negFIN: An efficient algorithm for fast mining frequent itemsets

Nader Aryabarzana, Behrouz Minaei-Bidgolib,∗, Mohammad Teshnehlabc

a Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
b School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran
c Faculty of Electrical Engineering, Systems and Control Department, K. N. Toosi University of Technology, Tehran, Iran

\textbf{A R T I C L E I N F O}

Article history:
Received 3 December 2017
Revised 19 March 2018
Accepted 22 March 2018
Available online 24 March 2018

Keywords:
Prefix tree
Nodesets
Bitmap representation
Frequent itemsets

\textbf{A B S T R A C T}

Frequent itemset mining is a basic data mining task and has numerous applications in other data mining tasks. In recent years, some data structures based on sets of nodes in a prefix tree have been presented. These data structures store essential information about frequent itemsets. In this paper, we propose another efficient data structure, NegNodeset. Similar to other such data structures, the basis of NegNodeset is sets of nodes in a prefix tree. NegNodeset employs a novel encoding model for nodes in a prefix tree based on the bitmap representation of sets. Based on the NegNodeset data structure, we propose negFIN, which is an efficient algorithm for frequent itemset mining. The efficiency of the negFIN algorithm is confirmed by the following three reasons: (1) the NegNodesets of itemsets are extracted using bitwise operators, (2) the complexity of calculating NegNodesets and counting supports is reduced to $O(n)$, where n is the cardinality of NegNodeset, and (3) it employs a set-enumeration tree to generate frequent itemsets and uses a promotion method to prune the search space in this tree. Our extensive performance study on a variety of benchmark datasets indicates that negFIN is the fastest algorithm, compared with previous state-of-the-art algorithms. However, our algorithm runs with the same speed as dFIN on some datasets.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

“Frequent itemset mining” is one of the important data mining tasks and has numerous applications in other data mining tasks, such as the discovery of association rules (Ceglar & Roddick, 2006), clustering (Wang, Wang, Yang, & Yu, 2002), and classification (Cheng, Yan, Han, & Yu, 2008). The original use of this task was for market basket analysis and was first proposed in (Agrawal, Imieliński, & Swami, 1993). It aims to find items in the customer transactions database that are frequently bought together.

1.1. Problem definition

Let $I = \{i_1, i_2, \ldots, i_{nit}\}$ be the set of all items in the transactional database; a transaction T be a set of some items ($T \subseteq I$), with a unique identifier TID; and a database $DB = \{T_1, T_2, \ldots, T_{nit}\}$ be the set of transactions. Each P where $P \subseteq I$ is called an “itemset.” P is also called a k-itemset, where $|P| = k$. A transaction T contains an itemset P if and only if $P \subseteq T$, the support of P, which is denoted as $support(P)$, is defined as the percentage of transactions in DB containing P. Let min – support be the user-defined minimum support threshold. P is called a frequent itemset if and only if min – support $\leq support(P)$. Given the database DB and the min – support threshold, the frequent itemset mining task is defined as “discovering all frequent itemsets with their supports.” The number of itemsets that have to be checked to discover frequent itemsets is 2^{nit}, where $nit = |I|$. Therefore, the problem of discovering frequent itemsets is NP.

1.2. Motivation and contribution

Frequent itemset mining has been a hot research topic in the data mining field for the last two decades (Aliberti, Calonatto, Di Pietro, & Mariani, 2015; Calders, Dexters, Gillis, & Goethals, 2014; Deng, 2014; Deng, Gao, & Xu, 2011; Lin, Hong, Lin, & Wang, 2015; Lin, Hong, & Lin, 2015; Troiano & Scibelli, 2014; Vo, Le, Hong, & Le, 2015). In recent years, four types of data structures based on the sets of nodes in a “prefix tree” have been presented to enhance the efficiency of mining frequent itemsets. They are: (1) Node – list (Deng & Wang, 2010), (2) N – list (Deng, Wang, & Jiang, 2012), (3) Nodeset (Deng & Lv, 2014), and (4) DiffNodeset (Deng, 2016). All of these data structures employ a prefix tree with encoded nodes and associate a set of nodes with each itemset. The
nodes in Node - list and N - list are encoded by the pre-order rank and post-order rank of the node. Two algorithms, PPV (Deng & Wang, 2010) and PrePost (Deng et al., 2012), have been proposed for mining frequent itemsets based on these two data structures, respectively. These two algorithms outperform their predecessors. However, they have a drawback: they consume a lot of memory (Deng & Lv, 2014). To overcome this problem, another data structure, called Nodeset (Deng & Lv, 2014), has been proposed. Unlike \(N \) - list and Node - list, the nodes in a Nodeset are encoded only by the pre-order (or post-order) rank of the nodes (Deng & Lv, 2014). The Nodeset of each k-itemset \((3 \leq k) \) is extracted by the intersection of the sections of two \((k-1) \)-items (Deng & Lv, 2014). The FIN algorithm (Deng & Lv, 2014) has been proposed for frequent itemset mining based on this structure. The disadvantage of Nodeset is that the Nodeset cardinality becomes very large for some datasets (Deng, 2016). To overcome this problem, another data structure, DiffNodeset (Deng, 2016), has been proposed. In contrast to Nodeset, the DiffNodeset of each k-itemset \((3 \leq k) \) is extracted by the difference between the DiffNodesets of two \((k-1) \)-items (Deng, 2016). Extensive experiments show that the cardinality of DiffNodeset is smaller than that of Nodeset (Deng, 2016). The dFIN algorithm (Deng, 2016) has been proposed for mining frequent itemsets based on the DiffNodeset data structure. Experimental results show that the dFIN algorithm is faster than its predecessors (Deng, 2016).

Despite the advantages of DiffNodeset, we find that calculating the difference between two DiffNodesets takes a long time on some databases. To overcome this problem, we propose a new data structure, NegNodeset, which employs a prefix tree as well as the previous four data structures. Unlike these data structures, NegNodeset employs a new encoding model for nodes. The node-encoding model of NegNodeset is based on the bitmap representation of sets. Consider a universal set \(U \) with cardinality \(n \). We can represent each subset of \(U \) by a bitmap of size \(n \). Each element of \(U \) is assigned to one of the bits in the bitmap. If an element is a member of a subset \(S \subseteq U \), then its corresponding bit is 1; otherwise it is 0. Take the following example into account: let there be a universal set \(U = \{1, 2, 3\} \) and subsets \(A = \{1, 2\} \) and \(B = \{2, 3\} \). With two bitmaps of size 4, in which each \(a_i \) (0 \(\leq i \leq 3 \)) is assigned to their ith bit, these subsets are represented as \(A = 1100 \) and \(B = 1001 \). With this representation of sets, some common set operators can be realized efficiently using bitwise operators. For example, to calculate the intersection (union) of two given sets, we can use the bitwise operator AND (OR) on their corresponding bitmaps. Bitwise operators are implemented efficiently in CPUs and done in one CPU cycle.

Based on the NegNodeset data structure, we propose negFIN, a fast algorithm for mining frequent itemsets. The efficiency of the negFIN algorithm is confirmed by the following three reasons: (1) new NegNodesets are extracted using bitwise operators, which are fast; (2) the complexity of extracting new NegNodesets and counting their supports is reduced to \(O(n) \), instead of \(O(m + n) \) in previous algorithms, where \(m \) and \(n \) are the cardinality of two sets of nodes, and \(n \leq m \); and (3) it employs a “set-extension tree” (Rymon, 1992) to generate frequent itemsets and uses a promotion method to prune search space in this tree. This pruning strategy generates the frequent itemsets, sometimes directly without candidate generation.

1.3. Performance of negFIN

We conducted several experimental studies to evaluate the performance of the negFIN algorithm. We compared the performance of negFIN against dFIN (Deng, 2016), Goethals’s Eclat (Goethals & Zaki, 2004), and FP-growth* (Grahne & Zhu, 2005), which have been the leading algorithms in the field of frequent itemset mining so far. The experimental results show that negFIN has good performance and, compared to the above mentioned algorithms, runs faster or equally fast. It runs faster than Goethals’s Eclat (Goethals & Zaki, 2004) and FP-growth* (Grahne & Zhu, 2005) on all datasets. It still runs faster than dFIN (Deng, 2016) on some datasets, but runs as fast as dFIN (Deng, 2016) on other datasets.

1.4. Structure of the paper

The rest of this paper is organized as follows: Section 2 discusses background and related work for frequent itemset mining. Section 3 introduces basic definitions and properties relevant to the NegNodeset structure and the negFIN algorithm. Section 4 explains the negFIN algorithm. Section 5 shows experimental results. Section 6 concludes the paper, and section 7 provides some future research directions.

2. Related work

Many algorithms have been proposed to discover all frequent itemsets efficiently. These algorithms are divided into two main categories: (1) algorithms that use the “candidate generation” method, and (2) algorithms that use the “pattern growth” method (Ceglar & Roddick, 2006). In the candidate generation method, the candidate itemsets are generated first, and then frequent itemsets are identified from these candidate itemsets. This method employs an anti-monotone property, called Apriori (Agrawal & Srikant, 1994), to prune search space. The Apriori property explains that if an itemset is not frequent, then none of its super-itemsets are frequent either. Algorithms like (Agrawal & Srikant, 1994; Deng et al., 2011; Savasere, Omiecinski, & Navathe, 1995; Shenoy et al., 2000; Zaki, 2000; Zaki & Gouda, 2003) employ the candidate generation method. The drawback of this method is that it is highly expensive, because it requires multiple database scans.

Unlike the candidate generation method, the pattern growth method does not generate the candidate itemsets and avoids multiple database scans by storing essential information about frequent itemsets into special data structures. The classic and basic algorithm in this category is the FP-growth algorithm (Han, Pei, & Yin, 2000). It stores essential information about frequent itemsets in a tree-based data structure, namely frequent pattern tree (FP-tree). Similar to the FP-growth algorithm, other algorithms, like (Grahne & Zhu, 2005; Jian et al., 2001; Liu, Lu, Lou, Xu, & Yu, 2004), employ the pattern growth method to discover frequent itemsets. Despite the above benefits of the pattern growth method, this method has some weaknesses, which are as follows: (1) it is inefficient on sparse datasets (Deng et al., 2012) and (2) the data structures employed by pattern growth algorithms are complex (Woon, Ng, & Lim, 2004).

In recent years, four types of data structures based on prefix trees have been proposed to store essential information about frequent itemsets, which are as follows: (1) \(\text{Node} - \text{list} \) (Deng & Wang, 2010), (2) \(N - \text{list} \) (Deng et al., 2012), (3) \(\text{Nodeset} \) (Deng & Lv, 2014), and (4) DifferentialNodeset (Deng, 2016). Both Node - list and \(N - \text{list} \) are based on a tree structure called PPC-tree (Deng & Wang, 2010; Deng et al., 2012). A PPC-tree is a prefix tree in which each node is encoded by its pre-order rank and post-order rank. The \(\text{Node} - \text{list} \) or \(N - \text{list} \) of an itemset is a set of nodes in the PPC-tree. \(N - \text{list} \) has two advantages over \(\text{Node} - \text{list} \): (1) the cardinality of the \(N - \text{list} \) of an itemset is much smaller than the cardinality of its \(\text{Node} - \text{list} \); (2) \(N - \text{list} \) employs a property, called the “single path property,” to directly discover frequent itemsets without candidate generation in some cases. Two algorithms, PPV (Deng & Wang, 2010) and PrePost (Deng et al., 2012), have been proposed for discovering all frequent itemsets, based on \(\text{Node} - \text{list} \) and \(N - \text{list} \) respectively. In recent years,
(Deng & Lv, 2015; Vo, Coenen, Le, & Hong,) have employed highly efficient pruning techniques to enhance PrePost performance. Despite the mentioned advantages of Node – list and N – list, these data structures consume a lot of memory, because they need to store both the pre-order and post-order ranks of nodes. To overcome this problem, the Nodeset (Deng & Lv, 2014) data structure has been proposed, which only holds one of either the pre-order or the post-order rank of nodes. The Nodeset of each k-itemset (3 ≤ k) is extracted from the intersection of the Nodesets of two (k – 1) -itemsets (Deng & Lv, 2014). The FIN (Deng & Lv, 2014) algorithm has been proposed for discovering frequent itemsets based on the Nodeset data structure. Although Nodeset is an efficient structure for discovering frequent itemsets, the Nodeset cardinality becomes very large on some datasets (Deng, 2016). To overcome this problem, the DiffNodeset (Deng, 2016) data structure has been proposed. In contrast to Nodeset, the DiffNodeset of each k-itemset (3 ≤ k) is extracted from the difference between the DiffNodesets of two (k – 1) -itemsets (Deng, 2016). The dFIN (Deng, 2016) algorithm has been proposed for discovering frequent itemsets based on the DiffNodeset data structure. Extensive experiments show that the dFIN algorithm runs faster than its state-of-the-art predecessors (Deng, 2016).

3. Basic terminologies

In addition, similar data structure named PUN – list (Deng, 2018) has been proposed to discover “high utility itemsets,” a new kind of mining task that is different from frequent itemset mining. In this task, each item has a utility value and can occur more than once in a transaction. A high utility itemset is an itemset that its utility is not less than a given minimum threshold. In addition to storing an information about frequent itemsets, PUN – list data structure also stores an information about utilities. The MIP (Deng, 2018) algorithm has been proposed for efficiently discovering high utility itemsets based on the PUN – list data structure. The experimental results show that MIP algorithm is very efficient and runs faster than its state-of-the-art predecessors (Deng, 2018).

In this section, the basic terminologies and properties related to the NegNodeset structure and the negFIN algorithm will be introduced. Here, some notations and terminologies are similar to the notations and terminologies that are used in (Deng & Wang, 2010; Deng et al., 2012). Most notations and terminologies are illustrated by examples. These examples are based on Example 1.

Example 1. Consider a sample transaction database, which is shown in Table 1, and min – support = 0 . 4 . In this table, the first column shows the transaction ID (TID), the second column shows the items in each transaction, and the third column shows the frequent items in each transaction, which are sorted in non-ascending order with respect to support(α), where α is an item.

Table 1

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
<th>Ordered frequent items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>e, b, g, d</td>
<td>b, d, e</td>
</tr>
<tr>
<td>2</td>
<td>c, e, b, a</td>
<td>a, b, e</td>
</tr>
<tr>
<td>3</td>
<td>c, b, a, i</td>
<td>a, b, c</td>
</tr>
<tr>
<td>4</td>
<td>a, d, h</td>
<td>a, d</td>
</tr>
<tr>
<td>5</td>
<td>a, d, c, b, f</td>
<td>a, b, c, d</td>
</tr>
</tbody>
</table>

Definition 1. (γ-relation). ∀1, 2 ∈ F1 (The set of frequent items); i2γi1 if and only if support(i2) ≥ support(i1). In Example 1, a > b > c > d > e.

Definition 2. (D1). Given F1, L1 is the zero-based vector of ordered frequent items, where items are sorted in non-descending order with respect to support(α), where α is an item.

In this study, L1 is denoted as L1 = [i0, i1, ..., i|F1| – 1], where |F1| = |F1| (the abbreviation for number of frequent items), and i|F1| < ... > i1 > i0. Furthermore, a k-itemset P is denoted as Pk = i0, ... , il1 or Pk = ikPk−1, where ik > ... > il1 > i1, and Pk−1 = ik−1, ... , il1.

In Example 1, F1 = [e, b, a, c, d, e], L1 = [e, d, c, b, a] (Fig. 1), and a sample itemset P = [e, b, d] is denoted as P3 = bde.

Definition 3. (Pδk). Let Pk = ikPk−1 (2 ≤ k), Pδk is defined as Pδk = −Pδk−1, where −ik means the absence of item ik.

Definition 4. (index(item)). For any item i, i ∈ L1, i ∈ L1, index(i) is defined as the index of item i in the zero-based vector L1. Fig. 1 shows the index of each frequent item in Example 1.

Definition 5. (BMC(itemset Pk)); the abbreviation for bitmap code of itemset). Each itemset Pk can be represented by a bitmap code BMC(Pk) = b0b1b2...b|F| of size |F| as follows: the jth item in the zero-based vector L1 is assigned to the bit bj in this bitmap. If an item i (i ∈ L1) is a member of Pk, then its corresponding bit is 1; otherwise it is 0.

The bit assigned to each frequent item for Example 1 is shown in Fig. 2. In Example 1, BMC(ad) = 10011.

NegNodesets are based on the BMC-tree. Here, BMC-tree is the abbreviation for Bitmap Coding tree and is defined as follows:

Definition 6. (BMC-tree). A BMC-tree is a kind of tree that:

(1) Its root holds ∅ (means no item) and has a number of item pre- fix subtrees, as the children of the root.

(2) Each node in the item prefix subtree holds an item i (i ∈ L1). If the father of this node represents an item j, then j > i (we suppose that ∀i, i ∈ L1, j > i). The portion of the path reaching this node is represented by the itemset node – path.

(3) Each has four fields: item – name, count, bitmap – code, and children – list. item – name holds an item i (i ∈ L1), count holds the number of transactions that contain the itemset node – path. bitmap – code holds BMC(node – path) (Definition 5). children-list holds all children of this node.

The BMC-tree for Example 1 is shown in Fig. 3.

Definition 7. (The “main section” and “don’t-care section” of BMC(node – path)). Let a node N hold an item i1, N.node – path = ik1...il1, where ik1 > ... > il1 > i1, BMC(node – path) = b0b1b2...b|F|, ..., b1b0, and the item i1 is assigned to the bit bm (m = index(i1)). The bits b0b1b2...b1 are defined as the main section of BMC(node – path), and the bits bm−1...b1b0 are defined as the don’t-care section of BMC(node – path).

![Fig. 1. The zero-based vector L1, and the index of each frequent item in Example 1.](image1)

![Fig. 2. The bit assigned to each frequent item for Example 1.](image2)
Fig. 3. The BMC-tree for Example 1. Each node label represents the item – name field. The number in each node represents the count field. A binary number on the left side of each node represents the bitmap – code field. Items in parentheses represent the item assigned to each bit of bitmap – code. The underlined digits in bitmap – code represent the main section, and other bits represent the don’t-care section.

For example, see Fig. 3.

Property 1. Bit values in the don’t-care section of $\text{BMC}(\text{node} – \text{path})$ have don’t-care values; hence, we can set these bits to 0.

Rationale. Let a node N hold an item i_1, N.node $–$ path $= i_1 \ldots i_k$, and B(node $–$ path) $= b_{nf-1} \ldots, b_1, b_0$. Each bit b in the don’t-care section of $\text{BMC}(\text{node} – \text{path})$ is assigned to an item like i_k, where i_k $<$ i (Definition 7). According to the definition of a BMC-tree (Definition 6), such items will or will not be registered in the descendant nodes of N, and we do not have any information about the presence or absence of them. Therefore, the values of these bits are not important. Later, we are going to find out that the don’t-care section is useless.\Box

Property 2. The 0 bit in the main section of $\text{BMC}(\text{node} – \text{path})$ means that its corresponding item does not exist in node $–$ path.

Rationale. Let a node N hold an item i_1, N.node $–$ path $= i_1 \ldots i_k$, and B(node $–$ path) $= b_{nf-1} \ldots, b_1, b_0$. Each bit b in the main section of B(node $–$ path) is assigned to an item like i_k, where i_k $<$ i (Definition 7). Let $b = 0$. We prove by contradiction that i is $\text{N.node} – \text{path}$. Suppose that $i \in \text{N.node} – \text{path}$. According to the definitions of bitmap codes (Definition 5) and BMC-trees (Definition 6), b must be 1. This contradicts the supposition that $b = 0$. Hence, the supposition $i \in \text{N.node} – \text{path}$ is false, and $i \notin \text{N.node} – \text{path}.$$\Box$

Property 3. All the bits in the bitmap – code of the root of the BMC-tree are 0.

Property 4. Let a node N hold an item i_1, and a node N.father be its father node. N.bitmap – code $= N$.father.bitmap – code $\lor 2^{\text{index}(i_1)}$ and N.father.bitmap – code are the same, except the bit assigned to the item i_1 (index(i_1)th bit). This bit in N.father.bitmap – code is a don’t-care bit, but in N.bitmap – code it is 1. In the binary number $2^{\text{index}(i_1)}$, the index(i_1)th bit is 1 and other bits are 0. Hence, the binary operator \lor turns the index(i_1)th bit of N.bitmap – code to 1.\Box

Based on Definition 6, Property 3 and Property 4, the BMC-tree construction algorithm is described in Algorithm 1.

According to Definition 6, the structure of a BMC-tree is almost the same as the structure of a POC-tree (Deng & Lv, 2014), except that in a BMC-tree, each node is encoded by $\text{BMC}(\text{node} – \text{path})$, while in a POC-tree, each node is encoded by its pre-order rank. This difference is displayed in the lines 6 and 20 of Algorithm 1.

A BMC-tree is only used to build the set of nodes associated with each frequent 1-itemset. Later, we will find that after building these sets of nodes, the BMC-tree is useless and can be deleted.

Definition 8. (N–info). Let N be a node in a BMC-tree. The N–info of N is the pair of its bitmap – code and count fields (bitmap – code, count). This definition is similar to definition of N–info in Deng and Lv (2014).

Definition 9. (Nodeset(itemset P_k)). The Nodeset of itemset P_k is a set of all the N–infos of nodes like N in the BMC-tree in such a way that N holds the item i_1, and each item in $i_k, i_{k-1}, \ldots, i_1$ is held in one of the ancestor nodes of N. By considering Definition 5 and Definition 6, the Nodeset of itemset P_k is defined as follows:

$$\text{Nodeset}(P_k) = \{ \text{The } N \text{– info of } N \text{ holds } i_1, \text{ and } \forall i_j, 1 \leq j \leq k, \text{ the bit assigned to } i_j \text{ in } N \text{.bitmap – code is } 1 \}$$

The Nodeset of each frequent 1-itemset for Example 1 is shown in Fig. 4. These Nodesets are extracted from Fig. 3. As two other examples, the Nodeset of itemsets bd and abd are shown in Fig. 5.

Definition 10. (NegNodeset(itemset P_k)). Let $2 \leq k$. The NegNodeset of itemset $P_k = i_k, i_{k-1}, \ldots, i_1$ is equal to $\text{Nodeset}(P_k) \setminus \text{Nodeset}(P_{k-1})$. Therefore,
that contain the itemset \(P_k \) and register the item \(i_1 \) in such a node \(N_i \). Hence, \(\text{support}(P_k) = \sum_{\text{ni.count}(P_k)} \).

Property 6. Let \(2 \leq k \). \(\text{support}(P_k) = \sum_{\text{ni.count}} \).

For example, in Fig. 5, \(\text{NegNodeset}(abd) = \text{Nodeset}(\neg abd) = \{(01010, 1)\} \). According to Property 6, \(\text{support}(\neg abd) = 1 \).

Rationale. According to Property 5, \(\text{support}(P_k) = \sum_{\text{ni.count}} \). Furthermore, according to Definition 10, \(\text{Nodeset}(P_k) = \text{NegNodeset}(\neg P_k) \). Hence, \(\text{support}(P_k) = \sum_{\text{ni.count}} \).

Property 7. Let itemsets \(P_k = \{i_k_{l-1}, P_{k-2}\} \) and \(Q_{k-1} = \{i_k P_{k-2}\} \), and \(3 \leq k \). The \(\text{NegNodeset} \) of \(k \)-itemset \(P_k \) can be directly extracted from the \(\text{NegNodeset} \) of \((k-1) \)-itemset \(Q_{k-1} \), as follows:

\[
\text{NegNodeset}(P_k) = \{i_k P_{k-2}\} = \left\{ \begin{array}{l}
\{ ni \mid \text{ni} \in \text{NegNodeset}(Q_{k-1}) \\
\text{ni} \text{ has the bit assigned to item } i_{k-1} \text{ in ni.bitmap } \wedge \text{ ni.bitmap - code is } 1
\end{array} \right\}
\]

In Example 1, Let \(P_3 = \{bcd\} \), \(Q_2 = \{bd\} \), \(P_1 = \{d\} \), and \(\text{NegNodeset}(bd) = \text{Nodeset}(\neg bd) = \{(10010, 1)\} \). According to Property 7, \(\text{NegNodeset}(bcd) = \text{Nodeset}(\neg bcd) \) can be extracted from \(\text{NegNodeset}(bd) = \text{Nodeset}(\neg bd) \) as follows: \(N = \{01010, 1\} \) is a member of \(\text{NegNodeset}(bd) \), and its \text{bitmap} \- \text{code} is 10010. The bit assigned to the item \(c \) in this \text{bitmap} \- \text{code} (the third bit from the right) is 0. Therefore, \((10010, 1) \) is not a member of \(\text{NegNodeset}(bcd) \), and \(\text{NegNodeset}(bcd) = \emptyset \).

Rationale. Let \(ni_p \in \text{NegNodeset}(P_k) \), and \(ni_q \in \text{NegNodeset}(Q_{k-1}) \). According to Definition 10, all bits in the \text{ni.p.bitmap} \- \text{code} and \text{ni.q.bitmap} \- \text{code} are the same, except the bit assigned to \(i_{k-1} \). This bit in \text{ni.p.bitmap} \- \text{code} is 1, but in \text{ni.q.bitmap} \- \text{code}, it may be 0 or 1. Therefore, if this bit in \text{ni.q.bitmap} \- \text{code} is 1, then \(ni_q \) is also a member of \(\text{NegNodeset}(P_k) \).

Property 8. Let itemsets \(P_k = \{i_k P_{k-1}\} \) and \(P_k' = \{i_k P_{k-1}\} \), and \(2 \leq k \).

For example, in Table 1, \(\text{support}(bd) = 2, \text{support}(abd) = 1 \), and \(\text{support}(\neg abd) = 1 \). We find that \(\text{support}(abd) = \text{support}(bd) - \text{support}(\neg abd) \).

Rationale. All transactions in \(DB(P_{k-1}) \) are divided into two groups: (1) those which contain the item \(i_k \) and (2) those which do not contain the item \(i_k \). They have no transaction in common. Hence, \(\text{DB}(P_{k-1}) = \text{DB}(i_k P_{k-1}) + \text{DB}(\neg i_k P_{k-1}) \). Consequently, \(\text{support}(P_{k-1}) = \text{support}(i_k P_{k-1}) + \text{support}(\neg i_k P_{k-1}) \), or \(\text{support}(P_{k-1}) = \text{support}(P_{k-1}) - \text{support}(P_k) \).

Property 9. (Superset equivalence \(\text{Deng & Lv, 2014} \).) Given itemsets \(P \) and \(Q \) and an item \(i \), where \(P \cap (i) = \emptyset \), \(i \in P \), and \(i \notin Q \), if \(\text{support}(P) = \text{support}(P \cup (i)) \), then \(\text{support}(P \cup (i)) = \text{support}(P) \).
support(P ∪ Q ∪ I)). In Table 1, let P = ab, Q = e, and I = c. support(ab) = support(abc) = 3. Hence, support(abe) = support(abce) = 1.

Rationale. Please see Deng and Lv (2014).

Definition 11. (Set-enumeration tree (Rymon, 1992)). Given L₁ (Definition 2), a set-enumeration tree is a tree structure such that:

1. Each node N in the set-enumeration tree has two fields: item — name and children — list. N.item — name holds an item i (i ∈ L₁ ∪ I), N.children — list holds all children of node N. Moreover, the node N represents an itemset N.itemset.
2. The root holds the item â (root.item — name = â) and represents the itemset â (root.itemset = â). The child nodes of the root hold items i, where i ∈ L₁.
3. For other nodes N, the child nodes of N hold items i, where i ∈ L₁ ∧ i.N.item — name, respectively. Further, the itemset of N is defined as N.itemset = N.father.itemset ∪ N.item — name, where the node N.father is the father of node N.

Based on Definition 11, the pseudo-code of the set-enumeration tree construction algorithm is described in Algorithm 2.

The set-enumeration tree for Example 1 is shown in Fig. 6. For example, in Fig. 6, the node marked with an asterisk holds the item b and represents the itemset bd.

4. negFIN: the proposed algorithm

negFIN employs a set-enumeration tree (Definition 11) to represent the search space. The framework of negFIN consists of three steps. In the first step, the BMC-tree is constructed, all frequent 1-itemsets and their Nodesets are identified, and level 1 of the set-enumeration tree is constructed. In the second step, all frequent 2-itemsets and their NegNodesets are identified, and level 2 of the set-enumeration tree is constructed. In the third step, all frequent k-itemsets (3 ≤ k) and their NegNodesets are identified, and other levels of the set-enumeration tree are constructed. negFIN employs the superset equivalence property (Property 9) as a pruning strategy.

We demonstrate the negFIN algorithm through Example 1. For example, in the first step, Nodeset(d) and support(d) are computed as follows:

\[
\text{Nodeset}(d) = \{(01010, 1), (11110, 1), (10010, 1)\} \text{ (Figure 4)}.
\]

Algorithm 2 (Set-enumeration tree construction).

Input: The zero-based vector L₁ (Definition 2).

Output: A set-enumeration tree (Definition 11).

1. Create the node root;
2. root.level = 0; // The root is at level 0;
3. root.children = list = ∅;
4. root.item = name = â;
5. root.itemset = â;
6. for each item i ∈ L₁ do:
7. Create the node child;,
8. child.level = root.level + 1;
9. child.item = name = i;
10. child.itemset = ∅;
11. Append child, into root.children — list;
12. call constructing_set_enumeration_tree (child); //Line 15
13. end for
14. return root;
15. procedure constructing_set_enumeration_tree (N)
16. P = N.itemset;
17. N.children — list = ∅;
18. for each item i ∈ L₁ ∧ i.N.item = name do:
19. R = P ∪ {i}
20. Create the node child;,
21. child.level = N.level + 1;
22. child.item = name = i;
23. child.itemset = R;
24. Append child, into N.children — list;
25. call constructing_set_enumeration_tree (child); //Line 15
26. end for
27. end procedure

support(d) = 3 (Eq. (1) and Property 5).

In the second step, based on the Nodeset of 1-itemset d (Eq. (1)) and according to Definition 10, the NegNodeset of 2-itemset ad is extracted as follows:

NegNodeset(ad) = Nodeset(¬ad) = \{(01010, 1)\}.

support(¬ad) is computed as follows:

support(¬ad) = 1 (Eq. (3), and Property 6).

Hence, the support of 2-itemset ad is computed as follows:

support(ad) = support(d) − support(¬ad) = 3 − 1 = 2 (Eqs. (2) and (4), and Property 8).

Similarly, **NegNodeset(bd) = Nodeset(¬bd) = \{(10010, 1)\}, and the support of 2-itemset bd is computed as follows:**

support(bd) = support(d) − support(¬bd) = 3 − 1 = 2.
Algorithm 3 (negFIN algorithm).

Input: A transactional database DB and a threshold $min – support$.
Output: The set of all frequent itemsets, F.
1. $F = \emptyset$;
 //First step
2. call constructing_BMC_tree $(DB, \text{min} – \text{support})$(Algorithm 1) to construct the BMC-tree and find L_1(Definition 2);
3. $F = F \cup L_1$;
4. for each node N in the BMC-tree do: //Traverse the BMC-tree in an arbitrary order.
5. Append the N-info of N into the NodeSet of item $N.item$ – name;
6. end for
7. Create the node root;
8. root.level = 0; //The root is at level 0;
9. root.children = list = \emptyset;
10. root.item – name = \emptyset;
11. root.itemset = \emptyset;
12. for each item $i \in L_1$ do:
13. Create the node child$;_i$;
14. child.level = root.level + 1;
15. child.item – name = i;
16. child.itemset = \emptyset;
17. Append child$;_i$ into root.children – list;
18. call constructing_frequent_itemset_tree $(child, \emptyset)$; //Algorithm 4
19. end for
20. return root;

In the third step, based on the NegNodeSet of 2-itemset ab (Eq. (3)) and according to Property 7, the NegNodeSet of 3-itemset abc is extracted as follows:

$$\text{NegNodeSet}(abd) = \text{NodeSet} (\neg abd) = \{(01010; 1)\}.$$ \hfill (7)

$$\text{support} (\neg abd) = 1 \text{ (Eq. (7), and Property 6)}.$$ \hfill (8)

The support of 3-itemset abc is computed as follows:

$$\text{support}(abd) = \text{support}(bd) – \text{support}(\neg abd) = 2 – 1 = 1 \text{ (Eqs. (6) and (8), and Property 8)}.$$ \hfill (9)

Algorithm 3 shows the pseudo-code of the negFIN algorithm. F in line (1) holds frequent itemsets and is initialized by an empty set. Line (2) builds the BMC-tree and L_1, by calling Algorithm 1. Line (3) inserts all frequent 1-itemsets into F. Lines (4) to (6) generate the Nodesets of all frequent 1-itemsets by traversing the BMC-tree in an arbitrary order. Lines (7) to (10) build a "frequent itemset tree," which is similar to a set enumeration tree (Definition 11). Lines (7) to (11) build level 0 of the tree (the root). Lines (12) to (17) build level 1 of the tree through all frequent 1-itemsets in L_1. Line (18) builds levels $k (2 \leq k)$ of the tree and generates all frequent k-itemsets by recursively calling the procedure constructing_frequent_itemset_tree () (Algorithm 4). This procedure is similar to the procedure constructing_set_enumeration_tree(), which is presented in Algorithm 2.

Procedure constructing_frequent_itemset_tree() has two parameters: N and FIS_{parent}. N is the current node in frequent itemset tree. FIS_{parent} is used to hold the frequent itemsets generated on the parent of N. In line (2) holds the itemset represented by N. Lines (5) to (38) extend P by the item i. The extended itemset is denoted as R in line (6). Lines (8) to (24) generate the NegNodeSet of R. If R is a 2-itemset (N is at level 1), then the NegNodeSet of R is extracted from the Nodeset of P (Definition 10), as lines (8) to (15) do. Line (11) checks whether the condition specified in Definition 10 is true. If R is a k-itemset ($3 \leq k$), then the NegNodeSet of R is extracted from the NegNodeSet of P (Property 7), as lines (15) to (24) do. Line (20) checks whether the condition specified in Property 7 is true. Line (25) employs Property 6 to compute the support of R. Line (26) employs Property 8 to compute the support of R. Lines (27) to (37) look for items that can be used to build the child nodes of N. Line (27) checks whether the condition specified in the "superset equivalence property" (Property 9) is true. If this condition is true, then the item i is a promoted item (Deng & Lü, 2014). A promoted item is held in $N.\text{equivalent}_i$ items, for future use, in line (28); the promoted items are not used to build the child nodes of N, because all information about the frequent itemsets related to these items are held in N. This pruning strategy is called promotion (Deng & Lü, 2014). Line (30) checks whether the itemset R is frequent. If so, then lines (31) to (35) use the item i to create a child node of N. Lines (39) to (45) identify all frequent itemsets in N, denoted as FIS_N. If FIS_{parent} is empty, then FIS_N is the same as $PSet$. Otherwise, FIS_N is extracted from $PSet$ and FIS_{parent}, as line (44) does. Lines (47) to (51) extend the child nodes of N by
calling \texttt{constructing_frequent_itemset_tree()} (Algorithm 4) recursively.

The time-consuming part of the negFIN algorithm (Algorithm 3) is the construction of the frequent itemset tree. The first part of the negFIN algorithm is the construction of the BMC-tree (Algorithm 1). In the worst case, the time complexity of this part is \(O(n + n\times\ln n)\) [the time complexity of the loop in line (7) of Algorithm 1], where \(n = |DB|\) and \(n\times\ln n\). The second part is the generation of the \texttt{Nodeset} of all frequent 1-itemsets. In the worst case, the time complexity of this part is \(O(2^{|N|})\) (the time complexity of traversing the BMC-tree). The third part is the construction of the frequent itemset tree. Levels \(k\) \((2 \leq k)\) of this tree are constructed by Algorithm 4. To construct each node at these levels, first, the \texttt{NegNodeset} of the itemset assigned to that node is generated from one set of nodes with cardinality \(n\), as the loops in lines (9) and (18) of Algorithm 4 do. The time complexity of these loops is \(O(n)\). Second, the support of the itemset assigned to that node is computed. In the worst case, the time complexity of this operation is \(O(n)\) (the time complexity of line (25) of Algorithm 4). Third, it is checked whether the itemset assigned to that node is frequent. The time complexity of this operation is \(O(1)\). Hence, in the worst case, the time complexity of the third part of the negFIN algorithm is \(O(2^{|N|}\times n)\), where \(2^{|N|}\) is the maximum number of nodes in the frequent itemset tree.

The time complexity of the negFIN algorithm is equal to the time complexity of the third part since this part has the greatest time complexity among other parts. Let \(l\) be the number of nodes at levels \(k\) \((2 \leq k)\) of the frequent itemset tree. Hence, the time complexity of the negFIN algorithm is \(O(ln)\). Parameter \(l\) is the same for negFIN and the previous works (Deng, 2016; Deng & Lv, 2014; Deng & Wang, 2010; Deng et al., 2012). The time complexity of the previous works (Deng, 2016; Deng & Lv, 2014; Deng & Wang, 2010; Deng et al., 2012) is \(O(l(x+y))\), where \(x\) and \(y\) are the cardinality of two sets of nodes and \(O(x+y)\) is the time complexity of generating a new set of nodes.

5. Results of experiment and analysis

In order to evaluate the performance of the negFIN algorithm, we conducted two groups of experiments. The purpose of the first group of experiments is to compare the performance of the negFIN algorithm against the following algorithms: (1) Goethals’s Eclat (Goethals & Zaki, 2004), which is the state-of-the-art algorithm in the family of vertical mining algorithms (Deng et al., 2012), and (2) FP-growth* (Grahne & Zhu, 2005), which is the state-of-the-art algorithm in the family of FP-tree-based pattern growth algorithms (Deng et al., 2012). Both of these algorithms are used as comparison algorithms in (Deng, 2016). In the second group of experiments, we conducted comprehensive experiments to compare the performance of the negFIN algorithm against the dFIN algorithm (Deng, 2016) separately, since (1) both algorithms belong to the same family of algorithms (nodeset-based algorithms), and (2) dFIN is the fastest algorithm among its family and other families of frequent itemset mining algorithms at present (Deng, 2016). The
results generated by all these algorithms are the same. But these algorithms are different with regards to runtime and memory consumption.

5.1. Datasets

We ran the comparison algorithms on seven real datasets, which are common datasets from previous frequent itemset mining studies, and one synthetic dataset. These datasets can be downloaded from the FIMI repository (http://fimi.ua.ac.be). The description of these datasets is shown in Table 2. In this table, #Items is the number of items, #Transactions is the number of transactions, and #Avg. Length is the average transaction length. These seven real datasets are usually very dense. The synthetic dataset T10I4D100K is much sparser than these real datasets. This dataset is generated by the IBM generator, which can be downloaded from http://www.almaden.ibm.com/cs/quest/syndata.html. To generate this dataset, the average transaction size, the average maximal potentially frequent itemset size, the number of transactions in the dataset, and the number of different items used in the dataset are set to 10, 4, 98,487, and 949 respectively.

5.2. Running environment

In order to make a fair comparison, all these experiments were conducted in the same software and hardware conditions. We used a computer with 8 GB memory and an Intel Core i5 3.0 GHz processor, with the Windows 10 x64. Standard Edition operating system. All these algorithms are coded in C/C++. The implementation of FP-growth* and Goethals’s Eclat are available at http://fimi.ua.ac.be/src/ and http://adrem.ua.ac.be/goethals/software/ respectively (available since August 2017) (Deng, 2016). Also we have made the source codes of dFIN and negFIN algorithms publicly available on GitHub via https://github.com/aryabarzan/dFIN and https://github.com/aryabarzan/negFIN/ respectively.

5.3. negFIN versus FP-growth* and Goethals’s Eclat

The purpose of this group of experiments is to compare the runtime and memory consumption of negFIN algorithm against the
Fig. 9. The average cardinality of sets of nodes such that each NegNodeSet and DiffNodeSet of k-itemset (2 ≤ k) is derived from them and the average number of key operations required to derive each NegNodeSet and DiffNodeSet, which is denoted as KOD, for different datasets, depending on the minimum support. Here, KOD is the abbreviation for key operations in each derivation.

FP-growth* and Goethals’s Eclat algorithms. We conducted these experiments on five datasets—chess, pumsb, kosarak, mushroom, and T10I4D100K—with various values of minimum support.

5.3.1. Runtime comparison

The runtime comparison of negFIN against FP-growth* and Goethals’s Eclat are shown in Fig. 7. In this figure, the X and Y axes are minimum support and runtime, respectively. The runtime is the time for which the algorithm ran. As we can see in Fig. 7, negFIN substantially surpasses FP-growth* and Goethals’s Eclat on three datasets: chess, pumsb, and kosarak. Although negFIN runs faster than these algorithms on two datasets—mushroom and T10I4D100K—there is no significant difference between negFIN and these two algorithms.

5.3.2. Memory consumption comparison

The memory consumption comparison of negFIN against FP-growth* and Goethals’s Eclat are shown in Fig. 8. In this figure,
Fig. 10. The number of derived NegNodesets and DiffNodesets for different datasets, depending on the minimum support.

the Y axis is the peak memory consumption, which is measured by the
PeakWorkingSetSize function in C/C++.

As we can see in this figure, negFIN consumes more memory than these two algorithms on the chess and pumsb datasets when minimum support is low. The reason is that the main components of memory consumption in negFIN and FP-growth* are BMC-tree and FP-tree, respectively. Since the node of the BMC-tree is a little bigger than the node of the FP-tree, it holds more information (the bitmap – code field) than the node of the FP-tree. Hence, the BMC-tree consumes a little more memory than the FP-tree. In addition, negFIN maintains a BMC-tree while generating the NegNodesets of frequent 1-itemsets.

Again, take Fig. 8 into account. We observe that negFIN and FP-
growth* consume almost the same amount of memory for high minimum support on the chess and pumsb datasets, and for all minimum support on the kosarak, mushroom, and T104D100K datasets. Goethals’s Eclat consumes more memory than negFIN and FP-growth* for high minimum support on the pumsb and mushroom datasets, and for all the minimum support on the kosarak and T104D100K datasets.
5.4. negFIN versus dFIN

In this section, we compare negFIN with dFIN based on three aspects: (1) the number of key operations, (2) the runtime, and (3) the memory consumption.

5.4.1. Number of key operations

In the negFIN (dFIN) algorithm, each NegNodeSet (DiffNodeSet) of k-itemset \(k \geq 2 \) \(P \) is derived from one set (two sets) of nodes. Let \(S^\text{NegNodeSet}_1 \) be a set of nodes such that the NegNodeSet of \(P \) is derived from it, and \(|S^\text{NegNodeSet}_1| = n^{\text{negFIN}} \). Furthermore, let \(S^\text{DiffNodeSet}_1 \) and \(S^\text{DiffNodeSet}_2 \) be two sets of nodes such that the DiffNodeSet of \(P \) is derived from them, \(|S^\text{DiffNodeSet}_1| = n^{\text{dFIN}} \), and \(|S^\text{DiffNodeSet}_2| = m^{\text{dFIN}} \). The time complexity of deriving the NegNodeSet and DiffNodeSet of \(P \) are \(O(n^{\text{negFIN}}) \) and \(O(n^{\text{dFIN}} + m^{\text{dFIN}}) \) respectively. The time-consuming component of negFIN (dFIN) is the derivation of these NegNodeSets (DiffNodeSets). Let \(l^{\text{negFIN}} \) and \(l^{\text{dFIN}} \) be the number of derived NegNodeSets and DiffNodeSets respectively. Consequently, the time complexity of negFIN and dFIN are \(O(l^{\text{negFIN}} n^{\text{negFIN}}) \) and \(O(l^{\text{dFIN}} (n^{\text{dFIN}} + m^{\text{dFIN}})) \) respectively.
In Fig. 9, the average of \(n_{\text{negFIN}} \), \(n_{\text{dFIN}} \), and the average number of required key operations to drive the NegNodeset (DiffNodeset) of each k-itemset \((k \geq 2)\) are shown. The average number of key operations is denoted as KOD (the abbreviation for key operations in each derivation). Here, the key operation is the loop execution. Therefore, KOD is the average number of times when the loop is executed.

By examining Fig. 9, the following results are obtained: (1) The average number of key operations to drive NegNodeset is equal to \(n_{\text{negFIN}} \). Therefore, the derivation of NegNodeset has a time complexity of \(O(n_{\text{negFIN}}) \). (2) The average number of key operations to drive DiffNodeset is between \(n_{\text{dFIN}} \) and \((n_{\text{dFIN}} + m_{\text{dFIN}}) \). Thus, the derivation of DiffNodeset has a time complexity of \(O(n_{\text{dFIN}} + m_{\text{dFIN}}) \). (3) \(n_{\text{dFIN}} \leq m_{\text{dFIN}} \). (4) \(n_{\text{negFIN}} = n_{\text{dFIN}} \). For simplicity, we use the notation \(n \) instead of \(n_{\text{negFIN}} \) and \(n_{\text{dFIN}} \), and the notation \(m \) instead of \(m_{\text{dFIN}} \). We conclude from (1) to (4) that: (5) the time complexity of the derivation of each NegNodeset is \(O(n) \), (6) the time complexity of the derivation of each DiffNodeset is \(O(n + m) \), and (7) \(n \leq m \). Hence, the overall result is that the NegNodeset of the itemset is
generated about two orders of magnitude faster than its DiffNode-set.

In Fig. 10, negFIN and pFIN are presented for different datasets. As we can see in this figure, negFIN = pFIN for all datasets. For simplicity, we use the notation l instead of negFIN and pFIN. Hence, the time complexity of negFIN and dFIN are O(ln) and O(l(n + m)), (n ≤ m) respectively.

5.4.2. Runtime comparison

Fig. 11 shows the runtime comparison of negFIN against dFIN. As we can see in this figure, negFIN is not slower than dFIN on all datasets. negFIN runs faster than dFIN on some datasets, especially for low minimum support. The reason is as follows: the time complexity of negFIN and dFIN are O(ln) and O(l(n + m)) respectively. As we can see in Fig. 9, both n and m are small values. Hence, the difference between ln and l(n + m) is negligible for small values of l. Again, consider Figs. 10 and 11. As we can see in these figures, for datasets such as chess, pumsb, and accidents, where l has a large value, the difference between the runtimes of negFIN and dFIN is important.

5.4.3. Memory consumption comparison

Fig. 12 shows the memory consumption comparison of negFIN against dFIN. As we can see in this figure, the memory consumption of both algorithms is roughly the same.

6. Conclusion

In this paper, we presented a new data structure, called NegNodeSet, to store essential information about frequent itemsets. Based on NegNodeSet, we present an algorithm, called negFIN, to rapidly discover all frequent itemsets in databases. Compared with nFIN, the key advantages of negFIN are as follows: (1) it employs bitwise operators to generate new sets of nodes. (2) It reduces the time complexity of discovering frequent itemsets to O(ln), instead of O(l(n + m)), where n and m are the cardinality of two base sets of nodes, n ≤ m, and l is the number of generated sets of nodes. We implement the negFIN and dFIN algorithms and conduct extensive experiments to compare the performance of negFIN against several state-of-the-art frequent itemset mining algorithms. These experiments show that our algorithm is the fastest algorithm on all datasets with different minimum supports in comparison with previous state-of-the-art algorithms. However, on some datasets with some minimum supports, our algorithm runs with the same speed as dFIN.

7. Future research directions

Future research directions are as follows: employing NegNodeSet to (1) mine “closed frequent itemsets” (Le & Vo, 2015; Lee, Wang, Weng, Chen, & Wu, 2008; Wang, Han, & Pei, 2003), (2) mine “maximal frequent itemsets” (Burdick, Calimlim, Flannick, Gehrke, & Vio, 2005; Roberto & Bayardo, 1998), (3) mine “Top-Rank-k frequent itemsets” (Deng, 2014; Huynh-Thi-Le, Le, & Vo, 2015), (4) mine “erasable itemsets” (Le, Vo, & Nguyen, 2014), (5) mine “fuzzy itemsets” (Lan et al., 2015; Lin et al., 2015), (6) mine “frequent disjunctive closed itemsets” (Vimieiro & Moscato, 2014), (7) mine frequent itemsets over data streams (Calders et al., 2014; Chang & Lee, 2003; Li & Deng, 2010; Troiano & Scibelli, 2004), (8) mine frequent itemsets on Hadoop (Kovacs & Illés, 2013; Xun, Zhang, Qin, & Zhao, 2017), and (9) mine frequent itemsets under other distributed/parallel systems (Sohrabi & Barforouhi, 2013).

Acknowledgments

The authors offer their gratitude to Dr. Zhi-Hong Deng at Peking University, Beijing, School of Electronics Engineering and Computer Science for providing the implementation codes of the FIN algorithm (Deng & Lv, 2014). We employ the FIN implementation codes to implement the dFIN algorithm (Deng, 2016) as well as our algorithm, negFIN.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. SIGMOD Record, 29(2), 1–12. doi: https://doi.org/10.1145/335191.335372