
Efficient Algorithms for Mining
the Concise and Lossless Representation

of High Utility Itemsets
Vincent S. Tseng, Cheng-Wei Wu, Philippe Fournier-Viger, and Philip S. Yu, Fellow, IEEE

Abstract�Mining high utility itemsets (HUIs) from databases is an important data mining task, which refers to the discovery of itemsets
with high utilities (e.g. high profits). However, it may present too many HUIs to users, which also degrades the efficiency of the mining
process. To achieve high efficiency for the mining task and provide a concise mining result to users, we propose a novel framework in
this paper for mining closedþ high utility itemsets (CHUIs), which serves as a compact and lossless representation of HUIs. We
propose three efficient algorithms named AprioriCH (Apriori-based algorithm for mining High utility Closed þ itemsets), AprioriHC-D
(AprioriHC algorithm with Discarding unpromising and isolated items) and CHUD (Closed þ High Utility Itemset Discovery) to find this
representation. Further, a method called DAHU (Derive All High Utility Itemsets) is proposed to recover all HUIs from the set of CHUIs
without accessing the original database. Results on real and synthetic datasets show that the proposed algorithms are very efficient
and that our approaches achieve a massive reduction in the number of HUIs. In addition, when all HUIs can be recovered by DAHU,
the combination of CHUD and DAHU outperforms the state-of-the-art algorithms for mining HUIs.

Index Terms�Frequent itemset, closedþ high utility itemset, lossless and concise representation, utility mining, data mining

Ç

1 INTRODUCTION

FREQUENT itemset mining (FIM) [1], [3], [4], [5], [8], [10],
[18], [20], [20], [27], [31], [32] is a fundamental

research topic in data mining. One of its popular applica-
tions is market basket analysis, which refers to the discov-
ery of sets of items (itemsets) that are frequently
purchased together by customers. However, in this appli-
cation, the traditional model of FIM may discover a large
amount of frequent but low revenue itemsets and lose the
information on valuable itemsets having low selling fre-
quencies. These problems are caused by the facts that (1)
FIM treats all items as having the same importance/unit
profit/weight and (2) it assumes that every item in a
transaction appears in a binary form, i.e., an item can be
either present or absent in a transaction, which does not
indicate its purchase quantity in the transaction. Hence,
FIM cannot satisfy the requirement of users who desire to
discover itemsets with high utilities such as high profits.

To address these issues, utility mining [2], [6], [7], [12],
[13], [14], [16], [17], [19], [22], [23], [24], [25], [26], [30]
emerges as an important topic in data mining. In utility

mining, each item has a weight (e.g. unit profit) and can
appear more than once in each transaction (e.g. purchase
quantity). The utility of an itemset represents its impor-
tance, which can be measured in terms of weight, profit,
cost, quantity or other information depending on the user
preference. An itemset is called a high utility itemset (HUI) if
its utility is no less than a user-specified minimum utility
threshold; otherwise, it is called a low utility itemset. Utility
mining is an important task and has a wide range of appli-
cations such as website click stream analysis [2], [12], cross-
marketing in retail stores [24], [26], mobile commerce environ-
ment [22] and biomedical applications [6].

However, HUI mining is not an easy task since the down-
ward closure property [1], [10], [21] in FIM does not hold in
utility mining. In other words, the search space for mining
HUIs cannot be directly reduced as it is done in FIM
because a superset of a low utility itemset can be a high util-
ity itemset. Many studies [2], [6], [13], [14], [17], [19], [25],
[26], [30] were proposed for mining HUIs, but they often
present a large number of high utility itemsets to users. A
very large number of high utility itemsets makes it difficult
for the users to comprehend the results. It may also cause
the algorithms to become inefficient in terms of time and
memory requirement, or even run out of memory. It is
widely recognized that the more high utility itemsets the
algorithms generate, the more processing they consume.
The performance of the mining task decreases greatly for
low minimum utility thresholds or when dealing with
dense databases [8], [18], [20], [31], [32].

In FIM, to reduce the computational cost of the mining
task and present fewer but more important patterns to
users, many studies focused on developing concise repre-
sentations, such as free sets [3], non-derivable sets [4], odds
ratio patterns [15], disjunctive closed itemsets [11], maximal

� V. S. Tseng and C.-W. Wu are with the Department of Computer Science
and Information Engineering, National Cheng Kung University, No. 1,
University Road, Tainan City, Taiwan, ROC.
E-mail: tsengsm@mail.ncku.edu.tw, silvemoonfox@hotmail.com.

� P. Fournier-Viger is with the Department of Computer Science, University
of Moncton, Moncton, Canada.
E-mail: philippe.fournierer@umoncton.ca.

� P.S. Yu is with the Department of Computer Science, University of Illinois
at Chicago IL 60607. E- mail: psyu@cs.uic.edu.

Manuscript received 8 Jan. 2014; revised 11 July 2014; accepted 11 July 2014.
Date of publication 4 Aug. 2014; date of current version 28 Jan. 2015.
Recommended for acceptance by H. Xiong.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2014.2345377

726 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 3, MARCH 2015

1041-4347 � 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

itemsets [8] and closed itemsets [20]. These representations
successfully reduce the number of itemsets found, but they
are developed for FIM instead of HUI mining. Therefore,
an important research question is “Is it possible to conceive a
compact and lossless representation of high utility itemsets
inspired by these representations to address the aforementioned
issues in HUI mining?”

Answering this question positively is not easy. Develop-
ing a concise and complete representation of HUIs poses
several challenges:

1) Integrating concepts of concise representations from
FIM into HUI mining may produce a lossy represen-
tation of all HUIs or a representation that is not
meaningful to the users.

2) The representation may not achieve a significant
reduction in the number of extracted patterns to jus-
tify using the representation.

3) Algorithms for extracting the representation may not
be efficient. They may be slower than the best algo-
rithms for mining all HUIs.

4) It may be hard to develop an efficient method for
recovering all HUIs from the representation.

In this paper, we address all of these challenges by pro-
posing a condensed and meaningful representation of HUIs
named closedþ high utility itemsets (CHUIs), which integrates
the concept of closed itemset into high utility itemset min-
ing. Our contributions are four-fold and correspond to
resolving the previous four challenges:

1) The proposed representation is lossless due to a new
structure named utility unit array that allows recover-
ing all HUIs and their utilities efficiently.

2) The proposed representation is also compact.
Experiments show that it reduces the number of
itemsets by several orders of magnitude, especially
for datasets containing long high utility itemsets
(up to 800 times).

3) We propose three efficient algorithms named
AprioriHC (Apriori-based algorithm for mining High
utility Closedþ itemset), AprioriHC-D (AprioriHC
algorithm with Discarding unpromising and isolated
items) and CHUD (Closedþ High Utility itemset Dis-
covery) to find this representation. The AprioriHC
and AprioriHC-D algorithms employs breadth-
first search to find CHUIs and inherits some nice
properties from the well-known Apriori algorithm
[1]. The CHUD algorithm includes three novel
strategies named REG, RML and DCM that greatly
enhance its performance. Results show that CHUD
is much faster than the state-of-the-art algorithms
[2], [17], [24] for mining all HUIs.

4) We propose a top-down method named DAHU
(Derive All High Utility itemsets) for efficiently recov-
ering all HUIs from the set of CHUIs. The combina-
tion of CHUD and DAHU provides a new way to
obtain all HUIs and outperforms UP-Growth [24],
one of the currently best methods for mining HUIs.

The remainder of this paper is organized as follows. In
Section 2, we introduce the background for compact repre-
sentations and utility mining. Section 3 defines the rep-
resentation of closedþ high utility itemsets and presents our

methods. Experiments and discussion are shown in Section 4
and Section 5. Conclusion and future works are given in
Sections 6 and 7.

2 BACKGROUND

In this section, we introduce the preliminaries associated
with high utility itemset mining, closed itemset mining and
compact representations of high utility itemsets.

2.1 High Utility Itemset Mining
Let I … fa1; a2; . . . ; aMg be a finite set of distinct items. A
transactional database D … fT1; T2; . . . ; TNg is a set of transac-
tions, where each transaction TR 2 Dð1 � R � NÞ is a subset
of I and has an unique identifier R, called Tid. Each item
ai 2 I is associated with a positive real number pðai; DÞ,
called its external utility. Every item ai in the transaction TR
has a real number qðai; TRÞ, called its internal utility. An item-
set X … fa1; a2; . . . ; aKg is a set of K distinct items, where
ai 2 I, 1 � i � K, and K is called the length of X. A K-itemset
is an itemset of length K. An itemset X is said to be con-
tained in a transaction TR if X � TR.

Definition 1 (Support of an itemset). The support count of an
itemset X is defined as the number of transactions containing
X in D and denoted as SC(X). The support of X is defined as
the ratio of SC(X) to j D j . The complete set of all the itemsets
in D is defined as L … fX j X � I; SCðXÞ > 0g.

Definition 2 (Absolute utility of an item in a transaction).
The absolute utility of an item ai in a transaction TR is denoted
as auðai; TR) and defined as pðai; DÞ � qðai; TRÞ.

Definition 3 (Absolute utility of an itemset in a transac-
tion). The absolute utility of an itemset X in a transaction TR
is defined as auðX; TRÞ …

P
ai2X auðai; TRÞ.

Definition 4 (Transaction utility and total utility). The
transaction utility (TU) of a transaction TR is defined as
TUðTRÞ … auðTR; TRÞ. The total utility of a database D is
denoted as TotalU and defined as

P
TR 2DTUðTRÞ

Definition 5 (Absolute utility of an itemset in a database).
The absolute utility of an itemset X in D is defined as
auðXÞ …

P
X�TR^TR2D uðX; TRÞ. The (relative) utility of X is

defined as uðXÞ … auðXÞ=TotalU .

Definition 6 (High utility itemset). An itemset X is called high
utility itemset iff u(X) is no less than a user-specified mini-
mum utility threshold min_utility (0% < min util � 100%).
Otherwise, X is a low utility itemset. An equivalent definition
is that X is high utility iff auðXÞ � abs min util, where
abs_min_util is defined as min util � TotalU .

Definition 7 (Complete set of HUIs in the database). Let
S be a set of itemsets and a function fHðSÞ … fX j X 2 S;
uðXÞ � min utilityg. The complete set of HUIs in D is
denoted as HðH � LÞ and defined as fHðLÞ. The problem of
mining HUIs is to find the set H in D.

Example 1 (High Utility Itemsets). Let Table 1 be a data-
base containing five transactions. Each row in Table 1
represents a transaction, in which each letter represents
an item and has a purchase quantity (internal utility).

TSENG ET AL.: EFFICIENT ALGORITHMS FOR MINING THE CONCISE AND LOSSLESS REPRESENTATION OF HIGH UTILITY... 727

The unit profit of each item is shown in Table 2 (external
utility). In Table 1, the absolute utility of the item {F} in
the transaction T3 is auðfFg; T3Þ … pðfFg; DÞ � qðfFg;
T3Þ … 3 � 2 … 6. The absolute utility of {BF} in T3 is
auðfBFg; T3Þ…auðfBg; T3Þ þ auðfFg; T3Þ … 1 þ 6 … 7. The
absolute utility of {BF} is auðfBFgÞ … uðfBFg; T3Þ þ
uðfBFg; T5Þ … 17. If abs min utility … 10, the set of HUIs
in Table 1 is H … ffEg : 12; fFg : 15; fAEg : 10; fAFg :
7; fBEg : 10; fBFg : 17; fABEg : 12; fABFg : 19}, where
the number beside each itemset is its absolute utility.
Note that the utility constraint is neither monotone nor anti-

monotone [1], [10], [21]. In other words, a superset of a low util-
ity itemset can be high utility and a subset of a HUI can be low
utility. Hence, we cannot directly use the anti-monotone prop-
erty (also known as downward closure property) to prune the
search space. To facilitate the mining task, Liu et al. intro-
duced the concept of transaction-weighted downward closure
(TWDC) [17], which is based on the following definitions.

Definition 8 (TWU of an itemset). The transaction-weighted
utilization (TWU) of an itemset X is the sum of the transaction
utilities of all the transactions containing X, which is denoted
as TWU(X) and defined as TWUðXÞ …

P
X�TR^TR2D TUðTRÞ.

Definition 9 (HTWUI). An itemset X is a high transaction-
weighted utilization itemset ðHTWUIÞ iff TWUðXÞ �
abs min utility. An HTWUI of length K is abbreviated as K-
HTWUI.

Property 1 (TWDC Property). The transaction-weighted down-
ward closure property states that for any itemset X that is not
a HTWUI, all its supersets are low utility itemsets [2], [17],
[19], [24].

Example 2 (TWDC Property). The transaction utilities of T1
and T3 are TUðT1Þ … auðfABEg; T1Þ … 5 and TUðT3Þ … 8. If
abs min utility … 10, {AB} is a HTWUI since TWUðfABgÞ …
TUðT1Þ þ TUðT3Þ … 13 is no less than abs_min_utility. In
contrast, the itemset {W} is not a HTWUI, and therefore
all the supersets of {W} are low utility (Property 1).

Many studies have been proposed for mining HUIs,
including Two-Phase [17], IHUP [2], TWU-Mining [25], IIDS
[19] and HUP-Tree [13], PB [14], UP-Growth [24]. The former
three algorithms use TWDC property to find HUIs. They
consist of two phases. In Phase I, they find all HTWUIs
from the database. In Phase II, HUIs are identified from the
set of HTWUIs by calculating the exact utilities of HTWUIs.
Although these methods capture the complete set of HUIs,
they may generate too many candidates in Phase I, i.e.,
HTWUIs, which degrades the performance of Phase II and
the overall performance. To reduce the number of candi-
dates in Phase I, various methods have been proposed (e.g.

[2], [13], [14], [19]). Recently, Tseng et al. proposed UP-
Growth [24] with four strategies DGU, DGN, DLU and
DLN, for mining HUIs. Experiments in [24] show that the
number of candidates generated by UP-Growth in Phase I
can be order of magnitudes smaller than that of HTWUIs.

Though the above methods perform well in some cases,
their performance degrades quickly when there are many
HUIs in the databases. A large number of HUIs and candi-
dates cause these methods to suffer from long execution
time and huge memory consumption. When the system
resources are limited (e.g. the memory space and processing
power), it is often impractical to generate the entire set of
HUIs. Besides, a large amount of HUIs is hard to be compre-
hended or analyzed by users. In FIM, to reduce the number
of patterns, many studies were conducted to develop com-
pact representations of frequent itemsets (FIs) that eliminate
redundancy, such as free sets [3], non-derivable sets [4], odds
ratio patterns [15], disjunctive closed itemsets [11], maximal
itemsets [8] and closed itemsets [20]. Although these represen-
tations achieve a significant reduction in the number of
extracted frequent itemsets, some of them lead to loss of
information (e.g. [8]). To provide not only compact but also
complete information about frequent itemsets to users,
many studies were conducted on closed itemset mining.

2.2 Closed Itemset Mining
In this section, we introduce definitions and properties
related to closed itemsets and mention relevant methods.
For more details about closed itemsets, readers can refer to
[5], [9], [11], [18], [20], [27], [31].

Definition 10 (Tidset of an itemset). The Tidset of an itemset
X is denoted as g(X) and defined as the set of Tids of transac-
tions containing X. The support count of X is expressed in
terms of g(X) as SCðXÞ … jgðXÞj.

Property 2. For itemsets X, Y 2 L; SCðX [Y Þ … jgðXÞ \ gðY Þj.

Definition 11 (Closure of an itemset). The closure of an item-
set X 2 L, denoted as C(X), is the largest set Y 2 L such that
X � Y and SCðXÞ … SCðY Þ. Alternatively, it is defined as
CðXÞ …

T
R2gðXÞTR.

Property 3. 8X 2 L; SCðXÞ … SCðCðXÞÞ , gðXÞ … gðCðXÞÞ.

Definition 12 (Closed itemset). An itemset X 2 L is a closed
itemset iff there exists no itemset Y 2 L such that (1) X � Y
and (2) SCðXÞ … SCðY Þ. Otherwise, X is non-closed itemset.
An equivalent definition is that X is closed iff CðXÞ … X.
For example, in the database of Table 1, {B} is non-closed

because CðfBgÞ … T1 \ T2 \ T3 \ T5 … fABg.

Definition 13 (Complete set of closed itemset in the data-
base). Let S be a set of itemsets and a function fCðSÞ …
fX j X 2 S, q 9Y 2 S such that X � Y and SCðXÞ …
SCðY Þg.The complete set of closed itemsets in D is denoted as
CðC � LÞ and defined as fCðLÞ.

TABLE 2
Profit Table

Item A B E F G W
Unit Profit 1 1 2 3 1 1

TABLE 1
An Example Database

TID Transaction Transaction Utility (TU)

T1 A(1), B(1), E(1), W(1) 5
T2 A(1), B(1), E(3) 8
T3 A(1), B(1), F(2) 8
T4 E(2), G(1) 5
T5 A(1), B(1), F(3) 11

728 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 3, MARCH 2015

Property 4 (Recovery of Support). 8X 2 L; SCðXÞ …
maxfSCðY Þ j Y 2 fCðLÞ ^ X � Y g.

For example, the set of closed itemsets in Table 1 is
fCðLÞ … ffEg : 3, fEGg : 1, fABg : 4, fABEg : 2, fABFg : 2,
fABEWg : 1}, in which the number beside each itemset is its
support count. The supersets of {B} in fCðLÞ are fABg : 4,
fABEg : 2, {ABF}:2 and fABEWg : 1. Thus, SCðfBgÞ …
maxf4; 2; 2; 1g … 4.

Mining frequent closed itemset (FCI) refers to the discovery
of all the closed itemsets having a support no less than a user-
specified threshold. It is widely recognized that the number
of FCIs can be much smaller than the set of frequent itemsets
for real-life databases and that mining FCIs can also be much
faster and memory efficient than mining FIs [5], [18], [20],
[27], [31]. The set of closed itemsets is lossless since all FIs and
their supports can be easily derived from it by Property 4
without scanning the original database [20]. Many efficient
methods were proposed for mining FCIs, such as A-Close
[20], CLOSETþ [27], CHARM [31] and DCI-Closed [18]. How-
ever, these methods do not consider the utility of itemsets.
Therefore, they may present lots of closed itemsets with low
utilities to users and omit several high utility itemsets.

2.3 Compact Representations of High Utility
Itemset Mining

To present representative HUIs to users, some concise repre-
sentations of HUIs were proposed. Chan et al. introduced
the concept of utility frequent closed patterns [6]. However,
it is based on a definition of high utility itemset that is differ-
ent from [2], [7], [12], [13], [14], [16], [17], [24], [25], [26] and
our work. Shie et al. proposed a compact representation of
HUIs, called maximal high utility itemset and the GUIDE algo-
rithm for mining it [23]. A HUI is said to be maximal if it is not
a subset of any other HUI. For example, if abs_min_utility …
10, the set of maximal HUIs in Table 1 is {{ABE}, {ABF}}.
Although this representation reduces the number of
extracted HUIs, it is not lossless. The reason is that the utili-
ties of the subsets of a maximal HUI cannot be known with-
out scanning the database. Besides, recovering all HUIs from
maximal HUIs can be very inefficient because many subsets
of a maximal HUI can be low utility. Another problem is that
the GUIDE algorithm cannot capture the complete set of
maximal HUIs.

3 CLOSEDþþ HIGH UTILITY ITEMSET MINING

In this section, we incorporate the concept of closed itemset
with high utility itemset mining to develop a representation
named closedþ high utility itemset. We theoretically prove
that this new representation is meaningful, lossless and con-
cise (i.e., not larger than the set of all HUIs).

3.1 Push Closed Property into High Utility Itemset
Mining

The first point that we should discuss is how to incorporate
the closed constraint into high utility itemset mining. There
are several possibilities. First, we can define the closure on
the utility of itemsets. In this case, a high utility itemset is
said to be closed if it has no proper superset having the
same utility. However, this definition is unlikely to achieve

a high reduction of the number of extracted itemsets since
not many itemsets have exactly the same utility as their
supersets in real datasets. For example, there are seven
HUIs in Example 1 and only one itemset {E} is non-closed,
since fEg � fABEg and auðfEgÞ … auðfABEgÞ … 12. A sec-
ond possibility is to define the closure on the supports of
itemsets. In this case, there are two possible definitions
depending on the join order between the closed constraint
and the utility constraint:

— Mine all the high utility itemsets first and then apply
the closed constraint. We formally define this set as
H 0 … fCðfHðLÞÞ. It follows that H 0 � H.

— Mine all the closed itemsets first and then apply the
utility constraint. We formally define this set as
C0 … fHðfCðLÞÞ. It follows that C0 � C.

As indicated in [29], the join order between two con-
straints often lead to different results. Therefore, our next
step is to analyze the result sets defined based on the above
two join orders. We show that they produce the same result
set by the following lemmas.

Lemma 1. H 0 � C0.

Proof. We prove that H 0 � C0 by proving that 8X 2 H 0)
X 2 C0. Since X 2 H, X 2 H and uðXÞ � min utility.
Then, we prove that q 9Y 2 H such that X � Y and
SCðXÞ … SCðY Þ yields X 2 C by showing that X =2 C
contradicts Y 2 H. If X =2 C, there must exists an itemset
Y 2 L such that X � Y and SCðXÞ … SCðY Þ. By Defini-
tion 5, uðY Þ > uðXÞ � min utility, and therefore Y 2 H,
which is a contradiction. tu

Lemma 2. C0 � H:

Proof. We prove that C0 � H by proving that 8X 2 C0)
X 2 H. Since X 2 C and uðXÞ � min utility, we have
X 2 H. Then, we prove that X 2 C yields q 9Y 2 H such
that X � Y and SCðXÞ … SCðY Þ by showing that 9Y 2
H contradicts X =2 C. If Y 2 H, then Y 2 L. Because X �
Y , Y 2 L and SCðXÞ … SCðY Þ, it follows that X =2 C. tu

Theorem 1. H 0 … C.

Proof. This directly follows from Lemmas 1 and 2. Because
the two join orders produce the same result, the join
order can be removed to obtain a general definition. tu

Definition 14 (Closed high utility itemset). We define the set
of closed high utility itemsets as HC … fX j X 2 L; X …
CðXÞ, uðXÞ � min utilityg, HC … H 0 … C. An itemset X is
called non-closed high utility itemset iff X 2 H and X =2 C.

For example, if abs min utility … 10, the complete set
of closed HUIs in Table 1 is HC … ffEg, {ABE}, {ABF}}.

Definition 14 gives an alternative solution to incorporate
the closed constraint with high utility itemset mining. The
advantage of using this definition is that the two constraints
can be applied in any order during the mining process. We
say that the representation HC is concise because its size is
guaranteed to be no larger than the set of all HUIs (because
HC � H).We next show that this representation is meaningful.

Property 5. For any non-closed high utility itemset X, 9Y 2 HC
such that Y … CðXÞ and uðY Þ > uðXÞ.

TSENG ET AL.: EFFICIENT ALGORITHMS FOR MINING THE CONCISE AND LOSSLESS REPRESENTATION OF HIGH UTILITY... 729

Proof. 8X 2 L, 9Y 2 C such that Y … CðXÞ and SCðXÞ …
SCðY Þ. Since X 2 H and X =2 C, uðXÞ � min utility and
X � Y . SCðXÞ … SCðY Þ and X � Y yields uðY Þ >
uðXÞ � min utility by Property 3 and Definition 5. tu

We claim that HC is a meaningful representation of all
HUIs by Property 5. For any non-closed high utility itemset
X, X does not appear in a transaction without its closure Y.
Moreover, the utility (e.g. profit/user preference) of Y is
guaranteed to be higher than the utility of X. For these rea-
sons, users are more interested in finding Y than X. More-
over, closed itemsets having high utilities are useful in many
applications. For example, in market basket analysis, Y is the
closure of X means that no customer purchases X without its
closure Y. Thus, when a customer purchases X, the retailer
can recommend Y � X to the customer, to maximize profit.

Although HC is based on the concise representation of
closed itemsets, the set of closed HUIs is not lossless. If an
itemset is not included in this representation, there is no way
to infer its utility and to know whether it is high utility or not.
To tackle this problem, we attach to each closed HUI a special
structure named utility unit array, which is defined as follows.

Definition 15 (Utility unit array). 8X … fa1; a2; . . . ; aKg 2 L,
the utility unit array of X is denoted as VðXÞ … ‰v1; v2; . . . ;
vK 	 and contains K utility values. The ith utility value
vi in V ðXÞ is denoted as VðX; aiÞ and defined asP

R2gðXÞ^ai2TR
auðai; TRÞ.

Example 3 (Utility unit array). Consider the database in
Table 1 and the itemset {ABE} appearing in T1 and T2.
The first utility value in V({ABE}) is V({ABE}, fAgÞ …
auðfAg; T1Þ þ auðfAg; T2Þ … 2. The utility unit array of
{ABE} is V ðfABEgÞ … ‰2; 2; 8	.

Property 6. 8X … fa1; a2; . . . ; aKg 2 L, auðXÞ …
PK

i…1 V ðX; aiÞ.

Proof. The utility of X is the sum of the utilities of items
a1; a2; . . . ; aK in transactions containing X. For an item ai,
V ðX; aiÞ represents the sum of the absolute utilities of ai
in transactions containing X. Therefore au(X) can be
expressed as V ðX; a1Þ þ V ðX; a2Þ þ

 þ V ðX; aKÞ. tu

For example, auðfABEgÞ … V ðfABEg, fAgÞ þ V ðfABEg; fBgÞ þ
V ðfABEg; fEgÞ … 2 þ 2 þ 8 … 12.

Property 7. 8X 2 L, X is low utility if CðXÞ =2 HC.

Proof. If CðXÞ =2 HC, uðCðXÞÞ < min utility. Since SCðXÞ …
SCðCðXÞÞ and X � CðXÞ, by Definition 5 we have
uðXÞ � uðCðXÞÞ < min utility. tu

Property 8 (Recovery of Utility). 8X … fa1; a2; . . . ; aKg 2 L,
if CðXÞ 2 HC, the absolute utility of X can be calculated
as auðXÞ …

P
ai2X V ðCðXÞ; aiÞ.

Proof. Because X � CðXÞ, there exists an entry V ðCðXÞ; aiÞ
in V ðCðXÞÞ for each ai 2 X. Besides, gðXÞ … gðCðXÞÞ
since SCðXÞ … SCðCðXÞÞ and X 2 CðXÞ (Property 3).
Thus, V ðX; aiÞ … V ðCðXÞ; aiÞ, by Definition 15. According
to Property 6, auðXÞ …

PK
i…1 V ðX; aiÞ. By replacing

V ðX; aiÞ with V ðCðXÞ; aiÞ, we obtain Property 8. tu

Definition 16 (Closedþ high utility itemset). An itemset X is
called closedþ high utility itemset (CHUI) iff X 2 HC and X

is annotated with V(X). The set of CHUIs is a lossless repre-
sentation of all HUIs. For any itemset Y 2 H, its absolute util-
ity can be inferred from the utility unit array of its closure by
Property 8 without scanning the original database.

3.2 Ef�cient Algorithms for Mining Closedþþ High
Utility Itemsets

In this section, we introduce three efficient algorithms Aprior-
iHC (An Apriori-based algorithm for mining High utility Closedþ

itemsets), AprioriHC-D (AprioriHC algorithm with Discarding
unpromising and isolated items) and CHUD (Closedþ High
Utility itemset Discovery) for mining CHUIs. They rely on the
TWU-Model [2], [13], [14], [17], [19], [24] and include strategies
to improve their performance. All algorithms consist of two
phases named Phase I and Phase II. In Phase I, potential closedþ

high utility itemsets (PCHUIs) are found, which are defined as
a set of itemsets having an estimated utility (e.g. TWU) no
less than abs_min_utility. In Phase II, by scanning the database
once, CHUIs are identified from the set of PCHUIs found in
Phase I and their utility unit arrays are computed.

The AprioriHC and AprioriHC-D are based on Apriori
[1] and the Two-Phase [17] algorithms. They use a horizontal
database and explore the search space of CHUIs in a
breadth-first search. The algorithm AprioriHC is regarded
as a baseline algorithm in this work and AprioriHC-D is an
improved version of AprioriHC. On the other hand, the pro-
posed algorithm CHUD is an extension of Eclat [31] and
DCI-Closed [18] algorithms. The CHUD algorithm considers
vertical database and mines CHUIs in a depth-first search.
In the following, we present details of the three algorithms.

3.2.1 The AprioriHC Algorithm
Initially, a variable k is set to 1. The algorithm performs a data-
base scan to compute the transaction utility of each transac-
tion (Definition 4). At the same time, the TWU of each item is
computed. Each item having a TWU no less than abs_min_util-
ity is added to the set of 1-HTWUIs Ck. Then the algorithm
proceeds recursively to generate itemsets having a length
greater than k. During the kth iteration, the set of k-HTWUIs
Lk is used to generate (k þ 1)-candidates Ckþ1 by using the
Apriori-gen function [1]. Then the algorithm computes TWUs
of itemsets in Ckþ1 by scanning the database D once.

Each itemset having a TWU no less than abs_min_utility
is added to the set of (k þ 1)-HTWUIs Lkþ1. After that, the
algorithm removes non-closed itemsets in Lkþ1 by the fol-
lowing process. For each candidate X in Lkþ1, the algorithm
checks if there exists a subset Y � X such that Y 2 Lk and
SCðXÞ … SCðY Þ. If true, Y is deleted from Lk because Y is
not a closedþ high utility itemset according to Definition 14.
If false, Y is kept and marked as “closed” because it may be
a closedþ high utility itemset. The phase I of AprioriHC ter-
minates when no candidate is generated. Then, the algo-
rithm performs Phase II. In phase II, the algorithm scans
the database once and calculates the utilities of HTWUIs
that are marked as “closed” to identify the set of closedþ

high utility itemsets.

3.2.2 The AprioriHC-D Algorithm
The AprioriHC-D algorithm is an improvement of Aprior-
iHC. It includes two effective strategies to reduce the

730 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 3, MARCH 2015

number of PCHUIs generated in Phase I that are inspired by
the UP-Growth [24] and IIDS algorithms [19]. The first strat-
egy is based on the following definition and properties.

Definition 17 (Promising item). An item ip is a promising
item iff TWUðipÞ � abs min utility. Otherwise, it is an
unpromising item.

Property 9. Any unpromising item iu and its supersets are not
high utility itemsets.

Proof. By the transaction-weighted downward closure prop-
erty (Property 1), an item iu and its supersets are not high
utility itemsets iff TWUðiuÞ < abs min utility. Because
every CHUI has to be a HUI, the property holds. tu

We adapt Property 9 to the context of closedþ high utility
itemset mining as follows.

Property 10. Any unpromising item iu and its supersets are not
closedþ high utility itemsets.

Proof. For any itemset X, if TWU(X) is less than abs_min_
utility, it is a low utility itemset. By Definition 14, a low
utility itemset is not a closedþ high utility itemset. tu

Strategy 1. DGU (Discarding Global Unpromising items)
[24]. Discard global unpromising items and their exact utili-
ties from transactions and transaction utilities of the database,
respectively.

Rationale. By Property 10, unpromising items play no role
in CHUIs. Therefore, unpromising items can be removed
from each transaction TR and their absolute utilities can
be subtracted from TUðTRÞ. Thus, the utilities of unprom-
ising items can be ignored in the calculation of the esti-
mated utilities of itemsets (i.e., TWU). For more details
about the strategy DGU, readers can refer to [24].

The second strategy is based on the following definition and
properties.

Definition 18 (Isolated item). Let Lk be the set of HTWUIs of
length k, an item io is called an isolated item of level k iff io is
not contained in any itemset in Lk.

Property 11. For any isolated item io of level k, its supersets of
length l ðl � kÞ are not high utility itemsets.

Proof. The reader is referred to [19] for the proof.

We adapt Property 11 to the context of closedþ high util-
ity itemset mining as follows.

Property 12. For any isolated item io of level k, its supersets of
length l ðl � kÞ are not CHUIs.

Proof. For any isolated item io of level k, its supersets of
level lðl � kÞ are not HUIs (Property 11). Thus, the super-
sets of lðl � kÞ are not CHUIs.

Strategy 2. IIDS (Isolated Items Discarding Strategy) [19] :
Discard isolated items and their actual utilities from transac-
tions and transaction utilities of the database.

Rationale. By Property 12, isolated items of level k play
no role in CHUIs of length lðl � kÞ. Thus, when utilities
of k-itemsets are being estimated, utilities of isolated
items can be regarded as irrelevant, and therefore can be
discarded. Therefore, isolated items of level k can be
removed from each transaction TR and their absolute
utilities can be subtracted from the transaction utility
TUðTRÞ during the kth database scan in the AprioriHC
algorithm. Thus, the utilities of isolated items can be
ignored in the calculation of the estimated utilities of
itemsets (i.e., TWU). For more details about the IIDS
strategy, readers are referred to [19].

Based on the DGU and IIDS strategies, we present the
AprioriHC-D algorithm. The pseudo code is given in Fig. 1.
It takes as parameters a horizontal database D and the
abs_min_utility threshold. Because the algorithm is similar
to AprioriHC, we here only describe the differences.

The first difference is the application of strategy DGU in
the main procedure (line 3 of Fig. 1). This is done immedi-
ately after computing the TWUs of items to generate the set
of 1-HTWUIs L1. An additional database scan is here per-
formed to remove unpromising items and discard their
absolute utilities from the transaction utilities of the data-
base D. The resulting database is named D1. The algorithm
then recalculates the set of 1-HTWUIs L1 from D1. The algo-
rithm calls procedure AprioriHC-D_Phase-I to perform
Phase I for finding candidates of CHUIs (line 5 of Fig. 1).
The set of candidates found in Phase I are collected in the
set pCHUI. Then, the algorithm calls procedure AprioriHC-
D_Phase-II to perform Phase II. All the CHUIs are identified
from the set pCHUI by scanning the database D1 once
(line 6 of Fig. 1).

The second difference is the integration of the IIDS strat-
egy (Fig. 3) in the AprioriHC-D_Phase-I procedure (Fig. 2).
As previously explained, this latter procedure recursively
performs iterations to discover k-candidates starting from
k … 2. Initially, for k … 2, the procedure uses the database
D that it receives as parameter Dk to calculate the esti-
mated utilities of candidates. The modification is that dur-
ing the kth iteration, after removing non-closed HUIs in

Fig. 1. AprioriHC-D algorithm.

Fig. 2. AprioriHC-D_Phase-I procedure.

TSENG ET AL.: EFFICIENT ALGORITHMS FOR MINING THE CONCISE AND LOSSLESS REPRESENTATION OF HIGH UTILITY... 731

Lk�1, isolated items of the k-candidates are identified from
the set Lk. Then, the isolated items and their exact utilities
are removed from Dk. The locally modified database Dk is
then used for the next iteration.

The third difference is the method for calculating the
absolute utilities of PCHUIs in Phase II. The procedure for
Phase II is shown in Fig. 4. It takes as parameters, the data-
base D1, the set of PCHUIs pCHUI and abs_min_utility. The
procedure performs k iterations starting from k … 1 to the
maximum length of PCHUIs in pCHUI. During the kth itera-
tion, the procedure considers the set of k-PCHUIs Lk in
pCHUI. For each PCHUI X in Lk, the absolute utility and
utility unit array is calculated by scanning Dk. If the abso-
lute utility of X is no less than abs_min_utility, X is outputted
as a CHUI. Then, the algorithm applies the IIDS strategy to
remove isolated items of level k from Dk.

3.2.3 The CHUD Algorithm
In this section, we present an efficient depth-first search
algorithm named CHUD (Closedþ High Utility itemset Discov-
ery) to discover CHUIs. CHUD is an extension of DCI-
Closed [18], one of the currently best methods to mine closed
itemsets. CHUD is adapted for mining CHUIs and include
several effective strategies for reducing the number of candi-
dates generated in Phase I. Similar to the DCI-Closed algo-
rithm, CHUD adopts an Itemset-Tidset pair Tree (IT-Tree) [18],
[31] to find CHUIs. In an IT-Tree, each node N(X) consists of
an itemset X, its Tidset g(X), and two ordered sets of items
named PREV-SET(X) and POST-SET(X). The IT-Tree is
recursively explored by the CHUD algorithm until all closed
itemsets that are HTWUIs are generated. Different from the
DCI-Closed algorithm, each node N(X) of the IT-Tree is
attached with an estimated utility value EstU(X).

A data structure called transaction utility table (TU-Table)
[28] is adopted for storing the transaction utilities of transac-
tions. It is a list of pairs <R; TUðTRÞ> where the first value
is a TID R and the second value is the transaction utility of

TR. Given a TID R, the value TUðTRÞ can be efficiently
retrieved from the TU-Table. Given a node N(X) with its
Tidset g(X) and a TU-Table TU, the estimated utility of the
itemset X can be efficiently calculated by the procedure
shown in Fig. 5.

The main procedure of CHUD is named Main and is
shown in Fig. 6. It takes as parameter a database D and the
abs_min_utility threshold. CHUD first scans D once to con-
vert D into a vertical database. At the same time, CHUD
computes the transaction utility for each transaction TR and
calculates TWU of items. When a transaction is retrieved, its
Tid and transaction utility are loaded into a global TU-Table
named GTU. As previously defined, an item is called a
promising item if its estimated utility (e.g. its TWU) is no less
than abs_min_utility. After the database scan, promising
items (cf. Definition 17) are collected into an ordered list
O … <a1; a2; . . . ; an> , sorted according to a fixed order �
such as increasing order of support. Only promising items
are kept in O since supersets of unpromising items are not
CHUIs (by Property 10). According to [24], the utilities of
unpromising items can be removed from the GTU table.
This step is performed at line 2 of the Main procedure.
Then, CHUD generates candidates in a recursive manner,
starting from candidates containing a single promising item
and recursively joining items to them to form larger candi-
dates. To do so, CHUD takes advantage of the fact that by
using the total order �, the complete set of itemsets can be
divided into n non-overlapping subspaces, where the kth
subspace is the set of itemsets containing the item ak but no
item ai � ak [18]. For each item ak 2 O, CHUD creates a
node NðfakgÞ and puts items a1 to ak-1 into PREV-SET({ak})
and items akþ1 to an into POST-SET({ak}). Then CHUD calls
the CHUDPhase-I procedure for each node NðfakgÞ to pro-
duce all the candidates containing the item ak but no item
ai � ak. After that, the REG strategy is applied by calling the
REG_Strategy sub-function, which will be described later.
Finally, the Main procedure performs Phase II on these can-
didates to obtain all CHUIs.

The CHUDPhase-I procedure shown in Fig. 7 takes as
parameter a node N(X), a TU-Table TU and abs_min_utility.

Fig. 4. AprioriHC-D_Phase-II procedure.

Fig. 5. CalculateEstUtility procedure.

Fig. 6. CHUD algorithm.

Fig. 3. IIDS_strategy procedure.

732 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 3, MARCH 2015

The procedure first performs SubsumeCheck on X as pre-
sented in Fig. 8. This check verifies if there exists an item a
from PREV-SET(X) such that gðXÞ � gðaÞ. If there exists
such an item, it means that X is included in a closed item-
set that has already been found and supersets of X do not
need to be explored (see [18] for a complete justification).
Otherwise, the next step is to compute the closure
XC … CðXÞ of X, which is performed by the procedure
ComputeClosureOf_Itemsets(N(X), POST-SET(X)) shown in
Fig. 9 [18]. Then the estimated utility of XC is calculated. If
it is no less than abs_min_utility, XC is considered as a can-
didate for Phase II and it is outputted with its estimated
utility value EstUðXCÞ. Note that CHUD does not main-
tain any discovered candidate in memory. Instead, when a
candidate itemset is found, it is outputted. After this, the
DCM strategy is applied by calling the DM_Strategy sub-
function, which will be described later. Then, a node
NðXCÞ is created and the procedure Explore is called for
finding candidates that are supersets of XC .

The Explore procedure is shown in Fig. 10. It takes as
parameter a node N(X), a TU-Table TUX and abs_min_ utility.
The Explore procedure explores the search space of closed
candidates that are superset of X by appending items from
POST-SET(X) to X. We here briefly explain this process. For
a proof that this method is a correct way of exploring closed
candidates, the reader can consult the paper describing DCI-
Closed [18]. For each item ak of POST-SET(X), the procedure
first removes ak from POST-SET(X) to create a node N(Y)
with Y … X [fakg. The Tidset of Y is then calculated as
gðY Þ … gðXÞ \ gðakÞ by Property 2. The set POST-SET(Y) and
PREV-SET(Y) are respectively set to POST-SET(X) and

PREV-SET(X). Then, the estimated utility of Y is calculated
by calling the CalculateEstUtility procedure with g(Y) and
TUx. If EstU(Y) and EstU(X) are no less than abs_min_utility,
the procedure CHUDPhase-I is recursively called with N(Y)
(to consider the search space of Y), TUX and abs_min_utility.
Then, ak is added to PREV-SET(X). If EstU(Y) is lower than
abs_min_utility, the search space of Y is pruned since Y and
its supersets are low utility (Property 1). Finally, the RML
strategy is applied by calling the RML_Strategy sub-function.

After recursions of the Explore and CHUDPhase-I proce-
dures are completed, candidates that have been outputted
are processed by Phase II. Phase II consists of taking each
candidate X and to calculate its utility and utility unit array.
Each candidate that is low utility is discarded. Calculating
the absolute utility of a candidate X is performed by doing
the summation of auðX; TRÞ for each R 2 gðXÞ. This is done
very efficiently thanks to the vertical representation of the
database (only transactions containing X are considered to
calculate its utility).

The first strategy that we have incorporated in CHUD
is to only consider promising items for generating candi-
dates and to remove the utilities of unpromising items
from the GTU table. It is applied in line 2 of the Main pro-
cedure. The second strategy that we have incorporated in
CHUD is to discard each itemset XC such that
EstUðXCÞ � abs min utility. This strategy is integrated in
line 3 of the CHUDPhase-I procedure. To enhance the per-
formance of CHUD, we integrate three additional strate-
gies, which have never been used in vertical mining of
HUIs. They are described as follows.

Strategy 3. REG (Removing the Exact utilities of items
from the Global TU-Table). Each time that an item ak 2 O
has been processed in the main procedure (Fig. 6), this strategy
is applied by calling the REG_Strategy procedure (line 6). The
pseudo code of the procedure is given in Fig. 11. The procedure
is called with gðakÞ and the global utility table GTU. It

Fig. 7. CHUDPhase-I procedure.

Fig. 8. SubsumeCheck procedure.

Fig. 9. ComputeClosureOf_Itemsets procedure.

Fig. 10. Explore procedure.

Fig. 11. REG_strategy procedure.

TSENG ET AL.: EFFICIENT ALGORITHMS FOR MINING THE CONCISE AND LOSSLESS REPRESENTATION OF HIGH UTILITY... 733

removes the utility of ak from the transaction utility of each
transaction containing ak in the global TU-Table.

Rationale. CHUD explores the search space of patterns by
dividing it into non-overlapping subspaces such that
each item ai that has been processed is excluded from the
subspace of item aj � ai. Thus, absolute utility of ai can
be removed from the transaction utility of each transac-
tion containing aj in the global TU-Table.

Definition 17 (The minimum item utility of an item). The
minimum item utility of an item a is denoted as miu(a) and
defined as the value auða; TrÞ for which 9Ts 2 D such that
auða; TsÞ < auða; TrÞ.

Definition 18 (Local TU Table). Let N(X) be a node for the
itemset X and a be an item in POST-SET(X). The local TU-
Table for the node Y … X [fag is denoted as TUY and is ini-
tialized with the entries from TUX corresponding to transac-
tions from g(Y). The local TU-Table for the root node of the IT-
Tree is the same as GTU.

Strategy 4. RML (Removing the Mius of items from Local
TU-Tables). The strategy consists of using a local TU-Table
TUX for each node N(X) in the IT-Tree. Let N(X) be the cur-
rent node being processed by Explore and N(Y) be a child node
of N(X) that has been created by appending an item ak from
POST-SET(X) to X such that Y … X [fakg. The strategy
is applied after line 11 of the Explore procedure (Fig. 10)
by calling the RML_Strategy sub-function (Fig. 12). The
RML_Strategy procedure takes as parameters (1) the transac-
tion utility of N(X) and (2) the set of transactions that contains
Y. The procedure first removes miuðakÞ from the transaction
utility of each transaction containing ak in TUX. The updated
local TU-Table TUX is used for all child nodes of N(X). This
process reduces the estimated utility of N(X) and that of its
child nodes. Besides, miuðakÞ � SCðY Þ is removed from EstU
(X). If the updated EstU(X) is less than abs_min_utility, the
algorithm will not process X [fakg for each following item
ak 2 POST -SET ðXÞ.

Rationale. Each item ai that is processed for a node N(X)
will not be considered for any child node N(Y), where
Y … X [fajg and aj � ai. Thus, miuðaiÞðY Þ and miuðaiÞ
can be removed from EstU(X) and the transaction utility
of each transaction containing aj from TUX .

Definition 19 (The maximum item utility of an item). The
maximum item utility of an item a is denoted as mau(a) and
defined as the value auða; TrÞ for which 9Ts 2 D such that
auða; TsÞ > auða; TrÞ.

Definition 20 (The maximum item utility of an itemset).
The maximum item utility of an itemset X … fa1; a2; . . . ; aKg
is defined as MAUðXÞ …

PK
i…1 mauðaiÞ � SCðXÞ:

Lemma 4. 8X, X is low utility if MAU(X) < abs_min_utility.

Proof. The absolute utility of an itemset X (i.e., au(X)) is the
sum of the absolute utility of its items in transactions con-
taining X. MAU(X) is the sum of the maximum item util-
ity of each item multiplied by the number of transactions
containing X. Since the maximum item utility of each item
represents the highest utility that an item can have, MAU
(X) is higher or equal to au(X). tu

Strategy 5. DCM (Discarding Candidates with a MAU that
is less than the minimum utility threshold). The last
strategy is called DCM and is applied in line 3 of the CHUD-
Phase-I procedure. A candidate XC can be discarded from
Phase II if its estimated utility EstUðXCÞ or MAUðXCÞ is
less than abs_min_utility. The pseudo code of the strategy is
given in Fig. 13. The procedure takes as parameter an itemset
XC . It first computes the maximum utility MAUðXCÞ of XC .
Then if EstUðXCÞ or MAUðXCÞ is no less than abs_min_util-
ity, XC is output with its estimated utility.

Rationale. Lemma 4 guarantees that an itemset X is not a
CHUI iff MAU(X) < abs_min_utility.

3.3 Ef�cient Recovery of High Utility Itemsets
In this section, we present a top-down method named
DAHU (Derive All High Utility itemsets) for efficiently recov-
ering all the HUIs and their absolute utilities from the com-
plete set of CHUIs.

The pseudo code of DAHU is shown in Fig. 14. It takes as
input an absolute minimum utility threshold abs_min_utility,
a set of CHUIs HC and ML the maximum length of itemsets
in HC. DAHU outputs the complete set of high utility
itemsets H … [k

i…1Hk respecting abs_min_utility, where Hk
denotes the set of HUIs of length k. To derive all HUIs,
DAHU proceeds as follows. First, the set HML is initialized to

Fig. 12. RML_strategy procedure.
Fig. 13. DCM_strategy procedure.

Fig. 14. DAHU algorithm.

734 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 3, MARCH 2015

HCML, where the notation HCk represents the set of k-item-
sets in HC. During lines 2 to line 14 in Fig. 14, each set Hk is
constructed from k … ðML � 1Þ to k … 1. In each iteration,
Hk�1 is recovered by using HCk. For each itemset
X … fa1; a2; . . . ; akg in HCk, if the absolute utility of X is no
less than abs_min_utility, the algorithm outputs the high util-
ity itemset X with its absolute utility and then generates all
(k � 1)-subsets of X. The latter are obtained by removing
each item ai 2 X from X one at a time to obtain subsets of the
form Y … X � faig. If Y is not present in Hk or Y is present in
Hk with SCðXÞ > SCðY Þ, Y is added to Hk�1, its support
count is set to the support count of X (Property 4), i.e.,
SCðY Þ … SCðXÞ, and the absolute utility of Y is set to the
absolute utility of X minus the ith value in V(X), i.e.,
auðY Þ … auðXÞ � V ðX; aiÞ (Properties 6-8). Besides, the util-
ity unit array of V ðY Þ is set to V ðXÞ with the value V ðX; aiÞ
removed (Property 8). This process is repeated until H has
been completely recovered.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the proposed
algorithms and compare them with two state-of-the-art
algorithms UP-Growth [24] and Two-Phase [17]. Although
our methods produce different results from those algo-
rithms, they also consist of two phases. In Phase I, the pro-
posed algorithms generate candidates for CHUIs, whereas
UP-Growth and Two-Phase generate candidate for HUIs. In
Phase II, the proposed algorithms and UP-Growth/Two-
Phase respectively identify CHUIs and HUIs from candi-
dates produced in their Phase I. Furthermore, we have also
considered the performance of CHUD with DAHU, denoted
as CHUDþDAHU. CHUDþDAHU first applies CHUD to
find all CHUIs and then uses DAHU to derive all HUIs
from the set of CHUIs generated by CHUD.

The process of CHUDþDAHU in Phase I is the same as
that of CHUD. In Phase II, CHUDþDAHU first identifies
CHUIs from candidates and then uses CHUIs to derive all
HUIs. In the experiments, we do not combine AprioriHC/
AprioriHC-D with DAHU because CHUD outperforms
these algorithms, as it will be shown, and they produce the
same output. Experiments were performed on a desktop
computer with an Intel Core 2 Quad Core Processor @
2.66 GHz running Windows XP and 2 GB of RAM. All the
algorithms were implemented in Java.

Both synthetic and real datasets were used to evaluate
the performance of the algorithms. A synthetic dataset
T12-I10-N1K-Q5-D200K was generated by the IBM data
generator [1]. The parameters of the data generator are
described in Table 3. Mushroom and BMSWebView1
were obtained from FIMI Repository [32]. Mushroom is a

real-life dense dataset, each transaction containing
23 items. BMSWebView1 is a real-life dataset of click-
stream data with a mix of short and long transactions (up
to 267 items). Foodmart is a real-life dataset obtained
from the Microsoft foodmart 2,000 database, which con-
tains real external and internal utilities. For remaining
datasets, the quantity of each item is randomly generated
from 1 to 5 and the external utility of each item is ran-
domly generated from 0.01 to 10.00. The external utility
follows a log normal distribution [13], [17], [24]. Table 4
shows the characteristics of the above datasets.

Depending on the applications, the characteristics and
count distributions of the datasets can be very different.
However, there are three kinds of datasets that are com-
monly encountered in real-life scenarios: (1) dense dataset,
(2) sparse dataset, and (3) dataset containing long transac-
tions. In the experiments, we use three real-life datasets
Mushroom, Foodmart, BMSWebView1 to respectively rep-
resent the above three real cases. The experimental results
on these datasets are separately shown and discussed in the
Sessions 4.1, 4.2 and 4.3. The scalability and the memory
consumption of the proposed algorithms are respectively
shown in the Sessions 4.4 and 4.5.

4.1 Experiments on Mushroom Dataset
The performance of the algorithms on the Mushroom data-
set is shown in Fig. 15. In Fig. 15a, the execution time of
Two-Phase and AprioriHC is similar in Phase I. The reason
is that Two-Phase and AprioriHC simply apply the TWU-
Model without using effective strategies to reduce the esti-
mated utility of candidates in Phase I. Besides, AprioriHC-D
runs faster than Two-Phase and AprioriHC. Table 5 shows
the number of candidates generated by Two-Phase,
AprioriHC and AprioriHC-D in Phase I. We did not show
the number of HUIs and CHUIs in Table 5 because there are
no HUIs and CHUIs when min_utility is higher than 10 per-
cent. In Table 5, AprioriHC and AprioriHC-D generate
fewer candidates than Two-Phase. This is because Aprior-
iHC and AprioriHC-D produce candidates for CHUIs but
Two-Phase needs to produce candidates for all HUIs. By
applying strategies DGU and IIDS, AprioriHC-D produces
fewer candidates than AprioriHC. In Fig. 15b, AprioriHC
runs faster than Two-Phase because Two-Phase needs to
verify the utility of more candidates in Phase II. Though
AprioriHC needs to calculate the utility unit array of candi-
dates and Two-Phase does not, this cost is not expensive. In
Fig. 15f, we can see that CHUD outperforms all the other
algorithms for both phases. For example, when min_utility
… 1%, CHUD is 50 times faster than UP-Growth for Phase I
and 63 times faster for Phase II. Moreover, when CHUD is
combined with DAHU to discover all HUIs, the combination

TABLE 3
Parameter for Synthetic Datasets

Parameter Descriptions Default

D: Total number of transactions 200 K
T: Average transaction length 12
N: Number of distinct items 1,000
I: Average size of maximal potentialFIs 10
Q: Maximum number of purchased items in transactions 5

TABLE 4
Characteristics of Datasets

Dataset N T D

Mushroom 119 23 8,124
Foodmart 1,559 4.4 4,141
BMSWebView1 497 2.51 59,601
T12-I10-N1K-Q5-D200K 1,000 12 200 K

TSENG ET AL.: EFFICIENT ALGORITHMS FOR MINING THE CONCISE AND LOSSLESS REPRESENTATION OF HIGH UTILITY... 735

