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Abstract. In the field of e-learning, a popular solution to make teaching mate-
rial reusable is to represent it as learning object (LO). However, building better 
adaptive educational software also takes an explicit model of the learner’s 
cognitive process related to LOs. This paper presents a three layers model that 
explicitly connect the description of learners’ cognitive processes to LOs. The 
first layer describes the knowledge from a logical perspective. The second 
describes cognitive processes. The third builds LOs upon the two first layers. 
The proposed model has been successfully implemented in an intelligent 
tutoring system for teaching Boolean reduction that provides highly tailored 
instruction thanks to the model. 

1   Introduction 

Teaching resources are the mean to teach domain knowledge within tutoring systems. 
In the field of e-learning, a popular solution to increase their reuse is to represent 
them as learning objects (LOs). The concept of LO is sustained by a set of principles 
and standards that facilitate their reuse and distribution. However, tutoring systems 
generally treat LOs as black boxes. i.e. presented as they are and without 
individualised feedback for each learner. Moreover, modelling the cognitive processes 
of learners is fundamental to build educational software that provides highly tailored 
instruction [2]. This article presents a model that unify some principles of the 
cognitive modelling theories, which attempts to model the human processes of 
knowledge acquisition, and standards related to the concept of LOs, which takes on 
the challenges of knowledge reuse and distribution. LOs described according to our 
approach are “glass-box LOs” because they include an explicit description of 
cognitive processes. The remainder of the article is organised as follows. First, the LO 
concept is defined. Second, the virtual learning environment (VLE) in which the 
model has been implemented is introduced. Then, the three next sections describe the 
three layers of our model. We then present a case study where the model has been 
implemented an evaluated. Finally, the last section announces further work and 
present conclusion.  
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2   The Learning Objects Concept 

The concept of LO relies on the main idea of structuring learning materials into 
reusable units. Over the recent years, many definitions of LOs have been proposed. 
To summarise most of these definitions, one can state that a LO is an autonomous 
resource (digital or not) that is reusable in training activities [4]. To clarify their role 
and their nature, this paragraph describes the four steps of the LOs’ lifecycle. The first 
step of a LO lifecycle consists in creating an information object (IO). i.e. an electronic 
document of any format. E-learning institutions usually opt for Web documents 
deliverable via Internet browsers. Among typical examples of IOs: a Web page 
explaining the game of chess or an e-book on linear algebra. Furthermore, authors 
should avoid creating IOs that include unnecessary references to external contexts, 
because IOs can be presented individually. IOs should be customizable, to facilitate 
their integration within particular contexts. Finally, one must determine IOs’ 
granularity carefully, because a large granularity reduces the number of IOs that can 
be assembled together. For example, an e-book is less reusable than its chapters. The 
second step of the LOs lifecycle consists in adding metadata to the IOs. LOM 
(http://ltsc.ieee.org/wg12/20020612-Final-LOM-Draft.html1) is one of the most 
important metadata standards. It offers about 80 attributes to describe an IO. On one 
hand, metadata facilitate the localisation of IOs stored in repositories. On the other 
hand, they inform about how to use IOs (for example, with regard to copyrights or 
technology requirements). Moreover, they make possible the automatic selection of 
IOs by a computer. Metadata are also the element that distinguishes between IOs and 
LOs. More precisely, appending a learning objective transforms an IO into a LO, as it 
ensures that the IO is intended for teaching [4].The third step is optional in the 
lifecycle of a LO and consists in packaging several LOs to facilitate their distribution 
(LOs aggregation). For example, a professor can group together a set of objects for a 
teaching activity. Since a package is also an IO, if one adds the required metadata, the 
aggregate will be also considered as a LO. In the popular aggregation standard IMS-
CP (http://www.imsglobal.org/content/packaging/), a package is a zip file which 
contains IOs or LOs and a single file which acts as a table of contents. The fourth step 
of the LOs lifecycle is LOs’ delivery. VLEs usually treat LOs as black boxes. i.e. 
presented as they are without individualised feedback for each learner. The most 
significant adjustment usually consists in generating dynamic sequences of LOs, 
following results of questionnaires. The weak personalisation is partly explained by 
the fact that these tutoring systems often teach full courses and attach great 
importance to the participation of human teachers. Building better adaptive 
educational software also takes an explicit model of the learner’s cognitive process 
related to LOs [2]. This article proposes a model for the creation of LOs that include 
cognitive processes description. Our model organise a domain’s knowledge according 
to three layers, whose each one describes knowledge from a different angle. The first 
layer defines an ontological and logical representation. The second defines a cognitive 
representation. The third organise knowledge in LOs. The next section introduces the 
VLE for which the model was tested.  

                                                           
1 All URLs mentioned in the paper were last accessed December 14, 2005. 
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3   The REDBOOL Boolean Reduction VLE 

REDBOOL is a VLE for teaching Boolean reduction. Here, the subject-matter domain 
is the algebraic Boolean expressions and their simplification by means of reduction 
rules, which are generally taught to undergraduate students on first cycle of higher 
education. The tool’s purpose is both to help student learn Boolean reduction 
techniques and to increase confidence with the software. Fig. 1-a illustrates 
REDBOOL’s interface. Preliminary definitions and explanations are available to 
learners in the “Theory” tab of the VLE. A teaching session consists in solving a set 
of problems. For example, Fig. 1-a shows the problem to reduce the expression “(((a | 
F) & (T) | (~C))”. Boolean expressions can be composed of truth constant “T” (true), 
truth constant “F” (false), proposals “a,b,c,d,e,f” conjunction operator “&”, 
disjunction operator “|” and negation operator “~”. The objective of an exercise 
consists in reducing an expression as much as possible by applying some of the 13 
reduction rules, such as the disjunction rule of a proposal “a” with the truth constant 
“False” ((a | F) = (a)). A learner can select part of the current expression in the 
“Reduction” field and modify it by using the virtual keyboard proposed. The learner 
must click on the “Submit step” button to validate changes. In the bottom area of the 
window, the learner can see the last rules applied. The “Advices” section shows the 
system’s feedback (hints, advices, etc.). The following sections detail each layer of 
our model with examples from REDBOOL. 

 

Fig. 1. The REDBOOL VLE (a) and the DOKGETT authoring tool (b) 

4   Layer 1: Logical Representation of the Domain Knowledge 

The first layer of our model contains a logical representation of the domain’s concepts 
and their relationships. The formalism used is description logics (DL). We have 
chosen DL because they are well-studied and widely used logic based languages that 
offer reasoning algorithms whose complexity is often lower than those of first order 
logics. DL employ an ontological approach. i.e., to describe the instances of a domain, 
they require the definition of (1) general categories of instances and (2) the various 
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types of logical relationships among categories and their instances. The ontological 
approach is appropriate since reasoning usually occurs at the level of categories. In 
the DL terminology, whereas a TBOX (terminological box) describes the general 
knowledge of a field, an ABOX (assertional box) describes a specific world. TBOX 
contains axioms which relate to concepts and roles. ABOX contains a set of 
assertions which describe individuals (instances of concept). Table 1 gives as example 
a part of the TBOX defined for REDBOOL.  

Table 1. Part of layer 1 knowledge for REDBOOL 

  Concepts Roles 
TruthConstant ≡ BooleanExpression Π ¬Variable operator  

TruthConstantF  TruthConstant leftOperand  

TruthConstantT  TruthConstant 
Variable ≡ BooleanExpression Π ¬DescribedExpression 
DescribedExpression ≡ BooleanExpression Π (∃operator.┬ Π 
∀operator.Operator) Π ¬ TruthConstant 
DisjunctionExpression ≡ ∀rightOperand.BooleanExpression Π 
∃leftOperand.┬ Π ∀operator.OperatorDisjunction Π 
∃rightOperand.┬ Π ∀leftOperand.BooleanExpression Π  

rightOperand  

Atomic concepts and atomic roles are the basic elements of a TBOX. Their names 
begin respectively with an uppercase and a lowercase letter. The atomic concepts and 
atomic roles can be combined with constructors to form concept descriptions and role 
descriptions. For example, the concept description “BooleanExpression Π Variable” 
results from the application of constructor Π to atomic concept BooleanExpression 
and Variable. To formally describe constructors’ semantic, it is necessary to define 
interpretations. An interpretation I consist of an interpretation domain ΔI and an 
interpretation function ·I. The interpretation domain is a set of individuals. The 
interpretation function assigns to each atomic concept A a set of individual AI | AI 

⊆ ΔI and to each atomic role R; a binary relation RI | RI ⊆ ΔI x ΔI. The concept 
constructors of a basic DL named AL [3] are ¬A, ∃R.┬ and ∀R.C, which are 
interpreted as ΔI \ AI, {aI∈ΔI| ∃bI.(aI,bI)∈RI} and {aI∈ΔI | ∀bI.(aI,bI)∈RI ⇒ bI∈CI}, 
respectively. The symbols aI and bI represent individuals that are members of ΔI for 
an interpretation I. The letters A and B stand for atomic concepts. The letters C and D 
represent concepts descriptions. The letters R denote atomic roles. A TBOX contains 
terminological axioms of the form C ≡ D or C  D (defined as CI ⊆ DI and CI = DI, 
respectively). An ABOX contains assertions expressed in term of nominals. An 
interpretation I assigns to each nominal a, an individual aI from ΔI. An ABOX 
contains membership assertions (C(a)) and role assertions (R(a, b)), where a and b 
represent nominals. The assertions’ semantics are aI ∈ CI and (aI,bI) ∈ RI, respectively. 
The primary purpose of DL is inference. From a DL knowledge base, it is possible to 
infer new facts, such as deducing nominals that are members of a concept, finding all 
concepts D that subsume a concept C (C  D), verifying disjointness of two concepts 
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C and D or checking that a concept C is satisfiable. Note that several free and comer-
cial inference engines are available.  

To the best of the authors’ knowledge, Teege [11] first proposed to use DL to 
represent domain knowledge of VLEs. He stated three important originalities. One of 
them consists of using DL to represent the theory to be taught (TBOX) as an 
abstraction of natural language (ABOX). This abstraction is necessary to distinguish 
learners’ answers and the VLE’s explications/examples, from the domain concepts. In 
addition, a VLE could extract concepts from natural language answers to form a 
TBOX; and then, compare knowledge of the learners with those of the learning 
system. Teege demonstrates that inference engines are useful for various tasks such as 
finding concepts subsuming a misunderstood concept to better explain what 
characterises it or detecting modeling inconsistencies (e.g., unsatisfiable concepts).  

The first of the three layers that constitutes our model represents concepts of a 
domain as DL concepts, as proposed by Teege [11]. In each defined TBOX, concepts 
symbolise categories of objects handled in a VLE, and roles represent relationships 
between these objects. Table 1 shows a part of the TBOX for REDBOOL. The first 
axioms state that truth constants, variables and described expressions are distinct 
types of Boolean expressions and specify that there are two types of truth constants 
(“true” and “false”). The last concept axiom asserts that a disjunction expression is a 
described expression that has a disjunction operator and Boolean expressions as its 
left and right operands. No ABOX is defined because it is the level of concrete 
answers and examples. When a learner interacts with our VLE, an ABOX is created 
dynamically by processes that will be explained afterwards. The layer 1 knowledge is 
stored into OWL files (http://www.w3.org/TR/owl-features), a popular file format for 
some DL. Numerous authoring tools and inference engines are available. OWL also 
offers mechanisms to increase reuse such as versioning and namespaces. Thus, 
authors can split up layer 1 knowledge in several files. As presented further, this 
facilitates the encoding of the knowledge in LOs. 

5   Layer 2: Cognitive Representation of the Domain knowledge  

Layer 1 allows the logical representation of the domain knowledge. However, build-
ing better adaptive educational software also takes an explicit model of the learner’s 
cognitive process. This section presents the layer 2 of our model, which meets this 
purpose.  

5.1   The Psychological Foundations 

To structure, organise and represent the layer 2 knowledge, we have been inspired by 
cognitive psychology theories, which attempt to model the human process of 
knowledge acquisition. This knowledge is encoded according to the way in which 
these contents are handled and used. Although there is no consensus on the number of 
subsystems or on their organisation, the majority of the authors, in psychology, 
mentions – in some form or in another –semantic knowledge [10], procedural 
knowledge [1] and episodic knowledge [12]. In this paper, we do not discuss the 
episodic knowledge part of our model since it is the part that records lived episodes (a 
history of the use of the two other types of knowledge) for each learner.  
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The semantic memory contains descriptive knowledge. Our model regards semantic 
knowledge as concepts taken in the broad sense. According to recent researches [5], 
humans consider up to four concept occurrences simultaneously (four dimensions) in 
the achievement of a task. However, the human cognitive architecture has the capacity 
to group several concepts to handle them as one, in the form of a vector of concepts [5]. 
We call described concepts these syntactically decomposable concepts, in contrast with 
primitive concepts that are syntactically indecomposable. For example, in propositional 
calculus, “a | F” is a decomposable representation of proposal “a”, a non-split represent-
tation with the same semantic. The concept “a | F” represents a disjunction between 
proposal “a” and the truth constant “F” (false), two primitive concepts. The disjunction 
logical operator “|” is also a primitive concept. In this way, the semantic of a described 
concept is given by the semantics of its components. 

The procedural memory is composed of procedures. i.e., means to handle semantic 
knowledge to achieve goals. Contrary to semantic knowledge, which can be expressed 
explicitly, procedural knowledge is represented by a succession of actions achieved 
automatically – following internal and/or external stimuli perception – to reach 
desirable states [1]. Procedures can be seen as a mean of achieving a goal to satisfy a 
need, without using the attention resources. For example, during the Boolean 
reduction process, substituting automatically “~T” by “F”, making abstraction to the 
explicit call of the truth constant negation rule (~T = F), can be seen as procedural 
knowledge which was acquired by the repetitive doing. In our approach, we subdivide 
procedures in two main categories: primitive procedures and complex procedures. 
Executions of the first are seen as atomic actions. Those of the last can be done by 
sequence of actions, which satisfy scripts of goals. Each one of those actions results 
from a primitive procedure execution; and each one of those goals is perceived as an 
intention of the cognitive system. 

We distinguish goals as a special type of semantic knowledge. Goals are intentions 
that humans have, such as the goal to solve a mathematical equation, to draw a 
triangle or to add two numbers [8]. Goals are achieved by means of procedural 
knowledge. In our model, a goal is described using a relation as follows: (R: X, A1, A2 
… An). This relation allows specifying a goal “X” according to primitive or described 
concepts “A1, A2 … An” which characterise the initial state. In a teaching context, 
stress is often laid on methods that achieve the goal rather than the goal itself; since 
these methods are in general the object of training. Consequently, the term “goal” is 
used to refer to an intention to achieve the goal rather than meaning the goal itself. 
Thus, procedures become methods carrying out this intention.  

5.2   The Computational Representation of the Psychological Model 

Layer 2 of our model defines a computational representation of the cognitive model 
described above. This knowledge is stored in files named SPK, which describe 
knowledge entities according to sets of slots. Concepts are encoded according to six 
slots. The “Identifier” slot is a character string used as a unique reference to the 
concept. The “Metadata” slot provides general metadata about the concept (for 
example, authors’ names and a textual description). The “Goals” slot contains a goals 
prototypes list. The latter provides information about goals that students could have 
and which use the concept. “Constructors” specifies the identifier of procedures that 
can create an instance of this concept. “Component” is only significant for described 
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concepts. It indicates, for each concept component, its concept type. Finally, 
“Teaching” points to some didactic resources that generic teaching strategies of a 
VLE can employ to teach the concept. Goals have six slots. "Skill" specifies the 
necessary skill to accomplish the goal, “Identifier” is a unique name for the goal, 
“Metadata” describes the goal metadata, "Parameters" indicates the types of the goal 
parameters, "Procedures" contains a set of procedures that can be used to achieve the 
goal, and “Didactic-Strategies" suggests strategies to learn how to achieve that goal. 
Ten slots describe procedures. The “Metadata” and “Identifier” slots are the same as 
for concepts/goals. “Goal” indicates the goal for which the procedure was defined. 
“Parameters” specifies the concepts type of the arguments. For primitive procedures, 
“Method” points to a Java method that executes an atomic action. For complex 
procedures, “Script” indicates a list of goals to achieve. “Validity” is a pair of 
Boolean values. Whereas the first indicates if the procedure is valid and so it always 
gives the expected result, the second indicates if it always terminate. “Diagnosis-
Solution” contains a list of pairs “[diagnosis, strategy]” that indicate for each 
diagnosis, the suitable teaching strategy to be adopted. Finally, “Didactic-Resources” 
points to additional resources (examples, exercises, tests, etc.) to teach the procedure.  

We have developed an authoring tool that permits to model and to generate SPK 
files (Fig. 1-b). The left-hand side of the environment consists in a drawing pane 
where knowledge entities are represented by different shapes, and arrows represent 
relations between them. The right-hand side of the environment permits the author to 
specify detailed information about the selected knowledge entity in terms of the slots 
described above. 

5.3   The Layer 2 Knowledge for REDBOOL 

The authoring tool was used to represent the cognitive processes of learners for 
REDBOOL [9]. As an example, in a single SPK file, we encode the layer 2 
knowledge of REDBOOL. The primitive concepts are truth constant “True”, truth 
constant “False”, conjunction operator, disjunction operator and negation operator. 
The main described concepts are conjunction expression, disjunction expression and 
negation expression. The file includes procedures and goals for the 13 Boolean 
reduction rules. It also contains definitions of goals and procedures to create concrete 
instances of concepts (because each concept’s occurrence must be created prior to 
being handled) and procedures for common errors. In REDBOOL, procedures are 
fired as a learner operates the graphical interface’s buttons (the button/procedure 
association is found in the “Method” slot of procedures), and the resolution trace is 
recorded. The VLE connects interactions with the interface to the layer 2 knowledge, 
and therefore the tutor embedded within the VLE can take decisions on the basis of 
the cognitive activity of each learner. The next section explains the link between layer 
2 and layer 1, which allow a VLE tutor to make the correspondence between the user 
activity and the logical description of the domain knowledge found in layer 1. 

5.4   Links Between Layer 1 and Layer 2  

To establish links between the logical representation of layer 1 and the cognitive 
representation of layer 2, it is necessary to add additional slots to layer 2 concepts. For 
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this purpose, each primitive concept has a "DLReference" slot that points towards a 
DL concept. This slot is useful during the instantiation of primitive concepts by 
procedures. To properly explain the instantiation process of primitive concepts, we 
will first consider the instantiation of the “F” truth constant. The “Constructors” slot 
of the “F” truth constant concept states that the procedure “P_CreateTruthConstant-
False” can be used to instantiate the concept. This procedure has its action defined as 
such. To simulate the instantiation process, our tools adds in an ABOX a nominal 
associated to the DL concept mentioned in the "DLReference" slot of the concept to 
instantiate. The table 2 illustrates the resulting assertions added to an ABOX. The 
nominal “f1” represents a concept instance, and the “TruthConstantF(f1)" assertion 
declare that “f1” is an “F” truth constant. For each instances created, a different 
nominal is added to the ABOX. In the same vein, the example shows "t1" an instance 
of the primitive concept “T” truth constant, and “d1”, an instance of the disjunction 
operator primitive concept.  

Table 2. ABOX assertions that represent a “(T & F)” Boolean expression 

ABOX 
TruthConstantF (f1), TruthConstantT(t1), DisjunctionExpression(e1) , 
leftOperand(e1,t1), rightOperand(e1, f1), DisjunctionOperator(d1), operator(e1, d1) 

In addition to the “DLReference” slot, each described concept encompasses a slot 
named “Components”, which list one or more roles. Each role associates to a nominal 
that represent an instance of the described concept, a nominal that represent one of its 
parts. For example, the nominal “e1” in table 2 correspond to an instance of the 
described concept “T & F”. The “DisjunctionExpression(e1) ” assertion declares that 
“e1” is a disjunction expression. The “operator(e1, d1)”, “leftOperand(e1, t1)” and 
“rightOperand(e1, f1)” links the described concept represented by “e1” to nominals 
that represent its components. Furthermore, a learner can carry out a procedure that 
replaces a described concept’s component. For instance, when a learner substitute 
“~T” by “F” in the Boolean expression “a & (~T)”. In this case, the tools we have 
developed adapt the ABOX accordingly.  

Because there is no direct link between layer 2 concepts, correspondence is 
achieved at the DL level. The absence of link between layer 2 concepts also facilitates 
the extension of the layer 2 knowledge. Indeed, an author can easily add concepts to 
any SPK file by associating logical descriptions that extends those of other concepts. 
Added concepts become automatically compatible with existing procedures and goals. 
Authors can also add new procedures for existing goals, since satisfaction links 
between a goal and a procedure is stored in procedures’ slots. As a result, authors can 
create new SPK files that extend existing SPK files without changes.  

6   Layer 3: Encoding Knowledge as LOs 

The third layer builds LOs upon the two first layers. The first step to obtain LOs is 
creating IOs. According to our model, an IO consists of SPK file(s), OWL file(s), and 
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the VLE. The XML encoding of SPK and OWL files makes the files easily customis-
able. To package files together, we have recourse to IMS-CP, a standard commonly 
used for LOs (cf. section 2.3).  

The second step of LOs’ lifecycle consists in adding metadata to IOs. IMS-CP 
packages allow inclusion of metadata compatible with many standards. We use the 
RELOAD authoring tool (http://www.reload.ac.uk) to specify metadata according to 
the LOM standard. Moreover, creating a LO requires specifying the learning 
objectives that it can teach [4]. This addition indicates the pedagogical use of the IO. 
We consider learning objectives that relate (1) to the acquisition of a skill or (2) to the 
mastery of a semantic knowledge. First, to check the acquisition of a skill is 
equivalent to testing the ability to attain a goal. Here, the importance resides in 
learners' ability to realise the goal. The procedures employed are of no importance, 
since several correct procedures might achieve the same goal. If a learner 
accomplishes a goal many times with varied problems and without committing errors, 
one can conclude that the learner possess the corresponding skill. A concept becomes 
manifest only during a procedure execution which satisfy the goal using that concept. 
Consequently, a learner must be able to achieve several goals that used the concept in 
order to show that s/he acquired the concept. This definition of learning objective for 
the semantic knowledge covers the traditional one of researchers in pedagogy. For 
example, Klausmeier [7], which indicates that mastering a concept require 
understanding relationships that characterise it. The action of retrieving relationships 
can be encoded as procedures. In summary, the learning objectives are expressed in 
term of goal(s) to master. In this sense, our model follows the view of Anderson et al. 
[2] that tutoring systems should focus on teaching procedural knowledge. We propose 
three slots for learning objectives. The “Identifier” and “Metadata” slot have the same 
use as for concepts, goals and procedures. “NecessaryGoals” stipulate goals whose 
mastery is jointly required to meet the learning objective. Learning objectives are 
added in our SPK files.  

7   Evaluation 

A practical experimentation was performed to test the ability of our model to 
represent cognitive activities [9]. We asked ten (10) students in computer sciences and 
in mathematics who attend the course “MAT-113” or “MAT-114” (dedicated to 
discrete mathematics) to practice Boolean reduction with REDBOOL. An assisted 
training, aiming to familiarise them with the tool, was given; before leaving them 
practising. To compare the learners’ behaviours, we forced the system to provide 
them common problems. Parameters of this experiment are 1(4), 2(4), 3(5), 4(6), 5(7) 
where x(y) stands for y exercises of complexity x, for each student. Complexity ranges 
from simple (1) to complex (5). For each learner, the system noted the procedures 
used as well as the concepts’ instances handled. Analysis of the collected data by a 
virtual tutor allows it to deduce goals (and subgoals) formulated during the reduction 
process. For complexity 1 to 5, the number of goals visited for a complete reduction 
was about 4, 7, 10, 21, and 40, and the number of concepts’ instance manipulated was 
roughly 4, 14, 24, 35 and 52, respectively.  
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8   Conclusion and Further Work 

We have proposed a model for creating reusable glass-box LOs that incorporates 
logical, cognitive, as well as didactic knowledge (cf. section 5.2). The model has been 
experimented successfully and authoring tools are available for each steps of the 
modelling process. The inclusion of a logical structure to describe domain knowledge 
facilitates the separation of the knowledge in multiple files, and provides a basis for 
logical reasoning. Moreover, using cognitive structures permit building tutors that 
presents LOs together with individualised feed-back. In a near future, our work will 
focus on representing knowledge for new domains. We are also investigating different 
ways to benefits from the knowledge encoded in our LOs. 
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