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7.5 Experiment to assess the scalability of the 

algorithms 

The fourth experiment assesses the scalability of 
CMRules, CMDeo, RuleGrowth and TRuleGrowth with 
respect to the number of sequences |S|. For this experi-
ment, the original Kosarak dataset was used because it is 
a very large dataset containing 700,000 sequences, which 
is convenient for varying the size of the dataset easily. 
Snake, BMS1 and Sign were not used because they are 
much smaller than Kosarak. For the experiment, algo-
rithms were run with minsup = 0.003 and minconf = 0.5, 
while |S| was varied from 10,000 to 200,000 with an in-
crement of 10,000. For TRuleGrowth, window_size was set 
to 10. As for previous experiments, a maximum memory 
usage of 1 GB was set. Moreover, a time limit of 1,000 
seconds was used. Results of the experiment are shown in 
Fig. 11. As it can be seen, CMRules, RuleGrowth and 
TRuleGrowth’s execution time and maximum memory 
usage grow linearly with the size of |S|. CMDeo also 
shows a similar trend. However, as it approaches the 
memory limit of 1 GB, its performance is negatively af-
fected by the Java garbage collector No results are availa-
ble for |S|>100,000 for CMDeo as it exceeded the memory 
limit. 

 
Fig. 11. Result of the scalability experiment with Kosarak 

7.6 Performance analysis 

The efficiency of RuleGrowth/TRuleGrowth can be ana-
lyzed as follows.  

No candidate generation. RuleGrowth/TRuleGrowth 
discover rules by scanning sequences from the database 
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Figure 10. Influence of window_size 
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to grow rules. The algorithms do not test candidates not 
occurring in the database unlike CMRules and CMDeo. 

Sid sets keep shrinking. It is easy to see that as rules 
grow, sid sets become smaller and less sequences need to 
be scanned. Sid sets generally reduce substantially as 
rules grow. 

Complexity. RuleGrowth/TRuleGrowth are pseudo-
polynomial algorithms. Their complexity is linear with 
respect to the number of sequential rules in a database, 
either one or two recursive calls are performed to EX-
PANDLEFT/EXPANDRIGHT for each sequential rule. 
The cost of each call is upper bounded by the time of 
scanning the database once (in the worst case), and count-
ing the frequency of items. 

7.7 Experiment to Assess Prediction Accuracy 

The RuleGrowth/TRuleGrowth/CMRules algorithms have 
been applied successfully in e-learning [6, 7], manufactur-
ing simulation [31], quality control [27], web page click-
stream analysis [30] and anti-pattern detection in service 
based systems [32]. In the next paragraphs, we present 
results from the application of TRuleGrowth to webpage 
prefetching. In this application, we have compared pre-
diction accuracy using (1) sequential rules (SR) mined by 
RuleGen [17] enhanced with a window_size constraint and 
(2) partially-ordered sequential rules (POSR) mined by 
TRuleGrowth. These experiments were carried with the 
Kosarak and BMS1 datasets, which are click-stream da-
tasets. Note that we here only give a summary of the 
results. Full results about this experiment can be found in 
a dedicated publication [30]. For this experiment, each 
dataset was split in a training set and a testing set based 
on a training_ratio parameter. The training set was used to 
generate SR and POSR, respectively. Then, the testing set 
was used to test prediction accuracy using the rules. Each 
sequence from the test set was split into prefix and suffix 
parts based on some parameters named prefix_size and 
suffix_size. The task of prediction for a sequence was to 
predict the first item from the suffix using the information 
from the prefix. We measured the accuracy (number of 
good predictions divided by the size of the test set) and 
the coverage (number of sequences where it was possible 
to make a prediction). In this experiment, we tuned 
RuleGen and TRuleGrowth with the minsup and minconf 
values that provided the best results. We varied (1) pre-
fix_size, (2) suffix_size, (3) training_ratio and (4) window_size 
to perform measurements.  

Overall, we have observed that using POSR always 
provide a considerably higher accuracy and coverage (up 
to 30 % higher accuracy and up to 60% higher coverage), 
depending on the scenario. For example, when setting 
minconf = 0.5, training_ratio = 50%, minsup = 0.00055 
(BMS1) and minsup = 0.002 (Kosarak), prefix_size = 3, suf-
fix_size = 3 and window_size = 5, results were as follows. 
For BMS1, POSR provided about 25% accuracy / 95% 
coverage, while SR provided about 10% accuracy / 50% 
coverage. For Kosarak, POSR provided about 12 % accu-
racy / 50 % coverage and SR provided about 5% accuracy 
/ 10% coverage. The reason why SR have poor coverage is 
that rules are too specific as highlighted in Section 1. 

The experiment has also shown that using the win-
dow_size constraint is beneficial. For POSR, the best values 
of window_size were between 5 and 7 (BMS1) and 7 
(Kosarak). For SR, the best values were 5 (BMS1) and 7 
(Kosarak). Increasing window_size above these values did 
not improve accuracy but increased execution times. 

Lastly, another interesting result is that using approx-
imately 1,000 to 10,000 rules was enough to provide the 
best accuracy for both POSR and SR. 

With this experiment, we have presented a real appli-
cation where POSR provides a clear benefit over the use 
of SR, and where the window_size constraint is important.  

7 Conclusion 

This paper presented two algorithms. RuleGrowth is a 
novel algorithm for mining sequential rules common to 
multiple sequences. Unlike previous algorithms, it uses a 
pattern-growth approach for discovering valid rules such 
that it avoids considering rules not appearing in the data-
base. The second algorithm (TRuleGrowth) allows the 
user to specify a sliding-window constraint on rules to be 
mined. To evaluate RuleGrowth and TRuleGrowth, we 
performed several experiments on four real-life datasets 
having different characteristics. First, the performance of 
RuleGrowth was compared with CMRules and CMDeo 
while varying the minsup and minconf parameters, to as-
sess their influence on the performance of each algorithm. 
Second, RuleGrowth was compared to TRuleGrowth for 
different window_size values to evaluate the benefits of 
using the window size constraint. Experimental results 
show that RuleGrowth is up to several of magnitude 
faster and uses up to an order of magnitude less memory 
than CMRules and CMDeo. Moreover experiment show 
that the execution time and the number of valid rules 
found can be reduced by several orders of magnitude 
when the window size constraint is used. Lastly, we have 
reported results from a real application where using par-
tially-ordered sequential rules and the window constraint 
greatly improves accuracy over sequential rules. 
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