
Exploiting Partial Problem Spaces Learned

from Users‟ Interactions to Provide Key

Tutoring Services in Procedural and Ill-

Defined Domains
Philippe Fournier-Viger

1
, Roger Nkambou

1
and Engelbert Mephu Nguifo

2

1
Université du Québec à Montréal (Canada),

2
Université Blaise Pascal (France),

{fournier-viger.philippe@courriel.uqam.ca, nkambou.roger@uqam.ca }

Abstract. In previous works, we showed how sequential pattern mining can be
used to extract a partial problem space from logged user interactions for a

procedural and ill-defined domain where classic domain knowledge acquisition

approaches don‟t work well. In this paper, we describe in details how such a
problem space can support important tutoring services such as (1) recognizing the

plan of a learner, (2) providing hints and (3) estimating the profile of a learner

including its expertise level and missing or misunderstandood skills.

Keywords. intelligent tutoring systems, domain knowledge mining, tutoring

services

1. Introduction

Domain experts should provide relevant domain knowledge to an Intelligent Tutoring

System (ITS) so that it can assist a learner during problem-solving activities. There are

three main approaches for providing such knowledge. The first one is cognitive task

analysis, which aims at producing effective problem spaces or task models by

observing expert and novice users for capturing different ways of solving problems.

However, cognitive task analysis is a very time-consuming process [1] and it is not

always possible to define a satisfying complete or partial task model, in particular when

a problem is ill-structured. According to Simon [2], an ill-structured problem is one

that is complex, with indefinite starting points, multiple and arguable solutions, or

unclear strategies for finding solutions. Domains that include such problems and in

which, tutoring targets the development of problem-solving skills are said to be ill-

defined (within the meaning of [3]). Constraint-based modeling (CBM) was proposed

as an alternative [4]. It consists of specifying sets of constraints on what is a correct

behavior, instead of providing a complete task description. Though this approach was

shown to be effective for some ill-defined domains, a domain expert has to design and

select the constraints carefully. The third approach consists in integrating an expert

system in an ITS. However, developing an expert system can be difficult and costly,

especially for ill-defined domains. Contrarily to these approaches where domain

experts have to provide domain knowledge, a promising approach is to use knowledge

discovery techniques for automatically learning a partial problem space from logged

user interactions in an ITS. We did an initial research in this direction [5] by proposing

a framework to learn a knowledge base from user interactions in procedural and ill-

defined domains. The framework was applied in a tutoring system to extract a partial

problem space that is used to guide users, and thus showed to be a viable alternative to

the specification of a problem-space by hand for the same domain [5, 6]. The

framework differs from other works that attempt to construct a task model from logged

student interactions such as [7], [8] and [9], since these latter are devoid of learning or

have been designed for being applied in well-defined domains. Recently [10], we

improved our framework by developing a sequential pattern mining algorithm to

extract a problem space that is richer. But the tutoring services were limited in our first

implementation. In this paper, we address this concern by presenting more tutoring

services that can be supported. The paper first introduces RomanTutor [11], the

tutoring system in which this work is applied. Then, it presents our framework for

learning domain knowledge and supported tutoring services. Finally, it presents an

evaluation of its application in RomanTutor and a conclusion.

2. The RomanTutor Tutoring System

RomanTutor [11] is a simulation-based tutoring system to teach astronauts how to

operate Canadarm2, a 7 degrees of freedom robotic arm deployed on the International

Space Station (ISS). The main learning activity in RomanTutor is to move the arm

from a given configuration to a goal configuration. During the robot manipulation,

operators do not have a direct view of the scene of operation on the ISS and must rely

on cameras mounted on the manipulator and at strategic places in the environment

where it operates. To move the arm, an operator must select at every moment the best

cameras for viewing the scene of operation among several cameras mounted on the

manipulator and on the space station.

To provide domain expertise to RomanTutor, we initially applied the expert

system approach by integrating a special path-planner in RomanTutor [11]. The path-

planner can generate a path avoiding obstacles between any two arm configurations. The

path-planner makes it possible to track a learner solution step by step, and generate

demonstrations. However, the generated paths are not always realistic or easy to follow,

as they are not based on human experience, and they do not cover other aspects of the

manipulation task such as selecting cameras and adjusting their parameters. Also, it

cannot support important tutoring services such as estimating knowledge gaps of learners.

In a second project [6], we attempted to model the Canadarm2 manipulation task

by applying the cognitive task analysis approach with a rule-based representation

model. Although, we described high-level rules, it was not possible to go in finer

details of the manipulation task. The reason is that for a given robot manipulation

problem, there are too many possibilities for moving the robot to a goal configuration

and thus, it is not possible to define a complete and explicit task model. In fact, there is

no simple „legal move generator‟ for finding all the possibilities at each step. Hence,

RomanTutor operates in an ill-defined-domain.

The CBM approach [4] may represent a good alternative to the previous

approaches. However, in the RomanTutor context, it would be very hard for domain

experts to describe a set of constraints that accepts all good solutions and no buggy

solutions. In fact, there would be too many constraints; the domain is too complex for

this approach. Moreover, the CBM approach is useful for validating solutions. But it is

not appropriate for suggesting next problem-solving steps to learners. As a solution, we

propose a data mining approach for learning a partial problem space from recorded user

interactions. The next sections present the three main phases of our approach.

3. Phase 1: Recording Users’ Solutions

In the first phase, the tutoring system records the solutions of users that attempt an

exercise. In RomanTutor, an exercise is to move the arm from an initial configuration

to a goal configuration. For each attempt, a sequence of events (or plan) is created in a

database. We define an event 𝑋 = (𝑖1 , 𝑖2, . . . 𝑖𝑛) as a set of actions 𝑖1 , 𝑖2, . . . 𝑖𝑛 done by a

learner that are considered simultaneous, and where each action can be annotated with

an integer value. In RomanTutor, we defined 112 such actions that can be recorded

including (1) selecting a camera, (2) performing an increase or decrease of the

pan/tilt/zoom of a camera and (3) applying a rotation value to an arm joint. Formally,

we define a sequence of events (based on [12]) as 𝑠 =< (𝑡1, 𝑋1), (𝑡2,𝑋2) , …,

 𝑡𝑛 , 𝑋𝑛 > where each event 𝑋𝑘 is associated to a timestamp 𝑡𝑘 indicating the time of

the event. In RomanTutor, timestamps of successive events are succesive integers (0, 1,

2…). An example of a partial action sequence recorded for an user in RomanTutor is

<(0,6{2}),(1,63),(2,53{4}),(3,111{2})> which represents decreasing the rotation value

of joint SP (action 6) by two units, selecting camera CP3 (action 63), increasing the pan

of camera CP2 (action 53) by four units and then its zoom (action 111) by two units.

To annotate sequences with contextual information, we have extended the notion

of sequence database with dimensional information as suggested by [13]. A sequence

database having a set of dimensions 𝐷 = 𝐷1, 𝐷2, . . . 𝐷𝑛 is called a MD-Database. Each

sequence of a MD-Database (a MD-Sequence) possesses a symbolic value for each

dimension or the value "*", which means any values. A set of dimension values is

called a MD-Pattern and is denoted 𝑑1, 𝑑2. . .𝑑𝑛. Table 1 shows an example of MD-

Database containing six learner plans annotated with five dimensions. The first

dimension “Solution state” indicates if the learner plan is a succesful or buggy solution.

In the case of RomanTutor, values for this dimension are produced by the tutoring

system. The four other dimensions of Table 2 are example of dimensions that can be

added manually. Here, whereas the dimension “Expertise” denotes the expertise level

of the learner that performed a sequence, “Skill_1”, “Skill_2” and “Skill_3” indicate

respectively if three specific skills were shown by the learner that performed the

sequence. This example includes only five dimensions of three main types (skills,

expertise level and solution state). However, our framework can accept any kind of

learner information or contextual information encoded as dimensions. In fact, in

RomanTutor, we used 10 skills and the “solution state” dimension to annotate

sequences.

4. Phase 2: Extracting Partial Task Models from Users’ solutions

In the second phase, the tutoring system applies the data mining framework to extract a

partial problem space from users‟ plans. In this work we chose to mine sequential

patterns [14], as we are interested in finding relationships between occurrences of

events in users‟ solutions. To mine sequential patterns, we developed a custom

algorithm [10] to handle the type of data to be recorded in a tutoring system such as

RomanTutor. The reader can refer to [10] for a technical description of the algorithm

and can download a Java implementation by accessing http://www.philippe-fournier-

viger.com/spmf/.

The algorithm takes as input a MD-Database and some parameters and find all

MD-sequences occuring frequently in the MD-Database. Here, sequences are

sequences with timestamps as in [12]. A sequence 𝑠𝑎 =

< (ta1, A1), (ta2, A2, . . . , (tan , An) > is said to be contained in another sequence 𝑠𝑏 =

< (𝑡𝑏1 , 𝐵1), (𝑡𝑏2 , 𝐵2), . . . , (𝑡𝑏𝑛 , 𝐵𝑚) > , if there exists integers 1 = 𝑘1 < 𝑘2 <. . . <
𝑘𝑛 ≤ 𝑚 such that 𝐴1 ⊆ 𝐵𝑘1 , 𝐴2 ⊆ 𝐵𝑘2 , . . . , 𝐴𝑛 ⊆ 𝐵𝑘𝑛 , and that 𝑡𝑏𝑘𝑗 − 𝑡𝑏𝑘1 is equal to

𝑡𝑎𝑗 − 𝑡𝑎1 for each 𝑗 ∈ 1. .. m. Similarly for MD-Patterns, a MD-Pattern 𝑃𝑥 =

𝑑𝑥1, 𝑑𝑥2. . . 𝑑𝑥𝑛 is said to be contained in another MD-Pattern 𝑃𝑦 = 𝑑𝑦1, 𝑑𝑦2. . . 𝑑𝑦𝑚 if

𝑑𝑥1 ⊆ 𝑑𝑦1, 𝑑𝑥2 ⊆ 𝑑𝑦2, . . . , 𝑑𝑥𝑛 ⊆ 𝑑𝑦𝑛 [13]. The relative support of a sequence (or

MD-Pattern) in a sequence database D is defined as the percentage of sequences (or

MD-Pattern) that contains it. The problem of mining frequent MD-sequences is to find

all the MD-sequences such that their support is higher or equal to 𝑚𝑖𝑛𝑠𝑢𝑝 for a MD-

database D, given a support threshold 𝑚𝑖𝑛𝑠𝑢𝑝. As an example, Table 2 shows some

patterns that can be extracted from the MD-Database of Table 1, with a 𝑚𝑖𝑛𝑠𝑢𝑝 of two

sequences (33 %). Consider pattern P3. This pattern represents doing action b one time

unit (immediately) after action a. The pattern P3 appears in MD-sequences S1 and S3. It

has thus a support of 33 % or two MD-sequences. Because this support is higher or equal

to minsup, P3 is deemed frequent. Moreover, the dimension values for P3 tell us that this

pattern was performed by expert users that possess skills “Skill_1”, “Skill_2” and

“Skill_3” and that P3 was found in plan(s) that failed, as well as plan(s) that succeeded.

Table 1. An example database containing 6 user solutions

ID Dimensions Sequence

Solution state Expertise Skill_1 Skill_2 Skill_3

S1
S2

S3

S4
S5

S6

successful
successful

buggy

buggy
successful

successful

expert
novice

expert

intermediate
expert

novice

yes
no

yes

no
no

no

yes
yes

yes

yes
no

no

yes
no

yes

yes
yes

yes

<(0,a),(1,bc)>
<(0,d) >

<(0,a),(1,bc)>

<(0,a),(1,c), (2,d)>
<(0,d), (1,c)>

<(0,c), (1,d)

Table 2. Some frequent patterns extracted from the dataset of Table 1 with a minsup of 33 %

Id Dimensions Sequence Supp.

Solution State Expertise Skill_1 Skill_2 Skill_3

P1

P2
P3

P4

P5
P6

*

*
*

successful

successful
successful

expert

*
expert

*

expert
novice

yes

*
yes

no

*
no

yes

yes
yes

*

*
*

yes

yes
yes

*

yes
no

<(0,a)>

<(0,a)>
<(0,a), (1,b)>

<(0,d)>

<(0,c)>
<(0,d)>

33 %

50 %
33 %

50 %

33 %
33 %

In addition, as [12] we have incorporated in our algorithm the possibility of

specifying time constraints on mined sequences [10]. In RomanTutor, we setup the

algorithm to mine only sequence of size two or greater, as shorter sequences would not be

useful in a tutoring context. Furthermore, we chose to mine sequences with a maximum

time interval between two succesive events of two time units. The benefits of accepting a

gap of two is that it eliminates some "noisy" (non-frequent) learners' actions, but at the

same time it does not allow a larger gap size that could make patterns less useful for

tracking a learner's actions.

Another important consideration is that when applying sequential pattern mining,

there can be many redundant frequent sequences found. For example, in Table 2, the

pattern P1 is redundant as it is included in the pattern P3 and it has the same support. To

eliminate this type of redundancy, we have adapted our algorithm based on [15] and [16]

to mine closed MD-Sequences. Closed MD-sequences are MD-sequences that are not

contained in another sequence having the same support. Mining frequent MD-closed

sequences has the advantage of greatly reducing the size of patterns found without

information loss [15]. Once patterns have been mined by our sequential pattern mining

algorithm, they form a partial problem-space that can be used directly to provide

tutoring services. However, one can also edit the patterns or annotate them with

tutoring ressources, such as textual hints.

5. Phase 3 : Offering Key Tutoring Services

In the third phase, the tutoring system provides assistance to the learner by using the

knowledge learned in the second phase. The basic operation that is used for providing

assistance is to recognize a learner's plan. In RomanTutor, this is achieved by the plan

recognition algorithm RecognizePlan, which is executed after each student action.

When RecognizePlan is called for the first time, it iterates on the whole set of patterns

found during the learning phase to note all the patterns that include the sequence of

actions performed by the learner. If no pattern is found, the algorithm ignores the last

action performed by the learner and searches again. This is repeated until the set of

matching patterns is not empty or the size of the sequence of student actions is smaller

than 2. In our test, removing user actions has shown to improve the effectiveness of the

plan recognition algorithm significantly. The next time RecognizePlan is called, it will

be called with the set of matching patterns found by its last execution. This ensures that

the algorithm will not consider patterns that have been previously rejected.

After performing preliminary tests with RecognizePlan, we noticed that in general,

after more than 6 actions performed by a learner, it becomes hard to tell which pattern

the learner is doing. For that reason, we made improvement to how the RomanTutor

applies the sequential pattern mining algorithm to extract a knowledge base. Originally,

it mined frequent patterns for a whole problem-solving exercise. We modified our

approach to add the notion of "problem states". In the context of RomanTutor, where

an exercise consists of moving a robotic arm to attain a specific arm configuration, the

3D space was divided into 3D cubes, and the problem state at a given moment is

defined as the set of 3D cubes containing the arm joints. An exercise is then viewed as

going from a problem state P1 to a problem state PF. For each attempt at solving the

exercise, RomanTutor logs (1) the sequence of problem states visited by the learner

A = P1 , P2. . . Pn and (2) the list of actions performed by the learner to go from each

problem state to the next visited problem state (P1 to P2, P2 to P3 , . . . Pn−1 to Pn). After

many users performed the same exercise, RomanTutor extracts sequential patterns from

(1) sequences of problems states visited, and from (2) sequences of actions performed

for going from a problem state to another. To take advantage of the added notion of

problem states, we modified RecognizePlan so that every time the problem-state

changes, RecognizePlan will be called with the set of patterns associated to the new

problem state. Moreover, at a more coarse grain level, a tracking of the problem states

visited by the learners is also achieved by RecognizePlan. This allows connecting

patterns for different problem states. We describe next the main tutoring services that a

tutoring agent can provide based on the plan recognition algorithm.

First, a tutoring agent can assess the profile of the learner by looking at the patterns

applied. If for example a learner applies 80% of the time patterns with value

"intermediate" for dimension “expertise”, then RomanTutor can assert with confidence

that the learner expertise level is "intermediate". In the same way, RomanTutor can

diagnose mastered and missing/misunderstanding skills for users who demonstrated a

pattern by looking at the “skills” dimensions of patterns applied, and can estimate other

aspects of a learner‟s profile. This results in rich information that can be used in

various ways by a tutoring system. An example is given by the next tutoring service.

Second, a tutoring agent can guide the learner. This tutoring service consists in

determining the possible actions from the current problem state and proposing one or

more actions to the learner. In RomanTutor, this functionality is triggered when the

student selects "What should I do next?" in the interface menu. RomanTutor then

identifies the set of possible next actions according to the matching patterns found by

RecognizePlan. The tutoring service then selects the action among this set that is

associated with the pattern that has the highest relative support and that is the most

appropriate for the estimated expertise level and skills of the learner. If the selected

patterns contains skills that are not considered mastered by the learner, RomanTutor

can use tutoring resources to explain them. If no actions can be identified, RomanTutor

can use the aforementioned path planner to generate approximate solutions. In this

current version, RomanTutor only interacts with the learner upon request. But it would

be possible to program RomanTutor so that it can intervene if the learner is following

an unsuccessful pattern or a pattern that is not appropriate for its expertise level.

Testing different tutorial strategies with learners is part of our current work.

Finally, a tutoring service that has been implemented in RomanTutor is to let

learners explore patterns to learn about possible ways of solving problem. Currently,

the learners can explore patterns with a very simple interface. However, the learner

could be assisted in this exploration by using an interactive dialog with the system

which could prompt them on their goals and helps them go through the patterns to

achieve these goals.

6. Experimentation

We conducted a preliminary experiment in RomanTutor with two exercises to

qualitatively evaluate the virtual agent‟s capability to provide assistance. The two

exercises consists each of moving a load with the Canadarm2 robotic arm to one of the

two cubes (figure 1.A). We asked 12 users to record plans for these exercises. The

average length of plans was 20 actions. From this data, RomanTutor extracted a partial

problem space. In a subsequent work session, we asked the users to evaluate the

tutoring services provided by the virtual agent. All users agreed that the assistance

provided was helpful. We also observed that the virtual agent correctly inferred the

expertise level of all the learners and thus, provided hints that were adapted to the user

profile. As an example of interaction with a learner, Figure 1.B illustrates a hint

message given to a learner upon request during scenario 1. The guiding tutoring service

selected the pattern that has the highest support value, matches the last student actions,

is marked “successful” and corresponds with the estimated expertise level of the

learner. The given hint is to select camera “CP4” on “Monitor3”, decrease the rotation

value of the joint “WP”, and finally increase the rotation value of joint “WE”. The

values on the right column indicate the values associated to the action. In this context,

the values “1” and “3” means to rotate the joints 10 º and 30 º, respectively (1 unit

equals 10º). By default, three steps are showed to the learners in the hint window

depicted in figure 2.B. However, the learner can click on the “More” button to ask for

more steps or click on the “another possibility” button to ask for an alternative.

It should be noted that although the sequential pattern algorithm was applied only

one time after recording the learners plan, it would be possible to make RomanTutor

apply it periodically to update its knowledge base, while interacting with learners.

Fig. 1. (A) The two scenarios (B) A hint generated by the virtual agent

7. Related work

Lastly, we mention a work that is close to ours [17]. This work was applied for the

well-defined domain of logic proofs. The solution proposed by Barnes et al. consists of

building a Markov Decision Process containing learner solutions for a problem. This is

mainly a graph where each state represents a correct or erroneous state and each link an

action to go from a state to another. Then, given a state, an optimal path can be

calculated to reach a goal state according to constraints such as frequency, lowest

probability of errors or shortest number of actions. An optimal path found in this way is

then used to suggest to a learner the next actions to perform. As for our framework, this

approach has to be applied for each problem. But the proposal of Barnes et al. differs

from ours in several ways. The first important difference is that we extract partial

problem spaces from user solutions. Thus, our framework ignores parts of learner

solutions that are not frequent. This strategy allows coping with domains where the

number of possibilities is very large and user solutions do not share many actions. In

fact, our framework build approximations of learners‟ solutions, where the frequency

threshold minsup control what will be excluded from these approximations.

A second important difference is that the approximations created by our

framework are generalizations as they consist of subsequences appearing in several

learner solutions. This property of problem spaces produced by our framework is very

useful as it allows finding patterns that are common to several profiles of learners or

contexts (for example, patterns common to expert users that succeed to solve a problem,

or common to users possessing/lacking one or more skills that succeeded/failed).

Conversely, the proposal of Barnes et al. doesn‟t take into account the profile of

learners who recorded solutions and other contextual information to learners‟ plans.

Therefore, their proposal cannot support more elaborated tutoring services such as

estimating the profile of a learners by looking at the actions that a learner applies (e.g.

expertise level), and hints cannot be suggested based on an estimated profile of a

learner. We believe this to be a major limitation of their proposal, as in many cases an

ITS should not consider the “optimal” solution as being the best solution for a learner.

An ITS should instead select sucessful solutions that are adapted to a learner profile, to

make the learner progress along the continuum from novice to expert.

8. Conclusion

In this paper, we have presented a fourth approach for domain knowledge acquisition

in ITS that has shown to be a viable alternative to classic domain knowledge

acquisition approaches, particularly for procedural and ill-defined domains where

classical approaches failed. Since the proposed data mining framework and its

inputs/outputs are domain independent, it can be potentially applied to any procedural

ill-defined domains where the problems can be stated in the same way. We described

how the approach can support key tutoring services. Results of our experiment with

RomanTutor showed an improvement over previous versions of RomanTutor in terms

of tracking learners‟ behavior and providing hints. In future works, we will perform

further experiments to measure empirically how the tutoring services influence the

learning of students. We also plan to experiment with different tutoring strategies.

References

[1] V. Aleven, B.M. McLaren, J. Sewall, K. Koedinger, The Cognitive Tutor Authoring Tools (CTAT):

Preliminary evaluation of efficiency gains. Proc. Intelligent Tutoring Systems 2006, 61-70, 2006.

[2] H. A. Simon, Information-processing theory of human problem solving”. In W.K. Estes (Ed.), Handbook
of learning and cognitive processes: Vol. 5. Human information, 1978.

[3] C. Lynch, K. Ashley, V. Aleven, N. Pinkwart, Defining Ill-Defined Domains; A literature survey. Proc.

of the Intelligent Tutoring Systems for Ill-Defined Domains Workshop (ITS06), 1-10, 2006.
[4] A. Mitrovic, M. Mayo, P. Suraweera, B. Martin, Contraint-based tutors: a success story. Proc. of the

Industrial & Engineering Application of Artificial Intelligence & Expert Systems, 931-940, 2001.

[5] R. Nkambou, E. Mephu Nguifo, P. Fournier-Viger, Using Knowledge Discovery Techniques to Support
Tutoring in an Ill-Defined Domain. Proc. of ITS 2008, 395-405, 2008.

[6] P. Fournier-Viger, R. Nkambou, A. Mayers, Evaluating Spatial Representations and Skills in a

Simulator-Based Tutoring System. IEEE Transactions on Learning Technologies, 1:1(2008): 63-74.

[7] B. M. McLaren et al, Bootstrapping Novice Data: Semi-Automated Tutor Authoring Using Student Log

Files, Proceedings of the Workshop on Analyzing Student-Tutor Logs (ITS’2004), 2004.

[8] S.B. Blessing, A Programming by Demonstration Authoring Tool for Model-Tracing Tutors. In
Authoring Tools for Advanced Technology Learning Environments: Toward Cost-Effective Adaptive,

Interactive and Intelligent Educational Software, 93-119. Kluwer Academic Publishers, 2003.

[9] M. Jarivs, G. Nuzzo-Jones, N.T. Heffernan, Applying Machine Learning Techniques to Rule Generation
in Intelligent Tutoring Systems. Proc. Intelligent Tutoring Systems 2006, 541-553. Springer, 2006.

[10] P. Fournier-Viger, R. Nkambou, E. Mephu Nguifo, A Knowledge Discovery Framework for Learning

Task Models from User Interactions in Intelligent Tutoring Systems. Proc. 6th Mexican International
Conference on Artificial Intelligence, 765-778. LNAI 5317, Springer, 2008.

[11] F. Kabanza, R. Nkambou, K. Belghith, Path-Planning for Autonomous Training on Robot Manipulators
in Space. Proc. IJCAI 2005, 1729-173, 2005.

[12] Y. Hirate, H. Yamana, Generalized Sequential Pattern Mining with Item Intervals, Journal of

Computers, 1:3(2006), 51-60.
[13] H. Pinto et al, Multi-Dimensional Sequential Pattern Mining, Proc. Int. Conf. Information and

Knowledge Management (CIKM2001), 81-88, 2001.

[14] R. Agrawal, R. Srikant. Mining Sequential Patterns. Proc. Int. Conf. on Data Engineering, 3-14, 1995.
[15] J. Wang, J. Han, C. Li, Frequent Closed Sequence Mining without Candidate Maintenance, IEEE Trans.

on Knowledge and Data Engineering, 19:8 (2007),1042-1056,

[16] P. Songram, V. Boonjing, S. Intakosum, Closed Multidimensional Sequential Pattern Mining, Proc. 3rd
Int. Conf. Information Technology: New Generations, 512-517, 2006.

[17] T. Barnes, J. Stamper, Toward Automatic Hint Generation for Logic Proof Tutoring Using Historical

Student Data, Proc. 9th Int. Conf. Intelligent Tutoring Systems (ITS 2008), 373-382, 2008.

Acknowledgment. Our thanks go to the FQRNT and NSERC for their logistic and financial support. The

authors would like to thank Severin Vigot and Mikael Watrelot for integrating the framework in RomanTutor,
and all members of the GDAC/PLANIART teams who participated in the development of RomanTutor.

