

12 IEEE TRANSACTIONS ON XXXXXXXXXXXXXXXXXXXX, VOL. #, NO. #, MMMMMMMM 1996

7.5 Experiment to assess the scalability of the

algorithms

The fourth experiment assesses the scalability of
CMRules, CMDeo, RuleGrowth and TRuleGrowth with
respect to the number of sequences |S|. For this experi-
ment, the original Kosarak dataset was used because it is
a very large dataset containing 700,000 sequences, which
is convenient for varying the size of the dataset easily.
Snake, BMS1 and Sign were not used because they are
much smaller than Kosarak. For the experiment, algo-
rithms were run with minsup = 0.003 and minconf = 0.5,
while |S| was varied from 10,000 to 200,000 with an in-
crement of 10,000. For TRuleGrowth, window_size was set
to 10. As for previous experiments, a maximum memory
usage of 1 GB was set. Moreover, a time limit of 1,000
seconds was used. Results of the experiment are shown in
Fig. 11. As it can be seen, CMRules, RuleGrowth and
TRuleGrowth’s execution time and maximum memory
usage grow linearly with the size of |S|. CMDeo also
shows a similar trend. However, as it approaches the
memory limit of 1 GB, its performance is negatively af-
fected by the Java garbage collector No results are availa-
ble for |S|>100,000 for CMDeo as it exceeded the memory
limit.

Fig. 11. Result of the scalability experiment with Kosarak

7.6 Performance analysis

The efficiency of RuleGrowth/TRuleGrowth can be ana-
lyzed as follows.

No candidate generation. RuleGrowth/TRuleGrowth
discover rules by scanning sequences from the database

0

200

400

600

800

1000

1
0K

3
0K

5
0K

7
0K

9
0K

1
10

K

1
30

K

1
50

K

1
70

K

1
90

K

Ex
ec

u
ti

o
n

 t
im

e
(s

)

|S|

CMRules

CMDeo

RuleGrowth

0

500

1 000

1 500

2 000

10K 110K 210K

R
u

le
 c

o
u

n
t

|S|

Rule count
W10

0

200

400

600

800

1000

1
0K

2
0K

3
0K

4
0K

5
0K

6
0K

7
0K

8
0K

9
0K

1
00

K

1
10

K

1
20

K

1
30

K

1
40

K

1
50

K

1
60

K

1
70

K

1
80

K

1
90

K

2
00

K

M
em

o
ry

 (
m

b
)

|S|

CMRules
CMDeo
RuleGrowth
W10

Figure 10. Influence of window_size

0

500

1000

1500

2000

2500

 E
xe

cu
ti

o
n

 T
im

e
(s

)

minsup

0K

1K

10K

100K

1000K

10000K

R
u

le
 C

o
u

n
t

minsup

200

300

400

500

600

700

M
em

o
ry

 (
m

b
)

minsup

0

50

100

150

200

250

0.96 0.92 0.88 0.84 0.8 0.76 0.72

Ex
ec

u
ti

o
n

 t
im

e
(s

)

minsup

0K

1K

10K

100K

1000K

10000K

0
.9

6

0
.9

4

0
.9

2

0
.9

0
.8

8

0
.8

6

0
.8

4

0
.8

2

0
.8

0
.7

8

0
.7

6

0
.7

4

0
.7

2R
u

le
 C

o
u

n
t

minsup

4

9

14

19

0
.9

6

0
.9

4

0
.9

2

0
.9

0
.8

8

0
.8

6

0
.8

4

0
.8

2

0
.8

0
.7

8

0
.7

6

0
.7

4

0
.7

2M
em

o
ry

 (
m

b
)

minsup

10

100

1000

0
.0

00
8

5

0
.0

00
8

25

0
.0

00
8

0
.0

00
7

75

0
.0

00
7

5

0
.0

00
7

25

0
.0

00
7

0
.0

00
6

75

0
.0

00
6

5

0
.0

00
6

25

0
.0

00
6

Ex
ec

u
ti

o
n

 t
im

e
(s

)

minsup

1K

10K

100K

1000K

10000K

0
.0

00
8

5

0
.0

00
8

25

0
.0

00
8

0
.0

00
7

75

0
.0

00
7

5

0
.0

00
7

25

0
.0

00
7

0
.0

00
6

75

0
.0

00
6

5

0
.0

00
6

25

0
.0

00
6

R
u

le
 C

o
u

n
t

minsup

55

60

65

70

75

80

0
.0

00
8

5

0
.0

00
8

25

0
.0

00
8

0
.0

00
7

75

0
.0

00
7

5

0
.0

00
7

25

0
.0

00
7

0
.0

00
6

75

0
.0

00
6

5

0
.0

00
6

25

0
.0

00
6M

em
o

ry
 (

m
b

)

minsup

0

1

10

100

1000

0.8 0.7 0.6 0.5 0.4 0.3 0.2

Ex
ec

u
ti

o
n

 t
im

e
(s

)

minsup

1

10

100

1000

10000

100000

1000000

0.8 0.7 0.6 0.5 0.4 0.3 0.2

R
u

le
 c

o
u

n
t

minsup

10

15

20

25

30

35

40

0
.8

0
.7

5

0
.7

0
.6

5

0
.6

0
.5

5

0
.5

0
.4

5

0
.4

0
.3

5

0
.3

0
.2

5

0
.2

M
em

o
ry

 (
m

b
)

minsup

B) BMSWebView1

C) Snake

D) Sign

A) Kosarak

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2405509

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

AUTHOR: TITLE 13

to grow rules. The algorithms do not test candidates not
occurring in the database unlike CMRules and CMDeo.

Sid sets keep shrinking. It is easy to see that as rules
grow, sid sets become smaller and less sequences need to
be scanned. Sid sets generally reduce substantially as
rules grow.

Complexity. RuleGrowth/TRuleGrowth are pseudo-
polynomial algorithms. Their complexity is linear with
respect to the number of sequential rules in a database,
either one or two recursive calls are performed to EX-
PANDLEFT/EXPANDRIGHT for each sequential rule.
The cost of each call is upper bounded by the time of
scanning the database once (in the worst case), and count-
ing the frequency of items.

7.7 Experiment to Assess Prediction Accuracy

The RuleGrowth/TRuleGrowth/CMRules algorithms have
been applied successfully in e-learning [6, 7], manufactur-
ing simulation [31], quality control [27], web page click-
stream analysis [30] and anti-pattern detection in service
based systems [32]. In the next paragraphs, we present
results from the application of TRuleGrowth to webpage
prefetching. In this application, we have compared pre-
diction accuracy using (1) sequential rules (SR) mined by
RuleGen [17] enhanced with a window_size constraint and
(2) partially-ordered sequential rules (POSR) mined by
TRuleGrowth. These experiments were carried with the
Kosarak and BMS1 datasets, which are click-stream da-
tasets. Note that we here only give a summary of the
results. Full results about this experiment can be found in
a dedicated publication [30]. For this experiment, each
dataset was split in a training set and a testing set based
on a training_ratio parameter. The training set was used to
generate SR and POSR, respectively. Then, the testing set
was used to test prediction accuracy using the rules. Each
sequence from the test set was split into prefix and suffix
parts based on some parameters named prefix_size and
suffix_size. The task of prediction for a sequence was to
predict the first item from the suffix using the information
from the prefix. We measured the accuracy (number of
good predictions divided by the size of the test set) and
the coverage (number of sequences where it was possible
to make a prediction). In this experiment, we tuned
RuleGen and TRuleGrowth with the minsup and minconf
values that provided the best results. We varied (1) pre-
fix_size, (2) suffix_size, (3) training_ratio and (4) window_size
to perform measurements.

Overall, we have observed that using POSR always
provide a considerably higher accuracy and coverage (up
to 30 % higher accuracy and up to 60% higher coverage),
depending on the scenario. For example, when setting
minconf = 0.5, training_ratio = 50%, minsup = 0.00055
(BMS1) and minsup = 0.002 (Kosarak), prefix_size = 3, suf-
fix_size = 3 and window_size = 5, results were as follows.
For BMS1, POSR provided about 25% accuracy / 95%
coverage, while SR provided about 10% accuracy / 50%
coverage. For Kosarak, POSR provided about 12 % accu-
racy / 50 % coverage and SR provided about 5% accuracy
/ 10% coverage. The reason why SR have poor coverage is
that rules are too specific as highlighted in Section 1.

The experiment has also shown that using the win-
dow_size constraint is beneficial. For POSR, the best values
of window_size were between 5 and 7 (BMS1) and 7
(Kosarak). For SR, the best values were 5 (BMS1) and 7
(Kosarak). Increasing window_size above these values did
not improve accuracy but increased execution times.

Lastly, another interesting result is that using approx-
imately 1,000 to 10,000 rules was enough to provide the
best accuracy for both POSR and SR.

With this experiment, we have presented a real appli-
cation where POSR provides a clear benefit over the use
of SR, and where the window_size constraint is important.

7 Conclusion

This paper presented two algorithms. RuleGrowth is a
novel algorithm for mining sequential rules common to
multiple sequences. Unlike previous algorithms, it uses a
pattern-growth approach for discovering valid rules such
that it avoids considering rules not appearing in the data-
base. The second algorithm (TRuleGrowth) allows the
user to specify a sliding-window constraint on rules to be
mined. To evaluate RuleGrowth and TRuleGrowth, we
performed several experiments on four real-life datasets
having different characteristics. First, the performance of
RuleGrowth was compared with CMRules and CMDeo
while varying the minsup and minconf parameters, to as-
sess their influence on the performance of each algorithm.
Second, RuleGrowth was compared to TRuleGrowth for
different window_size values to evaluate the benefits of
using the window size constraint. Experimental results
show that RuleGrowth is up to several of magnitude
faster and uses up to an order of magnitude less memory
than CMRules and CMDeo. Moreover experiment show
that the execution time and the number of valid rules
found can be reduced by several orders of magnitude
when the window size constraint is used. Lastly, we have
reported results from a real application where using par-
tially-ordered sequential rules and the window constraint
greatly improves accuracy over sequential rules.

ACKNOWLEDGEMENTS

The authors thank the Fonds Québécois de la Recherche
sur la Nature et les Technologies for its financial support.

REFERENCES

[1] R. Agrawal, T. Imielminski and A. Swami, “Mining Association Rules

Between Sets of Items in Large Databases,” Proc. 13th ACM SIGMOD In-

tern. Conf. on Management of Data, pp. 207-216, 1993.

[2] R. Agrawal, R. Srikant, “Mining Sequential Patterns,” Proc. 11th Intern.

Conf. on Data Eng., pp. 3-14, 1995.

[3] D.W. Cheung, J. Han, V. Ng. and Y. Wong, “Maintenance of discovered

association rules in large databases: An incremental updating tech-

nique,” Proc. 12th Intern. Conf. on Data Eng., pp. 106-114, 1996.

[4] G. Das, K.-I. Lin, H. Mannila, G. Renganathan and P. Smyth, “Rule

Discovery from Time Series,” Proc. 4th ACM Intern. Conf. Know. Discov-

ery and Data Mining, pp. 16-22, 1998.

[5] J.S. Deogun and L. Jiang, “Prediction Mining – An Approach to Mining

Association Rules for Prediction,” Proc. 10th Intern. Conf. Rough Sets,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2405509

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14 IEEE TRANSACTIONS ON XXXXXXXXXXXXXXXXXXXX, VOL. #, NO. #, MMMMMMMM 1996

Fuzzy Sets, Data Mining, and Granular Comp., pp. 98-108, 2005.

[6] U. Faghihi, P. Fournier-Viger and R. Nkambou, “A Computational

Model for Causal Learning in Cognitive Agents,” Knowledge Based Sys-

tems, vol. 30, pp. 48-56, 2012.

[7] P. Fournier-Viger, U. Faghihi, R. Nkambou and E. Mephu Nguifo,

“CMRules: An Efficient Algorithm for Mining Sequential Rules Com-

mon to Several Sequences,” Knowledge Based Systems, vol. 25, no. 1, pp.

63-76, 2012.

[8] J.H. Hamilton and K. Karimi, “The TIMERS II Algorithm for the Dis-

covery of Causality,” Proc. 9th Pacific-Asia Conference on Knowledge Dis-

covery and Data Mining, pp. 744-750, 2005.

[9] S.K. Harms, J. Deogun and T. Tadesse, “Discovering Sequential Associ-

ation Rules with Constraints and Time Lags in Multiple Sequences,”

Proc. 13th Intern. Symp. Method. Intell. Systems, pp. 373-376., 2002.

[10] I. Jonassen, J.F. Collins and D.G. Higgin, “Finding flexible patterns in

unaligned protein sequences,” Protein Science, vol. 4, no. 8, pp. 1587-

1595, 1995.

[11] S. Laxman and P. Sastry, “A survey of temporal data mining,” Sadhana,

vol. 3, pp. 173-198, 2006.

[12] D. Lo, S.-.C. Khoo and L. Wong, “Non-redundant sequential rules –

Theory and algorithm,” Inform. Syst., vol. 34, no. 4-5, pp. 438-453, 2009.

[13] H. Mannila, H. Toivonen and A.I. Verkano, “Discovery of frequent

episodes in event sequences,” Data Mining and Knowledge Discovery, vol.

1, no. 3, pp. 259-289, 1999.

[14] J. Pei, J. Han et al., “Mining Sequential Patterns by Pattern-Growth: The

PrefixSpan Approach,” IEEE Trans. Knowledge and Data Eng., vol. 16, no.

10, pp. 1-17, 2004.

[15] P. Fournier-Viger, Knowledge discovery in problem-solving learning

activities, Ph.D. Thesis, Univ. Quebec in Montreal, Montreal, 2010.

[16] Y.L. Hsieh, D.-L. Yang and J. Wu, “Using Data Mining to Study Up-

stream and Downstream Causal Relationship in Stock Market,” Proc.

2006 Joint Conf. Inf. Sc., 2006.

[17] M. J. Zaki, “SPADE: An Efficient Algorithm for Mining Frequent Se-

quences,” Machine Learning, vol. 42, no.1-2, pp. 31-60, 2001.

[18] P. Fournier-Viger, A. Gomariz, M. Campos and R. Thomas, “Fast

Vertical Sequential Pattern Mining Using Co-occurrence Information,”

Proc. 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining,

Springer, pp. 40-52, 2014.

[19] Y. Zhao, H. Zhang, L. Cao, C. Zhang and H. Bohlscheid, “Mining Both

Positive and Negative Impact-Oriented Sequential Rules From Transac-

tional Data,”Proc. 13th Pacific-Asia Conference on Knowledge Discovery and

Data Mining, Springer, pp. 656-663, 2009.

[20] P. Fournier-Viger and V.S. Tseng, “TNS: Mining Top-K Non-

Redundant Sequential Rules,” Proc. 28th Symposium on Applied Compu-

ting, ACM Press, pp. 164-166, 2013.

[21] P. Fournier-Viger, R. Nkambou and V. S. Tseng, “RuleGrowth: Mining

Sequential Rules Common to Several Sequences by Pattern-Growth,”

Proc. 26th ACM Symp. Applied Computing, pp. 954-959, 2011.

[22] A. Pitman and M. Zanker, “An Empirical Study of Extracting Multidi-

mensional Sequential Rules for Personalization and Recommendation

in Online Commerce,” Proc. Wirtschaftinformatik 2011, pp. 180-189, 2011.

[23] P. Papapetrou, G. Kollios, S. Sclaroff and D. Gunopulos, “Discovering

Frequent Arrangements of Temporal Intervals,” Proc. of 5th IEEE Inter-

national Conference on Data Mining, pp. 354-361, 2005.

[24] J. Ayres, J. Flannick, J. Gehrke and T. Yiu, “Sequential PAttern mining

using a bitmap representation,” Proc. 8th ACM Intern. Conf. Know. Dis-

covery and Data Mining (KDD’02), pp. 429-435, 2002.

[25] H. Minqing and B. Liu, "Opinion Feature Extraction Using Class Se-

quential Rules," Proc. AAAI Spring Symp. on Computational Approaches to

Analyzing Weblogs, Palo Alto, USA, March 2006.

[26] J.E. McDunn, K.D. Husain, A.D. Polpitiya, A. Burykin and J. Huan,

“Plasticity of the systemic inflammatory response to acute infection

during critical illness: development of the riboleukogram,” PLoS One,

vol. 13, no. 2, e1564, 2008.

[27] T. Bogon, I.J. Timm, A.D. Lattner, D. Paraskevopoulos, U. Jessen, M.

Schmitz, S. Wenzel, S. Spieckermann, “Towards Assisted Input and

Output Data Analysis in Manufacturing Simulation: The EDASIM Ap-

proach,” Proc. 2012 Winter Simulation Conference, pp. 257-269, 2012.

[28] M.A. Sartor, V. Mahavisno, V. G. Keshamouni, J. Cavalcoli et

al., “ConceptGen: a gene set enrichment and gene set relation mapping

tool,” Bioinformatics, vol. 26, no. 4, pp. 456-463, 2010.

[29] D. Lo, G. Ramalingam, V. P. Ranganath and K. Vaswani, “Mining

Quantified Temporal Rules: Formalism, Algorithms, and Evaluation,”

Proc. 16th Working Conference on Reverse Engineering, pp. 62-71, 2009.

[30] P. Fournier-Viger, T. Gueniche and V.S. Tseng, “Using Partially-

Ordered Sequential Rules to Generate More Accurate Sequence Predic-

tion,” Proc. 8th International Conference on Advanced Data Mining and Ap-

plications, Springer, pp. 431-442, 2012.

[31] B. Kamsu-Foguem, F. Rigal and F. Mauget, “Mining association rules

for the quality improvement of the production process,” Expert Systems

and Applications, vol. 40, no. 4, pp. 1034-1045, 2013.

[32] M. Nayrolles, N. Moha, P. Valtchev, “Improving SOA antipatterns

detection in Service Based Systems by mining execution traces,” Proc.

20th IEEE Working Conference on Reverse Engineering, pp. 321-330, 2013.

[33] P. Fournier-Viger, A. Gomariz, A. Soltani, T. Gueniche, C.W. Wu. and

V.S. Tseng, “SPMF: a Java Open-Source Pattern Mining Library,” Jour-

nal of Machine Learning Research, vol. 15, pp. 3389-3393, 2014.

Philippe Fournier-Viger (Ph.D.) is an assistant-professor at Univer-
sity of Moncton, Canada. He received a Ph.D. in Cognitive Computer
Science at the University of Quebec in Montreal (2010). He has
published more than 70 research papers in refereed international
conferences and journals. His research interests include data min-
ing, pattern mining, text mining, intelligent tutoring systems,
knowledge representation and cognitive modeling. He is the founder
of the popular SPMF open-source data mining library.

Cheng Wei-Wu received the M.Ss. degree in computer science and
information engineering from Ming Chuan University, Taiwan,
R.O.C., in 2009. He is currently pursuing the Ph.D. degree in the
Department of Computer Science and Information Engineering,
National Cheng Kung University, Taiwan, R.O.C.

Vincent S. Tseng (Ph.D) is a professor at National Cheng Kung
University (NCKU), Taiwan, ROC. Dr. Tseng received his Ph.D.
degree from National Chiao Tung University (1997). He has a wide
variety of research interests covering data mining, biomedical infor-
matics, multimedia databases, mobile and Web technologies. He
has published more than 200 research papers in referred journals
and international conferences and also held (or filed), more than 15
patents.

Longbing Cao (Ph.D) is a Professor at the University of Technology
Sydney, and the Data Mining Research Leader of the Australian
Capital Markets Cooperative Research Centre. He got one PhD in
Intelligent Sciences and another in Computing Sciences. His re-
search interests include data mining and machine learning and their
applications, behavior informatics, multi-agent technology, open
complex intelligent systems, and agent mining.

Roger Nkambou (Ph.D) is a Professor of Computer Science at the
University of Quebec at Montreal, and Director of the Graduate
Program in Cognitive Computing (http://dic.uqam.ca). He received
his Ph.D. (1996) in Computer Science from the University of Montre-
al. His research interests include knowledge representation, intelli-
gent tutoring systems, intelligent software agents, ontology engineer-
ing, student modeling and affective computing.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2405509

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

