
CPT+: Decreasing the time/space complexity of
the Compact Prediction Tree

Ted Gueniche1, Philippe Fournier-Viger1,
Rajeev Raman2, and Vincent S. Tseng3

1 Dept. of computer science, University of Moncton, Canada
2 Department of Computer Science, University of Leicester, United Kingdom

3 Dept. of computer science and inf. eng., National Cheng Kung University, Taiwan
{etg8697, philippe.fournier-viger}@umoncton.ca, r.raman@leicester.ac.uk,

tsengsm@mail.ncku.edu.tw

Abstract. Predicting next items of sequences of symbols has many ap-
plications in a wide range of domains. Several sequence prediction models
have been proposed such as DG, All-k-order markov and PPM. Recently,
a model named Compact Prediction Tree (CPT) has been proposed. It
relies on a tree structure and a more complex prediction algorithm to offer
considerably more accurate predictions than many state-of-the-art pre-
diction models. However, an important limitation of CPT is its high time
and space complexity. In this article, we address this issue by proposing
three novel strategies to reduce CPT’s size and prediction time, and in-
crease its accuracy. Experimental results on seven real life datasets show
that the resulting model (CPT+) is up to 98 times more compact and 4.5
times faster than CPT, and has the best overall accuracy when compared
to six state-of-the-art models from the literature: All-K-order Markov,
CPT, DG, Lz78, PPM and TDAG.

Keywords: sequence prediction, next item prediction, accuracy, com-
pression

1 Introduction

Sequence prediction is an important task with many applications [1, 11]. Let be
an alphabet of items (symbols) Z = {e1, e2, ..., em}. A sequence s is an ordered
list of items s = 〈i1, i2, ...in〉, where ik ∈ Z (1 ≤ k ≤ n). A prediction model
is trained with a set of training sequences. Once trained, the model is used
to perform sequence predictions. A prediction consists in predicting the next
items of a sequence. This task has numerous applications such as web page
prefetching, consumer product recommendation, weather forecasting and stock
market prediction [1, 3, 8, 11].

Many sequence predictions models have been proposed. One of the most
popular is Prediction by Partial Matching (PPM)[2]. It is based on the Markov
property and has inspired a multitude of other models such as Dependancy
Graph (DG)[8], All-K-Order-Markov (AKOM)[10], Transition Directed Acyclic

2 Gueniche, T. Fournier-Viger, P., Raman, R., V.S. Tseng

Graph (TDAG)[7], Probabilistic Suffix Tree (PST)[1] and Context Tree Weight-
ing (CTW)[1]. Although, much work has been done to reduce the temporal and
spatial complexity of these models (e.g. [1, 3]), few work attempted to increase
their accuracy. Besides, several compression algorithms have been adapted for
sequence predictions such as LZ78 [12] and Active Lezi [4]. Moreover, machine
learning algorithms such as neural networks and sequential rule mining have
been applied to perform sequence prediction [6, 11].

However, these models suffer from some important limitations [5]. First, most
of them assume the Markovian hypothesis that each event solely depends on the
previous events. If this hypothesis does not hold, prediction accuracy using these
models can severely decrease [5, 3]. Second, all these models are built using only
part of the information contained in training sequences. Thus, these models do
not use all the information contained in training sequences to perform predic-
tions, and this can severely reduce their accuracy. For instance, Markov models
typically considers only the last k items of training sequences to perform a pre-
diction, where k is the order of the model. One may think that a solution to
this problem is to increase the order of Markov models. However, increasing the
order of Markov models often induces a very high state complexity, thus making
them impractical for many real-life applications [3].

CPT[5] is a recently proposed prediction model which compress training
sequences without information loss by exploiting similarities between subse-
quences. It has been reported as more accurate than state-of-the-art models
PPM, DG, AKOM on various real datasets. However, a drawback of CPT is
that it has an important spatial complexity and a higher prediction time than
these models. Therefore, an important research problem is to propose strategies
to reduce the size and prediction time of CPT. Reducing the spatial complexity
is a very challenging task. An effective compression strategy should provide a
huge spatial gain while providing a minimum overhead in terms of training time
and prediction time. Furthermore, it should also preserve CPT’s lossless prop-
erty to avoid a decrease in accuracy. Reducing prediction time complexity is also
very challenging. An effective strategy to reduce prediction time should access
as little information as possible for making predictions to increase speed but
at the same time it should carefully select this information to avoid decreasing
accuracy.

In this paper, we address these challenges by proposing three strategies
named FSC (Frequent Subsequence Compression), SBC (Simple Branches Com-
pression) and PNR (Prediction with improved Noise Reduction). The two first
strategies are compression strategies that reduce CPT size by up to two orders
of magnitude while not affecting accuracy. The third strategy reduces the pre-
diction time by up to 4.5 times and increases accuracy by up to 5%. This paper
is organized as follows. Section 2 introduces CPT. Sections 3 and 4 respectively
describes the two compression strategies (FSC and SBC) and the prediction time
reduction strategy (FNR). Section 5 presents an experimental evaluation of each
strategy on seven real datasets against five state-of-the-art prediction models.
Finally, Section 6 draws conclusion.

Decreasing the time/space complexity of the Compact Prediction Tree 3

2 Compact Prediction Tree

The Compact Prediction Tree (CPT) is a recently proposed prediction model
[5]. Its main distinctive characteristics w.r.t to other prediction models are that
(1) CPT stores a compressed representation of training sequences with no loss
or a small loss and (2) CPT measures the similarity of a sequence to the training
sequences to perform a prediction. The similarity measure is noise tolerant and
thus allows CPT to predict the next items of subsequences that have not been
previously seen in training sequences, whereas other proposed models such as
PPM and All-K-order-markov cannot perform prediction in such case.

The training process of CPT takes as input a set of training sequences and
generates three distinct structures: (1) a Prediction Tree (PT), (2) a Lookup
Table (LT) and (3) an Inverted Index. During training, sequences are considered
one by one to incrementally build these three structures. For instance, Fig. 1
illustrates the creation of the three structures by the successive insertions of
sequences s1 = 〈A,B,C〉, s2 = 〈A,B〉, s3 = 〈A,B,D,C〉, s4 = 〈B,C〉 and s5 =
〈E,A,B,A〉, where the alphabet Z = {A,B,C,D,E} is used. The Prediction

A

B

C

s1

s1

A 1

B 1

C 1

root

Inverted Index

Prediction Tree

Lookup Table

(1) Insertion of 〈𝑨, 𝑩, 𝑪〉

Inverted Index A

B

C

s1

s1 s2

A 1 1

B 1 1

C 1 0

s2

Prediction Tree

Lookup Table

root

(2) Insertion of 〈𝑨, 𝑩〉

A

B

C

s1

s1 s2 s3

A 1 1 1

B 1 1 1

C 1 0 1

D 0 0 1

s2 s3

D

C

Inverted Index
Prediction Tree

Lookup Table

root

(3) Insertion of 〈𝑨, 𝑩,𝑫, 𝑪〉

(4) Insertion of 〈𝑩, 𝑪〉 (5) Insertion of 〈𝑬, 𝑨, 𝑩, 𝑨〉

A

B

C

s1

s1 s2 s3 s4

A 1 1 1 0

B 1 1 1 1

C 1 0 1 1

D 0 0 1 0

s2 s3

B

C

s4

D

C

Inverted Index

Prediction Tree

Lookup Table

root

A

B

C

s1

s1 s2 s3 s4 s5

A 1 1 1 0 1

B 1 1 1 1 1

C 1 0 1 1 0

D 0 0 1 0 0

E 0 0 0 0 1

s2 s3

B

C
A

B

s4 s5

D

C

Inverted Index
Prediction Tree

Lookup Table

root

E

A

Fig. 1. Building CPT structures

4 Gueniche, T. Fournier-Viger, P., Raman, R., V.S. Tseng

Tree is a type of prefix tree (aka trie). It contains all training sequences. Each
tree node represents an item and each training sequence is represented by a path
starting from the tree root and ending by an inner node or a leaf. Just like a prefix
tree, the prediction tree is a compact representation of the training sequences.
Sequences sharing a common prefix share a common path in the tree. The Lookup
Table is an associative array which allows to locate any training sequences in
the prediction tree with a constant access time. Finally the Inverted Index is a
set of bit vectors that indicates for each item i from the alphabet Z, the set of
sequences containing i.

CPT’s prediction process relies on the three aforementioned data structures.
For a sequence s = 〈i1, i2, ...in〉 of n elements, the suffix of s of size y with 1 ≤
y ≤ n is defined as Py(s) = 〈in−y+1, in−y+2 ...in〉. Predicting the next items of s
is performed by identifying the sequences similar to Py(s), that is the sequences
containing all items in Py(s) in any order. The suffix length is a parameter similar
to the model’s order of All-k-order Markov and DG. Identifying the optimal value
is done empirically by starting with a length of 1. CPT uses the consequent of
each sequence similar to s to perform the prediction. Let u = 〈j1, j2, ...jm〉 be a
sequence similar to s. The consequent of u w.r.t to s is the longest subsequence
〈jv, jv+1, ...jm〉 of u such that

⋃v−1
k=1{jk} ⊆ Py(s) and 1 ≤ v ≤ m. Each item

found in the consequent of a similar sequence of s is stored in a data structure
called Count Table (CT). The count table stores the support (frequency) of each
of these items, which is an estimation of P (e|Py(s)). CPT returns the most
supported item(s) in the CT as its prediction(s).

The similarity measure in CPT is initially strict for each prediction task but
is dynamically loosened to ignore noise. Identifying similar sequences, and more
particularly the noise avoidance strategy of CPT, is very time consuming and
account for most of CPT’s prediction time [5]. For a given sequence, if CPT
cannot find enough similar sequences to generate a prediction, it will implicitly
assume the sequence contains some noise. The prediction process is then repeated
but with one or more items omitted from the given sequence. CPT’s definition
of noise is implicit and has for sole purpose to ensure that a prediction can be
made every time.

3 Compression Strategies

CPT has been presented as one of the most accurate sequence prediction model
[5] but its high spatial complexity makes CPT unsuitable for applications where
the number of sequences is very large. CPT’s size is smaller than All-k-Order
Markov and TDAG but a few orders of magnitude larger than popular models
such as DG and PPM. CPT’s prediction tree is the largest data structure and
account for most of its spatial complexity. In this section, we focus on strategies
to reduce the prediction tree’s size.

Strategy 1 Frequent subsequence compression (FSC). In a set of
training sequences, frequently occurring subsequences of items can be found. For
some datasets, these subsequences can be highly frequent. The FSC strategy

Decreasing the time/space complexity of the Compact Prediction Tree 5

identifies these frequent subsequences and replace each of them with a single
item. Let be a sequence s = 〈i1, i2, ..., in〉. A sequence c = 〈im+1, im+2, ..., im+k〉
is a subsequence of s, denoted as c v s, iff 1 ≤ m ≤ m + k ≤ n. For a set of
training sequences S, a subsequence d is considered a frequent subsequence iff
|{t|t ∈ S ∧ d v t}| ≥ minsup for a minimum support threshold minsup defined
per dataset.

Frequent subsequences compression is done during the training phase and
is performed in three steps: (1) identification of frequent subsequences in the
training sequences, (2) generation of a new item in the alphabet Z of items for
each frequent subsequence, and (3) replacement of each frequent subsequence by
the corresponding new item when inserting training sequences in the prediction
tree. Identifying frequent subsequence in a set of sequences is a known problem
in data mining for which numerous approaches have been proposed. In FSC, we
use the well known PrefixSpan [9] algorithm. PrefixSpan is one of the most effi-
cient sequential pattern mining algorithm. It has been adapted by incorporating
additional constraints to fit the problem of sequence prediction. Subsequences
have to be contiguous, larger than a minimum length minSize and shorter than
a maximum length maxSize. Both minSize and maxSize are parameters of
this compression strategy that are defined per application.

A new data structure, Subsequence Dictionary (DCF), is introduced to store
the frequent subsequences. This dictionary associates each frequent subsequence
with its corresponding item. The DCF offers a fast way to translate each sub-
sequence into its respective item and vice-versa, O(1). When inserting training
sequences into the prediction tree, the DCF is used to replace known frequent
subsequences with single items. For example, figure 2 illustrates the resulting
prediction tree after applying FSC to the tree shown in Fig. 1. The frequent
subsequence 〈A,B〉 has been replaced by a new symbol x, thus reducing the
number of nodes in the prediction tree. The FSC compression strategy influ-
ences the shape of the prediction tree by reducing its height and number of
nodes. With respect to the prediction process, FSC only influences execution
time. The additional cost is the on-the-fly decompression of the prediction tree,
which is fast and non intrusive because of the DCF structure.

Strategy 2: Simple Branches Compression (SBC). Simple Branches
Compression is an intuitive compression strategy that reduces the size of the
prediction tree. A simple branch is a branch leading to a single leaf. Thus, each
node of a simple branch has between 0 and 1 children. The SBC strategy con-
sists of replacing each simple branch by a single node representing the whole
branch. For instance, part (2) of Fig. 2 illustrates the prediction tree obtained
by applying the DCF and SBC strategies for the running example. The SBC
strategy has respectively replaced the simple branches D,C, B,C and E, x,A
by single nodes DC, BC and ExA. Identifying and replacing simple branches is
done by traversing the prediction tree from the leafs using the inverted index.
Only the nodes with a single child are visited. Since the Inverted Index and
Lookup Table are not affected by this strategy, the only change that needs to be

6 Gueniche, T. Fournier-Viger, P., Raman, R., V.S. Tseng

(1) Application of the FSC strategy (2) Application of the FSC and SBC strategies

x

C

s1

s1 s2 s3 s4 s5

A 1 1 1 0 1

B 1 1 1 1 1

C 1 0 1 1 0

D 0 0 1 0 0

E 0 0 0 0 1

s2 s3

B

C

x

s4 s5

D

C

Inverted Index Prediction Tree

Lookup Table

root

E

A x = AB

x

C

s1

s1 s2 s3 s4 s5

A 1 1 1 0 1

B 1 1 1 1 1

C 1 0 1 1 0

D 0 0 1 0 0

E 0 0 0 0 1

s2 s3

BC

ExA

s4 s5

DC

Inverted Index Prediction Tree

Lookup Table

root

x = AB

Fig. 2. Application of the FSC and SBC compression strategies

done to the prediction process is to dynamically uncompress nodes representing
simple branches when needed.

4 Time Reduction Strategy

Strategy 3: Prediction with improved Noise Reduction (PNR). As pre-
viously explained, to predict the next item in+1 of a sequence s = 〈i1, i2, ..., in〉,
CPT uses the suffix of size y of s denoted as Py(s) (the last y items of s), where y
is a parameter that need to be set for each dataset. CPT predicts the next item
of s by traversing the sequences that are similar to its suffix Py(s). Searching
for similar sequences is very fast (O(y)). However, the noise reduction mecha-
nism used for prediction (described in Section 2) is not. The reason is that it
considers not only Py(s) to perform a prediction, but also all subsequences of
Py(s) having a size t > k, where k is a parameter. The more y and k are large,
the more subsequences need to be considered, and thus the more the prediction
time increases.

For a prediction task, items in a training sequence may be considered as noise
if their sole presence negatively impact a prediction’s outcome. The PNR strat-
egy is based on the hypothesis that noise in training sequences consists of items
having a low frequency, where an item’s frequency is defined as the number of
training sequences containing the item. For this reason, PNR removes only items
having a low frequency during the prediction process. Because the definition of
noise used in CPT+ is more restrictive than that of CPT, a smaller number
of subsequences are considered. This reduction has a positive and measurable
impact on the execution time, as it will be demonstrated in the experimental
evaluation (see Section 5).

The PNR strategy (Algorithm 1) takes as parameter the prefix Py(s) of a
sequence to be predicted s, CPT’s structures and the noise ratio TB and a min-
imum number of updates, MBR, to be performed on the count table (CT) to
perform a prediction. The noise ratio TB is defined as the percentage of items in

Decreasing the time/space complexity of the Compact Prediction Tree 7

a sequence that should be considered as noise. For example, a noise ratio of 0 in-
dicates that sequences do not contain noise, while a ratio of 0.2 means that 20%
of items in a sequence are considered as noise. PNR is a recursive procedure. To
perform a prediction, we require that PNR consider a minimum number of sub-
sequences derived from Py(s). PNR first removes noise from each subsequence.
Then, the CT is updated using these subsequences. When the mimimum number
of updates is reached, a prediction is performed as in CPT using the CT. The
PNR strategy is a generalization of the noise reduction strategy used by CPT.
Depending on how the parameters are set, PNR can reproduce the behavior of
CPT’s noise reduction strategy. The three main contributions brought by PNR
are to require a minimum number of updates on the CT to perform a prediction,
and to define noise based on the frequency of items, and to define noise propor-
tionally to a sequence length. Finding the appropriate values for both TB and
MBR can be achieved empirically.

Algorithm 1: The prediction algorithm using PNR

input : Py(s): a sequence suffix, CPT : CPT’s structures, TB: a noise ratio,
MBR: minimum number of CT updates

output: x: the predicted item(s)

queue.add(Py(s));
while updateCount < MBR ∧ queue.notEmpty() do

suffix = queue.next();
noisyItems = selectLeastFrequentItems(TB);
foreach noisyItem ∈ noisyItems do

suffixWithoutNoise = removeItemFromSuffix(suffix, noisyItem);
if suffixWithoutNoise.length > 1 then

queue.add(suffixWithoutNoise);
end
updateCountTable(CPT.CT, suffixWithoutNoise);
updateCount++;

end
return performPrediction(CPT.CT);

end

5 Experimental Evaluation

We have performed several experiments to compare the performance of CPT+
against five state-of-the-art sequence prediction models: All-K-order Markov,
DG, Lz78, PPM and TDAG. We picked these models to match the models used
in the original paper describing CPT [5] and added both Lz78 and TDAG. To
implement CPT+, we have obtained and modified the original source code of
CPT [5]. To allow reproducing the experiments, the source code of the prediction

8 Gueniche, T. Fournier-Viger, P., Raman, R., V.S. Tseng

models and datasets are provided at http://goo.gl/mL4Klx. All models are im-
plemented using Java 8. Experiments have been performed on a computer with
a dual core 4th generation Intel i5 with 8 GB RAM and a SSD drive connected
with SATA 600. For all prediction models, we have empirically attempted to set
their parameters to optimal values. PPM and LZ78 do not have parameters. DG
and AKOM have respectively a window of four and an order of five. To avoid
consuming an excessive amount of memory, TDAG has a maximum depth of
7. CPT has two parameters, splitLength and maxLevel and CPT+ has six pa-
rameters; three for the FSC strategy, two for the PNR strategy and splitLength
from CPT. The values of these parameters have also been empirically found and
are provided in the project source code. Experiment specific parameters are the
minimum and maximum length of sequences used, the number of items to be
considered to perform a prediction (the suffix length) and the number of items
used to verify the prediction (called the consequent length). Let be a sequence
s = 〈i1, i2, ...in〉 having a suffix S(s) and a consequent C(s). Each model takes
the suffix as input and outputs a predicted item p. A prediction is deemed suc-
cessful if p is the first item of C(s). Datasets having various characteristics have

Table 1. Datasets

Name
Sequence
count

Distinct
item count

Average
length

Type
of data

BMS 15,806 495 6.01 webpages

KOSARAK 638,811 39,998 11.64 webpages

FIFA 573,060 13,749 45.32 webpages

MSNBC 250,697 17 3.28 webpages

SIGN 730 267 93.00 language

BIBLE Word 42,436 76 18.93 sentences

BIBLE Char 32,502 75 128.35 characters

been used (see Table 1) such as short/long sequences, sparse/dense sequences,
small/large alphabets and various types of data. The BMS, Kosarak, MSNB and
FIFA datasets consist of sequences of webpages visited by users on a website. In
this scenario, prediction models are applied to predict the next webpage that a
user will visit. The SIGN dataset is a set of sentences in sign language transcribed
from videos. Bible Word and Bible Char are two datasets originating from the
Bible. The former is the set of sentences divided into words. The latter is the
set of sentences divided into characters. In both datasets, a sentence represents
a sequence.

To evaluate prediction models, a prediction can be either a success if the
prediction is accurate, a failure if the prediction is inaccurate or a no match
if the prediction model is unable to perform a prediction. Four performance
measures are used in experiments: Coverage is the ratio of sequences without
prediction against the total number of test sequences. Accuracy is the number of

Decreasing the time/space complexity of the Compact Prediction Tree 9

successful predictions against the total number of test sequences. Training time
is the time taken to build a model using the training sequences Testing time is
the time taken to make a prediction for all test sequences using a model.

Experiment 1: Optimizations comparison. We have first evaluated strate-
gies that aims to reduce the space complexity of CPT (cf. Section 3) by measuring
the compression rate and the amount of time spent for training. Other measures
such as prediction time, coverage and accuracy are not influenced by the com-
pression. For a prediction tree A having s nodes before compression and s2 nodes
after compression, the compression rate tca of A is defined as tc = 1 − (s2/s),
a real number in the [0,1[interval. A larger value means a higher compression.
The two strategies are first evaluated separately (denoted as FSC and SBC) and
then together (denoted as CPT+). Compression provides a spatial gain but in-
creases execution time. Figure 3 illustrates this relationship for each compression
strategy.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

BMS Sign MSN Bible
word

Bible
char

Kosarak FIFA

C
om

p
re

ss
io

n
 r

at
e

(%
)

FSC SBC CPT+

0.1

1

10

100

BMS SIGN MSNBC Bible
word

Bible
char

Kosarak FIFA

T
ra

in
in

g
ti

m
e

FSC SBC CPT+

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

S
iz

e
(n

oo
d

es
)

Sequence count

FIFA

DG

TDAG

PPM

LZ78

CPT

CPT+

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

S
iz

e
(n

od
es

)

Sequence count

Kosarak
Fig. 3. Compression rate and training time of the compression strategies

It can also be observed in Fig. 3 (left) that the compression rate varies de-
pending on the dataset from 58.90% to 98.65%. FSC provides an average com-
pression rate of 48.55% with a small standard deviation (6.7%) and SBC offers
an average compression rate of 77.87% with a much larger standard deviation
(15.9%). For each tested dataset, SBS has a compression rate very similar to
CPT+ with the exception of MSNBC and Bible Char. It accounts for most
of CPT+ compression rate and thus making FSC relevant only in applications
requiring a smaller model. MSNBC is the least affected by the compression
strategies. The reason is that MSNBC has a very small alphabet and thus that
the tree is naturally compressed because its branches are highly overlapping. In
fact, MSNBC has only 17 distinct items, although the length of its sequences
is similar to the other datasets.The dataset where the SBC and SFC strategies
provide the highest compression rate is SIGN. Even though SIGN contains a
small number of sequences, each sequence is very long (an average of 93 items).
It causes the branches of SIGN’s prediction tree to rarely overlap, and a large
amount of its nodes only have a single child. SIGN is a very good candidate for
applying the SBC strategy. Using only SBC, a compression rate of 98.60 % is
attained for SIGN.

10 Gueniche, T. Fournier-Viger, P., Raman, R., V.S. Tseng

Figure 3 also illustrates the training time for the FSC and SBC strategies.
It is measured as a multiplicative factor of CPT’s training time. For example,
a factor x for SBC means that the training time using SBC was x times longer
than that of CPT without SBC. A small factor, close to one, means the ad-
ditional training time was small. It is interesting to observe how the training
time when both strategies are combined is less than the sum of their respective
training time. Althought SBC and FSC are independently applied to CPT, SBC
reduces the execution time of FSC because less branches have to be compressed.
Overall, SBC has a small impact on the training time while providing most of
the compression gain, this makes SBS the most profitable strategy. While SFC
has a higher impact on the training time, SFC enhances the compression rate
for each dataset.

We also evaluated the performance improvement in terms of execution time
and accuracy obtained by applying the PNR strategy. Fig. 4 (left) compares the
prediction time of CPT+ (with PNR) with that of CPT. The execution time is
reduced for most datasets and is up to 4.5 times smaller for SIGN and MSNBC.
For Bible Word and FIFA, prediction times have increased but a higher accuracy
is obtained, as shown in Fig. 4 (right). The gain in prediction time for CPT+ is
dependant on both PNR and CPT parameters. This gain is thus dataset specific
and non linear because of the difference in complexity of CPT and CPT+. The
influence of PNR on accuracy is positive for all datasets except MSNBC. For
Bible Word, the improvement is as high as 5.47%. PNR is thus a very effective
strategy to reduce the prediction time while providing an increase in prediction
accuracy.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

BMS SIGN MSNBC Bible
word

Bible
char

Kosarak FIFA

P
re

d
ic

ti
on

 t
im

e
(s

)

CPT+

CPT

0

10

20

30

40

50

60

70

80

BMS SIGN MSNBC Bible
word

Bible
char

Kosarak FIFA

A
cc

u
ra

cy
 (

%
)

CPT+

CPT

Fig. 4. Execution time and accuracy gains provided by the PNR strategy

Experiment 2: Scalability. In this experiment we compared the spatial
complexity of CPT+ (with both compression strategies) against CPT, All-K-
order Markov, DG, Lz78, PPM and TDAG. Only the FIFA and Kosarak datasets
were used in this experiment because of their large number of sequences. In Fig.
5, the spatial size of each model is evaluated against a quadratically growing set
of training sequences - up to 128,000 sequences. Both PPM and DG have a sub
linear growth which makes them suitable for large datasets. CPT+’s growth is
only an order of magnitude larger than PPM and DG and a few orders less than
CPT, TDAG and LZ78. The compression rate of CPT+ tends to slightly dimin-

Decreasing the time/space complexity of the Compact Prediction Tree 11

ish as the number of sequences grows. This is due to more branches overlapping
in the prediction tree, a phenomenon that can generally be observed in tries.

An interesting observation is that for both datasets, when the number of
training sequences is smaller than the number of items, CPT+ has a smaller
footprint than the other prediction models. For the FIFA dataset, when 1000
sequences are used, CPT+’s node count is 901 compared to the 1847 unique
items in the alphabet. Results are similar for Kosarak. Models such as PPM and
DG can’t achieve such a small footprint in these use cases because they have a
least one node per unique item.0.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

BMS Sign MSN Bible
word

Bible
char

Kosarak FIFA

C
om

p
re

ss
io

n
 r

at
e

(%
)

FSC SBC CPT+

0.5

1

2

4

8

16

32

64

BMS SIGN MSNBC Bible
word

Bible
char

Kosarak FIFA

C
om

p
re

ss
io

n
 r

at
e

(%
)

FSC SBC CPT+

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

S
iz

e
(n

oo
d

es
)

Sequence count

FIFA

DG

TDAG

PPM

LZ78

CPT

CPT+

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

S
iz

e
(n

od
es

)

Sequence count

Kosarak

Fig. 5. Scalability of the prediction models.

Experiment 3: Comparison with other prediction models. In experi-
ment 1, we have compared the prediction accuracy of CPT+ and CPT to assess
the improvement obtained by applying the PNR strategy. In this experiment, we
compare the accuracy of CPT+ with five state-of-the-art prediction models com-
monly used in the literature, All-K-order Markov, DG, Lz78, PPM et TDAG,
on the same datasets. Each prediction model has been trained and tested using
k-fold cross validation with k = 14 to obtain a low variance for each run. Table
2 shows the prediction accuracy obtained by each model. Results indicates that
CPT+ offers a generally higher accuracy than the compared models from the
literature while also being more consistent across the various datasets.

Table 2. Predictions models and their accuracy

Datasets CPT+ CPT AKOM DG LZ78 PPM TDAG

BMS 38.25 37.90 31.26 36.46 33.46 31.06 6.95

SIGN 33.01 32.33 8.63 3.01 4.79 4.25 0.00

MSNBC 61.50 61.64 47.88 55.68 43.64 38.06 31.14

Bible word 27.52 22.05 38.68 24.92 27.39 27.06 23.33

Bible char 73.52 69.14 7.96 0.00 3.02 0.10 9.90

Kosarak 37.64 33.82 20.52 30.82 20.50 23.86 1.06

FIFA 35.94 34.56 25.88 24.78 24.64 22.84 7.14

12 Gueniche, T. Fournier-Viger, P., Raman, R., V.S. Tseng

6 Conclusion

In this paper we presented CPT+, a variation of CPT that includes two novel
compression strategies (FSC and SBC) to reduce its size and a strategy to im-
prove prediction time and accuracy (PNR). Experimental results on seven real
datasets shows that CPT+ is up to 98 times smaller than CPT, performs pre-
dictions up to 4.5 times faster, and is up to 5% more accurate. A comparison
with six state-of-the art sequence prediction models (CPT, All-K-Order Markov,
DG, Lz78, PPM and TDAG) shows that CPT+ is on overall the most accurate
model. To allow reproducing the experiments, the source code of the prediction
models and datasets are provided at http://goo.gl/mL4Klx.

Acknowledgement This project was supported by a NSERC grant from the
Government of Canada.

References

1. Begleiter, R., El-yaniv, R., Yona., G.: On prediction using variable order markov
models. Journal of Artificial Intelligence Research, vol. 22, pp. 385-421 (2004)

2. Cleary, J., Witten, I.: Data compression using adaptive coding and partial string
matching. IEEE Trans. on Inform. Theory, vol. 24, no. 4, pp. 413–421 (1984)

3. Deshpande, M., Karypis G.: Selective markov models for predicting web page ac-
cesses. ACM Transactions on Internet Technology, vol. 4, no. 2, pp. 163–184 (2004)
https://developers.google.com/prediction, Accessed: 2014-02-15

4. Gopalratnam, K., Cook, D.J.: Online sequential prediction via incremental parsing:
The active lezi algorithm. IEEE Intelligent Systems, vol. 22, no. 1, pp. 52-58 (2007)d

5. Gueniche, T., Fournier-Viger, P., Tseng, V.-S.: Compact Prediction Tree: A Lossless
Model for Accurate Sequence Prediction. In: Proc. 9th Intern. Conf. Advanced Data
Mining and Application, Springer LNAI 8347, pp. 177–188 (2013)

6. Fournier-Viger, P., Gueniche, T., Tseng, V.S.: Using partially-ordered sequential
rules to generate more accurate sequence prediction. In Proc. 8th Intern. Conf.
Advanced Data Mining and Applications, Springer LNAI 7713, pp. 431442. (2012)

7. Laird, P., Saul, R.: Discrete sequence prediction and its applications. Machine learn-
ing, vol. 15, no. 1, 43-68 (1994)

8. Padmanabhan, V.N., Mogul, J.C.: Using Prefetching to Improve World Wide Web
Latency, Computer Communications, vol. 16, pp. 358–368 (1998)

9. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu,
M.: Mining sequential patterns by pattern-growth: the PrefixSpan approach. IEEE
Trans. Known. Data Engin. 16(11), 1424–1440 (2004)

10. Pitkow, J., Pirolli, P.: Mining longest repeating subsequence to predict world wide
web surng. In: Proc. 2nd USENIX Symposium on Internet Technologies and Sys-
tems, Boulder, CO, pp. 13–25 (1999)

11. Sun, R., Giles, C. L.: Sequence Learning: From Recognition and Prediction to
Sequential Decision Making. IEEE Intelligent Systems, vol. 16 no. 4, pp. 67–70
(2001)

12. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
Information Theory, IEEE Transactions on 24(5), 530-536 (1978)

