

FHM: Faster High-Utility Itemset Mining using Estimated Utility Co-occurrence Pruning

Philippe Fournier-Viger¹

Cheng Wei Wu²

Souleymane Zida¹

Vincent S. Tseng²

presented by Ted Gueniche¹

¹University of Moncton, Canada ²National Cheng Kung University

Introduction

Frequent Itemset Mining

 consists of discovering groups of items frequently occurring in a set of transactions.

Example:

A transaction database

Transaction	item	
T ₁	{1, 2, 3, 4, 5}	
T ₂	{1, 2, 5}	
T ₃	{3, 4, 5}	
T ₄	{1, 2, 4, 5}	

FIM with minsup = 50 %

Frequent itemsets

Itemset	Support
{5}	100 %
{4, 5}	75 %
{2, 4, 5}	50 %
•••	•••

Limitations: assume an item can only appear once in a transaction!

assume all items have the same importance/weight (e.g. profit)

Thus, may ignore rare itemset having high profit! (e.g. caviar, wine)

High Utility Itemset Mining

A generalization of FIM such that:

- items can appear more than once in each transaction
- each item has a weight/profit

Several applications:

- click-stream analysis,
- cross-marketing in retail stores,
- bio-medical applications...

High Utility Itemset Mining

Input: transaction database with quantities

TID	A	В	С	D	Е
T ₁	0	0	18	0	1
T ₂	0	6	0	1	1
T ₃	2	0	1	0	1
T ₄	1	0	0	1	1
T ₅	0	0	4	0	2
T ₆	1	1	0	0	0
T ₇	0	10	0	1	1
Ts	3	0	25	3	1
T ₉	1	1	0	0	0
T ₁₀	0	6	2	0	2

unit profit table

ITEM	PROFIT (\$)(per unit)
A	3
В	10
С	1
D	б
Ē	5

a threshold *minutil*

Output: high-utility itemsets, the itemsets having a utility no less than minutil

How to calculate an itemset's utility?

TID	A	В	С	D	Е
T ₁	0	0	18	0	1
T_2	0	6	0	1	1
T ₃	2	0	1	0	1
T ₄	1	0	0	1	1
T ₅	0	0	4	0	2
T ₆	1	1	0	0	0
T ₇	0	10	0	1	1
Tg	3	0	25	3	1
T ₉	1	1	0	0	0
T_{10}	0	6	2	0	2

ITEM	PROFIT (\$)(per unit)	
A	3	
В	10	
С	1	
D	6	
Е	5	

For each transaction, where the itemset appears, we make the sum of the quantity of each item in the itemset multiplied by its unit profit.

$$u({B,D}) = (6 \times 10 + 1 \times 6) + (10 \times 10 + 1 \times 6) = 172$$

A difficult task!

- In **frequent itemset mining**, the anti-monotonicity of the support is used to prune the search space.
- In high-utility-itemset mining, utility is not antimonotonic.
- Example:

```
u({D}) = 30
u({B}) = 240
u({B, D}) = 172
```

Therefore, algorithms for FIM cannot be directly applied to HUIM.

How to solve this problem?

- Mine itemsets using two phases:
 - Two-Phase (PAKDD, 2005), IHUP (TKDE 2010),
 UP-Growth (KDD, 2011)
 - The TWU measure is introduced.
 - an upper bound on the utility of itemsets.
 - anti-monotonic
 - Phase 1: Discover candidate itemsets, that is having a TWU ≥ minutil,
 - Phase 2: For each candidate, calculate its exact utility of by scanning the database.

Recently...

HUI-Miner (CIKM, 2012) - a single phase algorithm

- Create a vertical structure named Utility-List for each item.
- To find larger itemsets, perform a depth-first search by appending items one at a time.
- The exact utility of an itemset is obtained by joining utilitylists of smaller itemsets (no need to scan database).
- Pruning using remaining utility in utility lists
- HUI-Miner outperforms all previous algorithms.

Utility list of {a}

TID	util	rutil
T1	5	3
T2	10	17
T3	5	25

utility = 20

Utility list of {e}

TID	util	rutil
T2	6	5
T3	3	5
T4	3	0

Utility list of {a, e}

TID	util	rutil
T2	16	5
T3	8	5

utility = 12

utility = 24

Problems of HUI-Miner

- **Observation**: Calculating the utility of an itemset joining utility list is very costly.
- We should try to avoid performing joins if possible for low-utility itemsets.
- How?

Utility list of {a}

TID	util	rutil
T1	5	3
T2	10	17
T3	5	25

utility = 20

join

Utility list of {e}

TID	util	rutil
T2	6	5
T3	3	5
T4	3	0

utility = 12

Utility list of {a, e}

TID	util	rutil
T2	16	5
T3	8	5

utility = 24

The FHM algorithm

Main characteristics:

- Extends HUI-Miner.
- Depth-first search.
- Relies on utility-lists to calculate the exact utility of itemsets.

Estimated-Utility Co-occurrence pruning:

- we pre-calculate the TWU measures of 2-itemsets.
- If an itemset contains a 2-itemset such that its
 TWU < minutil, then it is low utility as well as all its supersets, and the join is not performed.

How to calculate TWU? (1)

- The transaction utility of a transaction is the sum of the utility of items in that transaction
- Example:

TID	Transaction Utility	TID	Transaction Utility
T_1	23	T_6	13
T_2	71	T_7	111
T_3	12	T_8	57
T_4	14	Т9	13
T ₅	14	T_{10}	72

How to calculate TWU (2)

The transaction weighted utility (TWU) of an itemset is the sum of the transaction utilities of transactions containing it.

• TWU({A}) = tu(T3) + tu(T4) + tu(T6) + tu(T8) + tu(T9) = 12 + 14 + 13 + 57 + 13 = 109

• TWU({A, D}) = tu(T4) + tu(T8) = 14 + 57 = 71.

Estimated Utility Co-Occurrence Structure (EUCS)

- Stores the TWU of all 2-itemsets.
- Built during the initial database scans.
- Represented as a triangular matrix or hashmap of hashmaps

• Example:

Item	a	b	С	d	e	f
b	30					
С	65	61				
d	38	50	58			
e	57	61	77	50		
f	30	30	30	30	30	
g	27	38	38	0	38	0

Note: this example is using another input database

Pseudocode (1)

Algorithm 1: The FHM algorithm

```
input: D: a transaction database, minutil: a user-specified threshold output: the set of high-utility itemsets
1 Scan D to calculate the TWU of single items;
2 I* ← each item i such that TWU(i) < minutil;</li>
3 Let > be the total order of TWU ascending values on I*;
4 Scan D to built the utility-list of each item i ∈ I* and build the EUCS structure;
5 Search (∅, I*, minutil, EUCS);
```

Algorithm 2: The Search procedure

```
input: P: an itemset, Extensions OfP: a set of extensions of P, the minutil
             threshold, the EUCS structure
   output: the set of high-utility itemsets
1 foreach itemset Px \in ExtensionsOfP do
       if SUM(Px.utilitylist.iutils) \ge minutil then
           output Px;
 3
 4
       end
       if SUM(Px.utilitylist.iutils) + SUM(Px.utilitylist.rutils) \ge minutil then
 5
           ExtensionsOfPx \leftarrow \emptyset;
 6
           foreach itemset Py \in ExtensionsOfP such that y \succ x do
               if \exists (x, y, c) \in EUCS \text{ such that } c \geq minutil) then
                   Pxy \leftarrow Px \cup Py;
                   Pxy.utilitylist \leftarrow Construct (P, Px, Py);
10
                    ExtensionsOfPx \leftarrow ExtensionsOfPx \cup Pxy;
11
               end
12
13
           Search (Px, ExtensionsOfPx, minutil);
14
15
       end
16 end
```

Pseudocode (2)

```
Algorithm 3: The Construct procedure
   input: P: an itemset, Px: the extension of P with an item x, Py: the
             extension of P with an item y
   output: the utility-list of Pxy
 1 UtilityListOfPxy ← ∅;
   foreach tuple ex \in Px.utilitylist do
       if \exists ey \in Py.utilitylist \ and \ ex.tid = exy.tid \ then
 3
            if P.utilitylist \neq \emptyset then
 4
                Search element e \in P.utilitylist such that e.tid = ex.tid.;
 5
               exy \leftarrow (ex.tid, ex.iutil + ey.iutil - e.iutil, ey.rutil);
 6
            end
 7
            else
 8
              exy \leftarrow (ex.tid, ex.iutil + ey.iutil, ey.rutil);
 9
            end
10
            UtilityListOfPxy \leftarrow UtilityListOfPxy \cup \{exy\};
11
       end
12
13 end
14 return UtilityListPxy;
```

Experimental Evaluation

Datasets' characterictics

Dataset	transaction count	distinct item count	average transaction length
Chainstore	1,112,949	46,086	7.26
BMS	59,601	497	4.85
Kosarak	990,000	41,270	8.09
Retail	88,162	16,470	10.30
Chess	3,396	75	37

- Chainstore has real unit profit/quantity values
- Other datasets: unit profit between 1 and 1000 and quantities between 1 and 5 (normal distribution)
- FHM vs HUI-Miner
- Java, Windows 7, 5 GB of RAM

Execution times

Execution times (cont'd)

Observations:

- FHM has the best performance on all datasets
- FHM is up to 6 times faster than HUI-Miner
- Performance is similar to HUI-Miner for extremely dense datasets (e.g. Chess) because each items co-occurs with each other in almost all transactions.

Pruning effectiveness

- A large amount of join operations are avoided by FHM.
- For example:

– Chainstore : 18 %

- BMS: 91 %

Kosarak : 87 %

– Retail : 87 %

Memory overhead

- The memory footprint of the EUCS structure is small.
- For example:

Chainstore: 10.3 MB

- BMS: 4.18 MB

Kosarak: 1.19 MB

- Retail: 410 MB

Conclusion

- FHM: A novel algorithm for high-utility itemset mining
- Our proposal:
 - ➤ a novel data structure: EUCS (Estimated Utility Co-occurrence Structure)
 - ➤ a novel strategy to avoid some join operations: EUCP (Estimated Utility Coocurrence Pruning).
- Experimental results:
 - > avoid up to 95 % of join operations
 - > outperforms HUI-Miner by up to 6 times
- Source code and datasets available as part of the SPMF data mining library (GPL 3).

Open source Java data mining software, 66 algorithms http://www.phillippe-fournier-viger.com/spmf/

Thank you. Questions?

Open source Java data mining software, 55 algorithms http://www.phillippe-fournier-viger.com/spmf/