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Introduction 

• Frequent Itemset Mining  

– consists of discovering groups of items frequently 
occurring in a set of transactions. 

• Example: 
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Transaction item 

T1 {1,  2,  3, 4, 5} 

T2 {1,  2, 5} 

T3 {3, 4, 5} 

T4 {1, 2, 4, 5} 

 

FIM with 

minsup = 50 % 

A transaction database 

Itemset Support 

{5} 100 % 

{4, 5} 75 % 

{2, 4, 5} 50 % 

… … 

Frequent itemsets 

Limitations :  assume an item can only appear once in a transaction ! 

                       assume all items have the same importance/weight (e.g. profit) 

               Thus, may ignore rare itemset having high profit !  (e.g. caviar, wine) 



High Utility Itemset Mining 

• A generalization of FIM such that: 

– items can appear more than once in each 
transaction 

– each item has a weight/profit 

• Several applications: 

– click-stream analysis, 

– cross-marketing in retail stores, 

– bio-medical applications… 
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High Utility Itemset Mining 
Input: transaction database with quantities 
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a threshold minutil 

                                                     unit profit table 

Output: high-utility itemsets, the itemsets having a 
utility no less than minutil  



How to calculate an itemset’s utility? 

u({B,D} = (6×10 + 1×6) + (10×10 +1×6) = 172  

For each transaction, where the itemset 

appears, we make the sum of the 

quantity of each item in the itemset 

multiplied by its unit profit. 



A difficult task! 
• In frequent itemset mining, the anti-monotonicity 

of the support is used to prune the search space. 

• In high-utility-itemset mining, utility is not anti-
monotonic. 

• Example: 

     u({D}) = 30 
     u({B}) = 240 

      u({B, D}) = 172 

• Therefore, algorithms for FIM cannot be directly 
applied to HUIM. 

 



How to solve this problem? 

• Mine itemsets using two phases: 

– Two-Phase (PAKDD, 2005), IHUP (TKDE 2010),  
UP-Growth (KDD, 2011) 

– The TWU measure is introduced. 

• an upper bound on the utility of itemsets. 

• anti-monotonic 

– Phase 1: Discover candidate itemsets, that is having 
a TWU ≥ minutil, 

– Phase 2: For each candidate, calculate its exact 
utility of by scanning the database. 
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Recently… 
HUI-Miner (CIKM, 2012) – a single phase algorithm 

– Create a vertical structure named Utility-List for each item. 

– To find larger itemsets, perform a depth-first search by 
appending items one at a time. 

– The exact utility of an itemset is obtained by joining utility-
lists of smaller itemsets (no need to scan database). 

– Pruning using remaining utility in utility lists 

– HUI-Miner outperforms all previous algorithms. 
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Utility list of {a}     Utility list of {e}     Utility list of {a, e} 

join 

TID util rutil 

T1 5 3 

T2 10 17 

T3 5 25 

TID util rutil 

T2 6 5 

T3 3 5 

T4 3 0 

utility = 20 utility = 12 utility = 24 

TID util rutil 

T2 16 5 

T3 8 5 



Problems of HUI-Miner 

• Observation: Calculating the utility of an itemset 
joining utility list is very costly. 

• We should try to avoid performing joins if possible 
for low-utility itemsets. 

• How?  
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Utility list of {a}     Utility list of {e}     Utility list of {a, e} 

join 

TID util rutil 

T1 5 3 

T2 10 17 

T3 5 25 

TID util rutil 

T2 6 5 

T3 3 5 

T4 3 0 

utility = 20 utility = 12 utility = 24 

TID util rutil 

T2 16 5 

T3 8 5 



The FHM algorithm 

Main characteristics: 

• Extends HUI-Miner. 

• Depth-first search. 

• Relies on utility-lists to calculate the exact utility of 
itemsets. 

• Estimated-Utility Co-occurrence pruning: 

– we pre-calculate the TWU measures of 2-itemsets. 

– If an itemset contains a 2-itemset such that its  
TWU < minutil, then it is low utility as well as all its 
supersets, and the join is not performed. 
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How to calculate TWU? (1) 

• The transaction utility of a transaction is the 
sum of the utility of items in that transaction 

• Example: 



How to calculate TWU (2) 

The transaction weighted utility (TWU) of an 
itemset is the sum of the transaction utilities of 
transactions containing it. 

 

• TWU({A}) = tu(T3) + tu(T4) + tu(T6) + tu(T8) + 
tu(T9) = 12 + 14 + 13 + 57 + 13 = 109  

 

• TWU({A, D}) =tu(T4) + tu(T8) = 14 + 57 = 71. 

 



Estimated Utility Co-Occurrence 
Structure (EUCS) 

• Stores the TWU of all 2-itemsets. 

• Built during the initial database scans. 

• Represented as a triangular matrix or hashmap 
of hashmaps 

• Example: 
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Note: this example 

is using another 

input database 
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Pseudocode (1) 
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Pseudocode (2) 



Experimental Evaluation 
Datasets’ characterictics 

• Chainstore has real unit profit/quantity values 

• Other datasets: unit profit between 1 and 1000 and 
quantities between 1 and 5 (normal distribution) 

• FHM vs HUI-Miner 

• Java, Windows 7, 5 GB of RAM 
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Dataset transaction count distinct item count average 
transaction length 

Chainstore 1,112,949 46,086 7.26 

BMS 59,601 497 4.85 

Kosarak 990,000 41,270 8.09 

Retail 88,162 16,470 10.30 

Chess 3,396 75 37 



Execution times 
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Chainstore BMS 

Kosarak 

Retail Kosarak 



Execution times (cont’d) 
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Observations: 

• FHM has the best performance on all datasets 

• FHM is up to 6 times faster than HUI-Miner 

• Performance is similar to HUI-Miner for extremely dense datasets 
(e.g. Chess) because each items co-occurs with each other in almost 
all transactions. 

Chess T1060100K 



Pruning effectiveness 

• A large amount of join operations are avoided 
by FHM. 

• For example: 

– Chainstore : 18 % 

– BMS : 91 % 

– Kosarak : 87 % 

– Retail : 87 % 
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Memory overhead 

• The memory footprint of the EUCS structure is 
small. 

• For example: 

– Chainstore: 10.3 MB 

– BMS: 4.18 MB 

– Kosarak: 1.19 MB 

– Retail: 410 MB 
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Conclusion 

• FHM: A novel algorithm for high-utility itemset mining 

• Our proposal: 

 a novel data structure: EUCS (Estimated Utility Co-occurrence  
Structure) 

 a novel strategy to avoid some join operations: EUCP (Estimated 
Utility Coocurrence Pruning). 

 Experimental results: 

 avoid up to 95 % of join operations 

 outperforms HUI-Miner by up to 6 times 

• Source code and datasets available as part of the  SPMF 
data mining library (GPL 3). 

Open source Java data mining software, 66 algorithms 
http://www.phillippe-fournier-viger.com/spmf/ 
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Thank you. Questions? 

Open source Java data mining software, 55 algorithms 
http://www.phillippe-fournier-viger.com/spmf/ 
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