FHM: Faster High-Utility Itemset Mining using
Estimated Utility Co-occurrence Pruning

Philippe Fournier-Vigert!
Cheng Wei Wu?
Souleymane Zidal

Vincent S. Tseng?
presented by Ted Gueniche?

lUniversity of Moncton, Canada

°National Cheng Kung University

"4 4 UNIVERSITE
’ ’ ’ DE MONCTON

Introduction

* Frequent Itemset Mining

— consists of discovering groups of items frequently
occurring in a set of transactions.

 Example:

A transaction database

Frequent itemsets

it R s
minsup =50 % [upport

Tl {11 2) 31 4; 5} é {5} 100 %
T, {1, 2,5} {4, 5} 75 %
T, 13,4, 5} (2,4 5) 50 %
T, {1,2,4,5}

Limitations : assume an item can only appear once in a transaction !

assume all items have the same importance/weight (e.g. profit)
Thus, may ignore rare itemset having high profit! (e.g. caviar, wine)

High Utility ltemset Mining

* A generalization of FIM such that:

— items can appear more than once in each
transaction

— each item has a weight/profit
* Several applications:
— click-stream analysis,

— cross-marketing in retail stores,

— bio-medical applications...

High Utility ltemset Mining

Input: transaction database with quantities

unit profit table

ITEM PROFIT ($)(per unit)
A 3
B 10
(1
D 0
E 5

. ITEM _

- . - A B C D E
T 0 0 18 0 1
T; 0 6 0 1 1
T 2 0 1 0 1
T, 1 0 0 1 1
Ts 0 0 4 0 2
Ts 1 1 0 0 0
T, 0 10 0 1 1
T; 3 0 25 3 1
Ts 1 1 0 0 0
Tho 0 6 2 0 2

a threshold

Output: high-utility itemsets, the itemsets having a

utility no less than

How to calculate an itemset’s utility?

ITEM PROELT (5) per unit)
A
b ()
L I
T%
| 3

. ITEM _
- .H'“'“*-H_ A B C D E
T; 0 0 18 0 1
0 6 0 1 1
3 2 0 1 0 |
1 0 0 1 1
Ts 0 0 4 0 2
Ts 1 1 0 0 0
T N 10 (0 1 1
Ty 3 0 25 3 1
Ts 1 1 (0 0 (0
The 0 6 2 0 2

For each transaction, where the itemset
appears, we make the sum of the
guantity of each item in the itemset
multiplied by its unit profit.

u({B,D} = (6x10 + 1x6) + (10x10 +1x6) = 172

A difficult task!

In frequent itemset mining, the anti-monotonicity
of the support is used to prune the search space.
In high-utility-itemset mining, utility is not anti-
monotonic.

Example:
u({D}) =30
u({B}) = 240

u({B, D}) =172

Therefore, algorithms for FIM cannot be directly
applied to HUIM.

How to solve this problem?

* Mine itemsets using two phases:

— Two-Phase (PAKDD, 2005), IHUP (TKDE 2010),
UP-Growth (KDD, 2011)

— The TWU measure is introduced.
e an upper bound on the utility of itemsets.

e anti-monotonic

— Phase 1: Discover candidate itemsets, that is having
a TWU > minutil,

— Phase 2: For each candidate, calculate its exact
utility of by scanning the database.

Recently...
HUI-Miner (CIKM, 2012) — a single phase algorithm

— Create a vertical structure named Utility-List for each item.

— To find larger itemsets, perform a depth-first search by
appending items one at a time.

— The exact utility of an itemset is obtained by joining utility-
lists of smaller itemsets (no need to scan database).

— Pruning using remaining utility in utility lists
— HUI-Miner outperforms all previous algorithms.

Utility list of {a} Utility list of {e} Utility list of {a, e}
TID | util | rutil_ TID | util | rutil_ TID | util | rutil
M 5 3 —I— 2 6 5 > 1 16 S

T2 10 17 jom T3 3 5 3 8 5

T3 5 25 T4 3 0

utility = 20 utility = 12 utility = 24

Problems of HUI-Miner

* Observation: Calculating the utility of an itemset

joining utility list is very costly.

 We should try to avoid performing joins if possible

for low-utility itemsets.

e How?

Utility list of {a) Utility list of {e}

o Lt ot R > |t |rui
T1 5 3 _I_ T2 6 5
T2 10 17 join T3 3 5
T3 5 25 T4 3 0

utility = 20 utility =12

Utility list of {a, e}

TID_util_| rutil_
> 12 16 5

T3 8 5

utility = 24

The FHM algorithm

Main characteristics:

Extends HUI-Miner.
Depth-first search.

Relies on utility-lists to calculate the exact utility of
itemsets.

Estimated-Utility Co-occurrence pruning:

— we pre-calculate the TWU measures of 2-itemsets.

— If an itemset contains a 2-itemset such that its
TWU < minutil, then it is low utility as well as all its
supersets, and the join is not performed.

10

How to calculate TWU? (1)

* The transaction utility of a transaction is the
sum of the utility of items in that transaction

 Example:

How to calculate TWU (2)

The transaction weighted utility (TWU) of an
itemset is the sum of the transaction utilities of
transactions containing it.

TWU({A}) = tu(T3) + tu(T4) + tu(T6) + tu(T8) +
tu(79) =12+ 14+ 13 +57+13 =109

- TWU({A, DY) =tu(T4) + tu(T8) = 14 + 57 = 71.

Estimated Utility Co-Occurrence
Structure (EUCS)

Stores the TWU of all 2-itemsets.
Built during the initial database scans.

Represented as a triangular matrix or hashmap
of hashmaps

Example:
Item | a b c d = f
b 30 Note: this example

IS using another

c 63 | 61 input database

d 38 | 30 | 38

= 57T | a1l | 77 | 50

f 30 | 30 | 30 | 30 | 30

z 27138 |38 (0 38 0 13

Algorithm 1: The FHM algorithm PS e u d O CO d e (1)

input : I): a transaction database, minutil: a user-specified threshold
output: the set of high-utility itemsets

Scan [J to calculate the TWU of single items;

I* + each item i such that TWU{i) < minutil;

Let = be the total order of TWU ascending values on 1™

Scan [J to built the utility-list of each item ¢ £ I'* and build the EUC'S

structure;
5 Search (B, I", minutil, EUCS);

e W bl

Algorithm 2: The Search procedure

input : P: an itemset, ExtensionsOfP: a set of extensions of P, the minutil
threshold, the EUCS structure
output: the set of high-utility itemsets

1 foreach itemset Pr e FrtensionsOfP do

2 if SUM{Pzx. utilitylist.iutils) > minutil then

3 | output Pr;

4 end

5 if SUM{Pzx. utilitylist.iutils) +SUM{ Pz utilitylist.rutils) > minutil then
i

T

8

ExtensionsOfPr + B;
foreach itemset Py € ExtensionsOfFP such that y = r do
if d(x,y,e) € EUCS zuch that ¢ = minutil) then
9 Pry + Pz U Py;
10 Pry.utilitylist + Construct (F. Pz, Py):
11 ErtensionsOfPr + ExtensionsOfPz U Pxy;
12 end
13 end
14 Search (Pzx, ErtensionsOfPz, minutil);
15 end

16 end 14

Pseudocode (2)

Algorithm 3: The Construct procedure

input : P: an itemset, Pz: the extension of P with an item x, Py: the
extension of P with an item y
output: the utility-list of Pry

1 UtilityListOf Pry + B
2 foreach tuple ex € Pr.outilitylist do
2 if dey € Py.utilitylist and ex.tid = exy.tid then
4 if Pautilitylist # 0 then
5 Search element e € Poutilitylist such that e.tid = ex . tid.;
é exy + (exr.tid, ex.dutil + ey iutil — e.dutil, ey.rutil);
T end
8 else
0 | exy + (ex.tid, ex.iutil + ey iutil, ey.rutil);
10 end
11 UtilityListO f Pry + UtilityListO f Pry U {exy};
12 end
12 end

14 return UtilitylListPry;

15

Experimental Evaluation

Datasets’ characterictics

Dataset transaction count | distinct item count | average
transaction length

Chainstore 1,112,949 46,086 7.26
BMS 59,601 497 4.85
Kosarak 990,000 41,270 8.09
Retail 88,162 16,470 10.30
Chess 3,396 75 37

Chainstore has real unit profit/quantity values

Other datasets: unit profit between 1 and 1000 and
quantities between 1 and 5 (normal distribution)

FHM vs HUI-Miner
Java, Windows 7, 5 GB of RAM

16

Execution times

Chainstore

3 8 8

Runtime (s)
8 8 8

8 8 8

—a— HUIMiner

—4—FHM

5 3

1200000

1900000
minutil

Kosarak

—a— HUIMiner

—&—FHM

1200000

Runtime (s)

BMS

300 -
200 A

1mw

—a— HUIMiner

—a&— FHM

A
£=3

(5 3
i

2260000

2264000
minutil

Retall

—a— HUIMiner

—4— FHM

10000

Ll L
15000 20000
minutil

25000

30000

Runtime (s)

Execution times (cont’d)

20 45 ——— -
18 - —a&— HUIMiner
40 -
16 - —sa— HUIMiner
35 - —&— FHM
14 1 —a&—FHM
12 N s 30 n
I
10 4 d
g 25
8 1 £ 20 -
6 &
4 15
2 B 10 =1
T T T T 5 4 = s < A A A
20000000 25000000 30000000 35000000 40000000 45000000 ‘T
minutil T T T T 1
0 200000 400000 minutil 600000 800000 1000000
Observations:

* FHM has the best performance on all datasets
* FHM is up to 6 times faster than HUI-Miner

 Performance is similar to HUI-Miner for extremely dense datasets
(e.g. Chess) because each items co-occurs with each other in almost

all transactions.
18

Pruning effectiveness

* Alarge amount of join operations are avoided
oy FHM.

* For example:
— Chainstore : 18 %
— BMS : 91 %
— Kosarak : 87 %
— Retail : 87 %

19

Memory overhead

* The memory footprint of the EUCS structure is
small.

* For example:
— Chainstore: 10.3 MB
— BMS: 4.18 MB
— Kosarak: 1.19 MB
— Retail: 410 MB

20

Conclusion

* FHM: A novel algorithm for high-utility itemset mining
* QOur proposal:

» a novel data structure: EUCS (Estimated Utility Co-occurrence
Structure)

» a novel strategy to avoid some join operations: EUCP (Estimated
Utility Coocurrence Pruning).

» Experimental results:
» avoid up to 95 % of join operations
» outperforms HUI-Miner by up to 6 times

* Source code and datasets available as part of the SPMF
data mining library (GPL 3).

. » Open source Java data mining software, 66 algorithms
8@@_11 http://www.phillippe-fournier-viger.com/spmf/

21

http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/

Thank you. Questions?

® 4

o

A Open source Java data mining software, 55 algorithms
j _F)BJ_]_,J http://www.phillippe-fournier-viger.com/spmf/

This work has been funded by an NSERC grant from the government of Canada.

22

http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/

