ({ i } ) / | D | ; 
5 if ra ({ i } ) ≥ minRa then output { i } ; 
6 numCand({ i } ) ← |{ s | maxpr({ i } , s ) ≤ maxP r ∧ sup({ i } , s ) ≥ minSup ∧ s ∈ D }| ; 
7 boundRa ({ i } ) ← numCand({ i } ) / | D | ; 
8 end 

9 boundP F P S ← { PFPS-list of item i | i ∈ I ∧ boundRa ({ i } ) ≥ minRa } ; 
10 while | boundP F P S| ≥ 2 do 

11 GenerateItemsets ( boundP F P S, minSup, maxP r, maxStd, minRa , D ); 

12 end 

Then, MPFPS BFS checks if each item i is periodic in each sequence of the database (line 3 to 5). For an item i appearing

in a sequence s , if sup ({ i }, s ) ≥ minSup, maxpr ({ i }, s ) ≤ maxPr and stanDev ({ i }, s ) < maxStd , then i is said to be periodic in

that sequence. Then, the algorithm calculates the sequence periodic ratio of item i by dividing the number of sequences

where i is periodic by the total number of sequences. If this value is not less than minRa, i is a PFPS and it is output

(line 5). Also, boundRa of { i } is calculated to prune the search space (line 6 to 7) and the PFPS-list of each single item i

such that boundRa ({ i }) ≥ minRa is stored in a set boundPFPS (line 8). Then, the algorithm performs a breadth-first search

to find PFPS. This is done by a while loop (line 10 to 12), where the procedure GenerateItemsets is called repeatedly to

generate larger itemsets until no itemsets can be generated. The GenerateItemsets procedure is first called with boundPFPS

which contains all 1-itemsets having a boundRa value no less than minRa . The procedure combines pairs of these 1-itemsets

to obtain 2-itemsets having a boundRa value no less than minRa , which are then stored in boundPFPS . At the same time,

PFPS containing two items are identified and output. Generally, each time that the GenerateItemsets procedure is called,

it combines k -itemsets ( k ≥ 1) to generate (k + 1) -itemsets. The while loop stops when boundPFPS contains less than two

itemsets. 

The GenerateItemsets procedure ( Algorithm 3 ) takes as input a set of PFPS-lists of k -itemsets ( k ≥ 1) called boundPFPS ,

the minSup, maxPr, maxStd, minRa thresholds and the database D . The procedure outputs the set of PFPS of length k . The

procedure first initializes a variable boundP F P S k +1 to store (k + 1) -itemsets having boundRa values no less than minRa (line

1). Then, all the itemsets corresponding to the PFPS-lists in boundPFPS are put in a variable itemsets (line 2). Thereafter,

loops are performed to combine pairs of k -itemsets to generate (k + 1) -itemsets. Let there be any total order � on items.

Two itemsets are combined to obtain a (k + 1) -itemset Pxy if they are of the form Px and Py , that is if they share a same

prefix P of k − 1 items, and if x � y . In that case, the PFPS-list of the itemset Pxy is created by calling the Intersect procedure

with the PFPS-lists of Px and Py (line 5). Then, the algorithm checks if all the subsets of Pxy having k items are PFPS

(appear in the set itemsets ) (line 7). If this condition is not met, Pxy and its supersets are not PFPS according to the subset

pruning property ( Theorem 6 ). Otherwise, the PFPS-list of Pxy is read once to calculate maxpr ( Pxy, s ) and sup ( Pxy, s ) for

each sequence s appearing in the PFPS-list of Pxy (line 8). Based on these values, boundRa ( Pxy ) is calculated (line 9). If this

value is less than minRa, Pxy and all its supersets cannot be PFPS by Theorem 5 (line 10). Otherwise, the PFPS-list of Pxy is

added to boundP F P S k +1 since it could be used to generate larger PFPS (line 11). Then, ra ( Pxy ) is calculated by reading the

PFPS-list of Pxy once (line 12 to 13). If this value is no less than minRa, Pxy is a PFPS and is output (line 14). Finally, after

combining all k -itemsets that can be combined, boundP F P S k +1 is copied into boundPFPS (line 19) to prepare for generating

the (k + 2) -itemsets in the next call of the GenerateItemsets procedure. 

The algorithm is complete since it only reduces the search space using Theorems 5 and 6 , thus only eliminating itemsets

that are not PFPS. The algorithm is correct since it calculates the ra value of each other itemset using its PFPS-list and only

output those having a value no less than minRa . 

4.3.1. A detailled example 

Consider the example database of Table 2 and that minSup = 2 , maxP r = 3 , maxStd = 1.0 and minRa = 0.6. The

main procedure of MPFPS BFS ( Algorithm 2 ) first processes single items. Consider the item a . By scanning the

database, it is found that pr ({ a }, s 1 ) = [1,1,1,1,1,0], pr ({ a }, s 2 ) = [2,2,1,0], pr ({ a }, s 3 ) = [2,1,1,1,0], pr ({ a }, s 4 ) = [1,1,1,1,1,0],

sup({ a } , s 1 ) = 5 , sup({ a } , s 2 ) = 3 , sup({ a } , s 3 ) = 4 , sup({ a } , s 4 ) = 5 , maxpr({ a } , s 1 ) = 1 , maxpr({ a } , s 2 ) = 2 , maxpr ({ a }, s 3 ) =
2 , maxpr({ a } , s 4 ) = 1 , stanDe v ({ a } , s 1 ) = 0 . 152 , stanDe v ({ a } , s 2 ) = 0 . 256 , stanDe v ({ a } , s 3 ) = 0 . 632 , and stanDe v ({ a } , s 4 ) =
0 . 152 . As sup ({ a }, s ) > minSup, maxpr ({ a }, s ) < maxPr and stanDev ({ a }, s ) < maxStd , item { a } is periodic in sequence s . Sim-
1 1 1 1 
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Algorithm 3: The GenerateItemsets procedure. 

Input : boundP F P S: a set of PFPS-lists of itemsets of length k , minSup, maxP r, maxStd, minRa : the thresholds, D : the 

database. 

output : the set of periodic frequent patterns of length k . 

1 boundP F P S k +1 ← ∅ ; 
2 itemsets ← { LP t.i - set| LP t ∈ boundP F P S} ; 
3 foreach PFPS-list LP x ∈ boundP F P S do 

4 foreach PFPS-list LP y ∈ boundP F P S such that y � x and LP x.i - set has the same prefix of k − 1 items as LP y.i - set do 

5 LP xy ← Intersect ( LP x, LP y ); 

6 P xy = LP xy.i - set; 

7 if ∀ SP xy ⊂ P xy such that | SP xy | = | P xy | − 1 , SP xy ∈ itemsets then 

8 numCand(P xy ) ← |{ s | maxpr(P xy, s ) ≤ maxP r ∧ sup(P xy, s ) ≥ minSup ∧ s ∈ D }| ; 
9 boundRa (P xy ) ← numCand(P xy ) / | D | ; 

10 if boundRa (P xy ) ≥ minRa then 

11 boundP F P S k +1 ← boundP F P S k +1 ∪ { LP xy } ; 
12 numSeq (P xy ) ← |{ s | maxpr(P xy, s ) ≤ maxP r ∧ stanDe v (P xy, s ) ≤ maxStd ∧ sup(P xy, s ) ≥ minSup ∧ s ∈ 

LP xy.sid- list}| ; 
13 ra (P xy ) ← numSeq (P xy ) / | D | ; 
14 if ra (P xy ) ≥ minRa then output P xy; 

15 end 

16 end 

17 end 

18 end 

19 boundP F P S ← boundP F P S k +1 ; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ilarly, item { a } is also periodic in sequences s 2 , s 3 and s 4 . Hence, { a } is periodic in numSeq ({ a }) = 4 sequences and the ratio

ra ({ a }) = 1 ≥ minRa . Thus, {a} is a PFPS and it is output. Then, boundRa ({ a }) is calculated. It is found that numCand({ a } ) = 4

and boundRa ({ a } ) = 1 . The other items are processed in the same way and it is found that { e } is also a PFPS. Then, all the

PFPS-lists of items having a boundRa value that is no less than minRa are created and added to the set boundPFPS . Thus,

the PFPS-lists of items { a } and { e } are added to boundPFPS . For example, the PFPS-list of itemset { a } is created and added to

boundPFPS since boundRa ({ a } ) = 1 ≥ minRa . While the size of boundRa is not smaller than two, the GenerateItemsets proce-

dure is called to generate larger itemsets and find all remaining PFPS ( Algorithm 3 ). 

Since itemsets { a } and { e } are both 1-itemsets, they share the same prefix. The Intersect procedure is thus called with

the PFPS-lists of { a } and { e } to generate the PFPS-list of { a, e }. The sid-list of { a } is {0, 1, 2, 3} and that of { e } is {0, 1,

3}. Thus, the sid-list of { a, e } is {0, 1, 3}. For the first sequence, { a }’s tidlist is {0, 1, 2, 3, 4}, { e }’s tidlist is {0, 1, 3}, and

their intersection is {0, 1, 3}. Thus, for the first sequence, the sequence identifier 0 is added to the sid-list of { a, e } and the

intersection {0, 1, 3} is added to the tidlist-list of { a, e }. The rest of the PFPS-list of { a, e } is constructed in the same way for

the other sequences. The PFPS-list of { a, e } is shown in Table 6 . Then, the algorithm checks if all subsets of { a, e }, that is

{ a } and { e }, are contained in the set boundPFPS . Since they are, the boundRa value of { a, e } is calculated using its PFPS-list.

Since it is found that boundRa ({ a, e } ) = 0 . 6 ≥ minRa, the itemset { a, e } and its supersets may be PFPS and the PFPS-list of

{ a, e } is added to boundPFPS 2 . Hence, the sequences in which { a, e } is periodic are found and ra ({ a, e }) is calculated. Since

numSeq ({ a, e } ) = 3 , the ratio ra ({ a, e } ) = 0 . 75 ≥ minRa, and thus { a, e } is a PFPS and it is output. 

4.3.2. Complexity 

The complexity of the MPFPS BFS algorithm is analyzed as follows. The algorithm first scans the database to calculate

sup ({ i }, s ), pr ({ i }, s ), maxpr ({ i }, s ) and stanDev ({ i }, s ) for each item i ∈ I . The time cost of this step is O(n × w ) where w is the

average number of transactions per sequence. After that the algorithm performs a loop over each item to check if it is a

PFPS and determine if the item should be added to boundPFPS . The time cost of this step is O(| I| ) . Then, the algorithm does

a breadth-first search by calling GenerateItemsets until no itemsets can be generated. A call to GenerateItemsets compares all

pairs of k -itemsets in boundPFPS to generate (k + 1) -itemsets. If boundPFPS contains l itemsets, then (l × (l − 1)) / 2 pairs of

itemsets are combined to generate (k + 1) -itemsets. For each pair of itemsets Px and Py , the Intersect procedure is called,

which is implemented as a two-way search. It scans the PFPS-lists of Px and Py once to build the PFPS-list of Pxy . Thus,

the time cost of the Intersect procedure is at most O(g + h ) where g and h are the size of the PFPS-lists of Px and Py ,

respectively. In the worst case, g and h are equal to the number of transactions n × w in the database and thus this process

is O(n × w ) . Then, the PFPS-list of Pxy is scanned to calculate boundRa ( Pxy ) and ra ( Pxy ), which has a time cost of at most

O(n × w ) . The algorithm explores the search space of itemsets using the above process. In the worst case, 2 | I| − 1 itemsets

are generated. Depending on how the algorithm’s parameters are set, the pruning properties can reduce the search space
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more or less. Hence, the overall time cost of the MPFPS BFS algorithm is O(n × w + | I| ) to evaluate the 1-itemsets, and then

O(n × w ) for each itemset considered in the search space. 

In terms of space cost, the algorithm creates a PFPS-list for each itemset. During the breadth-first search, at any moment,

the algorithm only needs to keep the PFPS-lists of k -itemsets and (k + 1) -itemsets in memory ( k ≥ 1). In the worst case, a

PFPS-list takes O(n ) space to store the sid − list and O(n × w ) to store tidl ist − l ist . Hence, the overall space cost is O(n +
n × w ) for each itemset. 

4.4. The MPFPS DFS algorithm 

The second proposed algorithm is named MPFPS DFS ( Algorithm 4 ) and perform a depth-first search to discover all PFPS. It

takes as input a database with multiple sequences and the maxStd, minRa, maxPr , and minSup thresholds. MPFPS DFS outputs

all the PFPS. It first scans the database once to calculate sup ({ i }, s ), pr ({ i }, s ), maxpr ({ i }, s ) and stanDev ({ i }, s ) for each item

i and sequence s (line 1). Then, MPFPS DFS does a loop for each item. For an item i appearing in a sequence s , if sup ({ i },

s ) ≥ minSup, maxpr ({ i }, s ) ≤ maxPr and stanDev ({ i }, s ) < maxStd , then i is said to be periodic in that sequence. Then, the algo-

rithm calculates the sequence periodic ratio of item i by dividing the number of sequences where i is periodic by the total

number of sequences (line 3 to 4). If this value is not less than minRa, i is a PFPS and it is output (line 5). Also, boundRa of { i }

is calculated to prune the search space (line 6 to 7) and the PFPS-list of each single item i such that boundRa ({ i }) ≥ minRa is

stored in a set boundPFPS (line 9). This set is sorted according to a total order �, defined as the ascending order of boundRa

values. Then, the depth-first search of PFPS starts by calling the recursive Search procedure with boundPFPS, minSup, maxPr,

maxStd, minRa and D . This procedure will only explore itemsets having a boundRa value no less than minRa because other

itemsets are not PFPS according to Theorem 5 . 

Algorithm 4: The MPFPS DFS algorithm. 

Input : D : a database with multiple sequences, maxStd, minRa, maxP r, minSup: the thresholds. 

output : the set of periodic frequent patterns (PFPS). 

1 Scan each sequence s ∈ D to calculate sup({ i } , s ) , pr({ i } , s ) , maxpr({ i } , s ) and stanDe v ({ i } , s ) for each item i ∈ I; 

2 foreach item i ∈ I do 

3 numSeq ({ i } ) ← |{ s | maxpr({ i } , s ) ≤ maxP r ∧ stanDe v ({ i } , s ) ≤ maxStd ∧ sup({ i } , s ) ≥ minSup ∧ s ∈ D }| ; 
4 ra ({ i } ) ← numSeq ({ i } ) / | D | ; 
5 if ra (P x ) ≥ minRa then output P x ; 

6 numCand({ i } ) ← |{ s | maxpr({ i } , s ) ≤ maxP r ∧ sup({ i } , s ) ≥ minSup ∧ s ∈ D }| ; 
7 boundRa ({ i } ) ← numCand({ i } ) / | D | ; 
8 end 

9 boundP F P S ← { PFPS-list of item i | i ∈ I ∧ boundRa ({ i } ) ≥ minRa } ; 
10 Sort boundP F P S by the order � of ascending boundRa values; 

11 Search ( boundP F P S, minSup, maxP r, maxStd, minRa , D ); 

The Search procedure ( Algorithm 5 ) takes as input PFPS-lists of extensions of an itemset P , the minSup, maxPr, maxStd,

minRa thresholds and the database. An extension of an itemset P is an itemset that is obtained by appending an item z to

P , and is denoted as Pz . When the procedure is first called, P is the empty set, and extensions of P are single items. The

Search procedure performs loops to combine each pair of extensions Px and Py of P such that y � x , to generate an extension

Pxy containing | P x | + 1 items (line 1 to 12). The PFPS-list of each such extension Pxy , denoted as LPxy is created without

scanning the database by applying the Intersect procedure ( Algorithm 1 ) on the PFPS-lists of Px and Py (line 3). Then, the

PFPS-list of Pxy is scanned to calculate numCand ( Pxy ) and boundRa ( Pxy ) (line 4 to 5). Then, if boundRa ( Pxy ) < minRa, Pxy is

not a PFPS and all its supersets are not PFPS by Theorem 5 (line 6). Otherwise, the PFPS-list of Pxy is added to a set called

ExtensionsOfPx that stores all PFPS-lists of extensions of Px having a boundRa value no less than minRa (line 7). Then, the

ratio ra ( Pxy ) is calculated to check if Pxy is a PFPS, and if yes, Pxy is output (line 8 to 10). Then, the Search procedure is

recursively called with the PFPS-lists of PFPS that extend Px ( ExtensionsOfPx ) to explore their transitive extensions (line 13). 

The algorithm is complete since it only reduces the search space using Theorems 5 and 6 , thus only eliminating itemsets

that are not PFPS. The algorithm is correct since it calculates the ra value of each other itemset using its PFPS-list and only

output those having a value no less than minRa . 

4.4.1. A Detailled Example 

Consider the example database of Table 2 and that minSup = 2 , maxP r = 3 , maxStd = 1.0 and minRa = 0.6. The main pro-

cedure of MPFPS DFS ( Algorithm 4 ) first processes single items. Consider the item a . By scanning the database, it is found that

pr ({ a }, s 1 ) = [1,1,1,1,1,0], pr ({ a }, s 2 ) = [2,2,1,0], pr ({ a }, s 3 ) = [2,1,1,1,0], pr ({ a }, s 4 ) = [1,1,1,1,1,0], maxpr({ a } , s 1 ) = 1 , maxpr({ a } , s 2 ) =
2 , maxpr ({ a }, s 3 ) = 2 , maxpr({ a } , s 4 ) = 1 , stanDe v ({ a } , s 1 ) = 0 . 152 ,stanDe v ({ a } , s 2 ) = 0 . 256 , stanDe v ({ a } , s 3 ) = 0 . 632 , and

stanDe v ({ a } , s 4 ) = 0 . 152 . As maxpr ({ a }, s 1 ) < maxPr and stanDev ({ a }, s 1 ) < maxStd , item { a } is periodic in sequence s 1 . Sim-

ilarly, it is also periodic in sequences s , s and s . Hence, ( a ) is periodic in numSeq ({ a } ) = 4 sequences and the ratio
2 3 4 
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Algorithm 5: The Search procedure. 

Input : ExtensionsO f P : a set of PFPS-lists of extensions of an itemset P , minSup, maxP r, maxStd, minRa : the thresholds, 

D : the database. 

output : the set of periodic frequent patterns that extend P . 

1 foreach PFPS-list LP x ∈ ExtensionsO f P and P x = LP x.i - set do 

2 foreach PFPS-list LP y ∈ ExtensionsO f P and P y = LP y.i - set such that y � x do 

3 LP xy ← Intersect (LP x, LP y ) ; 

4 numCand(P xy ) ← |{ s | maxpr(P xy, s ) ≤ maxP r ∧ sup(P xy, s ) ≥ minSup ∧ s ∈ D }| ; 
5 boundRa (P xy ) ← numCand(P xy ) / | D | ; 
6 if boundRa (P xy ) ≥ minRa then 

7 ExtensionsO f P x ← ExtensionsO f P x ∪{ LP xy } ; 
8 numSeq (P xy ) ← |{ s | maxpr(P xy, s ) ≤ maxP r ∧ stanDe v (P xy, s ) ≤ maxStd ∧ sup(P xy, s ) ≥ minSup ∧ s ∈ LP xy.sid- 

list}| ; 
9 ra (P xy ) ← numSeq (P xy ) / | D | ; 

10 if ra (P xy ) ≥ minRa then output P xy ; 

11 end 

12 end 

13 Search ( ExtensionsO f P x , minSup, maxP r, maxStd, minRa , D ); 

14 end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ra ({ a } ) = 1 ≥ minRa . Thus, {a} is a PFPS and it is output. Then, the same process is repeated for the other items and it

is found that the items { a } and { e } are PFPS. Then, all the PFPS-lists of items having a boundRa value that is no less than

minRa are created and added to the set boundPFPS . Thus, the PFPS-lists of items { a } and { e } are added to boundPFPS . For

example, the PFPS-list of itemset { a } is added to boundPFPS since boundRa ({ a } ) = 1 ≥ minRa . Then, boundPFPS is sorted by

the order � of ascending boundRa values. Thereafter, the Search procedure is called to find larger PFPS ( Algorithm 5 ). 

The Search procedure performs a depth-first search by extending itemsets having their PFPS-lists in boundPFPS . It com-

bines pairs of PFPS-lists of extensions of ∅ to generate 2-itemset extensions. The itemsets { a } and { e } are first combined

to generate the itemset { a, e } because they have the same prefix (the empty set). The Intersect procedure is applied on the

PFPS-lists of { a } and { e } to generate the PFPS-list of { a, e }. The sid-list of { a } is {0, 1, 2, 3} and that of { e } is {0, 1, 3}. Thus, the

sid-list of { a, e } is {0, 1, 3}. For the first sequence, { a }’s tidlist is {0, 1, 2, 3, 4}, { e }’s tidlist is {0, 1, 3}, and their intersection is

{0, 1, 3}. Thus, for the first sequence, the sequence identifier 0 is added to the sid-list of { a, e } and the intersection {0, 1, 3}

is added to the tidlist-list of { a, e }. The rest of the PFPS-list of { a, e } is constructed in the same way for the other sequences.

The PFPS-list of { a, e } is shown in Table 6 . Then, the boundRa value of { a, e } is calculated using its PFPS-list. Since it is found

that boundRa ({ a, e } ) = 0 . 6 ≥ minRa, the itemset { a, e } and its supersets may be PFPS. Hence, the sequences in which { a, e }

is periodic are found and ra ({ a, e }) is calculated. Since numSeq ({ a, e } ) = 3 , the ratio ra ({ a, e } ) = 0 . 75 ≥ minRa, and thus { a,

e } is a PFPS and it is output. The PFPS-list of { a, e } is added to boundPFPS . The same process is repeated for other itemsets,

and the Search procedure is recursively called to explore the extensions of these itemsets. 

4.4.2. Complexity 

The complexity of the MPFPS DFS algorithm is analyzed as follows. The algorithm first scans the database to calculate

sup ({ i }, s ), pr ({ i }, s ), maxpr ({ i }, s ) and stanDev ({ i }, s ) for each item i ∈ I . The time cost of this step is O(n × w ) where w is

the average number of transactions per sequence. After that the algorithm performs a loop over each item to check if it is

a PFPS and determine if the item should be added to boundPFPS . The time cost of this step is O(| I| ) . Items are then sorted

in O(| I| × log (| I| )) time. Then, the algorithm does a depth-first search by calling the Search procedure. A call to Search takes

as parameters a set ExtensionsOfP containing PFPS-lists of k -itemsets having a same (k − 1) -itemset as prefix. Then, the

algorithm combines each pair of k -itemsets Px and Py to obtain an itemset Pxy . If ExtensionsOfP contains l itemsets, then

(l × (l − 1)) / 2 pairs of itemsets are combined to generate (k + 1) -itemsets. For each pair of itemsets Px and Py , the Intersect

procedure is called. As previously explained for the MPFPS BFS algorithm, the time cost of this procedure is in the worst case

O(n × w ) . Then, the PFPS-list of Pxy is scanned to calculate boundRa ( Pxy ) and ra ( Pxy ), which has a time cost of at most

O(n × w ) . The algorithm explores the search space of itemsets using the above process. In the worst case, 2 | I| − 1 itemsets

are generated. Depending on how the algorithm’s parameters are set, the pruning properties can more or less reduce the

search space. The overall time cost of the MPFPS DFS algorithm is O(n × w + | I| + | I| × log (| I| )) to evaluate the 1-itemsets,

and then O(n × w ) for each itemset considered in the search space. 

In terms of space cost, the algorithm creates a PFPS-list for each itemset. During the depth-first search, at any moment,

the algorithm only needs to keep the PFPS-lists of k -itemsets ( k ≥ 1) sharing a same prefix. This thus generally requires much

less memory than the MPFPS BFS algorithm, which requires in the worst to keep in memory all k - and (k + 1) -itemsets. In

the worst case, a PFPS-list takes O(n ) space to store the sid − list and O(n × w ) to store tidl ist − l ist . Hence, the overall

space cost of MPFPS is O(n + n × w ) for each itemset. 
DFS 
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Table 7 

Database characteristics. 

Database # Items per trans. # Distinct items Avg. seq. length # Sequences 

FIFA 1 2990 34.74 20,450 

Bible 1 13,905 21.6 36,369 

T 15 I 1 KD 300 K 10 10 0 0 15 30,0 0 0 

Leviathan 1 9025 33.8 5,834 

Table 8 

Memory used by MPFPS BFS for different parameter values on T 15 I 1 KD 300 K . 

maxStd 

Memory(MB) 

MPFPS BFS (x,y) 3 4 5 10 15 20 10 0 0 

MPFPS BFS (0,10 0 0) 1938 2097 2086 2040 2,003 2,094 2,167 

MPFPS BFS (0,20) 1624 1663 1609 1646 1759 1845 1763 

MPFPS BFS (0.0 0 01,20) 1673 1673 1575 1643 1664 1641 1607 

MPFPS BFS (0,10) 1,264 1,394 1,258 1457 1,457 1,460 1,492 

MPFPS BFS (0.0 0 01,10) 1,234 1,384 1,230 1372 1,438 1,380 1,386 

Table 9 

Memory used by MPFPS BFS for different parameter values on FIFA . 

maxStd 

Memory(MB) 

MPFPS BFS (x,y) 1 2 3 4 5 10 10 0 0 

MPFPS BFS (0,10 0 0) 206 206 206 206 194 206 196 

MPFPS BFS (0,10) 246 251 251 246 251 251 251 

MPFPS BFS (0.0 0 01,10) 225 246 246 225 246 225 246 

MPFPS BFS (0,5) 246 246 246 225 246 246 246 

MPFPS BFS (0.0 0 01,5) 246 246 246 246 246 246 246 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5. Correctness and completeness of the proposed algorithms 

It can be easily found that the proposed MPFPS BFS and MPFPS DFS algorithms are both correct and complete. This is ex-

plained as follows. Since the depth-first search and breadth-first search procedures start from single items, and recursively

append items to patterns to generate larger itemsets, the whole search space of all possible itemsets can be explored. To

show that the algorithm is complete, it is necessary to show that no patterns are missed. Since the proposed algorithms

only eliminate patterns using pruning strategies based on Theorem 5 and 6 , which have been proved to only eliminate un-

interesting patterns, no patterns are missed and the algorithms are complete. Besides, the algorithms are correct because

the proposed PFPS-list data structure is sufficient to correctly calculate all measures. 

5. Experimental evaluation 

In prior work, a single algorithm named PHUSPM was proposed to mine periodic patterns in a sequence database. How-

ever, it finds patterns that regularly appear in a database whereas the proposed algorithms finds patterns that are periodic

in many sequences, which are two very different problems. Thus, the performance of PHUSPM cannot be compared with

that of the proposed algorithms. For this reason, this experimental evaluation compares the performance of the proposed

MPFPS BFS and MPFPS DFS algorithms for several parameter values with baseline versions designed to find all frequent patterns.

MPFPS BFS and MPFPS DFS are implemented in Java, and were run on a Windows 10 computer equipped with a 3.60 GHz Xeon

E3 CPU with 64 GB of memory. The experiment is carried out on three real databases ( FIFA, Bible and Leviathan ) obtained

from the website of the SPMF library [14] , and on a synthetic sequence database created using the SPMF generator. These

databases were chosen because they have different characteristics. Table 7 summarizes their characteristics. In FIFA, Bible

and Leviathan , each transaction contains one item per transaction and all of these three are sparse databases with short

transactions. For this reason, the synthetic T 15 I 1 KD 300 K database was also used, where each transaction has 10 items per

transactions. It is a dense database with long transactions. The source code of the proposed algorithms and datasets can be

obtained from http://www.philippe- fournier- viger.com/mpfps/MPFPS.rar . 

The proposed algorithms have four parameters: maxStd, minRa, maxPr and minSup . The latter is used to find frequent

patterns in each sequence and has been found to have little influence on the number of periodic patterns. Hence, minSup is

set to a fixed value in the experiments ( minsup = 2 ). Moreover, when maxStd and maxPr are set to large values and minRa =
0 , the algorithm finds all frequent patterns. Thus, in the following, the MPFPS algorithm with maxStd = 10 0 0 , minRa = 0 and

maxP r = 10 0 0 will be used as baseline. The baseline will be compared with other parameter settings to assess the influence

of the maxStd, maxPr and minRa parameters on the performance of the algorithm and number of patterns found. In the

http://www.philippe-fournier-viger.com/mpfps/MPFPS.rar
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Table 10 

Memory used by MPFPS BFS for different parameter values on Bible . 

maxStd 

Memory(MB) 

MPFPS BFS (x,y) 1 2 3 4 5 10 10 0 0 

MPFPS BFS (0,10 0 0) 317 264 322 322 343 322 343 

MPFPS BFS (0,10) 213 288 266 310 310 310 308 

MPFPS BFS (0.0 0 01,10) 215 215 255 245 255 245 255 

MPFPS BFS (0,5) 240 245 225 245 245 255 245 

MPFPS BFS (0.0 0 01,5) 251 251 255 255 250 250 251 

Table 11 

Memory used by MPFPS BFS for different parameter values on Leviathan . 

maxStd 

Memory(MB) 

MPFPS BFS (x,y) 1 2 3 4 5 10 10 0 0 

MPFPS BFS (0,10 0 0) 201 201 201 201 201 202 207 

MPFPS BFS (0,20) 195 195 189 195 169 195 195 

MPFPS BFS (0.0 0 01,20) 195 195 195 195 169 189 195 

MPFPS BFS (0,10) 87 87 87 87 87 87 87 

MPFPS BFS (0.0 0 01,10) 87 87 87 87 87 87 87 

Fig. 3. Runtimes for various minRa and maxStd values for MPFPS BFS . 

 

 

 

 

 

 

 

 

 

 

following, MPFPS ( x, y ) denotes MPFPS with minRa = x, maxP r = y and minSup = 2 . Figs. 3 –7 show the runtimes for various

maxStd, minRa and maxPr values and Figs. 8 and show the number of patterns found from the four databases for different

parameters values. 

The maxStd, minRa and maxPr parameters are set according to the following considerations. First, to show the influence

of maxStd , it must be set to small values. If was found that for the real and synthetic databases, values greater than 10 or

20 respectively do not influence much the performance. Hence, in the experiments for evaluating the influence of maxStd ,

it is set to values in the [1,5] and [3,15] intervals for the real and synthetic databases, respectively. In other experiments, it

is set to 10 0 0 to avoid considering its influence. Second, the minRa parameter was set to values that are small enough to

find patterns. Since the databases are relatively sparse, appropriate values were empirically found to be 0.001 and 0.0001,

respectively. Third, various values of the maxPr parameters were tested to evaluate its influence on the algorithms’ perfor-

mance. Generally, larger values will allow to prune less patterns and increase runtimes. It was found that values greater
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Fig. 4. Runtimes for various minRa and maxStd values for MPFPS DFS . 

Fig. 5. Number of patterns for various minRa and maxStd values. 

 

 

 

than 10 0 0 did not influence much the performance. Thus, values of 5, 10, 20, and 10 0 0 were used in the experiments to

give an overview of the performance for different parameter values in the [1,10 0 0] range. 

5.1. Influence of minRa and maxStd 

The minRa and maxStd parameters were first varied to evaluate their joint influence, while the maxPr parameter was set

to a fixed value ( maxP r = 10 for FIFA and Bible , and maxP r = 20 for T 15 I 1 KD 300 K and Leviathan ). Figs. 3 and 4 show the
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Fig. 6. Runtimes for various maxStd and maxPr values for MPFPS BFS . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

runtimes of the proposed MPFPS BFS and MPFPS DFS algorithms and Fig. 5 shows the number of PFPS found for various values

of the maxStd and minRa parameters. 

In Fig. 3 , it can firstly be observed that while running the MPFPS BFS algorithm, when the value of maxStd is increased,

the runtime doesn’t change much. For example, for minRa = 0 . 0 0 01 and maxP r = 20 on T 15 I 1 KD 300 K and minRa = 0 . 0 0 01

and maxP r = 10 on the other three databases, all the four lines are generally flat. This means that the maxStd parameter

has little influence on the runtime of the MPFPS BFS algorithm. Moreover, for all of the four databases, MPFPS BFS was run

with different minRa values to evaluate the influence of minRa on MPFPS BFS . The figure shows that when minRa = 0 . 0 0 01

or minRa = 0 . 001 , the runtimes are a few times less than the baselines for the three real databases and nearly 100 times

smaller for the synthetic database. This indicates the high practical value of the minRa parameter in reducing the search

space for the MPFPS BFS algorithm. 

Fig. 4 shows the runtimes of the proposed MPFPS DFS algorithms for various values of the maxStd and minRa parameters.

In general, it is observed that mining PFPS in the three real databases FIFA, Bible and Leviathan can be up to 20% faster than

mining all frequent patterns using the baseline algorithm, whereas for T 15 I 1 KD 300 K , it can be 30 times faster. The reason

for this performance difference among databases is that there is only one item per transaction in FIFA, Bible and Leviathan ,

and thus the search space of itemsets is small, whereas transactions of T 15 I 1 KD 300 K contains many items per transactions,

which results in a very large search space. Because a large number of frequent patterns in T 15 I 1 KD 300 K are non periodic,

saving these patterns requires a lot space, and pruning non periodic patterns leads to a massive performance improvement.

For the three real databases, this effect is much more limited. 

It is observed in the Fig. 5 that, for the maxStd parameter, the number of periodic patterns can become very small

compared to the baseline algorithm when this parameter is varied. For example, in T 15 I 1 KD 300 K there are 89,081 frequent

patterns but only 20,986 PFPS when maxStd is decreased from 10 0 0 to 10, and only 1003 PFPS when maxStd is decreased

from 10 to 5. Also, it is found that the minRa parameter greatly influences the number of PFPS. For the Bible database and

maxStd = 1 , 0 0 0 , when minRa is varied from 0 to 0.001 (which means there should be at least 0.1% sequences in which

an itemset is periodic), the number of PFPS decreases from 1126 to 63. This shows that most patterns are periodic in few

sequences, and that the proposed algorithms can filter many non periodic patterns. 

5.2. Influence of maxPr 

The maxPr parameter was also varied to evaluate its influence. Since the average number of transactions per sequence in

the datasets is not greater than 35, this parameter was set to small values. Moreover, maxP r = 1 , 0 0 0 was used as baseline,

indicating that the parameter is deactivated. Figs. 6 and 7 compares the runtimes and Fig. 8 shows the number of PFPS

found for various values of maxPr , when maxStd is varied as in the previous subsection. 
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Fig. 7. Runtimes for various maxStd and maxPr values for MPFPS DFS . 

Fig. 8. Number of patterns for various maxStd and maxPr values. 

 

 

 

 

 

 

It is first observed that the maxPr parameter can be used to greatly reduce the number of patterns found in Fig. 8 . For

example, on the FIFA dataset for maxStd = 1 , 0 0 0 , minRa = 0 and maxP r = 5 , 134 patterns are found, while 10 0 0 patterns are

found for maxP r = 1 , 0 0 0 . This is reasonable since the condition that the periods of a pattern must all be less than maxPr is

very strict. 

In terms of runtime, it can be seen in Fig. 6 that, decreasing the maxPr parameter of the MPFPS BFS algorithm improves

performance by a few times for the three real databases and nearly 100 times for the synthetic T 15 KI 1 KD 300 K database. 

Similarly, it can be observed in Fig. 7 that for the MPFPS DFS algorithm, decreasing the maxPr parameter can also improve

performance but not by a large amount on the real FIFA, Bible and Leviathan datasets, while it provides a considerable im-
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Table 12 

Memory used by MPFPS DFS for different parameter values on T 15 I 1 KD 300 K . 

maxStd 

Memory(MB) 

MPFPS DFS (x,y) 3 4 5 10 15 20 10 0 0 

MPFPS DFS (0,10 0 0) 1837 1995 2035 2452 2,668 2,613 3,309 

MPFPS DFS (0,20) 1837 1995 2095 2272 2549 2,604 2773 

MPFPS DFS (0.0 0 01,20) 1797 1876 2035 2233 2550 2550 2589 

MPFPS DFS (0,10) 1797 1837 1837 1837 1837 1837 1837 

MPFPS DFS (0.0 0 01,10) 1797 1797 1797 1797 1797 1797 1797 

Table 13 

Memory used by MPFPS DFS for different parameter values on FIFA . 

maxStd 

Memory(MB) 

MPFPS DFS (x,y) 1 2 3 4 5 10 10 0 0 

MPFPS DFS (0,10 0 0) 280 320 320 320 320 400 525 

MPFPS DFS (0,10) 280 320 320 320 360 360 360 

MPFPS DFS (0.0 0 01,10) 320 320 320 320 320 320 320 

MPFPS DFS (0,5) 280 320 320 320 320 320 320 

MPFPS DFS (0.0 0 01,5) 320 280 320 280 320 280 280 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

provement on the synthetic dataset. This performance difference is caused by the number of internal candidates generated

for these four databases. Since the MPFPS BFS algorithm generates a large amount of internal candidates on the synthetic

database and maxPr is a very strict constraint, applying the pruning properties make an enormous performance improve-

ment for this dataset. 

5.3. Runtime comparison of MPFPS BFS and MPFPS DFS 

By comparing Fig. 3 with Fig. 4 , it is found that for the same minRa and maxStd values, the performance difference

between the baselines of MPFPS BFS and MPFPS DFS varies greatly. For the three real databases, the runtime of MPFPS DFS is

several times less than the runtime of MPFPS BFS : nearly 3 times in FIFA , 5 times in Bible and 7 times for Leviathan . But on

the synthetic database, mining PFPS using MPFPS DFS is hundreds to thousands of times faster than using MPFPS BFS when

the maxStd threshold is set to 20 or lower. This shows that MPFPS DFS is efficient for mining PFPS, using a depth-first search

strategy, for the same maxStd and minRa values. 

By comparing Fig. 6 with Fig. 7 , the difference between the performance of the two proposed algorithms for the same

maxPr values on the four databases can be observed. It is found that maxPr only influences the performance of MPFPS DFS

to a small degree, while it can provide a considerable performance improvment for algorithm MPFPS BFS , in the three real

databases. In the synthetic database however, maxPr parameter can also make the runtimes for the MPFPS DFS algorithm. For

the synthetic database and same maxPr values, the runtimes of MPFPS DFS are much less than the runtimes of MPFPS BFS . For

example, when maxPr is set to 20 and the other three parameters are set to maxStd = 20 , minRa = 0 and minSup = 2 , the

runtime of MPFPS DFS is 121,679 while the runtime of MPFPS BFS is 631,940. 

In summary, the MPFPS DFS algorithm generally outperforms the MPFPS BFS algorithm in the experiments where the maxStd,

minRa or maxPr parameters were varied. This is especially the case when these parameters are set to smaller, larger and

smaller values, respectively, that is when the constraints on patterns to be found are more strict. Thus, if speed is important,

the MPFPS DFS algorithm should be preferred. 

Based on the above observations, and on the comparisons of the proposed algorithm with the baselines, it can be con-

sidered that the proposed algorithms are efficient in terms of runtime. 

5.4. Memory used for different parameter values 

Tables 12 , 13 , 14 and 15 compare the memory used for various values of minRa and maxPr , when maxStd is varied as in

the previous subsection for the four databases. 

It can firstly be observed that when maxStd is increased, both MPFPS BFS and MPFPS DFS need more space to store the PFPS-

lists of the itemsets. For example, when maxStd is increased from 3 to 15 for MPFPS DFS (0.0 0 01, 20) in Table 12 , memory

usage also increases from 1,797 MB to 2,550 MB. This shows that maxStd can be used to greatly reduce the number of

patterns stored in memory. 

For the minRa parameter, it is observed that this parameter also influences memory usage. For example, consider

MPFPS DFS , for T 15 I 1 KD 300 K when minRa is increased from 0 to 0.0 0 01, maxStd = 4 and maxP r = 20 , the memory decreases

from 1,995 MB to 1,876 MB. This shows that minRa is also helpful for reducing the number of stored patterns. 
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Table 14 

Memory used by MPFPS DFS for different parameter values on Bible . 

maxStd 

Memory(MB) 

MPFPS DFS (x,y) 1 2 3 4 5 10 10 0 0 

MPFPS DFS (0,10 0 0) 280 320 380 400 520 847 1386 

MPFPS DFS (0,10) 280 320 360 400 480 560 560 

MPFPS DFS (0.0 0 01,10) 280 320 320 320 320 320 320 

MPFPS DFS (0,5) 280 280 320 320 320 320 320 

MPFPS DFS (0.0 0 01,5) 280 320 320 320 320 320 320 

Table 15 

Memory used by MPFPS DFS for different parameter values on Leviathan . 

maxStd 

Memory(MB) 

MPFPS DFS (x,y) 1 2 3 4 5 10 10 0 0 

MPFPS DFS (0,10 0 0) 67 72 72 77 87 201 330 

MPFPS DFS (0,20) 67 72 72 77 87 184 203 

MPFPS DFS (0.0 0 01,20) 72 72 72 77 87 184 200 

MPFPS DFS (0,10) 67 67 72 77 82 82 82 

MPFPS DFS (0.0 0 01,10) 67 67 67 72 72 77 77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The maxPr threshold can also reduce memory usage, as observed in the above tables. For example, consider MPFPS DFS , for

T 15 I 1 KD 300 K , when maxPr is decreased from 10 0 0 to 10, maxStd = 10 and minRa = 0 , the memory decreases from 2,452 MB

to 1,837 MB. 

Based on these tables, it is observed that, MPFPS BFS consumes less memory than MPFPS DFS . For example, for

T 15 I 1 KD 300 K , when maxP r = 20 , maxStd = 10 0 0 and minRa = 0 . 0 0 01 , 1,607 MB of memory is used by the MPFPS BFS algo-

rithm and 2,589 MB of memory is used by the MPFPS DFS algorithm. And when maxPr is decreased to 5, 1,575 MB of memory

is used by MPFPS BFS and 2,035 MB of memory is used by MPFPS DFS . Thus, if memory usage is more important than runtime,

the MPFPS BFS algorithm should be preferred. 

5.5. Discussion 

On overall, it has been found that the maxPr, minRa and maxPr parameters can be used to filter a large number of non

periodic patterns. Thus, the proposed algorithms can be used to find a small set of periodic patterns. It was also shown

that parameters can also reduce the runtime and the memory used. How to set the parameters is dataset dependent as

different databases may contain patterns with shorter or longer periods, or periods that vary more or less greatly. It has

been found that the minSup parameter has a very small influence on the algorithms’ output and performance. Thus, it is

recommended to set the minSup parameter to a small value and to increase this parameter only if performance is an issue.

It is also recommended to set the maxPr parameter to a large value as the pruning condition for this parameter is very strict

(as explained in the related work section). It should thus be used to filter patterns that have very large periods. Thus, the

two parameters that should be considered as more important are the maxStd and minRa parameters. The former allows to

specify the maximum variation in terms of periodicity over time for a periodic pattern. The latter is the ratio of sequences

where a pattern must be periodic, and was introduced to be able to find patterns that are periodic in multiple sequences. 

The patterns that were found by the proposed algorithms were also analyzed. Some interesting patterns have been found.

For example, in the Bible dataset, for maxStd = 2 and minRa = 0 . 001 , the two algorithms output three PFPS. The mined pat-

terns are the words “the”, “and” and “of”, respectively. The word “the” is periodic frequent in 837 of the 36,369 sequences.

Consider the 77th sequence as an example. The word “the” appears in the following transactions: {5, 10, 14, 20, 25, 32, 38,

41, 48, 55, 58, 61, 66}. The standard deviation is approximately 1.50, which is a very low value. This means the periods of the

word “the” in this sequence is very stable. We have also performed an analysis of the patterns in the Leviathan text, which

is a political work, also for maxStd = 2 and minRa = 0 . 001 . The three mined periodic patterns are “of”, “that” and “can”.

Although these two datasets share a common pattern “of”, different periodic patterns are found in these two datasets. This

is in accordance with studies on authorship attribution that have found that different authors will exhibit different patterns

either in terms of the choices of words or the structure of sentences. There patterns thus represent the different writing

styles of authors. In some related work, sequential patterns of different texts or ngrams have been used as features to design

authorship attribution systems [39] . It would be interesting in future work to similarly evaluate the usefulness of periodic

frequent patterns as feature for authorship attribution. 

Patterns found in the FIFA dataset were also analyzed. This dataset contains sequences of click stream data from the

website of the FIFA World Cup 98. For the same parameters values as above, it is found that webpage_17 is periodically

clicked by 185 users. It shows the importance of this webpage during the world cup, as several persons are periodically

checking this webpage over and over again to obtain updated information about the world cup. 
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The proposed algorithms have four parameters. For real life applications, it is recommended to set maxPr to a very large

value to eliminate patterns having at least one very large period. The minSup and minRa parameters are used to make

sure that the mined patterns are frequent in the whole database. Since the frequency distributions of items are different in

each database, these parameters must be empirically set based on a database’s characteristics. For dense databases, these

parameters can be set to larger values, while for sparse databases, these parameters can be set to smaller values. As for

the maxStd parameter, it should be set according to the user’s preferences to find patterns that have a more or less stable

periodic behavior. In future work, it would be interesting to design a method to automatically set the minSup, minRa and

maxPr parameters as a function of each item’s occurrences. 

6. Conclusion 

Previous work on periodic pattern mining have mainly focused on analyzing patterns in a single sequence. This paper

has thus proposed a novel problem of mining periodic frequent patterns common to multiple sequences, which consists

of discovering all patterns respecting user-defined minimum support, maximum periodicity, maximum standard deviation

and minimum sequence periodic ratio thresholds. The problem was formally defined and properties of the problem have

been studied. Moreover, two algorithms named MPFPS BFS and MPFPS DFS were proposed to discover these patterns, based on

a novel PFPS-list structure and boundRa upper-bound to reduce the search space. Experiments on several databases have

shown that the proposed algorithms are effective and can greatly reduce the number of patterns found by filtering non

periodic patterns. 

There are several opportunity for future work. First, this paper did not make any assumptions on whether periods of each

itemset in sequences follows some statistical distribution. In future work, we will consider adapting the proposed model

for various distributions. Furthermore, we will consider extending the model to discover more complex types of periodic

patterns such as partial orders, rules and sequential patterns in sequences, and applications to classification [47] . 
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