
Philippe Fournier-Viger1

Cheng Wei Wu2

Souleymane Zida1

Vincent S. Tseng2

presented by Ted Gueniche1

1University of Moncton, Canada

2National Cheng Kung University

FHM: Faster High-Utility Itemset Mining using
Estimated Utility Co-occurrence Pruning

1

Introduction

• Frequent Itemset Mining

– consists of discovering groups of items frequently
occurring in a set of transactions.

• Example:

2

Transaction item

T1 {1, 2, 3, 4, 5}

T2 {1, 2, 5}

T3 {3, 4, 5}

T4 {1, 2, 4, 5}

FIM with

minsup = 50 %

A transaction database

Itemset Support

{5} 100 %

{4, 5} 75 %

{2, 4, 5} 50 %

… …

Frequent itemsets

Limitations : assume an item can only appear once in a transaction !

 assume all items have the same importance/weight (e.g. profit)

 Thus, may ignore rare itemset having high profit ! (e.g. caviar, wine)

High Utility Itemset Mining

• A generalization of FIM such that:

– items can appear more than once in each
transaction

– each item has a weight/profit

• Several applications:

– click-stream analysis,

– cross-marketing in retail stores,

– bio-medical applications…

3

High Utility Itemset Mining
Input: transaction database with quantities

4

a threshold minutil

 unit profit table

Output: high-utility itemsets, the itemsets having a
utility no less than minutil

How to calculate an itemset’s utility?

u({B,D} = (6×10 + 1×6) + (10×10 +1×6) = 172

For each transaction, where the itemset

appears, we make the sum of the

quantity of each item in the itemset

multiplied by its unit profit.

A difficult task!
• In frequent itemset mining, the anti-monotonicity

of the support is used to prune the search space.

• In high-utility-itemset mining, utility is not anti-
monotonic.

• Example:

 u({D}) = 30
 u({B}) = 240

 u({B, D}) = 172

• Therefore, algorithms for FIM cannot be directly
applied to HUIM.

How to solve this problem?

• Mine itemsets using two phases:

– Two-Phase (PAKDD, 2005), IHUP (TKDE 2010),
UP-Growth (KDD, 2011)

– The TWU measure is introduced.

• an upper bound on the utility of itemsets.

• anti-monotonic

– Phase 1: Discover candidate itemsets, that is having
a TWU ≥ minutil,

– Phase 2: For each candidate, calculate its exact
utility of by scanning the database.

7

Recently…
HUI-Miner (CIKM, 2012) – a single phase algorithm

– Create a vertical structure named Utility-List for each item.

– To find larger itemsets, perform a depth-first search by
appending items one at a time.

– The exact utility of an itemset is obtained by joining utility-
lists of smaller itemsets (no need to scan database).

– Pruning using remaining utility in utility lists

– HUI-Miner outperforms all previous algorithms.

8

Utility list of {a} Utility list of {e} Utility list of {a, e}

join

TID util rutil

T1 5 3

T2 10 17

T3 5 25

TID util rutil

T2 6 5

T3 3 5

T4 3 0

utility = 20 utility = 12 utility = 24

TID util rutil

T2 16 5

T3 8 5

Problems of HUI-Miner

• Observation: Calculating the utility of an itemset
joining utility list is very costly.

• We should try to avoid performing joins if possible
for low-utility itemsets.

• How?

9

Utility list of {a} Utility list of {e} Utility list of {a, e}

join

TID util rutil

T1 5 3

T2 10 17

T3 5 25

TID util rutil

T2 6 5

T3 3 5

T4 3 0

utility = 20 utility = 12 utility = 24

TID util rutil

T2 16 5

T3 8 5

The FHM algorithm

Main characteristics:

• Extends HUI-Miner.

• Depth-first search.

• Relies on utility-lists to calculate the exact utility of
itemsets.

• Estimated-Utility Co-occurrence pruning:

– we pre-calculate the TWU measures of 2-itemsets.

– If an itemset contains a 2-itemset such that its
TWU < minutil, then it is low utility as well as all its
supersets, and the join is not performed.

10

How to calculate TWU? (1)

• The transaction utility of a transaction is the
sum of the utility of items in that transaction

• Example:

How to calculate TWU (2)

The transaction weighted utility (TWU) of an
itemset is the sum of the transaction utilities of
transactions containing it.

• TWU({A}) = tu(T3) + tu(T4) + tu(T6) + tu(T8) +
tu(T9) = 12 + 14 + 13 + 57 + 13 = 109

• TWU({A, D}) =tu(T4) + tu(T8) = 14 + 57 = 71.

Estimated Utility Co-Occurrence
Structure (EUCS)

• Stores the TWU of all 2-itemsets.

• Built during the initial database scans.

• Represented as a triangular matrix or hashmap
of hashmaps

• Example:

13

Note: this example

is using another

input database

14

Pseudocode (1)

15

Pseudocode (2)

Experimental Evaluation
Datasets’ characterictics

• Chainstore has real unit profit/quantity values

• Other datasets: unit profit between 1 and 1000 and
quantities between 1 and 5 (normal distribution)

• FHM vs HUI-Miner

• Java, Windows 7, 5 GB of RAM

16

Dataset transaction count distinct item count average
transaction length

Chainstore 1,112,949 46,086 7.26

BMS 59,601 497 4.85

Kosarak 990,000 41,270 8.09

Retail 88,162 16,470 10.30

Chess 3,396 75 37

Execution times

17

Chainstore BMS

Kosarak

Retail Kosarak

Execution times (cont’d)

18

Observations:

• FHM has the best performance on all datasets

• FHM is up to 6 times faster than HUI-Miner

• Performance is similar to HUI-Miner for extremely dense datasets
(e.g. Chess) because each items co-occurs with each other in almost
all transactions.

Chess T1060100K

Pruning effectiveness

• A large amount of join operations are avoided
by FHM.

• For example:

– Chainstore : 18 %

– BMS : 91 %

– Kosarak : 87 %

– Retail : 87 %

19

Memory overhead

• The memory footprint of the EUCS structure is
small.

• For example:

– Chainstore: 10.3 MB

– BMS: 4.18 MB

– Kosarak: 1.19 MB

– Retail: 410 MB

20

Conclusion

• FHM: A novel algorithm for high-utility itemset mining

• Our proposal:

 a novel data structure: EUCS (Estimated Utility Co-occurrence
Structure)

 a novel strategy to avoid some join operations: EUCP (Estimated
Utility Coocurrence Pruning).

 Experimental results:

 avoid up to 95 % of join operations

 outperforms HUI-Miner by up to 6 times

• Source code and datasets available as part of the SPMF
data mining library (GPL 3).

Open source Java data mining software, 66 algorithms
http://www.phillippe-fournier-viger.com/spmf/
 21

http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/

Thank you. Questions?

Open source Java data mining software, 55 algorithms
http://www.phillippe-fournier-viger.com/spmf/

22
This work has been funded by an NSERC grant from the government of Canada.

http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/

