
A Survey of High Utility Sequential
Pattern Mining

Tin Truong-Chi and Philippe Fournier-Viger

Abstract The problem of mining high utility sequences aims at discovering sub-
sequences having a high utility (importance) in a quantitative sequential database.
This problem is a natural generalization of several other pattern mining problems
such as discovering frequent itemsets in transaction databases, frequent sequences in
sequential databases, and high utility itemsets in quantitative transaction databases.
To extract high utility sequences from a quantitative sequential database, the sequen-
tial ordering between items and their utility (in terms of criteria such as purchase
quantities and unit profits) are considered. High utility sequence mining has been
applied in numerous applications. It is much more challenging than the aforemen-
tioned problems due to the combinatorial explosion of the search space when con-
sidering sequences, and because the utility measure of sequences does not satisfy
the downward-closure property used in pattern mining to reduce the search space.
This chapter introduces the problem of high utility sequence mining, the state-of-art
algorithms, applications, present related problems and research opportunities. A key
contribution of the chapter is to also provide a theoretical framework for compar-
ing upper-bounds used by high utility sequence mining algorithms. In particular, an
interesting result is that an upper-bound used by the popular USpan algorithm is not
an upper-bound. The consequence is that USpan is an incomplete algorithm, and
potentially other algorithms extending USpan.

1 Introduction

High Utility Itemset Mining (HUIM) is a popular data mining task, consisting of dis-
covering sets of values having a high utility (importance) in a quantitative transaction
database. HUIM extends the problem of Frequent Itemset Mining (FIM), which has
been widely studied. HUIM addresses limitations of frequent itemset mining by

T. Truong-Chi (B)
University of Dalat, Dalat, Vietnam
e-mail: tintc@dlu.edu.vn

P. Fournier-Viger
Harbin Institute of Technology (Shenzhen), Shenzhen, China
e-mail: philfv8@yahoo.com

© Springer Nature Switzerland AG 2019
P. Fournier-Viger et al. (eds.), High-Utility Pattern Mining,
Studies in Big Data 51, https://doi.org/10.1007/978-3-030-04921-8_4

97

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04921-8_4&domain=pdf
mailto:tintc@dlu.edu.vn
mailto:philfv8@yahoo.com
https://doi.org/10.1007/978-3-030-04921-8_4

98 T. Truong-Chi and P. Fournier-Viger

considering that items may appear more than once in each transaction and that items
may have weights indicating their relative importance to the user. Although HUIM
is useful, an important drawback of HUIM is that it ignores information about the
sequential ordering of items. Hence, HUIM is inappropriate for many interesting
real-life applications where the sequential ordering of quantitative items or item-
sets must be considered, e.g. databases consisting of sequences of web accesses and
sequences of purchases made by customers over a long period of time.

Motivated by these needs of practical applications, the problem of High Utility
Sequence Mining (HUSM) in quantitative sequence databases was proposed [1–3].
It is an interesting and emerging topic that has been studied for about a decade. It
has attracted the attention of many researchers and has many practical applications
such as discovering interesting patterns in dynamic web log data [1, 2], mobile
commerce environments [3–5], gene regulation data [6], and activity-cost event logs
from healthcare [7].

The goal of HUSM is to identify all sequences having a high utility (importance)
in a database. To represent the importance of patterns in HUSM, each item a in
a quantitative sequence database is associated with a unit profit p(a) indicating its
relative importance, and each occurrence of a is associated with a quantity q (e.g.
indicating the number of units of the item a purchased by a customer in a transaction).
Formally, a pair (a, q) is called a q-item, a q-itemset is a set of q-items (e.g. a
customer transaction), a q-sequence is a list of q-itemsets (e.g. the list of transactions
made by a customer, ordered by time), and a quantitative sequence database D′
consists of a finite set of input q-sequences (e.g. multiple sequences of customer
transactions). To discover high utility patterns, utility calculations are performed.
The utility of a q-item (a, q) is the product of the quantity q of a by its unit profit,
that is q ∗ p(a). The utility of a q-itemset (or q-sequence) is the sum of the utility
of its q -items (or q-itemsets respectively). The utility of a sequence (or sequential
pattern) is computed by applying a utility function on all q-sequences in D′ where
it appears. The problem of HUSM is to enumerate all sequences having a utility no
less than a predefined minimum utility threshold. For instance, HUSM can be used
to discover all subsequences of purchases that yield a profit that is no less than a
threshold in sequences of customer transactions.

The relationship between the problem of HUSM, HUIM and Frequent Sequence
Mining (FSM) is the following. In the case where each q-sequence in a database D′
consists of only one q-itemset, the problem of HUSM is equivalent to the traditional
problem of HUIM. And in the case where all quantities are equal to either 0 or 1 and
all unit profit values are set to 1, the problem of HUSM becomes equivalent to that
of FSM.

Because the problem ofHUSM in quantitative sequence databases ismore general
than the above problems, it is also more challenging. The key challenges of HUSM
are as follows:

• First, considering the sequential ordering of itemsets leads to a combinatorial
explosion of the search space. In other words, the number of patterns to be con-
sidered is much greater in HUSM than in HUIM. Thus, designing efficient HUSM
algorithms requires to design effective strategies for search space pruning.

A Survey of High Utility Sequential Pattern Mining 99

• Second, differently from HUIM, a pattern (subsequence) may appear multiple
times in a q-sequence in HUSM. As a result, the utility of a pattern may be calcu-
lated in different ways.

• Third, utility calculations inHUSMaremore time-consuming than support (occur-
rence frequency) calculation in FSM and utility calculations in HUIM. The reason
is that in HUSM, quantities and unit profits must be considered, and that a pattern
may appear multiple times in a q-sequence due to the sequential ordering.

• Fourth, in FSM a powerful property called the downward closure (DC) property
is used to efficiently prune the search space. This property states that if a sequence
is infrequent (its support is less than a user-specified minimum support threshold
minsup), then all its super-sequences are also infrequent. However, this nice prop-
erty does not hold for the utility in HUSM. Thus, other strategies must be found
to reduce the search space.

This chapter provides a survey of HUSM that can serve both as an introduction
to this problem and a concise overview of recent work for researchers in the field.
The chapter introduces the problem of high utility sequence mining, the state-of-
art algorithms, applications, present related problems and research opportunities. A
key contribution of the chapter is also to provide a formal theoretical framework
for comparing upper-bounds used by high utility sequence mining algorithms. In
particular, an interesting result is that an upper-bound used by the popular USpan
algorithm is not an upper-bound. The consequence is that USpan is an incomplete
algorithm, and potentially other algorithms extending USpan.

The rest of this chapter is organized as follows. The definition of the HUSM
problem, main properties of upper bounds on the utility of sequences and an algo-
rithm for HUSPM are presented in Sect. 2. Section 3 introduces some extensions
and problems related to HUSM. Section 4 discusses research opportunities. Finally,
Sect. 5 draws a conclusion.

2 Problem Definition and Algorithm

This section first defines the problem of high utility sequence mining and how it
generalizes those of high utility itemset mining, frequent sequence mining, and fre-
quent itemset mining. Then, key properties of the utility measure and different search
space pruning strategies are presented based onvarious upper bounds (UBs) onutility.
Finally, an algorithm for HUSM is presented.

2.1 Definition of the High Utility Sequential Pattern Mining
Problem

The problem of HUSM consists of discovering interesting sequences (sequential pat-
terns) in a Quantitative Sequence DataBases (QSDBs), where pattern interestingness
is evaluated using a utility function.

100 T. Truong-Chi and P. Fournier-Viger

A quantitative sequence database is formally defined as follows. Let A = {a1,
a2, . . . , aM } be a set of distinct items occurring in a QSDB. A subset E ⊆ A is called
an itemset. Without loss of generality, we assume that items in itemsets are sorted
according to a total order≺, such as the lexicographical order. In a QSDB, each item
a is associated with a positive number p(a) ∈ R+ representing its importance (e.g.
unit profit), called the external utility. Moreover, a positive quantity q is associated
to each occurrence of an item in a QSDB. An item a associated with a quantity q
is represented as a pair (a, q) and is called a quantitative item (or briefly q-item).
A q-itemset E′ (or q-element according to itemset E) is defined and denoted as
E

′ = {(a, q) | a ∈ E, q ∈ R+}. For example, a q-itemset can represent a set of items
with quantities purchased by a customer (a transaction). A q-sequence α′ is a list
of q-itemsets E

′
k , k = 1 . . . p, which is denoted as α

′ = E
′
1 → E

′
2 → · · · → E

′
p (or

α
′ =< E

′
1, E

′
2, . . . , E

′
p >). For instance, a sequence of customer transactions can be

viewed as a q-sequence. The size and length of a q-sequence is defined as size(α
′
) = p

and length(α
′
) = ∑

k=1...p |E ′
k |, where |E ′

k | is the number of q-items in E
′
k . A QSDB

D′ is a finite set of (input) q-sequences, D′ = {� ′
i , i = 1, . . . , N }, where each q-

sequences �
′
i is associated with a unique identifier SID (Sequence IDentifier). For

the convenience of the reader, Table 1 summarizes the symbols used in this chapter
to denote (q-) items, (q-) elements, and (q-) sequences and input q-sequences.

Example 1 (QSDB). A QSDB D′ is shown in Table 2, with external utility values
provided in Table 3. This database will be used as running example. It contains
four q-sequences�

′
1, �

′
2, �

′
3 and�

′
4. Consider the third q-sequence�

′
3 = (c, 4) →

(a, 4)(c, 2)(e, 2) → (a, 1)(f , 2).The 3rd q-element of that sequence is {(a, 1)(f , 2)}.
If�

′
3 is a customer transaction sequence, it indicates that a customer purchased 4 units

Table 1 Notations

Convention letters Example

Items; q-items Roman letters; (Roman letter, number) a, b, c, d, e, f, g, h; (a, 2), (b, 5), (c, 1)

Elements; q-elements Capitalized roman letters; Capitalized
roman letters followed by’

A, B, C, D, E, F; A’, B’, C’, D’, E’, F’

Sequences; q-sequences Greek letters; Greek letters followed by
prime’

α, β, γ , δ, ε; α’, β’, γ ’, δ’, ε’

Input sequence; input q-
sequences

Capitalized Greek letters Capitalized
Greek letters followed by’

�, �index ; � ′, � ′
index

Table 2 A QSDB D ′
�1 (a, 2) (c, 1) (e, 3)→ (a, 3) (b, 2)→ (a, 5) (d, 5)→

(a, 5) (b, 3) (c, 8)→ (a, 4) (c, 2) (d, 1) (f, 4)

�2 (b, 4)→ (a, 2) (c, 4) (e, 3)→ (a, 3) (d, 2)→ (a, 1)
(c, 4) (d, 1) (f, 1)→ (a, 4) (b, 3) (c, 3)

�3 (c, 4)→ (a, 4) (c, 2) (e, 2)→ (a, 1) (f, 2)

�4 (d, 8)→ (a, 7) (c, 10) (e, 3)→ (a, 2) (g, 1)→ (a, 9)
(f, 8)

A Survey of High Utility Sequential Pattern Mining 101

Table 3 External utility values

Item i a b c d e f g

p(i) 1 3 5 10 2 9 2

of item a, followed by purchasing 4, 2 and 2 units of items a, c and e, respectively,
followed by purchasing 1 and 2 units of items a and f , respectively. The external
utility values of Table 3 can be interpreted as the amount of profit yield by the sale
of one unit of each item.

In the special case where each q-element of a QSDB contains a single q-item, the
QSDB is said to be a 1-QSDB. Similarly, if each q-element of a QSDB contains at
least one q-item, a QSDB is said to be a n-QSDB. For example, the database of Table
2 is a n-QSDB.

The utility of q-items, q-iemsets, q-sequences, and QSDB are defined as follows.

Definition 1 (Utility of q-item, q-element, q-sequence and QSDB) For any q-
sequence α

′ = E
′
1 → E

′
2 → · · · → E

′
p, the utility of a q-item (a, q) is defined as

u ((a, q)) = p (a) ∗ q. Similarly, the utility of a q-element E
′ = {(ai1 , qi1),

(ai2 , qi2), . . . , (aim , qim)} is defined as u(E
′
) = ∑

j=1...m u((aij , qij)). The utility of

a q-sequence α
′
is defined and denoted as u(α

′
) = ∑

i=1...p u(E′
i). The utility of the

QSDB D′ is defined and denoted as u(D′) = ∑
�

′ ∈D′ u(�
′
).

Example 2 (Utility of a q-item, q-element and q-sequence). Consider the QSDB of
Tables 2 and 3. The utility of the q-element E

′ = {(a, 2) (c, 1) (e, 3)} is u
(
E′) =

u ((a, 2)) + u((c, 1)) + u ((e, 3)) = p (a) ∗ 2+ p (c) ∗ 2+ p (e) ∗ 3 = 1 ∗ 2 + 5 ∗
2 + 2 ∗ 3 = 18. The utility of the q-sequence �

′
3 is u(�

′
3) = u ((c, 20)) +

u((a, 4)) + u ((c, 10)) + u ((e, 4)) + u((a, 1)) + u((f , 18)) = 20 + 4 + 10 + 4 +
1 + 18 = 57.

It can be observed that all utility calculations require multiplying quantities of q-
items in input q-sequences with their external utilities. If many utility calculations
are performed using the same q-items, the corresponding multiplications will be
performed several times, which is inefficient. To avoid repeatedly calculating the
utility of each q-item (a, q) in elements of each input q-sequence � ′D′, these utility
values can be calculated once. In this case, the value q of each q-item (a, q) is replaced
by the product u((a, q)) = p(a) ∗ q. The result is an equivalent representation of the
QSDBD′, which is called the integrated QSDB ofD′. For the sake of brevity, it is also
denoted as D′. In the rest of this chapter, we consider that all QSDBs are represented
as integrated QSDBs.

Example 3 (Integrated QSDB). Consider the database QSDB D′ of Table 2
and the unit profit values of Table 3. The equivalent integrated-database QSDB
D′ is shown in Table 4. For example, the 3rd q-element {(a, 1) (f , 2)} of �

′
3 is

transformed to {(a, 1)(f , 18)} in the corresponding integrated QSDBD
′
, because

u((a, 1)) = p(a) ∗ 1 = 1 and u((f , 2)) = p (f) ∗ 2 = 18. Thereafter, the integrated
database of Table 4 will be considered for the running example.

102 T. Truong-Chi and P. Fournier-Viger

Table 4 Integrated QSDB D
′

�
′
1 (a, 2)(c, 5)(e, 6)→ (a, 3)(b, 6)→ (a, 5)(d, 50)→

(a,5)(b,9)(c,40)→ (a,4)(c,10)(d,10)(f,36)

�
′
2 (b, 12)→ (a, 2)(c, 20)(e, 6)→ (a, 3)(d, 20)→ (a,

1)(c, 20)(d, 10)(f, 9)→ (a, 4)(b, 9)(c, 15)

�
′
3 (c, 20)→ (a, 4)(c, 10)(e, 4)→ (a, 1)(f, 18)

�
′
4 (d, 80)→ (a, 7)(c, 50)(e, 6)→ (a, 2)(g, 2)→ (a,

9)(f, 72)

Table 5 SDB D according to
D

′ �1 b → ace → ad → acdf → abc

�2 b → ace → ad → acdf → abc

�3 c → ace → af

�4 d → ace → ag → af

To obtain a (non-quantitative) sequence databaseD according to integratedQSDB
D′, we perform a projection as follows.

The projection of a q-itemset E
′ = {(a, q) | a ∈ E, q ∈ R+} to obtain an item-

set E is defined and denoted as E = proj(E
′
). The projection of a q-sequence

α
′ = E

′
1 → E

′
2 → · · · → E

′
p to obtain a sequence α is defined and denoted as: α =

proj
(
α

′) = proj
(
E

′
1

) → proj
(
E

′
2

) → · · · → proj(E
′
p). The projection of a QSDB

D′ to obtain a (non-quantitative) sequence database (SDB) D is defined as D =
proj(D

′
) = {proj(�

′
) | �

′ ∈ D
′ }.

Example 4 (Sequence database according to D′) Consider the integrated QSDB D′
of Table 4. The (non-quantitative) SDB D according to D′ is shown in Table 5. For
example, the projection of�

′
3 = (c, 20) → (a, 4)(c, 10)(e, 4) → (a, 1)(f , 18) is�3

= c → ace → af .

A particularity of mining patterns (subsequences) in sequences is that a pattern
may appear multiple times in the same sequence (have multiple occurrences). To
formally describe occurrences of a sequence α in a q-sequence β ′, an order relation
is introduced. In the following definitions, α

′ = E
′
1 → E

′
2 → · · · → E

′
p and β

′ =
F

′
1 → F

′
2 → · · · → F

′
q are two q-sequences, and α = E1 → E2 → · · · → Ep and

β = F1 → F2 → · · · → Fq are two sequences.

Definition 2 (Order relations over q-sequences and sequences)A partial order rela-
tion � is defined over the set of all q-sequences as follows:

1. For any two q-elements,E
′ = {(ai1 , qi1), (ai2 , qi2), . . . , (aim , qim)} andF

′ = {(aj1 ,

qj1), (aj2 , qj2), . . . , (ajn , qjn)}, E
′
is contained in F

′
and denoted as E

′ � F
′
, iff1

there exist natural numbers 1 � k1 < k2 < · · · < km � n such that (ail , qil) =
(ajkl

, qjkl
), i.e. ail = ajkl

and qil = qjkl
, ∀l = 1, . . . , m.

1iff means “if and only if”

A Survey of High Utility Sequential Pattern Mining 103

2. α
′
is contained in β

′
(or α

′
is a sub q-sequence of β

′
, β

′
is a super q-sequence

of α
′
) and denoted as α

′ � β
′
(or β

′
 α
′
) iff p � q and there exist p integers,

1 � j1 < j2 < . . . < jp � q such that E
′
k � F

′
jk
, ∀k = 1, . . . , p; and α

′ � β
′ ⇔

(α
′ � β

′ ∧ α
′ = β

′
).

Similarly, for simplicity, we also use � to define the partial order relation over
the set of all sequences, defined as follows: α � β ⇔ ∃p positive integers, 1 � j1 <

j2 < · · · < jp � q: Ek ⊆ Fjk , ∀k = 1, . . . , p, and α � β ⇔ (α � β ∧ α = β).

Example 5 (� relation) In the running example, q-sequence α
′ = (a, 2)(e, 6) →

(a, 3) → (c, 20) � �
′
2, and sequence α = proj(α

′
) = ae → a → c � �2.

To describe whether a sequence appears or not in a q-sequence, the concept of
match between a sequence and a q-sequence is presented.

Definition 3 (Match of a sequence in a q-sequence) A q-sequence α
′
matches a

sequence α iff proj(α
′
) = α, which is denoted as α

′ ∼ α. A sequence α is contained
in a q-sequence β

′
, which is denoted as α � β

′
, iff proj(β

′
)
 α, i.e. there exists a

sub-q-sequenceα
′ � β

′
such thatα

′ ∼ α. LetU
(
α, β

′) = {
α

′ ∣
∣α

′ � β
′ ∧ α

′ ∼ α}
be the set of all sub-q-sequences α

′
of β

′
that matches α (or all occurences α

′
of α

in β
′
).

Example 6 (Match) The q-sequence α
′ = (a, 2)(e, 6) → (a, 3) → (c, 20) � �

′
2

matches α = ae → a → c. Hence, α � �
′
2. The three occurrences of α in �

′
2 are

U (α,�
′
2) = {(a, 2)(e, 6) → (a, 3) → (c, 20), (a, 2)(e, 6) → (a, 3) → (c, 15),

(a, 2)(e, 6) → (a, 1) → (c, 15)}.
To discover sequences having a high utility in a QSDB, it is necessary to define

how to calculate the utility of a sequence in a q-sequence. In HUIM, calculating
the utility of a pattern is relatively simple because a pattern (an itemset) appears at
most once in each record of a quantitative transaction database. Thus, a pattern has
a single utility value for each record. In HUSM, a pattern (sequence) α may appear
multiple times in a q- sequence �

′
, and thus may have multiple utility values in the

same q-sequence. For example, the sequence α = ae → a → c appears three times
in the q- sequence �

′
2 as shown in Example6. Thus the utility of a sequence α in a

q -sequence �
′
can be calculated in multiple ways.

In some studies [1, 2], the utility of α in �
′
is calculated as the sum or maximum

of the utility values of all items of α appearing in �
′
depending on whether α has

multiple distinct occurrences in �
′
or not. A drawback of such definitions is that

computing the utility of sequences is time-consuming, the utility values may be very
large, and that these values may represent the personal behaviors of customers rather
than the behavior of most customers [8]. Moreover, in some studies [1], only 1-
QSDBs are considered rather than the more general n-QSDBs. To simplify utility
calculations and provide a more suitable definition for the needs of many real-world
applications, recent studies have mostly defined the utility of a sequence using the
maximum form, that is umax(α, �

′
) = max{u(α

′
) | α

′ ∈ U (α, �
′
)} [8–12].

104 T. Truong-Chi and P. Fournier-Viger

Definition 4 (Maximum utility measure of sequences) Consider a sequence α that
is contained in a q-sequence β

′
, i.e. α � β

′
. The maximum utility (actual utility, or

briefly utility) of α in β
′
is denoted and defined as umax(α, β

′
) = max{u(α

′
) | α′ ∈ U

(α, β
′
). Similarly, the maximum utility of α in D′ is denoted and defined as

umax(α, D′) = ∑
�

′ ∈ρ(α) umax(α,�
′
), or more concisely denoted as umax(α), where

ρ(α) = {� ′ ∈ D′ | �
′
 α} is the set of all input q-sequences �

′
in D′ containing α.

Based on the above definition, the problem of high utility sequence mining is
defined as follows.

Definition 5 (Problem definition) A sequence α is said to be a high utility (HU)
sequence (or HU sequential pattern) if its utility in D′ is not less than a user-defined
minimumutility thresholdmu, that is umax(α) � mu, andα is called a low utility (LU)
sequence if umax(α) < mu. Let HUS(mu) or briefly HUS = {α | umax(α) � mu}
denote the set of all high utility sequences. The problem of high utility sequence
mining (HUSM) is to discover HUS.

Example 7 (High utility sequence mining) Consider the integrated QSDB D′ of
Table 4 and mu = 350. The sequence α = d → ac → af appears in the two follow-
ing inputq-sequences:ρ(α) = {� ′

1, �
′
4 }. Theoccurrences ofα in thefirstq-sequence

areU (α, �
′
1) = {(d , 50) → (a, 5)(c, 40) → (a, 4)(f , 36)}, so umax

(
α,�

′
1

) = 135.
Similarly, umax

(
α,�

′
4

) = 218. Thus, umax (α) = 135 + 218 = 353 � mu and d →
ac → af is a HU sequence.

Algorithms for discovering patterns in databases generally search for patterns by
starting from patterns containing a single item, and then consider larger patterns by
appending items to these patterns one at a time. In HUIM, the process of adding an
item to a pattern is called an i-extension. It consists of adding an item y to an itemsetA
to obtain an itemset A ∪ {y}. In HUSM, the process of extending a pattern (sequence)
α with an item is more complicated because there two ways of appending an item
to a pattern are considered. These two types of extensions are called i-extension
and s-extension, respectively. For example, consider the sequence α = ce → a and
the item d . By appending the item d to α using these two types of extensions, two
different sequences are obtained: ce → ad and ce → a → d .

Definition 6 (Extensions) A sequence α can be extended by two types of exten-
sions. The itemset extension (or briefly, i -extension) of α with β such that ∀a ∈ Ep,
∀b ∈ F1, a ≺ b, is a sequence denoted and defined as α�iβ = E1 → E2 → · · · →
(Ep ∪ F1) → F2 → · · · → Fq. The sequence extension (or s -extension) of α with β,
denoted as α�sβ, is the sequence α�sβ = E1 → E2 → · · · → Ep → F1 → F2 →
· · · → Fq. A forward extension (or briefly extension) of α with β, γ = α � β, can
be either α�iβ or α�sβ.

Example 8 (Extensions) Consider the sequence α = ce → a and the item d . The i-
extension of the sequence α with d is ce → ad . The s-extension of the sequence α

with d is ce → a → d . Both extensions are forward extensions of α.

A Survey of High Utility Sequential Pattern Mining 105

Note that in the case where each q-sequence �
′
of a QSDB D

′
contains a sin-

gle q-itemset (i.e. size(�
′
) = 1), then only i-extensions need to be considered to

find all high utility sequences, and HUSM becomes equivalent to the problem of
HUIM. In that case, the QSDB is a Quantitative Transaction DataBase (QTDB), and
umax

(
α, �

′)
is the utility of a q-itemset, as in HUIM.

Based on the concepts of extensions, the concepts of prefix, suffix and projected
databases are defined next, which are used by most algorithms for HUSM and will
be useful to discuss properties of the HUSM problem in this chapter.

Definition 7 (Prefix, suffix)Consider a sequenceγ obtainedbyperforming a forward
extension of a sequence α with a sequence β, i.e. γ = α � β. In that case, α is called
a prefix of γ and β is called the suffix of γ w.r.t. α. In addition, if δ is the smallest
prefix of γ (according to �) containing α, then it is denoted as δ = pref (γ , α). The
corresponding suffixβ of γ w.r.t. δ, i.e. γ = δ � β, is denoted as suf (γ , α). Similarly,
we also have corresponding concepts of pref (� ′, α) and suf (� ′, α).

Example 9 (Prefix, suffix) Let α = ae → a → c. In the SDB D in Table 5 and inte-
gratedQSDBD′ in Table 4, pref (�1, α)= ace → ab → ad → abc, so suf (�1, α)=
acdf , and pref (�

′
1, α) = (a, 2)(c, 5)(e, 6) → (a, 3)(b, 6) → (a, 5)(d , 50) → (a, 5)

(b, 9)(c, 40), so suf (�
′
2, α) = (a, 4)(c, 10) (d , 10)(f , 36).

Definition 8 (Projected database) Consider the non-quantitative sequence database
(SDB) D corresponding to D′, D = proj(D′). A projected database (PDB) of D
w.r.t. α is defined and denoted as Dα = {suf (�, α)| � ∈ D ∧ �
 α}. Similarly,
D

′
α = {

suf
(
� ′, α

)∣
∣� ′ ∈ D′ ∧ � ′
 α}.

Example 10 (Projected database) Consider the QSDB D′, SDB D shown in Tables
4 and 5, the sequence α = ae → a → c. This sequence appears in �1 and �2.
It is found that suf (�1, α) = acdf and suf (�2, α) = df → abc. Thus, Dα =
{acdf , df → abc}. Similarly, suf (�

′
1, α) = (a, 4)(c, 10)(d , 10)(f , 36) and suf

(�
′
2, α)=(d , 10)(f , 9)→(a, 4) (b, 9)(c, 15), so D

′
α = {(a, 4) (c, 10) (d , 10) (f , 36) ,

(d , 10) (f , 9) → (a, 4) (b, 9) (c, 15)}.
In HUSM, the search space of sequences is usually represented a prefix tree

which is a tree structure, where the root represents the null sequence, and each other
tree node represents a candidate sequence. In that tree, each child of a node is an
i-extension or s-extension of that node.

The problem of HUSM is more general than the problem of FSM. In FSM, the
goal is to discover all sequences having a support (occurrence frequency) that is not
less than a user-defined minimum support threshold minsupp. The support measure
is defined as follows.

Definition 9 (Support of a sequence) The support of a sequence α is defined as
the number of super-q-sequences (in D′ w.r.t. �) of α, that is supp(α) = |ρ(α)|,
where ρ(α) = {� ′ ∈ D′ | �

′
 α}.
Example 11 (Support) In the running example, the sequence α = ae → a → c
appears in two q-sequences ρ (α) = {�

′
1, �

′
2}. Thus, supp(α) = 2.

106 T. Truong-Chi and P. Fournier-Viger

To transform the problem of HUSM into FSM, the utility of a q-item (a, q),
q-itemset E′ and q-sequence � ′ = E

′
1 → E

′
2 → · · · → E

′
p are redefined as follows,

u((a, q))≡1 (i.e. all items have the same importance), u(E′)=∏
(aij ,qij)∈E′ u((aij , qij))

and u(�
′
) = ∏

i=1...p u(E
′
i). Then, we have umax(α, �

′
) = 1 iff �

′ ∈ ρ(α),

thus umax (α) = ∑
�

′ ∈ρ(α) umax
(
α, �

′) = |ρ (α)| = supp(α). Hence, we obtain the
traditional problem of FSM in non-quantitative Sequence DataBases (SDBs) when
replacing minutil with the user-specified minimum support threshold minsupp. In
other words, the utility measure is more general than the traditional support measure
and the FSM problem on SDBs is a special case of HUSM on QSDBs.

Tofindall patterns for a patternminingproblem in a reasonable time, it is necessary
to design a search procedure to explore the search space of all patterns, and strategies
to prune parts of the search space that do not contain the desired patterns. In problems
such as FSM or frequent itemset mining, a powerful property is used to reduce the
search space, called the downward closure (DCor equivalently anti-monotonic –AM)
property. It allows to efficiently prune many infrequent patterns. The DC property
states that the support of a pattern α is always greater or equal to the support of all its
super-patterns. Thus, if a pattern α is infrequent, i.e. supp(α) is less than a predefined
minimum support threshold minsupp, then all its supper-patterns are also infrequent
and can be immediately pruned from the search space.

The problem of HUSM is more challenging than FSM because utility measures
such as umax are neither anti-monotonic nor monotonic. In other words, for a QSDB,
there may exist patterns α, β, γ and δ such that α � β, γ � δ and u (α) < u (β)

and u (δ) < u(γ). For instance, consider D′ in Table 4 and the utility measure umax.
For α = ace → a → f , β = ace → a → af and δ = ace → a → a → f , we have
that δ � α � β and umax (β) = 245 > umax (α) = 231 > umax (δ) = 59. To over-
come the lack of a DC property, upper bounds UB on the utility umax have been
proposed which satisfy an AM or weaker AM properties. For example, in [2, 4,
9], an upper bound (UB) on umax named SWU (Sequence-Weighted Utility) was
proposed, which satisfies the AM property. If SWU (α) < mu for a sequence α, an
algorithm can prune all its super-sequences β
 α, because umax (β) � SWU (β) �
SWU (α) < mu. Note that the upper bound is a natural generalization of the SWU
(Transaction-Weighted Utility) upper bound used in HUIM [13].

In summary, there are three main challenges in HUSM. First, compared with
HUIM, sequencing between itemsets in HUSM leads to a combinational explosion
of the search space. Assume that L is the maximum length of input q-sequences in
a database D

′
containing M distinct items (L can be greater than M). Then, in the

worst case, the maximum number MaxNP of patterns is O(M L) in HUSM, while
in HUIM or FIM, MaxNP is only O(2M). Second, since a sequential pattern (or
sequence) may have multiple occurences in each input q-sequence, computing the
utility of patterns is more complicated and consumes much more time compared to
calculating their supports in FIM and FSM, or the utility of itemsets in HUIM. As
a result, the computational complexity of HUSM is usually much higher than that
of HUIM. Third, the AM property does not hold for the utility measure umax. Thus,
well-known efficient algorithms as well as search space pruning strategies for mining

A Survey of High Utility Sequential Pattern Mining 107

frequent sequences or high utility itemsets cannot be directly applied to the problem
of HUSM. Hence, designing UBs which satisfy AM or weaker AM properties is
key to effectively reduce the search space for mining HUS, and obtain efficient
algorithms.

2.2 Upper Bounds on umax and their Key Properties

UBs are critical to mine patterns efficiently. Several UBs on umax have been proposed
to prune LU sequences. Thus, an important question that arises is how to select
appropriate UB(s) when designing an HUSM algorithm.

In the field of pattern mining, researchers often compare UBs in terms of their
values. It can be shown that some UBs are tighter. Intuitively, one may think that
tighter UBs are better as they provide a smaller overestimation of the utility of
patterns. But this is not always true. Different UBs have different pruning effects
(some UBs can be used for depth or width pruning), and their ability at reducing the
size of a projected database or other upper bounds may vary.

This subsection first defines what an UB is. Then it proposes a general frame-
work for evaluating upper-bounds in terms of tightness, pruning effects and other
properties. This subsection discusses in details the SWU [9], MEU and LEU UBs
presented in [12]. Moreover, towards the end of the subsection, additional UBs are
discussed namely the PEU [11] and CRoM [10] UBs.

Definition 10 (Upper bound) A utility measure UB is called an upper bound (UB)
on umax iff umax(α) � ub(α), for any sequence α. For any two UBs ub1 and ub2 on
umax, ub1 is said to be tighter than ub2 and denoted as ub1 � ub2 iff ub1(α) � ub2(α),
∀ α. Moreover, ub1 is said to be strictly tighter than ub2 iff ub1 � ub2 and ∃α :
ub1 (α) < ub2(α).

The SWU [9], MEU and LEU UBs are defined as follows.

Definition 11 (ubrem upper bound on umax in a q-sequence) Assume that α � β
′ =

F
′
1 → F

′
2 → · · · → F

′
q, i.e. ∃α

′ = E
′
1 → E

′
2 → · · · → E

′
p � β

′
: α

′ ∼ α. Thus, there

exist p integers 1 � i1 < i2 < · · · < ip � q such that E
′
k � F

′
ik
, ∀k = 1, . . . , p. In

that case, the index ip is said to be the ending of α in β
′
, denoted as end(α, β ′)

or end(α′, β ′) and the last item of α in F
′
ip

is called the ending item and is

denoted as eip . Then, the remaining q-sequence of α in β
′
w.r.t. α

′
(or the end-

ing ip) is the rest of β
′
after α′ (or after the ending item eip), which is denoted

as rem(α, β
′
, α

′
) (or rem(α, β

′
, ip)). The measure ubrem(α, β

′
) = max{u(α′) +

u(rem(α, β
′
, α

′
)) | α′ ∈ U (α, β

′
)} is an upper bound on umax in β

′
based on the

remaining utilities u(rem(α, β
′
, α

′
)). For an ending ip of α in β

′
, let u(α, β

′
, ip) =

max
{
u(α

′
) | α

′ ∈ U
(
α, β ′) ∧ end(α

′
, β ′) = ip

}
. Then, ubrem(α, β

′
) = max{u(α,

β
′
, ip) + u(rem(α, β

′
, ip)) |for all ending ip of α in β

′ }.

108 T. Truong-Chi and P. Fournier-Viger

Definition 12 (SWU, MEU and LEU upper bounds on umax)
a. The Sequence-Weighted Utility (SWU) [9] of α is denoted and defined as
SWU (α) = ∑

�
′ ∈ρ(α) u(�

′
).

b. The Maximum Extension Utility (MEU) [12] of α is defined and denoted as
MEU (α) = ∑

�
′ ∈ρ(α) ubrem(α, β

′
).

c. The Looser extension Utility (LEU) of a sequence β = α � y for a prefix α is
defined and denoted asLEU (β) = ∑

�
′ ∈ρ(β) ubrem(α, �

′
) ifα =<>, andLEU (y) =

SWU (y) if α =<>. Here, the notation <> denotes the empty sequence. The LEU
UB is used by the LAS (Look Ahead Strategy) [12].

The relationship between the SWU , LEU and MEU UBs and umax is presented
in the next theorem. Basically, the three measures are upper-bounds on umax and
the SWU is the loosest of the three upper-bounds. Thus, if one wants to propose a
new upper-bound ub on a utility measure such as umax, it should respect at least two
conditions. First, ub should truly be an UB, and second, it should be tighter than the
largest well-known SWU UB.

Theorem 1 (Relation between UBs on umax)

umax � MEU � LEU � SWU.

That is, SWU, LEU and MEU are UBs on umax, and MEU (or SWU) is the tightest
(or largest respectively) UB among the three above UBs.

To prove Theorem 1, the following lemma is needed.

Lemma 1 (Anti-monotonicity w.r.t. forward extension of ubrem(α,�
′
)) For any

extension β = α � δ of α, we have ρ(β) ⊆ ρ(α) and ubmax
(
β, �

′) � ubrem
(
β, �

′)

� ubrem(α,�
′
), ∀�

′ ∈ ρ(β).

Proof If β = α � δ � α, then ∀�
′ ∈ ρ(β), ∃β

′ � �
′
: proj(β

′
) = β � α, so ∃α

′ �
β

′ � �
′
: proj(α

′
) = α. Thus, �

′ ∈ ρ(α), i.e. ρ(β) ⊆ ρ(α). Without loss gener-
ality, we can assume that the sequence δ only consists of an item x, δ = x,
i.e. β = α � x. Let p = size(α), k = |α [

p
] | and for any �

′ ∈ ρ(β), assume that
β∗′ ∈ U (β, �

′
) such that ubrem(β, �

′
) = u(β∗′

) + u(rem(�
′
, β∗′

)). Call α∗′ =
β∗′ [

1 . . . p
] = β∗′

1 → β∗′
2 → · · · → β∗′

p or α∗′ = β∗′ [1 . . . p − 1]�sβ
∗′ [p][1 . . . k] if

β = α�sx orβ = α�ix, respectively. Then,we always haveα∗′ � �
′
and proj(α∗′

) =
α, soα∗′ ∈ U (α,�

′
) andubmax(β, �

′
) � ubrem(β,�

′
)�u(α∗′

) + u(rem(�
′
, α∗′

)) �
max{u(α′) + u(rem(�

′
, α

′
)) | α′ ∈ U (α,�

′
)} = ubrem(α, � ′).

Proof of Theorem 1. For any sequenceβ and�
′ ∈ ρ(β), it is clear that umax(β, �

′
) �

max{u(α′) + u
(
rem(α, β

′
, α

′
)
) |α ∈′ U (α, β

′
)} = ubrem(β, �

′
) � u(�

′
). Thus, by

summing for all�
′ ∈ ρ(β), umax (β) � MEU (β) � SWU (β), i.e. umax � MEU �

SWU . To prove that MEU � LEU � SWU , consider any extension β of α

with an item x, β = α � x � α, and �
′ ∈ ρ(β). If α = <>, due to LEU (β) =

SWU (β), then MEU (β) � LEU (β) = SWU (β). If α = <>, by Lemma1, we

A Survey of High Utility Sequential Pattern Mining 109

also obtain ubrem(β, �
′
)� ubrem(α, �

′
) � u(�

′
). Thus, MEU (β) � LEU (β) �

SWU (β). Hence, in all cases, we always have MEU (β) � LEU (β) � SWU (β).

Example 12 (UBs MEU, LEU and SWU) For the sequenceα = d → a → a,ρ(α) =
{� ′

1, �
′
2, �

′
4}. For the q-sequence �

′
4, we have u(�

′
4) = 228. There are two endings

of α in �
′
4, which are a3 and a4. According to a3, the first occurrence α

′
of α in �

′
4 is

(d ,80)→ (a,7)→ (a,2) and the corresponding remaining
q-sequence is rem

(
α,�

′
4, α

′)
or rem

(
α,�

′
4, a3

) = (g, 2) → (a, 9) (f , 72). For the
second ending a4, there are two occurences α

′
of α in �

′
4, that is (d , 80) → (a, 7) →

(a, 9) and (d , 80) → (a, 2) → (a, 9). The corresponding remaining
q-sequence is rem

(
α,�

′
4, a4

) = (f , 72). Thus, umax
(
α, �

′
4

) = max{89, 96, 91} =
96,ubrem

(
α, �

′
4

) = max {89 + 83, 96 + 72, 91 + 72}=172.After performing sim-
ilar calculations for �

′
1 and �

′
2, we obtain umax (α) = 59 + 25 + 96 = 180,

SWU (α) = 191 + 131 + 228 = 550, MEU (α) = 115 + 49 + 172 = 338 and
LEU (α) = ∑

i=1,2,4 ubrem
(
δ, �

′
i

) = 164 + 88 + 228 = 480, where δ = d → a.
Thus, umax (α) < MEU (α) < LEU (α) < SWU (α), i.e. MEU and LEU are strictly
tighter than LEU and SWU , respectively.

Intuitively, one may think that tighter UBs are always better than looser UBs.
But this intuition is not completely correct. In general, to evaluate different UBs
of sequences, besides considering their values, we need to additionally examine
their anti-monotonic-like properties and their pruning effects for reducing the search
space. These concepts are introduced inDefinitions13 and 14 of the proposed generic
framework for comparing UBs. Based on this, we can design different strategies
for width or depth pruning, or reducing the size of projected databases (PDBs) or
reducing these UBs on PDBs that have been just reduced Theorem2, or gradually
tightening candidate item sets for i- and s-extensions of a sequence during themining
process Proposition1. For example, although MEU is tighter than LEU and SWU
(i.e. MEU is only better in term of values), but it should not only use the tightest
UB MEU to prune LU candidate sequences, because the three UBs satisfy different
anti-monotonic or weaker anti-monotonic properties. Thus, they will have different
effects for pruning or tightening candidate item sets for extensions as it will be
shown in Example13. The following anti-monotonic-like properties are defined for
discussing UBs.

Definition 13 (Anti-monotonic property and its weaker extensions) A measure (e.g.
support, utility umax or upper bounds SWU , LEU , MEU) ub of sequences is called:
a. anti-monotonic (or downward closure) and denoted as AM (ub) iff ub(β) � ub(α),
∀β
 α.
b. anti-monotonic w.r.t. forward extension, denoted asAMF(ub), iff ub(β) � ub(α),
for any (forward) extension β = α � δ
 α.
c. anti-monotonic w.r.t. backward extension, denoted as AMB(ub), iff for any
backward extension α � ε � y of α � y, i.e. α � ε � y � α � y with ε = <> and
∀� ∈ {�i,�s }, ub (α � ε � y) � ubmax (α, y), where ubmax (α, y) = max{ub (α�iy) ,

ub(α�sy)}.

110 T. Truong-Chi and P. Fournier-Viger

d. anti-monotonic w.r.t. bi-direction extension, denoted as AMBiDi(ub), iff
AMF(ub) and AMB(ub).

The AMF , AMB and AMBiDi properties will be called anti-monotone-like and
they are strictly weaker than AM . In other words, if AM (ub), then AMBiDi(ub),
AMF(ub) and AMB(ub). In the rest of this chapter, we will generally consider ub to
be one of the three presented UBs on umax, that are the SWU , LEU or MEU . Besides
the above properties of UBs, an UB can have two types of pruning effects, defined
as follows.

Definition 14 (Pruning effects of UBs) An upper bound ub on umax (e.g. SWU ,
LEU , MEU) of sequences is said to have a:
a. depth pruning effect, which is denoted as DP (ub) , iff umax(β) � ub(α) for any
(forward) extension of α, β = α � δ
 α. An UB ub having this pruning effect is
called a depth UB (DepthUB);
b. width pruning effect, which is denoted as W P (ub) , iff DP(ub) and for any back-
ward extension α � ε � y of α � y with the same prefix α, i.e. α � ε � y � α � y with
ε = <> and ∀� ∈ {�i,�s }, umax (α � ε � y) � ubmax (α, y). An UB ub having this
pruning effect is called a width UB (W idthUB).

A QSDB where each database entry is a q-sequence, is said to be represented
in Horizontal DB Form (HDF). This is the case for the databases considered in the
examples until now (e.g. Tables 2 and 4). For such database, a HUSM algorithm will
typically start from patterns (sequence) containing single items and gradually extend
these patterns by appending items tofind larger sequences.When exploring the search
space by extending a sequence with items, an algorithmmay produce patterns which
do not appear in the QSDB. Processing patterns that do not appear in a QSDB can
waste a considerable amount of time. To overcome this drawback, several HUSM
algorithms create projected databases (PDBs or pseudo-PDBs) for each sequence that
is considered. By scanning the PDB of a sequence, it is possible to find the set of all
items that can extend a sequence to generate patterns that exist in a QSDB. Although
this can avoid the problem of considering non-existing sequences, a drawback of this
approach is that creating and scanning PDBs can be time-consuming and require a
considerable amount of memory. To address this problem, based on only the AMB
property, the following proposition allows to tighten or reduce the set of candidate
items used for extending sequences without considering PDBs. Consider the task of
extending a sequence α. Let Iub(α) = {y ∈ A | y � lastItem(α) ∧ ub(α�iy) � mu}
and Sub(α) = {y ∈ A | ub(α�sy) � mu} be two sets of candidate items that can be
used to extend a sequence α by i- and s-extensions, respectively. Moreover, let the set
of all items that can extend a sequence α be defined as ISub (α) = Iub (α) ∪ Sub (α).
Similarly, the set of all items that can extend a sequence resulting from extending α

with an item x is defined as ISub(α, x) = ISub(α�ix) ∪ ISub(α�sx). Recall that <>

denotes the empty sequence. It is clear that Iub (<>) = Sub(<>) = ISub(<>) and
SSWU (<>) = SLEU (<>), because LEU (y) = SWU (y). Based on these definitions,
a third pruning effect for UBs is formalized, which consists of reducing the number
of items to be considered for extending a sequence.

A Survey of High Utility Sequential Pattern Mining 111

Proposition 1 (Tightening ISub effect of ub such that AMB (ub)) Let ub be an upper
bound on the utility umax. If AMB (ub) then ub has the tightening ISub effect, that is,
for any item x in A, ISub (α, x) ⊆ ISub (α) . Thus, umax(β) � ub (β) � ubmax(α, y),
for any backward extension β = α � ε � y of α � y. Hence, we say that ub has the
effect of tightening the ISub set, denoted as TE(ub).

Proof Assume that AMB(ub). Furthermore, we consider any backward exten-
sion β = α � ε � y of α � y with ε = <>. Since AMB (ub), umax (β) � ub (β) �
ubmax (α, y), ∀� ∈ {�i,�s}. Especially with ε = x, if y ∈ ISub(α�ix) ∪ ISub(α�sx),
i.e. mu � ub (β), then mu � ubmax (α, y), so y ∈ ISub(α) and ISub(α, x) ⊆ ISub(α).

This proposition is very useful for the following reason. Consider a sequence α

and the set ISub(α) of items that has been considered for extending α. Now consider
a sequence β = α � x. Based on Proposition1, to find the set ISub(α, x) of items that
can extend β, it is not necessary to consider all possible items (the set A). Instead, we
can only consider the items in ISub. By applying this idea, the set of candidate items
used to extend β can be greatly reduced. This is an optimization that can improve
the performance of HUSM and does not require creating or scanning PDBs.

This pruning effect is illustratedwith an example. Consider the LEU upper bound,
which satisfies the AMB property, as it will be shown in Theorem3. Furthermore,
consider the database of the running example with mu = 350, and that the items to
be considered initially for extending the empty sequence is SLEU (<>) = {acdef }.
To determine the set ISLEU (a) of candidate items that can extend item a, the naïve
approach is to consider all items appearing in the database (A = {a, b, c, d , e, f , g}).
If we instead apply Proposition1, we know that ISub(a) ⊆ SLEU (<>). Thus, we only
need to examine five candidate items for extending the sequence a. This strategy
allows to reduce the number of items to be considered without creating or scanning
the projected database D

′
a. Then, it is found that ILEU (a) = {cef }, SLEU (a) = {af },

and thus ISLEU (a) = {acef }. Similarly, to determine the set ISLEU (ac) of itemswhich
can extend a sequence ac, Proposition1 states that ISLEU (ac) is a subset of ISLEU (a).
Thus, we only need to consider four items in ISLEU (a) to extend ac. Then, we
obtain ISLEU (ac) = {aef } (⊆ ISLEU (a) ⊆ ISLEU (<>)). This pruning effect can be
similarly applied for other sequences.

Several algorithms rely on PDBs to discover high utility sequences for the afore-
mentioned reasons. Because a projected database can be large and still contain
many items, it is desirable to use UBs to reduce the number of items to be con-
sidered from a PDB. To reduce PDBs and UBs when searching for high utility
sequences, the set of irrelevant items w.r.t. an UB ub in PDB Dα is denoted as
IRSub (α) = Sub (<>) \ ISub (α) = {y ∈ Sub (<>) | ubmax(α, y) < mu} forα =<>,
and IRSub (<>) = A\ Sub (<>) = {y ∈ A | ub(y) < mu} for α = <>. The follow-
ing theorem allows to design strategies for depth or width pruning as well as for
reducing PDBs and UBs based on the AMF or AMBiDi properties of any upper
bound ub.

112 T. Truong-Chi and P. Fournier-Viger

Theorem 2 (Pruning and Reducing PDB and UB strategies) Let ub be any UB on
umax.
a. If AM (ub), then AMBiDi (ub).
b. (Depth Pruning Strategy DPS(ub) based on AMF(ub)). If AMF(ub)

(e.g. AMF(MEU)) and ub (α) < mu, then DP(ub), so we can deeply prune the whole
branch(α) of the prefix tree (the tree consisting of all forward extensions of α).
c. (Width Pruning Strategy −W PS(ub), Reducing PDB and UBs strategy−Red(ub)

based on AMBiDi(ub)). If AMBiDi(ub) and ubmax (α � y) < mu, then W P(ub),
i.e. all both forward and backward extensions (bi-directional extensions) of α � y,
α � y � δ and α � ε � y, can be pruned, which is denoted as W PS(ub). Moreover,
we can reduce PDBs by removing from Dα all items in IRSub (α) and UBs of all
sequences with prefix α by calculating again UBs on such reduced PDB. This is
denoted as Red(ub).

Proof a. Obviously, for any extension β = α � δ
 α, by Definition13, if AM (ub),
then AME (ub) and AMB(ub), or AMBiDi (ub).
b. If AMF(ub) and ub (α) < mu, then ub (α � δ) � ub (α) < mu, i.e. we can prune
all (forward) extensions α � δ of α.
c. If AMBiDi(ub) (i.e. AMF(ub) and AMB(ub)) and ubmax (α, y) < mu, by assertion
b., then we only need to prove that we can prune all backward extensions β = α �
ε � y of α � y. This is correct, because ub (β) � ubmax (α, y) < mu by Proposition1.
Furthermore, for any γ = α � ε � y � δ (i.e. the sequence γ represents an arbitrary
sequence in the PDB D

′
α containing y and having the same prefix α), we always have

umax(γ) � ub (γ) � ub (α � ε � y) � ubmax (α, y) < mu, i.e. any sequence γ in the
PDB D

′
α containing y must be a low utility sequence. Thus, we can discard such item

y from D
′
α .

Note that, due to the generality of Definition13, strategies for depth or width
pruning as well as for reducing PDBs presented in Theorem2 can be also applied
for other measures such as the support. Another such measure is the probability of
sequences which satisfy the AM property and is used in the extended problem of
HU-probability sequence mining in uncertain QSDBs (see Sect. 3.1).

The three UBs presented until now (MEU , LEU and SWU) satisfy various anti-
monotonic-like properties. Their properties are presented in the following theorem.

Theorem 3 (Anti-monotonic-like properties of UBs) AM (SWU), AMF(MEU),

AMBiDi(LEU).

Proof For any sequences α � β, then ρ(α) ⊇ ρ(β), so SWU (α) � SWU (β), i.e.
AM (SWU).

If β = α � δ � α, by Lemma1, ubrem
(
β,�

′) � ubrem(α, �
′
), ∀�

′ ∈ ρ(β) ⊆
ρ(α), so MEU (β) � MEU (α) and AMF(MEU).

Proof of AMF(LEU): To prove that LEU (β) � LEU (α), ∀β = α � δ � α, with-
out loss of generality, we can assume that δ only consists of an item y. If α =
ε � x � β = α � y = ε � x � y with ε = <> and x, y ∈ A, then, by Lemma1,

A Survey of High Utility Sequential Pattern Mining 113

∀�
′ ∈ ρ (β) ⊆ ρ(α), ε � x � ε, ubrem

(
ε � x, �

′) � ubrem(ε,�
′
), so LEU (β) =

∑
�

′ ∈ρ(β) ubrem(ε � x, �
′
) �

∑
�

′ ∈ρ(α) ubrem(ε, �
′
) = LEU (α). Otherwise, if ε =

<>, δ = y, i.e.α = x � β = x � y, then∀�
′ ∈ ρ(β) ⊆ ρ(α),LEU (β) = ∑

�
′ ∈ρ(β)

ubrem(x, �
′
) �

∑
�

′ ∈ρ(x) ubrem(x, �
′
) = MEU (x) � SWU (x) = LEU (α).

Proof of AMB(LEU): For α =<>, LEU (ε � y) = ∑
�

′ ∈ρ(ε�y) ubrem
(
ε, �

′) �
∑

�
′ ∈ρ(ε�y) u

(
�

′) �
∑

�
′ ∈ρ(y) u

(
�

′) = SWU (y) = LEU (y) because ρ(ε � y) ⊆
ρ(y), ∀� ∈ {�i,�s}. Thus, LEU max (ε � y) � LEU (y).

For α = <> and ε = <>, consider any backward extension β = α � ε � y of
α � y. For β = α�iε�iy and size(ε) = 1, then β = α�i(ε�iy)
 α�iy, by Lemma1,
ρ(β) ⊆ ρ(α�iy), LEU (β) = ∑

�
′ ∈ρ(β) ubrem

(
α�iε, �

′ ∈)
�

∑
�

′ ∈ρ(α�iy)
ubrem

(α,�
′
) = LEU (α�iy); otherwise, then β
 α�sy, so ρ(β) ⊆ ρ(α�sy),

LEU (β) = ∑
�

′ ∈ρ(β) ubrem(α � ε, �
′
) �

∑
�

′ ∈ρ(α�sy)
ubrem

(
α, �

′) = LEU (α�sy).
Thus, in all cases, we always have LEU (β) � max {LEU (α�iy) , LEU (α�iy)} =
LEU max

(α � y), i.e. AMB(LEU). Hence, we have AMBiDi (LEU).
These properties of theMEU, LEU, and SWU UBs are illustratedwith an example.

Example 13 (Different pruning and reducing effects ofUBs) Consider the database
of the running example and mu = 350. It is first found that u(�

′
1) = 191, u(�

′
2) =

131, MEU (d) = 471 and MEU (f)=163 < LEU (g)=228 < LEU (b)=322 < mu.
Then, by MEU , the whole branch(f) consisting of f and all its (forward) extensions
can be deeply pruned from the search tree early (f is thus called a leaf node). Fur-
thermore, using LEU and SLEU (<>) = acdef , we can remove from D′ (or widely
prune) two irrelevant items in IRSLEU (<>) = {b, g} and reduce all UBs of remain-
ing items in SLEU (<>). For example, we have the reduced values of u

(
�

′
1

) =
191 − u ((b, 6)) − u ((b, 9)) = 176, u

(
�

′
2

) = 131 − u ((b, 12)) − u ((b, 9))= 110
and MEU (d) = 471 − u((b, 9)) − u((b, 9)) − u((g, 2)) = 451. After removing
two irrelevant items b and g of IRSLEU (<>) from D′, a part of the prefix tree is
shown in Fig. 1, where each node α together with its utilities are represented in the
brief form α

umax,MEU,LEU
ρ(α) .

Since MEU (af) = 169 < mu, LEU (ad) = 286 < mu and MEU (a�i x) = 469
� mu, ∀x ∈ {c, e, f }, then ILEU (a) = cef . Similarly, MEU (a → f)=173 < mu,
SLEU (a) = af , so ISLEU (a) = acef and IRSLEU (a) = SLEU (<>)

\ ISLEU (a) = d . Thus, we can deeply prune branches starting from nodes ad , af ,
a → c, a → d , a → e, a → f , and remove the irrelevant item d from the PDB D

′
a

and reduce all UBs of a and its remaining child nodes ac, ae and a → a. After
the reduction, since two reduced values MEU (ae) = 294 and MEU (a → a) = 272
are less than mu, we can additionally deeply prune two branches branch(ae) and
branch(a → a). Similarly, for the remaining branch(ac) not yet pruned, we have
ILEU (ac) = {e}, SLEU (ac) = {af }, so IRSLEU (ac) = ISSWU (<>) \ ISLEU (ac) =
bcd g. After discarding additionally the irrelevant item c from D

′
ac and reducing all

UBs of ac, we obtain the reduced valueMEU (ac) = 294 < mu. Thus, branch(ac) is

114 T. Truong-Chi and P. Fournier-Viger

Fig. 1 Illustration of pruning and reducing strategies

also pruned and we can stopmining branch(a) early compared to if theRed reducing
strategy was not used.

Remarks. Based on the proposed general framework for comparing UBs, some
important remarks are presented.

a. The SWU -based width pruning strategy is applied in almost all algorithms
for mining HUS. The SWU -based strategy for reducing PDBs and the SWU was
proposed in [5, 8] and the strategy for reducing PDBs based on UBs satisfying the
AMBiDi property has been utilized in [12]. The depth-pruning strategy based on UBs
satisfying the AMF property has been proposed in [9–12].

Note that although the Width Pruning Strategy can be applied with both the LEU
and SWU UBs, LEU � SWU , so IRSSWU (α) ⊆ IRSLEU (α). It is thus sufficient
to only use LEU as ub in Theorem2c. In other words, LEU is really better than the
SWU in terms of value as well as effect for pruning the search space and reducing
other UBs.

b. Although MEU is tighter than LEU , the latter has a stronger bi-direction prun-
ing effect compared to the former because LEU allows to additionally reduce PDBs
and UBs as shown in Example13. However, note that we cannot apply the reduc-
ing strategy Red for MEU , i.e. Red(MEU) is incorrect. Indeed, assume conversely
that Red(MEU) is true. Consider mu = 350 and α = d . Since MEU (df) = 84
and MEU (d → f) = 286 are less than mu and we eliminate the irrelevant item
f ∈ IRSMEU (d) from D

′
d . Then, the sequence β = d → ac → af containing f can-

not be found in all extensions of d , but this sequence is a high utility sequence since
umax (β) = 353 > mu, i.e. the HU sequence β is missing in the final set HUS. Thus,
simultaneously integrating both MEU and LEU into algorithms for mining HUS is
really necessary.

c. Due to the fact that a sequence may have multiple occurences in an input
q-sequence in HUSM, designing an upper-boundUB on umax is not trivial and it may
thus result in making some mistakes. To ensure the correctness and usefulness of an
UB ub, this latter should satisfy at least two properties: (1) it must really be an UB on
umax, and (2) it should be tighter than the SWU , which is the largest UB commonly

A Survey of High Utility Sequential Pattern Mining 115

used in HUSM. If one tightens or reduces an upper bound UB too much, it may not
be an UB anymore, and algorithms based on UB may miss some HU sequences. In
other words, these algorithms are incomplete. On the other hand loosening an UB
too much may make it greater than the SWU . In that case, the upper bound may not
be useful. Indeed, consider an integrated QSDB D′ = {� ′ = (a, 2)(c, 5)(e, 3) →
(b, 1) → (b, 2) → (d , 1) → (b, 80) → (c, 4)(e, 1) → (d , 3) → (c, 3)(e, 2)}.

(i). For example, for α = a → b → d → c, then umax (α) = 88 < MEU (α) =
90. Consider a measure called tub,which is tighter than the MEU and is defined as
tub(α) = ∑

�
′ ∈ρ(α)(u(α,�

′
, ip) + u(rem((α,�

′
, ip))), where ip is the first ending or

pivot of α in�
′
, ip = 6. Then, tub � MEU and AMF(tub). Since tub(α) = 9 + 9 =

18, tub (α) < umax (α) < MEU (α), i.e. tub is not an UB on umax. For mu = 20, then
tub(α) < mu. Hence, if the tub-based depth pruning strategy is applied to prune α

and its extensions, then some HU sequences such as β = α�ie may be missing in
the set HUS, because umax (β) = 90 > mu.

The tub UB is commonly known as SPU (Sequence-Projected Utilization) and
was introduced in the USpan algorithm [9, 14]. Because USpan relies on this upper-
bound to reduce the search space, it can miss patterns and is thus an incomplete
algorithm. This is important implications since several algorithms are derived from
USpan and thus may also be incomplete. This includes algorithms such as TUS for
top-k HU sequence mining [14], HUSP-NIV for mining HUSs with negative item
values [15], PHUSM formining periodic HUSs [16], HHUSP andMSPCF for hiding
HUSs [17].

(ii). TheMEU and LEU UBs are similar to thePEU (Prefix Extension Utility) and
RSU (Reduced Sequence Utility) used in [11], but the two formers are more simple.
Note that, MEU only satisfies AMF , and does not satisfy AMB and AM . Indeed, for
the backward extension b → d of d , we have MEU (b → d) = 96 > MEU (d) =
94, i.e. not(AMB(MEU)). This remark is important, since if AM (MEU), the appli-
cation of the reduced strategy Red for MEU as discussed in Remark.b may lead to
missing some HU sequences.

Similarly, consider another measure tub′, tighter than MEU , which is defined
as tub′(α) = ∑

�
′ ∈ρ(α) ub

′
rem(α, �

′
), where ub

′
rem(α, �

′
) = max{ub

′
rem (α,�

′
,

ip) | ∀ ending ip of α in �
′ }, ub′

rem(α,�
′
, ip) = u(rem(α,�

′
, ip))+ u(α,�

′
, ip)

if u(rem(α,�
′
, ip)) > 0, and otherwise ub

′
rem(α, �

′
, ip) = 0. Then, tub′ � MEU .

For α = a → b → d → ce, we have umax (α) = 90, MEU (α) = 90, tub′ (α) =
ub′

rem(α,�
′
) = max{max{9; 10} + 8; 0} = 18, because for the last occurrence α

′ =
(a, 2) → (b, 80) → (d , 3) → (c, 3)(e, 2) of α in �

′
according to the ending ip=8,

u(rem(α,�
′
, ip))=0, so ub′

rem(α,�
′
, ip)= 0. Thus, tub′ (α) < umax (α) � MEU (α).

In other words, tub′ is not an UB on umax, and it is also called the PEU (Prefix
Extension Utility) upper bound, and is used in Theorem 4 of [11] of the HUS-Span
algorithm. Fortunately, when u(rem(α,�

′
, ip)) = 0, an extension ofα in such�

′
will

be terminated, thus tub′ only can result in missing patterns when the pruning condi-
tion “if (tub′ (α) < mu) then stop mining branch(α)” is executed before displaying
the result sequence “if (umax (α) � mu) then output α”.

116 T. Truong-Chi and P. Fournier-Viger

(iii). For α = P → i, where P ≡ b, i ≡ d , S ≡ �
′
, an UB named CRoM [10]

was defined as CRoM (α) ≡ CRoM (P, i) = RM UB (P, S, i) = u (P, S) + Sru

(i, m + 1), where m = CSeqlast_IS
P (S, 1) = 2 indicates that b first appears in the

2nd itemset of S, u (P, S) = umax (P, S) = max{u((b, 1)), u((b, 2)), u((b, 80))} =
80 and the remaining utility of i (including itself) in S after the 3rd itemset:
Sru (i, m + 1)=u((d , 1) → (b, 80) → (c, 4) (e, 1) → (d , 3) → (c, 3) (e, 2)) = 94.
Thus, CRoM (α) = 80 + 94 = 174. Meanwhile, SWU (α) = u(�

′
) = 107 and

MEU (α) = 96. Hence, CRoM (α) > SWU (α) > MEU (α). In other words, the
CRoM UB is larger than the SWU . Thus, in some cases, this UB may not be useful
for pruning the search space.

2.3 Algorithms

Early HUSM algorithms discover HU sequences in two phases. UL and US [2] are
such algorithms, which perform a breadth-first and depth-first search, respectively.
In the first phase, they find the set HUSSWU of all HU sequences w.r.t. SWU . In the
second phase, they calculate the utility of sequences by scanning the QSDB to output
HUSSWU only those having a utility (umax) that is no less than the threshold minutil.
Two-phase algorithms have two important limitations, especially for low minutil
values. The first one is that a considerable amount of memory may be spent to store
the set HUSSWU . The second limitation is that scanning the QSDB to compute the
utility of candidate sequences found in the first phase can be very time-consuming.

To overcome these two limitations, HU candidate sequences are maintained in a
prefix tree which consists of the null sequence as its root, and where each tree node
represents a candidate sequence and each child node is its i- or s-extension. Each
node (or sequence) in the prefix tree is stored in a utility-based data structure such
as a utility-matrix [9], temporal sequence (TS) table [8], utility lists [10] or utility
chains [11], and utility-linked (UL)-lists CSeq [12]. These data structures represent
a pattern (sequence) by storing not only the sequence identifiers (SID) of input-
sequences containing it, but also information about its utility and remaining utility.
This information allows quickly computing the actual utility umax and all UBs of a
considered sequence without scanning QSDB or PDBs.

In more details, a QSDB D′ can be represented in vertical database format (VDF),
where each item x is associatedwith a utility-chain structure namedUC(x) [11]. This
structure is an extension of the IDList structure used in FSM [18]. Especially, the
bitset implementation of IDList [19] has been used and proved its efficiency in terms
of execution time and memory consumption in many well-known algorithms for fre-
quent sequence mining such as ClaSP [20], CM-ClaSP [21], FCloSM and FGenSM
[22], FGenCloSM and MaxGenCloSM [23]. For a given sequence α, the structure
UC of α is defined as UC(α) = {(SID, UL) | �

′
SID ∈ D′ and �

′
SID
 α}, where

the utility list UL = {tup(end) = (end , u, urem)} is a list of tuples according to each
ending end of α in�

′
SID with u = u(α,�

′
SID, end) and urem = u(rem(α,�

′
SID, end)).

A Survey of High Utility Sequential Pattern Mining 117

Fig. 2 The vertical representation of the integrated QSDBD′

For example, as shown in Fig. 2, we have ρ (a) = {� ′
i , i = 1, . . . , 4}. The

sequence a appears in the 2nd and 3rd itemsets of �
′
3. According to endings

end 1 = 2 and end 2 = 3, the first ending is end 1, u = u(a, �
′
3, 2) = 4, urem =

u ((c, 10)(e, 4) → (a, 1)(f , 18)) = 33 and we obtain the first tuple tup (end 1) =
(2, 4, 33) and similarly the second tuple tup (end 2) = (3, 1, 18). Thus, the UL
according to �

′
3, (SID = 3, UL), in UC(a) is {(2, 4, 33), (3, 1, 18)}. Other ULs

are computed in the same way.
However, how can theUC structure of a sequence α be used to calculate its utility

umax and itsUBvalues?During the firstQSDBscan,ρ(α) = {� ′
i | (i, UL) ∈ UC(α)},

SWU (α) = ∑
(i,UL)∈UC(α) u(�

′
i) and all values {u(�

′
i),�

′
i ∈ D

′ } are computed once,

umax(α) = ∑
(i,UL)∈UC(α) umax(α, �

′
i), MEU (α) = ∑

�
′
i ∈ρ(α) ubrem(α,�

′
i), where

for each (i, UL) ∈ UC (α) or �
′
i
 α, umax(α, �

′
i) = max {tup.u | tup ∈ UL},

ubrem(α,�
′
i) = max{tup.u + tup.urem | tup ∈ UL}, and the value LEU (α) of α =

δ � y is computed based on the already calculated valueMEU (δ)orSWU (α)depend-
ing onwhether δ is the non-null sequence or not, respectively. For example, forα = b,
we have umax (α) = max{6, 9} + max{12, 9} = 21,MEU (α) = max{6 + 169, 9 +
100} + max{12 + 119, 9 + 15} = 175 + 131 = 306, LEU (α) = SWU (α)= 191 +
131 = 322, because the prefix of b is null.

Another important question is how to calculate the UC(β) of the i-extension
β = α�iy with y � lastItem (α) (or s-extension β = α�sy) of a sequence α with
an item y based on their UCs, UC(α) and UC(y). For any sequence α and each
element (SID, UL) of UC(α), we denote briefly any tuple (end , u, urem) in the
tuple list UL as t(α, SID) (or briefly t(α) in the unambiguous context for each fixed

118 T. Truong-Chi and P. Fournier-Viger

SID and t (α) .end = end), UC(α).SIDs = {SID |(SID, UL) ∈ UC(α)}. For each
SID ∈ UC(α).SIDs ∩ UC(y).SIDs and each fixed t(y), consider all t(α) ∈ UL(α)

in (SID, UL(α)) ∈ UC(α) such that t(α).end = t(y).end (or t(α).end < t(y).end ,
respectively) and create the corresponding tuple t(β) as follows: t(β).end = t(y).end ,
t(β).urem = t(y).urem and t(β).u = t(α).u + t(y).u (or t(β).u = max{t (α) .u +
t (y) .u | t(α).end < t(y).end}, respectively). Then, we add the new tuple t(β) =
(t(β).end , t(β).u, t(β).urem) to the utility list UL of the element (SID, UL) of
UC(β).

For example, first, consider α = a, y = b and the i-extension β = α�iy = ab,
shown in Fig. 3a. There exist two SID ∈ UC(a).SIDs ∩ UC(b).SIDs = {1, 2}. For
instance, according to SID = 1, there exist two pair of tuples (t(a), t(b)) such that
t(a).end = t(b).end ∈ ({2, 4}). For example, the first pair is t(a) = (2, 3, 175)
and t(b) = (2, 6, 169), then t(a).end = t(b).end = 2, so t(β).end = 2, t(β).u =
3 + 6 = 9, t(β).urem = t(b).urem = 169. For the second pair, t(a) = (4, 5, 109) and
t(b) = (4, 9, 100), then t(a).end = t(b).end = 4, so t(β).end = 4, t(β).u = 5 +
9 = 14, t(β).urem = t(b).urem = 100, i.e. the sequence β = ab appears two times
in �

′
1 according two sub q-sequences (a, 3)(b, 6) and (a, 5)(b, 9) with the cor-

responding utilities of 9 and 14, respectively. Thus, we obtain the first element
ele1 = (SID = 1, {(2, 9, 169), (4, 14, 100)}) ofUC(ab). Similarly, we also have the
second element ele2 = (SID = 2, {(5, 13, 15)}) of UC(ab) and finally, UC(ab) =
{ele1, ele2}. Thus, umax (β) = max{9, 14} + max{13} = 27, MEU (β) = max{9 +
169, 14 + 100} + max{13 + 15} = 178 + 28 = 206, SWU (β) = 191+131=322,
LEU (β) = ubrem(a, �

′
1) + ubrem(a, �

′
2) = max{2 + 189, 3 + 175, 5 + 164, 5 +

109, 4 + 56} + max{2 + 117, 3 + 88, 1 + 67, 4 + 24} = 191 + 119 = 310 and
umax(β) < MEU (β) < LEU (β) < SWU (β).

(a) (b)

Fig. 3 a The UC(ab). b The UC(a → b)

A Survey of High Utility Sequential Pattern Mining 119

Second, the UC of the s-extension of α = a with y = b, β = a → b, is shown in
Fig. 3b. There are also two SID ∈ UC(a). SIDs ∩ UC(b).SIDs = {1, 2}. For exam-
ple, with SID = 1, for the first tuple t(b) = (2, 6, 169), then there is the unique tuple
t(a) = (1, 2, 189) such that t(a).end = 1 < t(b).end = 2, so t(β).end = t(b).end =
2, t(β).urem = t(b).urem = 169, t(β).u = 2 + 6 = 8 and we receive the first tuple
(2, 8, 169) of the utility list UL(β) according to SID = 1. Moreover, for the second
tuple t(b) = (4, 9, 100), then there are three tuples t(a) ∈ {(1, 2, 189), (2, 3, 175),
(3, 5, 164)} such that t(a).end < t(b).end = 4, so t(β).end = t(b).end = 4, t(β).u=
max{2 + 9, 3 + 9, 5 + 9} = 14, t (β) .urem=t(b).urem = 100. We obtain thus the sec-
ond tuple (4, 14, 100) of UL(β) and the first element of UC(a → b), ele

′
1 =

(SID = 1, {(2, 8, 169), (4, 14, 100)}). In the same way, we also have the second
element ele

′
2 = (SID = 2, {(5, 12, 15)}) of UC(a → b). Hence, UC (a → b) ={

ele
′
1, ele

′
2

}
. Hence, umax (β) = max{8, 14} + max{12} = 26, MEU (β) = max{8 +

169, 14 + 100} + max {12 + 15} = 177 + 27 = 204, SWU (β) = 191+131=322,
LEU (β) = ubrem(a, �

′
1) + ubrem(a, �

′
2) = 191 + 119 = 310 and umax(β)

< MEU (β) < LEU (β) < SWU (β).
Based on the UC structure and an UB that provides the depth pruning abil-

ity DepthUB (e.g. the MEU), W idthUB such that W idthUB(y) = SWU (y), ∀y ∈
A (e.g. LEU), which has the width pruning ability, and modifying the USpan
algorithm [9], we present a complete algorithm named HUSPM for mining high
utility sequential pattern. The pseudocode of the main procedure of this algorithm is
given in Fig. 4.

First, it scans the QSDB D′ to compute the vector ISU = (u
(
� ′) , � ′ ∈ D′) used

to compute the SWU of items, the set SW idthUB(<>) of all HU candidate items
w.r.t. W idthUB (line 1) and discard from D′ all irrelevant low-W idthUB items in
ISW idthUB (<>) = A\ SW idthUB(<>) (line 2). Then, the recursive procedure Search-
HUS is called for each candidate items in SW idthUB(<>).

In the first line in SearchHUS(α, IS, mu) (Fig. 5), if umax(α) � mu, the HUS
α is output. Next, if DepthUB(α) < mu, then the whole branch(α) is deeply
pruned by DepthUB, i.e. we can stop SearchHUS and backtrack the search pro-
cedure. Based on WidthUB, the width pruning strategy is applied by the proce-
dure WidthPruning_ReducingPDB shown in Fig. 6. Afterward, if the reduced value
DepthUB(α) < mu, then we can stop mining the branch(α) (line 4). Then, Search-

Fig. 4 The HUSPM algorithm for mining the H U S set

120 T. Truong-Chi and P. Fournier-Viger

Fig. 5 The SearchHUS procedure

Fig. 6 The WidthPruning_ReducingPDB procedure

HUS is recursively called for extensions of α with items in newS and newI (lines
6–9). In WidthPruning_ReducingPDB, lines 1–4 search two candidate item sets for
i- and s- extensions of α, NewI and NewS, based on the set IS of its prefix. Next,
the strategy for reducing PDBs and UBs is utilized in lines 5–7.

Consider Example1 and mu = 350. By applying HUSPM, we obtain HUS =
{d → ac → af } with umax(d → ac → af) = 353.

Note that, although the HUSPM algorithm is designed for HUSM, however since
it is only based on two general measuresDepthUB and W idthUB which have respec-
tively depth and width pruning abilities, and Red(W idthUB), it is easy to modify
HUSPM or extend it to mine other interesting types of HU sequences such as HU-
probability sequences from uncertain QSDBs or HU sequences with multiple mini-
mum utility thresholds as shown in Sect. 3.

Other algorithms forHUSM. Algorithms for HUSM in [1, 2] namedUL andUS
are applied on static and dynamic web log 1-QSDBs, using an incremental IUWAS-
tree structure, where the utility of a sequence is computed in sum or maximum form
depending if a sequence has multiple occurrences or not in an input q-sequence.
Calculation is complex because the algorithm must first determine which situation

A Survey of High Utility Sequential Pattern Mining 121

holds for a given sequence and -sequence. Moreover, if the sum of utilities of all
distinct occurrences in a q-sequence is used, the patterns may be influenced by the
personal buying behaviors of some customers and be less representative of the behav-
ior of most customers. But obtaining an overview of the behavior of all customers
is often the goal of HUSM, when applied to market basket data. The UL and US
algorithms can perform multiple QSDB or PDB scans. Because they are two-phase
algorithms, they can consume a large amount of memory to maintain the set of high-
SWU sequences as well as much time to calculate the actual utility of all sequences
by scanning again the QSDB.

Using the maximum utility and a database-projection projection approach, Shie
has proposed a one-phase algorithm named UM-Span [4] for HUSM in mobile com-
merce environments. It only considers 1-QDSBs associatedwith paths of location IDs
where each path has only one utility value. Similarly, in [8], a one-phase algorithm
named PHUS is proposed, which uses a database projection approach, a temporal
sequence (TS) table structure and an improved strategy by removing unpromising
(or low-SWU) items from PDBs. All above algorithms only use the SWU as UB
to prune irrelevant candidate sequences. However, since the SWU UB is still quite
loose, these algorithms may generate too many candidates.

In [9], the authors have proposed the USpan algorithm for the general problem of
HUSM using three UBs, namely the SWU, SPU (Sequence-Projected Utilization)
and SRU (Sequence-Reduced Utility) [24] having width and depth pruning effects.
Using the LQS-tree to represent the search space and a utility matrix structure, the
USpan algorithm is designed to efficiently mine HU sequences. Unfortunately, as
demonstrated in this chapter, the SPU is not really an upper bound on umax. Thus,
using them to prune candidate sequences may result in missing some HU sequences.
In other words, USpan is an incomplete algorithm.

The HupsExt algorithm and an efficient strategy for pruning candidates before
candidate pattern generation based on an upper bound named CRoMwas introduced
in [10]. However, the CRoM upper bound has the drawback that it can be larger than
the SWU.

In [11], two UBs that are tighter than the SWU, named PEU (Prefix Extension
Utility) andRSU (Reduced Sequence Utility) have been proposed. Based on them and
utility-chain (UC) structure was defined and the algorithm HUS-Span was proposed
for HUSM. However, as shown in the discussion, the PEU is not an UB on umax.
Thus, HUS-Span can also miss patterns.

To more efficiently mine top-k HU sequences (see Sect. 3.3) as well as HU
sequences, Lin et. al. have introduced three pruning strategies named MEUs (Maxi-
mal Extension Utility Strategy), LAS (Look Ahead Strategy) and IPS (Irrelevant Item
Pruning Strategy) based on the MEU UB [12], which is tighter than the SWU . The
three strategies are the DPS, W PS and Red strategies shown above.

Table 6 presents some recent algorithms for mining HU sequences and their
characteristics.

122 T. Truong-Chi and P. Fournier-Viger

Table 6 HUSM algorithms

Algorithm Search type Number of
phases

Data
representation

UBs

UL, US [2] breadth-first,
depth-first

Two Horizontal
database

SWU

UM-Span [4] depth-first One Prefix tree SWU

PHUS [8] depth-first One Temporal
Sequence Table

SWU

USpan [9] depth-first One LQS-tree, Utility
Matrix

SWU, SPU, SRU
[24]

HupsExt [10] depth-first One Prefix tree SWU, CRoM

hline HUS-Span [11] depth-first One Utility-chain SWU, PEU, RSU

HUSPM depth-first One Utility-chain MEU, LEU [12]

3 Extensions of the Problem

Several extensions of the HUSM problem have been proposed. This section provides
an overview of the main extensions.

3.1 Mining High Utility-Probability Sequential Patterns
in Uncertain Databases

A limitation of HUSM is that it is focused on mining HU sequences in precise
data. But in real-world, data is often uncertain. This can be the case for data col-
lected from sensors in wireless networks that are inaccurate due to the quality of
sensors or because they are operating in a noisy environment. To address this limi-
tation, the problem of high utility-probability sequence mining (HUPSM) in uncer-
tain sequence databases (USDBs) was introduced [25]. Different from HUSM, in
HUPSM, each input q-sequence �

′
in an USDB is associated with a positive exis-

tence probability p(�
′
). The probability of a sequence α is defined and denoted

as p(α) = ∑
�

′ ∈ρ(α) p(�
′
)/|PS|, where PS = ∑

�∈′D′ P(� ′) is the probability sum
of all input q-sequences in D′ and p (α) ∈ [0; 1]. Then, α is called a high utility-
probability sequence (HUPS) if umax(α) � mu and p(α) � mp, where mp ∈ ((0; 1])
is a user-specified minimum expected support threshold (or minimum probability
threshold). The problem of HUPSM is to discover all HUPSs. In the case where
mp = min

{
p(�

′
)
∣
∣ �

′ ∈ USDB}/|PS|, or all probabilities p(�
′
) are equal to a con-

stant p (i.e. all �
′ ∈ USDB have the same importance) and mp = p/|PS|, we obtain

the normal problem of HUSM. That is, HUPSM is an extension of HUSM that
generalizes HUSM.

A Survey of High Utility Sequential Pattern Mining 123

Since the operator ρ is anti-monotonic (i.e. ρ (α) ⊇ ρ (β) , ∀β
 α), we have
AM (p). Based on AM (p) and AM (SWU), an algorithm named P-HUSPM (Pro-
jection HUSPM) has been proposed in [25]. Note that, since AM (p), the width
pruning strategy W PS(p) and the reducing PDB strategy Red(p) in Corollary 1 can
be additionally applied for the probability measure p by inserting a procedure like
WidthPruningReducingPDB(α, IS, p, mp, newIp, newSp) for the probability p after
the line 3 of the SearchHUS procedure. Integrating this procedure into SearchHUS
for HUPSM, replacing SSWU (<>) with SSWU−prob (<>) = {a ∈ A | SWU (a) �
mu ∧ p(a) � mp}, adding (p(α) � mp) into the condition in line 3 and calling (newI,
newS) as one of two pairs (newI, newS) and (newIp, newSp) such that it has the
smallest total size, we could then expect that it would prune much more unpromising
sequences compared to P-HUSPM, because W idthUB � SWU and using addition-
ally both strategies DPS(DepthUB) and W PS(W idthUB), Red(W idthUB) is better
than utilizing only W PS(SWU) and Red(SWU).

3.2 High-Utility Sequential Pattern Mining with Multiple
Minimum Utility Thresholds

Another important limitation of HUSM is that it finds all HU sequences under
a single minimum utility threshold, so that all items in sequences are treated as
having the same importance. But this issue is not suitable for many real-word
applications. To deal with this issue, the problem of HUSM with multiple mini-
mum utility thresholds was proposed [12]. To avoid missing items that are rare but
important, each item a in a QSDB is associated with a minimum utility thresh-
old mu(a). The minimum utility threshold of a sequence α, denoted as MIU (α) =
min{mu (x) | x ∈ α} is the least mu value among all its items. Different from tra-
ditional HUSM (with a single minimum utility threshold), in the problem (Mul-
tiMU_HUSM) of mining HU sequences with multiple minimum utility thresholds,
a sequence α is called a HU sequence if umax(α) � MIU (α) and we must find the
complete set HUSP = {α | umax(α) � MIU (α)} of all HU sequential patterns. To
efficiently prune the search space by preserving a downward closure-like property
for any upper bound ub on umax such that the AMF(ub) property which is weaker
than AM (ub) holds, we only need to replace the fixed threshold mu of HUSM
with a dynamic potential minimum utility threshold for each sequence α, defined
as PMIU (α) = min{mu(x) | x ∈ α ∨ (x ∈ rem(α,�

′
, first ending(α,�

′
)) ∧ �

′ ∈
ρ(α))}. In more details, if ub (α) < PMIU (α), then for all forward extensions
(but not super sequences) β of α, umax (β) < MIU (β), i.e. all extensions of α

(including itself) cannot be HU sequences. Indeed, because AMF(ub), PMIU (α) �
MIU (α) andPMIU ismonotonic, soub (α) < PMIU (α) � MIU (α) andumax (β) �
ub (β) � ub (α) < PMIU (α) � PMIU (β) � MIU (β). Note that, in the particular
case where all items have the same importance mu, we obtain the traditional HUSM
problem, i.e. MultiMU_HUSM is an extension of HUSM and is more general than

124 T. Truong-Chi and P. Fournier-Viger

HUSM. To obtain the set HUSP based on the procedure SearchHUS, we should
replace the conditions “if (umax(α) � mu) then” or “if (ub(α) � mu) then” for an
UB ubwith “if (umax(α) � MIU (α)) then” or “if (ub(α) � PMIU (α)) then”, respec-
tively.

3.3 Top-k High Utility Sequential Pattern Mining

Although algorithms for HUSM can discover all HU sequences under a predefined
minimum utility threshold mu, it is very difficult for users to determine a suitable
threshold mu for obtaining the most valuable patterns. Due to the complexity of
QSDBs and the sensitivity of the threshold, for a same threshold, some QSDBs may
producemillions of sequenceswhile otherQSDBsmaygenerate nothing.Achallenge
is thus to tune the threshold for obtaining a specified number of interesting patterns.
But this is not easy since choosing an appropriate threshold requires being familiar
with database characteristics which are usually invisible to users. Thus fine-tuning
the threshold to obtain enough but not toomany patterns can be very time-consuming.

Top-k high utility sequential pattern mining addresses this problem by letting
users specify the desired number of top-k HU sequences instead of setting a thresh-
old. A sequence α is called a top-k high utility sequence if there are less than
k sequences whose utilities are no less than umax (α). The problem of top-k HU
sequence mining (top-k HUSM) is to discover the complete set T of top-k HU
sequences. The task of top-k HUSM has been applied to gene regulation data [6].
Call mu∗ = min {umax (α)| α ∈ T } the optimal minimum utility threshold to find the
top-k HU sequences. Then the problem of (top-k HUSM) is to find all sequences α

such that umax (α) � mu∗. The main solution for this problem is to design effective
strategies which allow to raise as fast as possible the threshold mu to mu∗ during
the mining process while not missing any top-k HU sequence by only pruning parts
of the search spaces that do not contain top-k HU sequences. Based on the USpan
algorithm [9], the TUS algorithm was proposed for top-k HUSM [14]. It uses a
fixed-size sorted list named TUSList to dynamically maintain the top-k high utility
sequential patterns, and a temporal threshold mu to prune unpromising candidates.
Moreover, TUS utilizes a pre-insertion strategy to effectively raise mu to a reason-
able level before starting the mining process and a SPU-based sorting concatenation
order strategy. In the pre-insertion strategy, all input q-sequences and all items (1-
sequences) together with their utilities are inserted into TUSList. This strategy can
reduce the number of unpromising candidates that are generated. In the SPU-based
sorting concatenation order strategy, concatenation items having larger SPU upper
bound values are extended first expecting that corresponding sequences will have a
high utility and may thus help to raise the mu threshold faster.

In [11], based on the HUS-Span algorithm for HUSM and different search
strategies, authors have proposed the breadth first search-based algorithm TKHUS-
SpanBFS and the hybrid search-based algorithm TKHUS-SpanHybrid for efficiently
mining top-k HU sequences. In experiments, the former has proved that it is faster

A Survey of High Utility Sequential Pattern Mining 125

because it generates less candidates. However it runs out of memory in some cases.
In situations where memory is limited, the later can be applied to achieve a better
performance. It is clear that for any mu, if k = |HUS(mu)|, the problem of top-k
HUSM is equivalent to the problem of HUSM.

3.4 Mining Periodic High Utility Sequential Patterns

Well-known algorithms for HUSM often discover a huge number of HU sequences
but many of those are irrelevant for some applications. Mining the top-k HU
sequences is a solution to this problem. Other solutions consist of using other mea-
sures to assess how interesting a sequence is. For instance, in a recent study, it was
proposed to find HUSs that periodically appear in a QSDB. An application of this
definition ismarket basket analysis, where a retail storemanagermaywant to identify
sets of products that are regularly purchased. Periodic patterns can provide interesting
insights about customers’ behavior and be useful to develop or adaptmarketing strate-
gies. For each sequence α, assume that ρ (α) = {

� ′ ∈ D
′ | � ′
 α

} = {� ′
i1
, �

′
i2
,

. . . , �
′
ik
}, where 1 � i1 < i2 < · · · < ik � N = |D′ |. Two q-sequences α

′
p, α

′
q in

ρ (α)with p < q are said to be consecutivew.r.t.α if�α
′
r ∈ ρ (α) such that p < r < q.

Their period is denoted and defined as the number of q-sequences between α
′
p

and α
′
q, that is pe(α

′
p, α

′
q) = q − p. The periods of α is a list of periods denoted

as ps (α) = {i1 − i0, i2 − i1, . . . , ik+1 − ik} = ⋃
0�j�k{ij+1 − ij}, where i0 = 0 and

ik+1 = N . The maximum, minimum and average periodicity of α are respec-
tively defined and denoted as maxper(α) = max(ps(α)), minper(α) = min(ps(α)),
avgper(α) = (

∑
p∈ps(α) p)/|ps(α)|. It is clear that avgper (α) = |D′ |/(ρ(α) + 1).

A sequence is called a periodic HU sequence (PHUS) if (maxper(α) � maxPer,
minper(α) � minPer and minAvg � avgper(α) � maxAvg)(∗), where maxPer,
minPer, maxAvg and minAvg are user-predefined thresholds. The problem of peri-
odic HU sequence mining (PHUSM) is to find all PHUSs. Based on the USpan
algorithm [9], a post-processing algorithm named PHUSPM [16] was designed for
PHUSM by replacing simply the condition “if (umax(α) � mu)” in USpan with “if
(umax(α) � mu and (∗))”. If setting maxPer = maxAvg = N , minPer = minAvg =
1, the problem of PHUSM is equivalent to HUSM.

Moreover, to reduce the number of HU sequences and consider specific require-
ments of users, another extension ofHUSM is the problemofHUSMwith constraints
proposed in [5]. In that study, an algorithm named IM-Span was proposed for mining
interesting mobile sequential patterns by pushing constraints in terms of utility, sup-
port and patterns deeply into the mining process. When constraints are set to specific
values, the traditional problem of HUSM is obtained.

126 T. Truong-Chi and P. Fournier-Viger

3.5 Related Problems

High Utility Episode Mining. A problem related to HUSM is that of mining all
high utility episodes (HUE) in a complex event sequences (CS), where each com-
plex event is a q-element associated with a time point [26] and the utility of an
episode α is calculated as the sum of utilities of q-elements according to minimal
occurences ofα inCS. By incorporating the concept of utility into episodemining and
based on theEWUmodel (Episode-Weighted Utilizationmodel), an algorithmnamed
UP-Span (Utility ePisodes mining by Spanning prefixes) has been designed for effi-
ciently mining all HUEs.

HidingHighUtility Sequential Patterns. Although several algorithms have been
proposed for mining high utility sequential patterns, an issue is that personal or sen-
sitive information may be revealed by these algorithms. Privacy Preserving Data
Mining (PPDM) has emerged as an interesting research topic in recent years. Hid-
ing HUS is useful for applications such as those related to business, healthcare and
security. Privacy preserving data mining aims at hiding private information so that it
cannot be found by data mining algorithms. In HUSM, all high utility sequential pat-
terns can be hidden so that adversaries cannot mine them from a sanitized database
for a given threshold value. Based on USpan, the authors in [17] have designed two
algorithms, HHUSP (Hiding High Utility Sequential Patterns) and MSPCF (Maxi-
mum Sequential Patterns Conflict First), for hiding HUSs.

High Utility Sequential Pattern Mining from Incremental QSDB and Evolv-
ingDataStreams.MostHUSMalgorithms are designed for staticQSDB. Indynamic
QSDB, when a new q-sequence is added to a QSDB, discovering patterns from
scratch to update results is very time-consuming. Hence, a projection-based incre-
mental algorithm has been designed for HUSM from incremental database in [27]
based on an index strategy and by extending the PHUS algorithm in [8]. Similarly,
the HUSP-Stream algorithm [28] is used to discover all HUSs from a data streams
based on a Sliding Window model.

Distributed andParallelHighUtility Sequential PatternMining.MostHUSM
algorithms are based on the assumption that data can fit into the main memory of a
computer. However, this assumption does not hold for large sequence datasets. An
effective solution for mining big data is using parallel algorithms in a distributed
environment. Thus, a new framework for mining HUSPs in big data has been pro-
posed in [29]. The authors have designed a distributed and parallel algorithm called
BigHUSP to mine HU sequences efficiently using multiple MapReduce-like steps to
process data in parallel in a distributed environment, while applying some pruning
strategies to reduce the search space. The proposed algorithm decreases computa-
tional and communication costs drastically, especially on large QSDBs.

Mining High Utility Sequences with Negative Item Values. Algorithms pre-
sented above are designed to mine HU sequences in QSDBs, where all q-items in
database are only associated with positive values. However, in some applications,
q-sequences in QSDBs may consists of items having negative unit profit values. For
example, for cross-selling, a product such as a cartridge may be sold at a negative

A Survey of High Utility Sequential Pattern Mining 127

profit when it is packed with another one such as a printer that provides a high posi-
tive return. Authors in [15] have proposed the HUSP-NIV algorithm for mining HU
sequences with negative item values, based on two width, depth pruning strategies,
by extending the USpan algorithm [9], and using a negative sequence pruning strat-
egy. Note that, the utility of input q-sequences in QSDB used for computing the
upper bound SWU is calculated as the sum of utilities of only items having positive
external utility values.

As other algorithms based on USpan, HUP-NIV extends USpan for solving an
extended problem related to HUSM. It uses the SPU as an upper bound on umax to
deeply prune branches of the prefix tree early. However, as discussed in Remark c.,
the SPU is not an upper bound on umax. Thus, using the SPU to prune branches of
the search tree early can result in missing some HUSs in the final set as shown in
Remark c.(i). In other words, HUP-NIV maybe also an incomplete algorithm.

High Utility Sequential Rule Mining. Another limitation of HUSM is that it
does not provide a measure of the confidence or probability that a pattern will be
followed. Having such measure is useful in several applications such as product
recommendation. So far, few algorithms have been designed for mining high utility
sequential rules (HUSR) [7, 30]. In [30], the problem of high-utility sequential rule
mining in QSDBs is proposed and formalized with the assumption that all input
q-sequences in QSDBs cannot contain the same item more than once. Based on
a compact UtilityTable structure and several optimizations, a one-phase algorithm
HUSRM has been designed for mining all high-utility sequential rules. HUSRs have
also been applied for activity-cost event log analysis in the healthcare domain [7].

4 Research Opportunities

Because HUSM is more general than high utility itemset mining (HUIS), HUSM
also has many research opportunities. Some of those are related to improving the
performance of algorithms, for example, in terms of designing better upper-bounds,
data structures and algorithms, and also to design parallel or distributed implemen-
tations. There are also several opportunities and challenges for applying HUSM to
the real-word. For instance, one could propose novel interestingness/utility measures
which are more suitable or useful in some real-life applications, and integrate various
types of constraints. Developing techniques for visualizing results and interactively
exploring patterns is also important.

5 Conclusion

This chapter has introduced the problem of high-utility sequential pattern mining. It
is an interesting and important research topic that has many real-word applications.
Some main techniques for pruning the search space based on upper bounds on the

128 T. Truong-Chi and P. Fournier-Viger

actual utility as well as reducing projected databases and these upper bounds and
the HUSPM algorithm for high utility sequence (HUS) mining have been presented.
Then, some extensions of HUSM have been introduced to overcome some of the
limitations of HUSM, for example, to discover top-k HUSs, periodic HUSs, high
utility-probability sequences in uncertain quantitative sequence databases, mining
HUSs with constraints or with multiple minimum utility thresholds. Finally, some
related problems have been discussed such as discovering HUSs with negative utility
values, HUSs from incremental datasets or streams, high-utility sequential rules.
Lastly, research opportunities have been briefly discussed.

References

1. Ahmed, C.F., Tanbeer, S.K., Jeong, B.S.: Mining high utility web access sequences in dynamic
web log data. In: 2010 11th ACIS International Conference Software Engineering AI Network-
ing and Parallel/Distributed Computing (SNPD) (2010a)

2. Ahmed, C.F., Tanbeer, S.K., Jeong, B.S.: A novel approach for mining high-utility sequential
patterns in sequence databases. ETRI J. 32, 676–686 (2010b)

3. Shie, B.E., Hsiao, H., Tseng, V.S., Yu, P.S.: Mining high utility mobile sequential patterns in
mobile commerce environments. In: DASFAA (2011)

4. Shie, B.E., Cheng, J.H., Chuang, K.T., Tseng, V.S.: A one-phase method for mining high
utility mobile sequential patterns in mobile commerce environments. In: Advanced Research
in Applied Artificial Intelligence, pp. 616–626 (2012)

5. Shie, B.E., Yu, P.S., Tseng, V.S.:Mining interesting user behavior patterns inmobile commerce
environments. Appl. Intell. 38, 418–435 (2013)

6. Zihayat, M., Davoudi, H., An, A.: Top-k utility-based gene regulation sequential pattern dis-
covery. In: Bioinformatics and Biomedicine (BIBM), 2016 IEEE International Conference
(2016a)

7. Dalmas, B., Fournier-Viger, P., Norre, S.: TWINCLE: a constrained sequential rule mining
algorithm for event logs. In: Proceedings 9th International KES Conference (IDT-KES 2017).
Springer (2017)

8. Lan, G.C., Hong, T.P., Tseng, V.S., Wang, S.L.: Applying the maximum utility measure in high
utility sequential pattern mining. Expert Syst. Appl. 41(11), 5071–5081 (2014)

9. Yin, J., Zheng, Z., Cao, L.: USpan: an efficient algorithm for mining high utility sequential
patterns. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (2012)

10. Alkan, O.K., Karagoz, P.: CRoM and HuspExt: improving efficiency of high utility sequential
pattern extraction. IEEE Trans. Knowl. Data Eng. 27(10), 2645–2657 (2015)

11. Wang, J.Z., Huang, J.L., Chen, Y.C.: On efficiently mining high utility sequential patterns.
Knowl. Inf. Syst. 49(2), 597–627 (2016)

12. Lin, J.C.W., Zhang, J., Fournier-Viger, P.: High-utility sequential pattern mining with mul-
tiple minimum utility thresholds. In: Asia-Pacific Web (APWeb) and Web-Age Information
Management (WAIM) Joint Conference on Web and Big Data (2017)

13. Liu, Y., Liao, W.K., Choudhary, A.N.: A two-phase algorithm for fast discovery of high util-
ity itemsets. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, Hanoi,
Vietnam (2005)

14. Yin, J., Zheng, Z., Cao, L., Song, Y., Wei, W.: Efficiently mining top-k high utility sequential
patterns. In: 2013 IEEE 13th International Conference on Data Mining (ICDM) (2013)

15. Xu, T., Dong, X., Xu, J., Dong, X.: Mining high utility sequential patterns with negative item
values. Int. J. Pattern Recogn. Artif. Intell. 31(10), 1–17 (2017) (1750035)

A Survey of High Utility Sequential Pattern Mining 129

16. Dinh, T., Huynh, V.N., Le, B.: Mining periodic high utility sequential patterns. In: In Asian
Conference on Intelligent Information and Database Systems (2017)

17. Dinh, T., Quang, M.N., Le, B.: A Novel approach for hiding high utility sequential patterns. In:
Proceedings International Symposium Information and Communication Technology (2015)

18. Zaki, M.J.: SPADE: an efficient algorithm for mining frequent sequences. Mach. Learn. 42(1),
31–60 (2001)

19. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a bitmap represen-
tation. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2002, New York, NY (2002)

20. Gomariz, A., Campos, M., Marin, R., Goethals, B.: ClaSP: an efficient algorithm for mining
frequent closed sequences. In: Proceedings of 17th Pacific-Asia Conference, PAKDD 2013,
Gold Coast, Australia (2013)

21. Fournier-Viger, P., Gomariz, A., Campos, M., Thomas, R.: Fast vertical mining of sequential
patterns using co-occurrence information. In: Proceedings of 18th Pacific-Asia Conference on
Knowledge Discovery and Data Mining, PAKDD 2014 (2014)

22. Bac, L., Hai, D., Tin, T., Fournier-Viger, P.: FCloSM, FGenSM: two efficient algorithms for
mining frequent closed and generator sequences using the local pruning strategy. In:Knowledge
and Information Systems (2017)

23. Hai, D., Tin, T., Bac, L.: Efficient algorithms for simultaneouslymining concise representations
of sequential patterns based on extended pruning conditions. Eng. Appl. Artif. Intell. 67, 197–
210 (2018)

24. Yin, J. Z. Z. C. L. S. Y. a. W. W.: Efficiently mining top-k high utility sequential patterns. In:
2013 IEEE 13th International Conference on Data Mining (ICDM) (2013)

25. Zhang, B., Lin, J.C.W., Fournier-Viger, P., Li, T.: Mining of high utility-probability sequential
patterns from uncertain databases. PLoS One 12(7), 1–21 (2017)

26. Wu, C.W., Lin, Y.F., Yu, P.S., Tseng, V.S.: Mining high utility episodes in complex event
sequences. In: KDD 2013 Conference (2013)

27. Dave, U., Shah, J.: Efficient mining of high utility sequential pattern from incremental sequen-
tial dataset. Int. J. Comput. Appl. 122(12), 22–28 (2015)

28. Zihayat, M., Wu, C.W., An, A., Tseng, V.S.: Mining high utility sequential patterns from
evolving data streams. In: Proceedings of the ASE Big Data and Social Informatics 2015
(2015)

29. Zihayat, M., Hut, Z.Z., An, A., Hut, Y.: Distributed and parallel high utility sequential pattern
mining. In: Big Data (Big Data), 2016 IEEE International Conference (2016b)

30. Zida, S., Fournier-Viger, P., Wu, C.W., Lin, J.C.W., Tseng, V.S.: Efficient mining of high utility
sequential rules. In: Proceedings 11th International on Conference on Machine Learning and
Data Mining (MLDM 2015). Springer, LNAI 9166 (2015)

	Preface
	Contents
	A Survey of High Utility Itemset Mining
	1 Introduction
	2 Problem Definition
	2.1 Frequent Itemset Mining
	2.2 High Utility Itemset Mining
	2.3 Key Properties of the Problem of High Utility Itemset Mining

	3 Algorithms
	3.1 Two Phase Algorithms
	3.2 One Phase Algorithms
	3.3 A Comparison of High Utility Itemset Mining Algorithms

	4 Extensions of the Problem
	4.1 Concise Representations of High Utility Itemsets
	4.2 Top-k High Utility Itemset Mining
	4.3 High Utility Itemset Mining with the Average Utility Measure
	4.4 High Utility Itemset Mining with Negative Utilities
	4.5 High Utility Itemset Mining with Discount Strategies
	4.6 Mining High Utility Itemset with a Maximum Length Constraint
	4.7 Mining High Utility Itemsets that Are Correlated
	4.8 Periodic High Utility Itemset Mining
	4.9 On-Shelf High Utility Itemset Mining
	4.10 High Utility Itemset Mining in Dynamic Databases
	4.11 Other Extensions

	5 Research Opportunities
	6 Open-Source Implementations
	7 Conclusion
	References

	A Comparative Study of Top-K High Utility Itemset Mining Methods
	1 Introduction
	2 Preliminaries and Problem Statement
	3 Approaches to Top-K High Utility Itemset Mining
	3.1 Two-Phase Methods
	3.2 One-Phase Methods

	4 Performance Analysis of State-of-the-Art Top-K HUI Mining Methods
	4.1 Experimental Design
	4.2 Experimental Results

	5 Top-K High Utility Pattern Mining Variants
	6 Open Issues and Future Research Opportunities
	7 Conclusions
	References

	A Survey of High Utility Pattern Mining Algorithms for Big Data
	1 Introduction
	2 High Utility Pattern Mining: Overview
	2.1 Overview of Pattern Mining Methodologies

	3 Overview of Big Data Paradigms
	3.1 Parallel Processing
	3.2 Distributed Platforms
	3.3 Data Stream Mining

	4 Scalable and Parallel High Utility Itemset Mining
	4.1 Scalable Serial Processing
	4.2 Distributed and Parallel Processing

	5 High Utility Sequential Pattern Mining
	5.1 Serial Processing
	5.2 Distributed and Parallel Processing

	6 Conclusions and Future Directions
	References

	A Survey of High Utility Sequential Pattern Mining
	1 Introduction
	2 Problem Definition and Algorithm
	2.1 Definition of the High Utility Sequential Pattern Mining Problem
	2.2 Upper Bounds on umax and their Key Properties
	2.3 Algorithms

	3 Extensions of the Problem
	3.1 Mining High Utility-Probability Sequential Patterns in Uncertain Databases
	3.2 High-Utility Sequential Pattern Mining with Multiple Minimum Utility Thresholds
	3.3 Top-k High Utility Sequential Pattern Mining
	3.4 Mining Periodic High Utility Sequential Patterns
	3.5 Related Problems

	4 Research Opportunities
	5 Conclusion
	References

	Efficient Algorithms for High Utility Itemset Mining Without Candidate Generation
	1 Introduction
	2 Background
	2.1 Preliminaries
	2.2 Related Work

	3 Mining High Utility Itemsets
	3.1 Utility-List Structure
	3.2 The Proposed Method: HUI-Miner
	3.3 An Improved Method: HUI-Miner*

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Running Time
	4.3 Memory Consumption
	4.4 Orders of Processing Items
	4.5 Scalability

	5 Discussions
	5.1 Comparison with Previous Algorithms
	5.2 HUI-Miner Versus HUI-Miner*
	5.3 The Ascending TWU Order

	6 Conclusion
	References

	High Utility Association Rule Mining
	1 Introduction
	2 Basic Concept
	2.1 High Utility Itemset Mining
	2.2 Lattice-Based Approaches for Mining Association Rules
	2.3 Basic Definitions

	3 Problem Definition
	4 High Utility Association Rule Mining Using Closed HUI and Generators
	4.1 HGB-HAR Algorithm
	4.2 Evaluation

	5 High Utility Association Rule Mining Using Lattice
	5.1 LARM Algorithm
	5.2 Evaluation

	References

	Mining High-Utility Irregular Itemsets
	1 Introduction
	2 Problem Definitions
	2.1 Utility of an Item/Itemset
	2.2 Regularity of an Item/Itemset

	3 Proposed Method: HUIIM and EHUIIM Algorithms
	3.1 The New-Modified Utility List Structure
	3.2 HUIIM Algorithm
	3.3 EHUIIM Algorithm: Applying the New Efficient Pruning Technique to HUIIM
	3.4 Example of EHUIIM

	4 Experimental Results
	4.1 Run Time
	4.2 Memory Usage
	4.3 Number of Discovered Itemsets
	4.4 Complexity Analysis

	5 Conclusion
	References

	A Survey of Privacy Preserving Utility Mining
	1 Introduction
	2 Privacy Preserving Utility-Mining
	3 Privacy Preserving Utility-Mining Algorithms
	3.1 Privacy Preserving Utility-Mining by Data Types
	3.2 Privacy Preserving Utility-Mining by Technique Types

	4 Metrics for Quantifying Privacy Preserving Utility-Mining Algorithms
	4.1 Hiding Failure (HF)
	4.2 Missing Cost (MC)
	4.3 Artificial Cost (AC)
	4.4 Database Modification Ratio (DMR)
	4.5 Data Integrity (DI) and Utility Integrity (UI)
	4.6 Database Structure Similarity (DSS) and Itemsets Utility Similarity (IUS)

	5 Challenges and Research Opportunities
	6 Summary
	References

	Extracting Potentially High Profit Product Feature Groups by Using High Utility Pattern Mining and Aspect Based Sentiment Analysis
	1 Introduction
	2 Background
	2.1 Basics of Aspect-Based Sentiment Analysis
	2.2 An Overview on High Utility Itemset Mining

	3 Related Work
	3.1 Aspect Based Sentiment Analysis
	3.2 High Utility Pattern Mining
	3.3 eWOM and Sentiment Analysis

	4 Extracting Potentially High Profit Feature Groups
	4.1 Aspect Based Sentiment Analysis
	4.2 Triples-to-Transactions Transformation
	4.3 High Utility Pattern Mining
	4.4 Further Issues: Determining Utility Values and Use Cases

	5 Experiments and Results
	5.1 Experiment 1: Analyzing the Accumulated Utility Performances
	5.2 Experiment 2: Support Versus Utility Analysis
	5.3 Experiment 3: Support Versus Utility for Top Aspect Groups

	6 Conclusion and Future Work
	References

	Metaheuristics for Frequent and High-Utility Itemset Mining
	1 Introduction
	2 FIM Problem Description
	3 Classical FIM Algorithms
	4 Metaheuristics for FIM
	4.1 Evolutionary-Based Approaches
	4.2 Swarm Intelligence-Based Approaches

	5 HUIM Problem Description
	6 Classical HUIM Algorithms
	7 Metaheuristics for HUIM
	7.1 Genetic Algorithm for HUIM
	7.2 Particle Swarm Optimization for HUIM
	7.3 Ant Colony Optimization for HUIM

	8 Conclusion
	References

	Mining Compact High Utility Itemsets Without Candidate Generation
	1 Introduction
	2 Background
	3 Related Work
	4 The Proposed Methods
	4.1 Construction of EU-List
	4.2 The CHUI-Mine(Closed) Algorithm
	4.3 The CHUI-Mine(Maximal) Algorithm
	4.4 Recovering High Utility Itemsets from Maximal High Utility Itemsets

	5 Experimental Evaluation
	5.1 Experiments on Dense Datasets
	5.2 Experiments on Sparse Datasets
	5.3 Memory Usage Evaluation
	5.4 Recovery of All High Utility Itemsets
	5.5 Summary

	6 Conclusion
	References

	Visualization and Visual Analytic Techniques for Patterns
	1 Introduction
	2 Methodology
	3 Visualizations and Visual Analytics Techniques
	3.1 Itemsets
	3.2 Association Rules
	3.3 Sequential Patterns

	4 Comparison
	4.1 Frequent Itemsets
	4.2 Association Rules
	4.3 Sequential Patterns

	5 Discussion and Opportunities for Research
	6 Conclusions
	References

