
FOSHU: Faster On-Shelf High Utility Itemset Mining
– with or without Negative Unit Profit

Philippe Fournier-Viger
University of Moncton

18 Antonine-Maillet Ave
Moncton, NB, Canada

philippe.fournier-viger@umoncton.ca

Souleymane Zida
University of Moncton

18 Antonine-Maillet Ave
Moncton, NB, Canada

esz2233@umoncton.ca

ABSTRACT
High utility itemset (HUI) mining is a popular data mining
task, which consists of discovering sets of items generating
high profit in a transaction database. Recently, several effi-
cient algorithms have been proposed for this task. But, most
of them do not consider the on-shelf time periods of items,
which thus lead to a bias toward items having more shelf
time. Moreover, most algorithms cannot handle databases
containing items with a negative unit profit, although this
case is very common in real transaction databases. In this
paper, we address both of these challenges by proposing a
novel efficient algorithm named FOSHU (Faster On-Shelf
High Utility itemset miner) to mine HUIs while consider-
ing on-shelf time periods of items, and items having posi-
tive and/or negative unit profit. An extensive experimental
study with real-life datasets shows that the proposed algo-
rithm can be up more than 1000 times faster and use up
to 10 times less memory than the state-of-the-art algorithm
TS-HOUN for this task. Moreover, experiments show that
the proposed algorithm performs well on dense database and
databases containing many time periods.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

Keywords
frequent pattern mining, utility mining, high-utility itemset
mining, on-shelf time periods

1. INTRODUCTION
Frequent Itemset Mining (FIM) [2] is a popular data min-

ing task that is essential to a wide range of applications.
Given a transaction database, FIM consists of discovering
frequent itemsets. i.e. groups of items (itemsets) appearing
frequently in transactions [2]. However, it assumes that each
item cannot appear more than once in each transaction and
that all items have the same importance (weight, unit profit

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’15 April 13-17, 2015, Salamanca, Spain.
Copyright 2015 ACM ACM 978-1-4503-3196-8/15/04 15.00
http://dx.doi.org/10.1145/2695664.2695823

or value). To address these limitations, the problem of FIM
has been redefined as High-Utility Itemset Mining (HUIM)
to consider the more general case where items can appear
more than once in each transaction and where each item has
a weight (e.g. unit profit) [3, 4, 6, 11, 12, 13, 14, 15]. The
goal of HUIM is to discover high utility itemsets (HUIs), i.e.
itemsets generating a high profit rather than frequent item-
sets. The problem of HUIM is widely recognized as more
difficult than the problem of FIM. In FIM, the downward-
closure property states that the support of an itemset is anti-
monotonic, that is the supersets of an infrequent itemset are
infrequent and subsets of a frequent itemset are frequent.
This property is very powerful to prune the search space.
In HUIM, the utility of an itemset is neither monotonic or
anti-monotonic, that is a high utility itemset may have a su-
perset or subset with lower, equal or higher utility [2]. Thus
techniques to prune the search space developed in FIM can-
not be directly applied in HUIM. Many studies have been
carried to develop efficient HUIM algorithms [3, 4, 6, 12, 13,
15]. However, most of these studies make two assumptions
that are unrealistic for real transactional databases. First,
most algorithms cannot handle databases where items may
have negative unit profit/weight. But such items often occur
in real-life transaction databases. For example, it is common
that a retail store will sell items at a loss to stimulate the
sale of other related items or simply to attract customers to
their retail location. It was demonstrated that if classical
HUIM algorithms are applied on database containing items
with negative unit profit, they can generate an incomplete
set of HUIs [1, 7]. Second, most algorithms consider that
items have the same shelf time, i.e. that all item are on
sale for the same time period. However, in real-life some
items are only sold during some short time period (e.g. the
summer). Algorithms ignoring the shelf time of items have
a bias toward items having more shelf time since they have
more chance to generate a high profit [9, 10].

To address these respective limitations the problem of
HUIM has been respectively redefined as the problem of
mining HUIs with negative/positive unit profit [1, 7], and
the problem of mining high on-shelf utility itemsets (HOUs)
[9]. Recently, a more general problem definition addressing
both limitations has been proposed. It is the problem of
mining HOUs with negative/positive unit profit [10]. The
state-of-the-art algorithm for this latter problem definition
is TS-HOUN [9, 10]. Although this algorithm is pioneer,
it does not perform well on large or dense databases (as
shown in our experiment). The reason is that it uses a
three phase approach that requires generating and main-

Table 1: A Transaction Database
TID Transactions Period
T1 (a, 1)(c, 1)(d, 1) 1
T2 (a, 2)(c, 6)(e, 2)(g, 5) 1
T3 (a, 1)(b, 2)(c, 1)(d, 6), (e, 1), (f, 5) 2
T4 (b, 4)(c, 3)(d, 3)(e, 1) 2
T5 (b, 2)(c, 2)(e, 1)(g, 2) 3

taining large amount of candidates in memory and perform
multiple database scans. Furthermore, its performance de-
teriorates when the number of time periods in a database
is large since TS-HOUN mines patterns in each time period
separately and then perform a costly merge operations of
results found in each time period.

In this paper, we address these issues by presenting a
novel algorithm named FOSHU (Faster On-Shelf High Util-
ity itemset miner) to mine HUIs while considering both pos-
itive and negative item unit profit and the items’ on-shelf
time periods. FOSHU discovers itemsets in a single phase
without generating candidates, and mines all times periods
at the same time, thus avoiding the costly merge opera-
tions of patterns found in each time period. Furthermore,
FOSHU introduces novel strategies to handle negative val-
ues efficiently. We compare the performance of FOSHU and
TS-HOUN on several real-life datasets. Results show that
FOSHU can be more than 1000 times faster and uses up
to 10 times less memory than TS-HOUN. Furthermore, ex-
periments show that FOSHU performs very well on dense
databases and databases with many time periods.

The rest of this paper is organized as follows. Section
2, 3, 4 and 5 respectively presents the problem definition
and related work, the FOSHU algorithm, the experimental
evaluation and the conclusion.

2. PROBLEM DEFINITION AND
RELATED WORK

We first first introduce the problem definition.

Definition 1. Let I be a set of items. Let D be a trans-
action database containing a set of transactions D = {T1,
T2, ..., Tn} such that for each transaction Tc, Tc ∈ I and Tc

has a unique identifier c called its Tid. Each item i ∈ I is
associated with a positive or negative number p(i), called its
external utility, or unit profit. For each transaction Tc such
that i ∈ Tc, a positive number q(i, Tc) is called the internal
utility of i, or its purchase quantity. Let PE be a set of
positive integers representing time periods. Each transac-
tion TC ∈ D is associated to a time period pt(Tc) ∈ PE,
representing the time period during which the transaction
occurred.

Example 1. Consider the transaction database shown in
Table 1, which will be the running example. This database
contains five transactions (T1, T2...T5) and three time peri-
ods (1, 2, 3). Transaction T2 occurred in time period 1, and
contains items a, c, e and g, which respectively appear in T2

with an internal utility of 2, 6, 2 and 5. Table 2 indicates
that the external utility of these items are respectively -5,
1, 3 and 1. Thus, item a is sold at loss.

Table 2: External Utility Values (Unit Profit)
Item a b c d e f g
Profit -5 2 1 2 3 1 1

Definition 2. The utility of an item i ∈ I in a transac-
tion Tc is denoted as u(i, Tc) and defined as p(i) × q(i, Tc).
The utility of an itemset X (a group of items X ⊆ I) in
a transaction Tc is defined as u(X,Tc) =

∑
i∈X u(i, Tc). It

represents the profit generated by items in X in transaction
Tc.

Definition 3. The time periods (shelf time) of an itemset
X ⊆ I, is the set of time periods where X was sold, defined
as pi(X) = {pt(Tc)|Tc ∈ D ∧X ⊆ Tc}.

Definition 4. The utility of an itemset X ⊆ I in a time
period h ∈ pi(X) is denoted as u(X,h) and defined as u(X,h)
=

∑
Tc∈D∧h∈pt(Tc)

u(X,Tc). The utility of an itemset X ⊆ I

in a database D is defined as u(X) =
∑

h∈pi(X) u(X,h).

Example 2. The utility of item e in T3 is u(e, T2) = 3×2 =
6. The utility of the itemset {c, e} in T2 is u({c, e}, T2) =
u(c, T2) + u(e, T2) = 1 × 6 + 3 × 2 = 12. The time periods
of itemset {c, e} are pi({c, e}) = {1, 2, 3}. The utility of
{c, e} in periods 1, 2 and 3 are respectively u({c, e}, 1) = 12,
u({c, e}, 2) = 4 and u({c, e}, 3) = 11. The utility of {c, e} in
the database is u({c, e}) = 12 + 4 +11 = 27.

Definition 5. The transaction utility (TU) of a transac-
tion Tc is the sum of the utility of the items from Tc in
Tc. i.e. TU(Tc) =

∑
i∈Tc

u(i, Tc). Given an itemset X,
the total utility of the time periods of X is defined as
to(X) =

∑
h∈pi(X)∧Tc∈D∧h∈pt(Tc)

TU(Tc). The relative util-
ity of an itemset X ⊆ I in a database D is defined as
ru(X) = u(X)/to(X) and represents the percentage of the
profit that was generated by X during the time periods
where X was sold.

Example 3. The transaction utility of transactions T1, T2,
... T5 are respectively TU(T1) = −2, TU(T2) = 7, TU(T3) =
20, TU(T4) = 20 and TU(T5) = 11. The total utility of the
time periods of {c, e} is to({c, e}) = 58. The relative utility
of {c, e} is ru({c, e} = u({c, e})/to({c, e}) = 27/58 = 0.46.

Definition 6. An itemset X is a high on-shelf utility item-
set (HOU) if its relative utility ru(X) is no less than a user-
specified minimum utility threshold minutil given by the
user (0 ≥ minutil ≥ 1). Otherwise, X is a low on-shelf
utility itemset. The problem of high on-shelf utility itemset
mining is to discover all HOUs in a database where external
utility values are positive [9]. The problem of high on-shelf
utility itemset mining with negative/positive unit profit [10]
is to discover all HOUs in a database where external utility
values may be positive or negative.

Example 4. If minutil = 0.43, 22 HOUs are found in
the database of the running example. They are {a, b, c, d,
e, f}:0.44, {b, d, f}:0.47, {b, d, e, f}:0.53, {b, c, d, e, f}:0.55,
{b, c, d, e}:0.49, {d, e, f}:0.44, {c, d, e, f}:0.47, {b, g}:0.54,
{b, e, f}:0.81, {b,c, e, g}:1.0, {b, c, g}:0.72, {e, g}:0.51, {c, e,
g} :0.77, {c, g}:0.48, {b, d}:0.67, {b, d, e}:0.8, {b, c, d, e}:0.89,
{b, c, d}:0.75, {c, d, e}:0.43, {b, e}:0.45, {b, c, e}:0.55 and
{d, e}:0.53, where the relative utility of each itemset is indi-
cated after a colon.

It can be demonstrated that the (relative) utility measure
is not monotonic or anti-monotonic [9, 10, 12, 13, 15]. In
other words, an itemset may have a utility lower, equal or
higher than the utility of its subsets. Therefore, the strate-
gies that are used in FIM to prune the search space based
on the anti-monotonicity of the support cannot be directly
applied to discover HOUs. The state-of-the-art algorithm
for HOU mining is TS-HOUN [9, 10]. It circumvents the
previous problem by overestimating the utility of itemsets
using a measure called the Transaction-Weighted Utiliza-
tion (TWU) [3, 13, 15], which is anti-monotonic. The TWU
measure assumes that all items have positive external utility
values. The TWU measure is defined as follows.

Definition 7. For a given time period h, the transaction-
weighted utilization (TWU) of an itemset X is denoted as
TWU(X,h) and defined as the sum of the transaction utility
of transactions from h containing X, i.e. TWU(X,h) =∑

Tc∈D∧X⊆Tc∧pt(Tc)=h TU(Tc).

Example 5. Consider the database of the running exam-
ple and that the external utility value of item a is 5 rather
than −5 (p(a) = 5). The TU of transactions T1, T2, T3, T4

and T5 are respectively 3, 17, 25, 20 and 11. TWU({b}, 2) =
TU(T3)+TU(T4) = 25+20 = 45. TWU({b}, 3) = TU(T5) =
11.

The TWU measure has three important properties that
are used to prune the search space in TS-HOUN [10, 13].
These properties only hold if external utility values of items
are positive [1].

Definition 8. The utility of a time period h is defined as
pto(h) =

∑
Tc∈D∧h∈pt(Tc)

TU(Tc). The relative utility of an

itemset X for a time period h is ru(X,h) = u(X,h)/pto(h).

Property 1. The TWU of an itemset X for a period h
is an upper bound on the utility of X in period h, i.e.
TWU(X,h) ≥ u(X,h).

Property 2. For a period h, the TWU measure is anti-
monotonic. Let X and Y be two itemsets. If X ⊂ Y , then
TWU(X,h) ≥ TWU(Y, h)

Property 3. The TWU of an itemset X for a period h
divided by the total utility of the time period h is an up-
per bound on the relative utility of X in period h, i.e.
TWU(X,h)/pto(h) ≥ ru(X,h).

Property 4. Let X be an itemset. If there exists no time
period h such that TWU(X,h)/pto(h) ≥ minutil, then X
is not a high on-shelf utility itemset. Otherwise, X may or
may not be a high on-shelf utility itemset.

TS-HOUN is a three phrase algorithm, which works simi-
larly to other multiple-phase algorithms for HUI mining (e.g.
Two-Phase [13], IHUP [3] and UPGrowth [15]). In Phase
1, TS-HOUN scans the database to calculate the trans-
action utility of each transaction, and group transactions
by time period. Then, for each time period h, it calcu-
lates the TWU of all single item and pairs of items. For
each time period, TS-HOUN keep each itemset X such that
TWU(X)/pto(h) ≥ minutil. The union of itemsets found in
all time periods is then calculated since only those itemsets
may be part of a HOU (by Property 4). In Phase 2, those

itemsets are used to generate larger itemsets in each time
period by applying a modified Two-Phase [13] HUI mining
algorithm, which explores itemsets in a level-wise manner
similar to Apriori [2] but using pruning Property 2. Then,
the union of the candidates found in each time period is cal-
culated. Finally, in Phase 3, TS-HOUN scans the database
again to calculate the relative utility of each candidate and
keep only HOUs. The TS-HOUN algorithm as described
above is complete only if applied on a database where items
have positive unit profit [10]. To address the problem of
mining HOUs with items having negative unit profits, the
authors of TS-HOUN redefined the TWU as follows based
on previous work from Chu et al [1].

Definition 9. The redefined transaction utility (RTU) of
a transaction Tc is the sum of the utility of the items from
Tc having positive external utilities, that is RTU(Tc) =∑

x∈Tc∧p(x)>0 u(x, Tc). The redefined transaction-weighted

utilization (RTWU) of an itemset X for a time period h is
defined as RTWU(X,h) =

∑
Tc∈D∧X⊆Tc∧pt(Tc)=h RTU(Tc).

Using RTWU instead of TWU has the effect of restoring
Property 4 and this is what allows TS-HOUN to find the
complete set of HOUs.

Although, TS-HOUN is a pioneer algorithm for mining
HOUs in a database with negative unit profits and time pe-
riods, it is inefficient for several reasons. First, it generate
candidates by mining each time period separately. There-
fore, it may have to generate the same itemset several times
in different periods before performing a costly union opera-
tion of itemsets in all time periods. Another problem is that
TS-HOUN has to maintain a huge amount of candidates
in memory. Furthermore, TS-HOUN suffers from the well-
known problems of level-wise approach for itemset mining
such as generating candidates not appearing in the database
[2].

To address this issue, in this paper, we propose a novel
algorithm that can mine HOUs using a single phase, without
maintaining candidates in memory, and that mine all time
periods at the same time rather than mining each time pe-
riod separately. The proposed algorithm is inspired by FHM
[4], a recently proposed algorithm for high utility itemset
mining, which is to our knowledge the fastest HUI mining
algorithm. FHM is designed to handle only positive exter-
nal utility values and does not consider time periods. FHM
provides the benefit of mining HUIs in a single phase, thus
avoiding the candidate generation step of other HUI min-
ing algorithms such as Two-Phase [13], UPGrowth [15] and
IHUP [3]. FHM utilizes a depth-first search to explore the
search space of itemsets. FHM associates a structure to
each pattern named utility-list, previously introduced in the
HUI-Miner [12] algorithm. Utility-lists allow calculating the
utility of a pattern quickly by making join operations with
utility-lists of smaller patterns. Utility-lists are defined as
follows.

Definition 10. Let � be any total order on items from I.
The utility-list of an itemset X in a database D is a set of
tuples such that there is a tuple (tid, iutil, rutil) for each
transaction Ttid containing X. The iutil element of a tuple
is the utility of X in Ttid. i.e., u(X,Ttid). The rutil element
of a tuple is defined as

∑
i∈Ttid∧i�x,∀x∈X u(i, Ttid).

Example 6. Assume that � is the alphabetical order and
that the external utility of item a is 5 rather than -5. The

utility-list of {a} is {(T1, 5, 3), (T2, 10, 17), (T3, 5, 25)}. The
utility-list of {d} is {(T1, 2, 0), (T3, 12, 8), (T4, 6, 3)}. The
utility-list of {a, d} is {(T1, 11, 0), (T3, 17, 8)}.

To discover HUIs, FHM performs a single database scan to
create utility-lists of patterns containing single items. Then,
longer patterns are obtained by performing the join opera-
tion of utility-lists of shorter patterns. The join operation
for single items is performed as follows. Consider two items
x, y such that x � y, and their utility-lists ul({x}) and
ul({y}). The utility-list of {x, y} is obtained by creating
a tuple (ex.tid, ex.iutil + ey.iutil, ey.rutil) for each pairs of
tuples ex ∈ ul({x}) and ey ∈ ul({y}) such that ex.tid =
ey.tid. The join operation for two itemsets P ∪ {x} and
P ∪ {y} such that x � y is performed as follows. Let ul(P),
ul({x}) and ul({y}) be the utility-lists of P , {x} and {y}.
The utility-list of P ∪ {x, y} is obtained by creating a tuple
(ex.tid, ex.iutil + ey.iutil− ep.iutil, ey.rutil) for each set of
tuples ex ∈ ul({x}), ey ∈ ul({y}), ep ∈ ul(P) such that
ex.tid = ey.tid = ep.tid. Calculating the utility of an item-
set using its utility-list, and calculating an upper-bound on
the utility of its supersets to prune the search space is done
based on the two following properties

Property 5. Let be an itemset X. The utility u(X) is
equal to the sum of iutil values in ul(X) [12].

Property 6. Let be an itemset X. The sum of iutil and
rutil values in ul(X) is an upper bound on u(X). More-
over, it can be shown that this upper bound is tighter than
TWU(X). [12].

Property 7. Let X be an itemset. Let the extensions of X
be the itemsets that can be obtained by appending an item
y to X such that y � i, ∀i ∈ X. The utility of transitive
extensions of X can only be lower or equal to the the sum
of iutil and rutil values in ul(X). [12].

Before presenting our algorithm, we demonstrate with an
example that the property above used by FHM to prune
the search space is invalid if negative external utility values
appears in a database. Consider that items a and d in the
running example have respectively external utility values of
5 and −2 The utility-list of {a, b} would thus contains a
single element, which is (T3, 9,−3). According to Property
7, because the sum of iutil and rutil values in ul({a, b})
is 6, none of its supersets can have a utility higher than 6.
However, this is not the case since itemset u({a, b, f}) = 14.

3. THE FOSHU ALGORITHM
In this section, we present our proposal, the FOSHU algo-

rithm. It relies on the utility-list structure used in the FHM
[4] algorithm and the TWU measure, but it also introduces
several novel ideas to handle time-periods and items with
negative unit profit.

In the next subsections, we first address the problem of
generalizing properties of utility-lists for time periods. Then,
we present the main procedure of the algorithm. The result
is an algorithm for HOU mining. Finally, we explain how
this algorithm is extended to also handle items with negative
unit profits.

3.1 Handling time periods
We adapt properties of utility lists to databases containing

time periods as follows.

Property 8. Let X be an itemset and h be a time pe-
riod. Let sumIUtil(X,h) and sumRUtil(X,h) respectively
denote the sum of iutil and rutil values in the utility list
ul(X) for the time period h. An upper bound on u(X) is
sumIUtil(X,h)+sumRUtil(X,h), that is sumIUtil(X,h)+
sumRUtil(X,h) ≥ u(X,h).

Property 9. Let X be an itemset and h be a time pe-
riod. The inequation sumIUtil(X,h) + sumRUtil(X,h) ≤
TWU(X,h) holds, that is sumIUtil(X,h)+sumRUtil(X,h)
is a tighter upper bound on u(X,h) than TWU(X,h).

Property 10. Let X and Y be two itemsets. If X ⊂ Y ,
then sumIUtil(X,h)+sumRUtil(X,h) ≥ sumIUtil(Y, h)+
sumRUtil(Y, h).

Property 11. For an itemset X and a period h, the value
sumIUtil(X,h)+sumRUtil(X,h) divided by the total util-
ity of the time period pto(h) is an upper bound on the
relative utility of X in period h, i.e. (sumIUtil(X,h) +
sumRUtil(X,h))/pto(h) ≥ ru(X,h).

Property 12. Let X be an itemset. If there exists no time
period h such that sumIUtil(X,h)+sumRUtil(X,h)/pto(h)
≥ minutil, then X is not a high on-shelf utility itemset as
well as any transitive extensions of X according to the to-
tal order �. Recall that an extension of X is an itemset
obtained by appending an item y to X such that y � i,
∀i ∈ X.

Proof of the above properties are not given due to space
limitation. Besides, note that for implementation, utility-
lists are redefined so that elements in utility lists are grouped
by time period. This bring two benefits for efficiency. It al-
lows to calculate sumIUtil(X,h) and sumRUtil(X,h) for a
time period h and an itemset X by only scanning elements
representing transactions in h in ul(X). Second, it allows
a faster construction of utility-lists by only comparing ele-
ments of two utility lists if they belong to the same time
period.

3.2 Main procedure
The main procedure (Algorithm 1) takes as input a trans-

action database and the minutil threshold. The algorithm
first scans the database to calculate the global TWU of each
item i, which is defined as TWU(i) =

∑
h∈pi(x) TWU(X,h),

and TWU({i}, h) for each period h. Moreover, the set of
all time periods PE and the utility pto(h) of each period
h ∈ PE is computed during the first database scan.

Then, the algorithm attempts to remove single items that
may not be part of a high on-shelf utility itemset. This is
done by computing to({i}) for each item i by using pi(i) and
the utility of each period previously obtained. This allows
to create the set I∗ containing all items i such that there
exists at least a period h such that TWU({i}, h)/to({i}) ≥
minutil. Thereafter, all items not in I∗ will be ignored
since they cannot be part of a high on-shelf utility itemset
by Property 3. It is important to note that the TWU needs
to be used here to prune single items instead of the sum
of iutil and rutil value of utility-lists (Property 3), since
this latter pruning strategy is defined w.r.t extensions of an
itemset, but at this stage extensions are not considered yet.

The TWU values of items are then used to establish a
total order � on the set of items I∗, which is the order of

ascending global TWU values. This order is used since it was
shown to reduce the search space when using a depth-first
exploration in HUI mining [4, 12, 15].

A second database scan is then performed. During this
database scan, items in transactions are reordered according
to the total order � and the utility-list of each item i ∈ I∗ is
built. After the construction of utility-lists, the depth-first
search exploration of itemsets starts by calling the recursive
procedure Search with the empty itemset ∅, the set of items
I∗ and minutil.

Algorithm 1: The FOSHU algorithm

input : D: a transaction database, minutil: a
user-specified threshold

output: the set of high on-shelf utility itemsets

1 Scan D to calculate TWU({i}), TWU({i}, h) and
pto(h) for each period h and each item i, as well as the
set of all time periods PE;

2 Let I∗ = {i|∃h ∈ PE ∧ TWU({i}, h) /pto(h) ≥
minutil};

3 Let � be the global TWU ascending order on I∗;
4 Scan D to build the utility-list of each item i ∈ I∗;
5 Search (∅, I∗, minutil);

The Search procedure (Algorithm 2) takes as input (1)
an itemset P , (2) extensions of P having the form Pz mean-
ing that Pz was previously obtained by appending an item
z to P , and (3) minutil. The search procedure operates as
follows. For each extension Px of P , the search procedure
first scans the utility list of Px to calculate sumIUtil(Px, h)
for each period h where Px appears. At the same time,
the total utility of time periods where Px appears (to(Px))
is calculated, as well as the total utility of Px (which is
equal to sumIUtil(Px) by Property 5). Then, the rela-
tive utility of Px is calculated as ru(Px) = sumIUtil(Px)
/to(Px). If ru(Px) is no less than minutil, Px is a high
on-shelf utility itemset and it is output. Then, if there ex-
ist a time period h such that the sum of sumIUtil(Px, h)+
sumRUtil(Px, h))/to(Px) is no less than minutil, it means
that extensions of Px should be explored (by Property 12).
This is performed by merging Px with all extensions Py
of P such that y � x to form extensions of the form Pxy
containing |Px|+1 items. The utility-list of Pxy is then con-
structed as in FHM by calling the Construct procedure (cf.
Algorithm 3) to join the utility-lists of P , Px and Py. This
latter procedure is the same as in FHM [4] and is thus not
described in more details. Then, a check is performed to de-
termine if Pxy and its extensions may be high on-shelf util-
ity itemsets by using the TWU measure (line 12), based on
Property 4. This is done by scanning the utility list of Pxy
to calculate TWU(Pxy, h) for each time period h where Pxy
appears. If TWU(Pxy, h)/pto(h) ≥ minutil for at least one
period h, then Pxy will be added to ExtensionsOfPx, the
set of extensions of Px which will be considered for further
extensions with a recursive call to the Search procedure.
Note that the check at line 12 may seem redundant since
the TWU is a less tight upper bound than the sum of iutil
and rutil values used in the check at line 6 (that would be
performed in a recursive call to Search with Pxy). How-
ever, there is a good reason for performing the check at line
12. It is that pruning an itemset Pxy before the recursive
call to Search will avoid comparing Pxy with potentially

many other extensions of Px in the recursive call.
Since the Search procedure starts from single items, it

recursively explore the search space of itemsets by appending
single items, it can be easily seen based on Properties 3,
4, 5 and 12 that this procedure is correct and complete to
discover all high utility on-shelf itemsets.

Algorithm 2: The Search procedure

input : P : an itemset, ExtensionsOfP: a set of
extensions of P , the minutil threshold

output: the set of high on-shelf utility itemsets

1 foreach itemset Px ∈ ExtensionsOfP do
2 Scan Px.utilitylist to calculate sumIUtil(Px, h),

sumRUtil(Px, h) for each period h where Px
appears, to(X) and sumIUtil(Px);

3 if sumIUtil(Px)/to(X) ≥ minutil then
4 output Px;
5 end
6 if ∃h ∈ pi(Px) such that (sumIUtil(Px, h)+

sumRUtil(Px, h))/to(Px) ≥ minutil then
7 ExtensionsOfPx← ∅;
8 foreach itemset Py ∈ ExtensionsOfP such that

y � x do
9 Pxy ← Px ∪ Py;

10 Pxy.utilitylist← Construct (P, Px, Py);
11 Scan Pxy.utilitylist to calculate

TWU(Pxy, h) for each period h where Pxy
appears;

12 if ∃h ∈ pi(Pxy) such that
TWU(Pxy, h)/pto(h) ≥ minutil then

13 ExtensionsOfPx← ExtensionsOfPx
∪Pxy;

14 end

15 end
16 Search (Px, ExtensionsOfPx, minutil, pi(Px));

17 end

18 end

3.3 Handling negative unit profit
We now describe how the proposed algorithm is extended

to not just handle time periods but also items with nega-
tive unit profit. Let the term ”positive items” and ”negative
items” denote items respectively having positive and neg-
ative unit profit. To be able to transform the algorithm
described in the previous subsection into an algorithm that
outputs all HOUs when both negative and positive items are
used, we make the following modifications.

First, we define the total order � such that negative items
always succeed all positive items. By using this order, pos-
itive items are always use to extend an itemset first before
using negative items. This let us define new pruning proper-
ties. In the following, for an itemset X we use the notation
up(X) and un(X) to respectively refer to the set of all pos-
itive items in X and the set of all negative items in X.

Property 13. Let X be an itemset. It follows that u(X,h)
≤ u(up(X), h).

Proof. This property holds because X \up(X) = un(X)
and negative items can only decrease the utility of X.

Algorithm 3: The Construct procedure

input : P : an itemset, Px: the extension of P with an
item x, Py: the extension of P with an item y

output: the utility-list of Pxy

1 UtilityListOfPxy ← ∅;
2 foreach tuple ex ∈ Px.utilitylist do
3 if ∃ey ∈ Py.utilitylist and ex.tid = exy.tid then
4 if P.utilitylist 6= ∅ then
5 Search element e ∈ P.utilitylist such that

e.tid = ex.tid.;
6 exy ←

(ex.tid, ex.iutil + ey.iutil − e.iutil, ey.rutil);

7 end
8 else
9 exy ← (ex.tid, ex.iutil + ey.iutil, ey.rutil);

10 end
11 UtilityListOfPxy ←

UtilityListOfPxy ∪ {exy};
12 end

13 end
14 return UtilityListPxy ;

Property 14. Let X be an itemset and z be a negative
item such that z 6∈ X. It follows that u(up(X ∪ {z}), h) ≤
u(up(X), h).

Proof. Because z is a negative item, up(X,h) = up(X ∪
{z}, h). Moreover, the number of transactions containing
X∪{z} in h can only be smaller than the number of transac-
tions containing X. Thus, u(up(X ∪{z}), h) ≤ u(up(X), h).
But note that u(X,h) may be smaller, greater or equal to
u(X ∪ {z}, h).

Property 15. Let X be an itemset. For any itemset Y re-
sulting from transitive extensions of X with negative items,
u(up(Y), h) ≤ u(up(X), h).

Proof. This directly follows from previous property.

Based on this observation, we can use the following prop-
erty to prune transitive extensions of an itemset with nega-
tive items.

Property 16. Let X be an itemset. If only negative items
may be appended to X according to � and there exists no
time period h such that u(up(X), h) / pto(h) ≥ minutil,
then X is not a high on-shelf utility itemset as well as any
transitive extension Y of X.

But integrating this pruning condition in the algorithm
requires to be able to calculate u(up(X), h) efficiently. To
achieve this, we separate iutil values in utility-lists into
two values: iputil and inutil. For a given transaction Tc,
iputil and inutil respectively indicates u(up(X), Tc) and
u(un(X), Tc). Having these values, u(up(X), h) can be eas-
ily computed and also u(X,h) by respectively summing the
iputil values (denoted as sumIPUtil(X,h)) of period h, and
summing both the iputil and inutil values of period h.

Besides, we also redefine rutil values so that only utility
values of positive items are considered. The reason is that
the algorithm can miss some HOUs if rutil values of negative
items are included in utility lists as we have demonstrated

in the last paragraph of Section 2. Based on the above mod-
ifications and definitions, we can rewrite pruning Property
12 as follows.

Property 17. Let X be an itemset. If there exists no time
period h such that sumIPUtil(X,h) + sumRUtil(X,h) /
pto(h) ≥ minutil, then X is not a high on-shelf utility item-
set as well as any transitive extensions of X.

Proof. If we only consider transitive extensions with pos-
itive items, the property becomes equivalent to Property 12.
Now, for extensions with negative items succeeding exten-
sions with positive items according to �, the property is
also true since when negatives items are used for extensions
this property becomes Property 16. This is true because
sumRUtil(X,h) will be equal to 0 and sumIPUtil(X,h)
will be equal to u(up(X), h).

Based on the above ideas, the modified FOSHU algorithm
is obtained by making the following modifications. First, in-
stead of calculating the original TWU, the redefined TWU
is used to avoid underestimating the utility of HOUs con-
taining positive items, since it was shown in TS-HOUN [10]
that using the redefined TWU will not prune HOUs. Sec-
ond, utility-lists are redefined such that iputil and inutil
elements are used. Furthermore, only utility values of pos-
itive items are included in rutil values of utility-lists (as
previously explained). Third, the � total order is defined
such that all negative items succeed positive items (as pre-
viously explained). Fourth, the pruning condition based on
Property 12 for positive items based on the sum of iutil and
rutil values is redefined as Property 17.

4. EXPERIMENTAL STUDY
We performed several experiments to assess the perfor-

mance of the proposed algorithm. Experiments were per-
formed on a computer with a third generation 64 bit Core
i5 processor running Windows 7 and 5 GB of free RAM.
We compared the performance of FOSHU with the state-of-
the-art algorithm TS-HOUN for high on-shelf utility item-
set mining with negative unit profits. All memory mea-
surements were done using the Java API. Experiments were
carried on five real-life datasets having varied characteris-
tics. The characteristics of datasets are shown in table 4,
where the |D|, |I| and avgL columns respectively indicate
the number of transactions, the number of distinct items
and average transaction length.

dataset |D| |I| avgL

mushroom 8,124 120 23
retail 88,162 16,470 10.3
accidents 340,183 468 33.8
chess 3,196 75 35
pumsb 49,046 7,116 74

Table 3: Dataset characteristics

For all datasets, external utilities for items are generated
between -1,000 and 1,000 by using a log-normal distribution
and quantities of items are generated randomly between 1
and 5, similarly to the settings of [3, 4, 12, 15]. Moreover, the
number of time periods was set set to 5 as in [10]. The source
code of all algorithms and datasets can be downloaded as

part of the SPMF open-source data mining library http:

//www.philippe-fournier-viger.com/spmf/ [8].

4.1 Influence of minutil threshold
We ran the FOSHU and TS-HOUN algorithms on each

dataset while decreasing the minutil threshold until algo-
rithms became too long to execute, ran out of memory or
a clear winner was observed. For each dataset, we recorded
the execution time and the maximum memory usage.

The comparison of execution times is shown in Fig. 1 for
the datasets using a logarithmic scale. For mushroom, retail,
chess, pumsb and accidents, FOSHU clearly outperform TS-
HOUN. It is respectively up to 1000 times faster, 683 times
faster, 2000 times faster, 89 times, and 178 times faster than
TS-HOUN.

100

1000

10000

100000

1000000

0.25 0.3 0.35 0.4

R
u

n
ti

m
e

 (
m

s)

minutil

mushroom

TS-HOUN

FOSHU

1

10

100

1000

0.01 0.012 0.014

R
u

n
ti

m
e

 (
s)

minutil

retail

TS-HOUN

FOSHU

1

10

100

1000

0.45 0.6 0.75 0.9

R
u

n
ti

m
e

 (
s)

minutil

pumsb
TS-HOUN
FOSHU

100

1 000

10 000

100 000

1 000 000

10 000 000

0.62 0.63 0.64 0.65 0.66

R
u

n
ti

m
e

 (
m

s)

minutil

chess

TS-HOUN

FOSHU

10

100

1000

10000

0.28 0.33 0.38

R
u

n
ti

m
e

 (
s)

minutil

accidents

TS-HOUN

FOSHU

Figure 1: Execution time w.r.t minutil

In terms of memory usage, FOSHU has a lower memory
consumption on all datasets. For the mushroom, retail, acci-
dents, chess and pumsb, the memory usage of TS-HOUN and
FOSHU for the lowest minutil values are respectively 69/39,
571/539, 139/14, 602/498 and 123/98. Overall, FOSHU
used up about 10 times less memory than TS-HOUN on
some datasets.

There are several reasons why FOSHU has the best over-
all performance. The first reason is that FOSHU utilizes the
sum of iutil and rutil values as well as the TWU to prune
the search space, while TS-HOUN only relies on the TWU.
Since the sum of iutil and rutil values is a stricter upper
bound than the TWU, this allows FOSHU to further prune
the search space. The second reason is that FOSHU utilizes
a very efficient depth-first search that mines high on-shelf
itemsets without generating candidates, and mines all time
periods at the same time. On the other hand, TS-HOUN is
a level-wise algorithm that needs to maintain a large amount
of itemsets in memory to find larger patterns, and mine
patterns in each time periods separately before merging re-
sults of all time periods. Furthermore, since TS-HOUN uses
a multiple phase approach, it suffers from the problem of
generating and maintaining a huge amount of candidates in

memory before low-utilty itemsets can be pruned. The third
reason is that negative items are handled more efficiently in
FOSHU than in TS-HOUN. FOSHU introduces the use of
a total order � such that negative items are used to extend
itemsets after all positive items have been considered. By
replacing the use of iutil values by iputil and inutil values,
we obtained a pruning condition based on sumIPUtil(X,h)
+ sumRUtil(X,h). This condition is more tight than the
redefined TWU and is simplified as sumIPUtil(X,h) for
extensions with negative items (since negative items are not
considered in rutil values). Lastly, an interesting observa-
tion is that FOSHU performs very well on sparse datasets
(e.g. retail), as well as dense datasets (e.g. mushroom and
chess).

4.2 Influence of the number of time periods
We also performed an experiment to assess the influence

of the number of time periods on the execution time. We
ran FOSHU and TS-HOUN on the same datasets but ran-
domly grouped transactions into 5, 25 and 50 time periods.
Results are shown in Fig. 2 for the retail dataset. As we
can see, FOSHU has a much better scalability w.r.t to the
number of periods. FOSHU is only 1.26 times slower when
the dataset has 50 time periods than when the dataset has 5
time periods, while TS-HOUN is 327 times slower. Results
for the other datasets are not shown due to space limita-
tion. But the same trend can be observed. The reason why
FOSHU performs better is that it mines all time periods at
the same time, while TS-HOUN mines them separately and
merge results found in each-time periods, which degrades its
performance when the number of time periods is large.

1

10

100

1000

10000

0.01 0.012 0.014 0.016 0.018 0.02

R
u

n
ti

m
e

 (
s)

minutil

retail

TS-HOUN-5
FOSHU-5
TS-HOUN-25
FOSHU-25
TS-HOUN-50
FOSHU-50

Figure 2: Execution time w.r.t time period count

4.3 Influence of the number of transactions
We also performed an experiment to asses the scalabil-

ity of FOSHU w.r.t the number of transactions. For this
experiment, we ran FOSHU on all datasets with the low-
est minutil value used in previous experiments, and varied
the number of transactions from 25% to 100%. Results are
shown in Table 4.3. We can observe that FOSHU has linear
scalability w.r.t to the number of transactions. Scalability
of TS-HOUN is also linear and is not shown due to space
limitation.

5. CONCLUSION
In this paper, we have presented a novel algorithm named

FOSHU (Fast On-Shelf High Utility itemset miner) for min-
ing high utility itemsets in databases where negative exter-
nal utility values appear and shelf time of items are con-

dataset 25% 50% 75% 100%

mushroom 0.6 0.6 0.6 0.6
retail 2.1 2.1 2.1 2.1
accidents 9.3 9.5 9.8 10.2
chess 0.3 0.3 0.3 0.3
pumsb 4.1 4.1 4.2 4.2

Table 4: Scalability of FOSHU w.r.t database size

sidered. FOSHU brings several improvements over previous
algorithms. By using utility-lists, it is a single phase algo-
rithm that does not need to maintain candidates in memory.
It also relies on a depth-first search rather than a level-wise
search. Moreover, FOSHU mines HOUs in all time periods
at the same time rather than mining each period separately
and performing costly post-processing of the results of each
time period. FOSHU also introduces the novel idea of using
a total order where negative items are last to handle items
with negative external utility values more efficiently.

An extensive experimental study with five real-life datasets
shows that FOSHU can be more than three orders of magni-
tude faster and can use up to 10 times less memory than the
state-of-the-art algorithm TS-HOUN, and was shown to per-
form very well on dense datasets. Furthermore, experiments
show that FOSHU performs very well on dense databases
and databases with many time periods. The source code of
all algorithms and datasets used in our experiments can be
downloaded as part of the open-source SPMF data mining
library http://www.philippe-fournier-viger.com/spmf/

[8]. For future work, we are interested in exploring other in-
teresting problems involving utility in itemset mining such
as sequential pattern mining [5].

6. ACKNOWLEDGEMENTS
This work is financed by a National Science and Engineer-

ing Research Council (NSERC) of Canada research grant.

7. REFERENCES
[1] J.-C. Chu, V.S. Tseng and T. Liang. An efficient

algorithm for mining high utility itemsets with negative
item values in large databases, Applied Math. Comput.,
215:767-778, 2009.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In Proc. Int. Conf.
Very Large Databases, pp. 487–499, 1994.

[3] C.F. Ahmed, S.K. Tanbeer, B.-S. Jeong and Y.-K. Lee.
Efficient Tree Structures for High-utility Pattern
Mining in Incremental Databases. In IEEE Trans.
Knowl. Data Eng, 21(12):1708–1721, 2009.

[4] P. Fournier-Viger, C.-W. Wu, S. Zida and V.S. Tseng.
Faster High-Utility Itemset Mining using Estimated
Utility Co-occurrence Pruning. In Proc. 21st Intern.
Symp. Methodologies Intell. Systems, Springer,
pp. 83–92, 2014.

[5] P. Fournier-Viger, A. Gomariz, M. Campos and R.
Thomas. Fast Vertical Sequential Pattern Mining Using
Co-occurrence Information. In Proc. 18th Pacific-Asia
Conference Knowl. Discovery and Data Mining,
Springer, LNAI, pp. 40–52, 2014.

[6] P. Fournier-Viger, C.W. Wu and V.S. Tseng. Novel
Concise Representations of High Utility Itemsets using
Generator Patterns. In Proc. 10th International
Conference on Advanced Data Mining and Applications,
Springer, 2014.

[7] P. Fournier-Viger. FHN: Efficient Mining of
High-Utility Itemsets with Negative Unit Profits. In
Proc. 10th International Conference on Advanced Data
Mining and Applications, Springer, 2014.

[8] P. Fournier-Viger, A. Gomariz, A. Soltani, T.
Gueniche, C.W. Wu., V.S. Tseng. SPMF: a Java
Open-Source Pattern Mining Library. In Journal of
Machine Learning Research. 15:,2014.

[9] G.-C. Lan, T.-P. Hong and V.S. Tseng. Discovery of
high utility itemsets from on-shelf time periods of
products. In Expert Systems with Applications.
38:5851–5857, 2011.

[10] G.-C. Lan, T.-P. Hong, J.-P. Huang and V.S. Tseng.
On-shelf utility mining with negative item values. In
Expert Systems with Applications. 41:3450–3459, 2014.

[11] C.-Y. Li, J.-S. Yeh, C.-C. Chang. Isolated items
discarding strategy for discovering high utility itemsets.
In Data & Knowledge Engineering, 64(1): 198–217,
2008.

[12] M. Liu and J. Qu. Mining High Utility Itemsets
without Candidate Generation. In Proc. 21st ACM
Intern. Conf. Inform. Known. Management, pp. 55–64,
2012.

[13] Y. Liu, W. Liao and A. Choudhary. A two-phase
algorithm for fast discovery of high utility itemsets. In
Proc. 9th Pacific-Asia Conf. Knowl. Discovery Data
Mining, pp. 689–695, 2005.

[14] B.-E. Shie, J.-H. Cheng, K.-T. Chuang and V.S.
Tseng. A One-Phase Method for Mining High Utility
Mobile Sequential Patterns in Mobile Commerce
Environments. In Proc. 25th Intern. Conf. Indust., Eng
and Other Applications of Applied Intelligent Systems,
pp. 616–626, 2012.

[15] V.S. Tseng, B.-E. Shie, C.-W. Wu and P.S. Yu.
Efficient Algorithms for Mining High Utility Itemsets
from Transactional Databases. In IEEE Trans. Knowl.
Data Eng, 25(8):1772–1786, 2013.

[16] J. Yin, Z. Zheng, L. Cao. USpan: An Efficient
Algorithm for Mining High Utility Sequential Patterns.
In Proc. 8th ACM SIGKDD Intern. Conf. Knowl.
Discovery and Data Mining, pp. 660–668, 2012.

