

Mining Top-K Sequential Rules

Philippe Fournier-Viger1 and Vincent S. Tseng
Dep. of Computer Science and Information Engineering, National Cheng Kung University

philippe.fv@gmail.com, tsengsm@mail.ncku.edu.tw

Abstract. Mining sequential rules requires specifying parameters that are often

difficult to set (the minimal confidence and minimal support). Depending on the

choice of these parameters, current algorithms can become very slow and

generate an extremely large amount of results or generate too few results,

omitting valuable information. This is a serious problem because in practice

users have limited resources for analyzing the results and thus are often only

interested in discovering a certain amount of results, and fine-tuning the

parameters can be very time-consuming. In this paper, we address this problem

by proposing TopSeqRules, an efficient algorithm for mining the top-k

sequential rules from sequence databases, where k is the number of sequential

rules to be found and is set by the user. Experimental results on real-life

datasets show that the algorithm has excellent performance and scalability.

1 Introduction

Nowadays, huge amounts of sequential information are stored in databases (e.g. stock
market data, biological data and customer data). Discovering patterns in such
databases is important in many domains, as it provides a better understanding of the
data. For example, in international trade, one could be interested in discovering
temporal relations between the appreciations of currencies to make trade decisions.
Various methods have been proposed for mining patterns in sequential databases such
as mining repetitive patterns, trends and sequential patterns (see [1] for a survey).
Among them, mining sequential patterns is probably the most popular set of
techniques (e.g. [2, 3, 4]). It consists of finding subsequences appearing frequently in
a database. However, knowing that a sequence appear frequently in a database is not
sufficient for making prediction [5]. An alternative that addresses the problem of
prediction is sequential rule mining [5-12]. A sequential rule indicates that if some
item(s) occurred, some other item (s) are likely to occur with a given confidence or
probability afterward. Sequential rule mining has many applications (e.g. stock
market [7], weather observation [9], drought management [10] and e-learning [5, 6]).
 Sequential rule mining algorithms have been developed for discovering rules in a
single sequence (e.g. [9, 12]) or in multiple sequences (e.g. [5, 6, 7, 10, 11]). To mine
sequential rules, users typically have to set two parameters: (1) a minimum support
threshold and (2) a minimal confidence threshold. But one important question that has
not been addressed in previous research is: “How can we choose appropriate values
for these parameters if we don’t have any background knowledge about the
database?” It is an important question because if these parameters are set too high,
few patterns are found and algorithms have to be rerun to find more patterns, and if

1 P. Fournier-Viger is now affiliated with University of Moncton.

ph
Typewriter

ph
Typewriter
This paper was published in ADMA 2012 proceedings.
The original
publication is available at www.springerlink.com

The source code of the algorithm is available at:
http://www.philippe-fournier-viger.com/spmf/

ph
Rectangle

parameters are set too low, algorithms become incredibly slow and generate an
extremely large amount of results. In practice, to find appropriate values for these
parameters, people generally successively try different values by guessing and
executing the algorithms over and over until being satisfied by the results, which can
be very time-consuming. However, in data mining, users are often only interested in
discovering the “top” patterns in a database because they have limited resources for
analyzing patterns that are found [13-16]. In this paper, we address this issue for the
task of mining sequential rules in sequence databases. We propose TopSeqRules, an
algorithm for mining only the top-k sequential rules, where k is a parameter set by the
user. This allows the user to specify for example, that he wants to discover the top 500
rules. Although several top-k pattern mining algorithms have been designed for
mining patterns like frequent itemsets (e.g. [13, 14, 16]) and sequential patterns (e.g.
[15]), we are the first to address the problem for sequential rules. The rest of this
paper is organized as follows. Section 2 reports related work and defines the problem
of top-k sequential rule mining. Section 3 describes TopSeqRules, optimizations and
extensions. Section 4 presents the evaluation. Finally, we present the conclusion.

2 Problem Definition and Related Work

There exist several definitions of what is sequential rule mining [5-12] (see [5] for a

literature review). In this paper, we use the definition of [6] for discovering sequential

rules common to multiple sequences because it has two reported real applications [6]

and because not many works have addressed the case of multiple sequences, despite

that it has many potential applications. According to this definition, a sequence

database (defined as in sequential pattern mining [2]) is a set of sequences S={s1,

s2…ss} and a set of items I={i1, i2,…it} occurring in these sequences. A sequence is

defined as an ordered list of itemsets (sets of items) sx=I1, I2, … In such that I1, I2, …In

⊆ I, and where each sequence is assigned a unique sid (sequence id). As an example,

figure 1.a depicts a sequence database containing four sequences with sids seq1, seq2,

seq3 and seq4. In this example, each single letter represents an item. Items between

curly brackets represent an itemset. For instance, the sequence seq1 means that items

a and b occurred at the same time, and were followed successively by c, f, g and e. A

sequential rule X⇒Y is defined as a relationship between two itemsets X, Y ⊆ I such

that X∩Y = Ø and X, Y ≠ Ø. Note that X and Y are unordered. The interpretation of a

rule X⇒Y is that if the items of X occur in a sequence, the items in Y will occur

afterward in the same sequence. Formally, a rule X⇒Y is said to occur in a sequence

sx=I1, I2 … In if there exists an integer u such that 1 ≤ u < n, X ⊆ ⋃

 and Y

⊆⋃

 . For example, the rule {a, b, c}⇒{e, f, g} occurs in the sequence {a, b},

{c}, {f}, {g}, {e}, whereas the rule {a, b, f}⇒{c} does not because item c does not

occur after f. A rule X⇒Y is said to be of size v*w if |X| = v and |Y| = w. For example,

the rules {a, b, c}⇒{e, f, g} and {a}⇒{e, f} are of size 3*3 and 1*2 respectively.

Furthermore, a rule of size f*g is said to be larger than another rule of size h*i if f > h

and g ≥ i, or if f ≥ h and g > i. For a given sequence database and a rule X⇒Y, the

notation sids(X⇒Y) represents the sids set (the set of sequence ids) of the sequences

where the rule occurs. For instance, sids({a}⇒{b}) = {seq2, seq3}. For an itemset X

and a sequence database, the notation sids(X) denotes the sids set corresponding to

sequences where all the items of X appears. For example, sids({a, b, c}) = {seq1,

seq2}. For the sake of brevity, in the rest of this paper, curly brackets will be omitted

when using the “sids” notation with itemsets containing a single item. Two

interestingness measures are defined for sequential rules, which are similar to those

used in association rule mining [17]. The support of a rule X⇒Y is defined as

sup(X⇒Y) = |sids(X⇒Y)| / |S|. The confidence is defined as conf(X⇒Y) =

|sids(X⇒Y)| / |sids(X)|. The problem of mining sequential rules common to multiple

sequences is to find all valid rules in a sequence database [6]. A valid rule is a rule

such that its support and confidence are respectively no less than user-defined

thresholds minsup and minconf. For example, figure 1.b illustrates some valid rules

found in the database shown in figure 1.a for minsup = 0.5 and minconf = 0.5.

Moreover, a rule having a support higher or equal to minsup is said to be a frequent

rule. Thus, by definition, valid rules are a subset of frequent rules.

a) ID Sequences b) ID Rule Support Conf.

 seq1

seq2

seq3

seq4

{a, b},{c},{f},{g},{e}

{a, d},{c},{b},{a, b, e, f}

{a},{b},{f},{e}

{b},{f, g}

 

r1

r2

r3

r4

r5

r6

r7

…

{a, b, c}⇒{e}

{a}⇒{c, e, f}

{a, b}⇒{e, f}

{b}⇒{e, f}

{a}⇒{e, f}

{c}⇒{f}

{a}⇒{b}

…

0.5

0.5

0.5

0.75

0.75

0.5

0.5

…

1.0

0.66

1.0

0.75

1.0

1.0

0.66

…

Fig 1. A sequence database (left) and some sequential rule found (right)

To define an algorithm for discovering the “top-k” sequential rules, we first need to

define what a “top-k sequential rule” is. In frequent pattern mining, top-k pattern

mining algorithms have been defined principally for mining frequent itemsets [13, 14,

16] and sequential patterns [15]. For discovering these types of patterns only the

minimum support is generally used. Consequently, the problem of mining the top-k

patterns for these types of patterns is defined as discovering the k patterns having the

highest support [13- 16]. For sequential rule mining, however, the problem of mining

the top-k sequential rules could be stated in different ways because two

interestingness measures are used (the support and the confidence) instead of one. We

thus see two possible definitions: (I) to discover the k rules having the highest support

such that their confidence is higher than minconf, (II) to discover the k rules having

the highest confidence such that their support is higher than minsup.

For this paper, we choose definition I over definition II because in practice the

parameter minconf is much easier to set than minsup because minconf represents the

minimum confidence that a user want in rules, while choosing an appropriate value

for minsup depends solely on the characteristics of the database and it is impossible to

know a priori what is an appropriate value for minsup. However, later on, in section

3.4 we will explain how TopSeqRules could be adapted for definitions I. Based on

definition II, we define the problem of mining the top-k sequential rules as follows:

Definition 1 (top-k sequential rule mining): To discover in a sequence database a

set L containing k rules such that for each rule rm  L, conf(rm) ≥ minconf, and there

does not exist a rule rn  L such that sup(rn) > sup(rm) and conf(rn) ≥ minconf.

To mine top-k patterns, all top-k pattern mining algorithms (e.g. [13-16]) follow a

same general process, although they have several differences. The general process for

mining top-k patterns from a database is the following. Initially, a top-k algorithm

sets the minimum interestingness criterion (e.g. minsup) to the lowest possible value

to ensure that all the top-k patterns will be found. Then, the algorithm starts searching

for patterns by using a search strategy. As soon as a pattern is found, it is added to a

list of patterns L ordered by the interestingness of patterns. The list is used to maintain

the top-k patterns found until now. Once k patterns are found, the value for the

minimum interestingness criterion is raised to the interestingness value of the least

interesting pattern in L. Raising the minimum interestingness value is used to prune

the search space when searching for more patterns. Thereafter, each time a pattern is

found that meets the minimum interestingness criterion, the pattern is inserted in L,

the pattern(s) in L not respecting the minimum interestingness criterion anymore are

removed from L, and the minimum interestingness criterion is raised to the value of

the least interesting pattern in L. The algorithm continues searching for more patterns

until no pattern are found by the search strategy.

What distinguish top-k pattern mining algorithms are their data structures, input,

output and search strategies to discover patterns. As any other data mining algorithms,

a top-k algorithm needs to use appropriate data structures and search strategies to be

efficient in both memory and execution time. But besides that, the efficiency of a top-

k algorithm depends largely on how fast it can raise the minimum interestingness

criterion (e.g. minsup) to prune the search space. To raise the support quickly, it is

desirable that a top-k pattern mining algorithm uses strategies to find the most

interesting patterns as early as possible. Hence, to design an efficient top-k sequential

rule mining algorithm, several questions have to be addressed such as “Which search

strategy and data structures should be used?”, and “What optimizations can be

applied?”

3 The TopSeqRules Algorithm

To answer this challenge, we propose TopSeqRules, a top-k algorithm based on the

search strategy of RuleGrowth for generating valid rules [5]. RuleGrowth is the

current best algorithm for mining sequential rules according to the definition of

section 2. Its search strategy consists of first finding rules containing only two items

and then to find larger rules by recursively growing the rules by scanning the

sequences containing them to find single items that could expand their left or right

parts. These two processes for expanding rules are named left expansion and right

expansion. TopSeqRules integrates these processes with the general process for

mining top-k patterns described in section 2. Furthermore, to mine the top-k rules

efficiently, it also add optimizations and the strategy of always trying to generate the

most promising rules first, to try to prune the search space quickly by raising minsup.
Before presenting TopSeqRules, we introduce preliminary definitions and

properties related to left/right expansions. A left expansion is the process of adding an
item i to the left side of a rule X⇒Y to obtain a larger rule X∪{i}⇒Y. Similarly, a
right expansion is the process of adding an item i to the right side of a rule X⇒Y to
obtain a rule X⇒Y∪{i}. Left/right expansions have four important properties.

Property 1 (left expansion, effect on support): If an item i is added to the left

side of a rule r:X⇒Y, the support of the resulting rule r’:X∪{i}⇒Y can only be lower

or equal to sup(r). Proof: The support of r and r’ are respectively |sids(X⇒Y)| / |S|

and |sids(X∪{i}⇒Y)| / |S|. Since |sids(X⇒Y)| ≥ |sids(X∪{i}⇒Y)|, sup(r) ≥ sup(r’).

Property 2 (right expansion, effect on support): If an item i is added to the right

side of a rule r:X⇒Y, the support of the resulting rule r’:X⇒Y∪{i} can only be lower

or equal to sup(r). Proof: The support of r and r’ are respectively |sids(X⇒Y)| / |S|

and |sids(X⇒Y∪{i})| / |S|. Since |sids(X⇒Y)| ≥ |sids(X⇒Y∪{i})|, sup(r) ≥ sup(r’).

Properties 1 and 2 imply that the support is monotonic with respect to left/right

expansions. In other words, performing any combinations of left/right expansions of a

rule can only result in rules having a support that is lower or equal to the original rule.

Therefore, all the frequent can be found by recursively performing expansions on

frequent rules of size 1*1. Moreover, property 1 and 2 guarantee that expanding a rule

having a support less than minsup will not result in a frequent rule. The confidence is

not monotonic with respect to expansions, as next properties demonstrate.

Property 3 (left expansion, effect on confidence): If an item i is added to the left

side of a rule r:X⇒Y, the confidence of the resulting rule r’: X∪{i}⇒Y can be lower,

higher or equal to the confidence of r. Proof: The confidence of r and r’ are

respectively |sids(X⇒Y)| / |sids(X)| and |sids(X∪{i}⇒Y)| / |sids(X∪{i})|. Because

|sids(X⇒Y)| ≥ |sids(X∪{i}⇒Y)| and |sids(X)| ≥ |sids(X∪{i})|, conf(r) can be lower,

higher or equal to conf(r’)

Property 4 (right expansion, effect on confidence): If an item i is added to the

right side of a rule r:X⇒Y, the confidence of the resulting rule r’: X⇒Y∪{i} is lower

or equal to the confidence of r. Proof: The confidence of r and r’ are respectively

|sids (X⇒Y)| / |sids(X)| and |sids(X⇒Y∪{i})| / |sids(X)|. Since |sids(X⇒Y)| ≥

|sids(X⇒Y∪{i})|, conf(r) ≥ conf(r’).

TopSeqRules relies on sids sets to calculate the support and confidence of rules

obtained by left or right expansions. Sids sets have two important properties.

Property 5 (sids set of a rule and its itemsets): For any sequential rule X⇒Y,

sids(X⇒Y) ⊆ sids(X) ∩ sids(Y). Proof: A rule can only occur in a sequence if all

items from its left and right parts appear in it.

Property 6 (sids set of a rule obtained by left/right expansion): For any

sequential rule r’ obtained by a left or right expansion of a rule r, the relationship

sids(r’) ⊆ sids(r) holds. Proof. If the rule r does not occur in a sequence, the rule r’

also cannot. Therefore, the sids set of r’ must be a subset of the sids set of r.

3.1 The Algorithm

TopSeqRules takes as input a sequence database S, a number k of rules that the user

wants to discover, and the minconf threshold. The algorithm uses three main internal

variables. The first one is minsup, wich is initially set to 0 and is raised dynamically

as soon as k rules are found, as it will be explained. The second variable is a set

named L to keep the top-k rules found until now that have a support and confidence

higher or equals to minsup and minconf. The third variable is a set named R to store

the rules that should be expanded to have a chance of finding more valid rules.

The main procedure. The main procedure of TopSeqRules is shown in figure 2.

The algorithm first scans the database once to calculate sids(c) for each item c. Then,

the algorithm generates all valid rules of size 1*1. This is done by taking each pair of

items i, j, where i and j each have at least minsup×|S| sids (if this condition is not met,

no rule having at least the minimum support can be created with i and j). The

algorithm then scans sequences in sids(i) ∩ sids(j) to calculate sids(i⇒j) and

sids(j⇒i), the sids of sequences where the rule {i}⇒{j} and {j}⇒{i} occur,

respectively (because of property 5). After this, the support of the rule {i}⇒{j} is

obtained by dividing |sids(i⇒j)| by |S|. For each rule {i}⇒{j} or {j}⇒{i} that is valid,

the procedure SAVE is called with the rule and L as parameters so that the rule is

recorded in the set L of the current top-k rules found. Also, each rule {i}⇒{j} or

{j}⇒{i} that is frequent is added to the set R, to be later considered for expansion.

After that, a loop is performed to recursively select the rule r with the highest

support in R such that sup(r) ≥ minsup and expand it. The idea behind this loop is to

always expand the rule from R having the highest support first because it is more

likely to generate rules having a high support and thus to allow to raise minsup more

quickly for pruning the search space. The loop terminates when there is no more rule

in R having a support higher or equal to minsup. For expanding a rule, a flag

expandLR indicates if the rule should be left and right expanded by calling the

procedure EXPAND-L and EXPAND-R or just left expanded by calling EXPAND-L.

For all rules of size 1*1, this flag is set to true. The utility of this flag for larger rules

will be explained later.

 The Save procedure. The role of SAVE (figure 3) is to raise minsup and update

the list L when a new valid rule r is found. The first step of SAVE is to add the rule r

to L. Then, if L contains more than k rules and the support is higher than minsup, rules

from L that have exactly the support equal to minsup can be removed until only k

rules are kept. Finally, minsup is raised to the support of the rule in L having the

lowest support. By this simple scheme, the top-k rules found are maintained in L.

Now that we have described how rules of size 1*1 are generated and the

mechanism for maintaining the top-k rules in L, we explain how rules of size 1*1 are

expanded to find larger rules. Without loss of generality, we can ignore the top-k

aspect for the explanation and consider the problem of generating all valid rules. To

recursively expand rules and find all valid rules starting from rules of size 1*1, a few

problems had to be solved.

Problem 1: How can we guarantee that all valid rules are found by recursively

performing left/right expansions starting from rules of size 1*1? The answer is

found in properties 1 and 2, which states that the support of a rule is monotonic with

respect to left/right expansions. This implies that all rules can be discovered by

recursively performing expansions starting from frequent rules of size 1*1. Moreover,

these properties imply that infrequent rules should not be expanded because they will

not lead to valid rules. However, no similar pruning can be done for the confidence

because it is not monotonic with respect to left expansion (property 3).

Problem 2: How we can guarantee that no rules are found twice by recursively

making left/right expansions? To guarantee this, two sub-problems had to be solved.

First, if we grow rules by performing expansions recursively, some rules can be found

by different combinations of left/right expansions. For example, consider the rule {a,

b} ⇒{c, d}. By performing, a left and then a right expansion of {a} ⇒ {c}, one can

obtain the rule {a, b} ⇒ {c, d}. But this rule can also be obtained by performing a

right and then a left expansion of {a} ⇒ {c}. A simple solution to avoid this problem

is to forbid performing a right expansion after a left expansion but to allow

performing a left expansion after a right expansion. An alternative solution is to not

allow a left expansion after a right expansion.

TOPSEQRULES (S, k, minconf)

1. R := Ø. L := Ø. minsup := 0.

2. Scan the database S once. Record the sids set of each item c in a variable sids(c).

3. FOR each pairs of items i, j such that |sids(i)|≥ minsup and ∩ |sids(j)|≥ minsup:

4. sids(i⇒j) := Ø. sids(j⇒i) := Ø.

5. FOR each sid s ∈ (sids(i) ∩ sids(j):

6. IF i occurs before j in s THEN sids(i⇒j) := sids(i⇒j) ∪ {s}.

7. IF j occurs before i in s THEN sids(j⇒i) := sids(j⇒ i) ∪ {s}.

8. END FOR
9. IF |sids(i⇒j)| / |S| ≥ minsup THEN

10. conf({i}⇒{j}) := |sids(i⇒j)| / | sids(i).

11. IF conf({i}⇒{j}) ≥ minconf THEN SAVE({i}⇒{j}, L, k, minsup).

12. Set flag expandLR of {i}⇒{j}to true.

13. R := R∪{{i}⇒{j}}.

14. END IF

 … [lines 9 to 14 are repeated here with i and j swapped] …

15. END FOR

16. WHILE ∃r ∈ R AND sup(r) ≥ minsup DO

17. Select the rule rule having the highest support in R

18. IF rule.expandLR = true THEN

19. EXPAND-L(rule, L, R, k, minsup, minconf).

20. EXPAND-R(rule, L, R, k, minsup, minconf).

21. ELSE EXPAND-R(rule, L, R, k, minsup, minconf).

22. REMOVE rule from R. REMOVE from R all rules r ∈ R | sup(r) <minsup.

23. END WHILE

Fig. 2. The TopSeqRules algorithm

SAVE(r, R, k, minsup)

1. L := L∪{r}.

2. IF |L| ≥ k THEN

3. IF sup(r) > minsup THEN

4. WHILE |L| > k AND ∃s ∈ L | sup(s) = minsup

5. REMOVE s from L.

6. END IF

7. Set minsup to the lowest support of rules in L.

8. END IF

Fig. 3. The SAVE procedure

The second sub-problem is that rules can be found several times by performing

left/right expansions with different items. For example, consider the rule {b, c}⇒{d}.

A left expansion of {b}⇒{d} with item c can result in the rule {b, c}⇒{d}. But that

latter rule can also be found by performing a left expansion of {c}⇒{d} with b. To

solve this problem, a solution is to only add an item to an itemset of a rule if the item

is greater than each item in the itemset according to the lexicographic ordering. In the

previous example, this would mean that item c would be added to the left itemset of

{b}⇒{d}. But b would not be added to the left itemset of {c}⇒{d} because b is not

greater than c. By using this strategy and the previous one, no rules are found twice.

We now explain how EXPAND-L and EXPAND-R have been implemented based on

these strategies.

The EXPAND-R procedure. The procedure EXPAND-R (cf. figure 5) takes as

parameters a rule I⇒J to be expanded, L, R, k, minsup and minconf. To expand I⇒J,

EXPAND-R has to identify items that can expand the rule I⇒J to produce a valid rule.

By exploiting the fact that any valid rule is a frequent rule, this problem is

decomposed into two sub-problems, which are (1) determining items that can expand

a rule I⇒J to produce a frequent rule and (2) assessing if a frequent rule obtained by

an expansion is valid. The first sub-problem is solved as follows. To identify items

that can expand a rule I⇒J and produce a frequent rule, the algorithm scans each

sequence sid from sids(I∩J). During this scan, for each item cI appearing in

sequence sid after I, the algorithm adds sid to a variable sids(I⇒J∪{c}) if c is lexically

larger than all items in J (this latter condition is to ensure that no duplicated rules will

be generated, as explained). When the scan is completed, for each item c such that

|sids(I⇒J∪{c})| / |S| ≥ minsup, the rule I⇒J∪{c} is deemed frequent and is added to

the set R so that it will be later considered for expansion. Note that the flag expandLR

of each such rule is set to false so that each generated rule will only be considered for

right expansions (to make sure that no rules are found twice by different combinations

of left/right expansions, as explained). Finally, the confidence of each frequent rule

I⇒J∪{c} is calculated to see if the rule is valid, by dividing |sids(I⇒J∪{c})| by

|sids(I)|, the value sids(I) having already been calculated for I⇒J. If the confidence of

I⇒J∪{c} is no less than minconf, then the rule is valid and the procedure SAVE is

called to add the rule to L, the list of the current top-k rules.

The EXPAND-L procedure. The procedure EXPAND-L (cf. figure 6) takes as

parameters a rule I⇒J to be expanded, L, R, k, minsup and minconf. This procedure is

similar to EXPAND-R. The only extra step that is performed compared to EXPAND-

R is that for each rule I∪{c}⇒J obtained by the expansion of I⇒J with an item c, the

value sids(I∪{c}) necessary for calculating the confidence is obtained by intersecting

sids(I) with sids(c). The value sids(c) is known from the initial database scan.

3.3 Implementing TopSeqRules Efficiently

We implemented TopSeqRules in Java. We used two optimizations, which greatly

improve TopSeqRules’ execution time in our experiments (cf. section 4).

Optimization 1: Implementing L and R with efficient data structures.

TopSeqRules performs three operations on L, which are insertion, deletion and

finding the rule having the lowest support. The three same operations are performed

on R plus finding the rule having the highest support (to select the most promising

rules from R). Because these operations are performed constantly by TopSeqRules, it

is important to implement L and R with data structures that support performing these

operations efficiently. To address this issue, we implement L with a Fibonacci heap

sorted by the support of the rules. It has an amortized time cost of O(1) for insertion

and obtaining the minimum, and O(log(n)) for deletion [18]. For R, we used a red-

black tree because we also need the operation of finding the maximum. A red-black

tree guarantees a O(log(n)) worst-case time cost for the four operations [18] .

Optimization 2: merging database scans for the left/right expansions of a rule.
The second optimization reduces the number of database scans. Recall that EXPAND-

L and EXPAND-R are both applied to each rule I⇒J having the flag expandLR set to

true. Performing EXPAND-L and EXPAND-R each requires to scan each sequence

from sids(I⇒J) once. A simple optimization is to combine the database scans of

EXPAND-L and EXPAND-R so that they use the same database scan for identifying

left and right expansions, when the flag expandLR is set to true.

EXPAND-R(I⇒J, L, R, k, minsup, minconf)

1. FOR each sid ∈ sids(I⇒J), scan the sequence sid. For each item c appearing in sequence

sid that is lexically larger than all items in J and appear after I, record sid in a variable

sids(I⇒J∪{c}).

2. FOR each item c such that |sids(I⇒J∪{c})| ≥ minsup×|S| :

3. Set flag expandLR of I⇒J∪{c} to false.

4. R := R∪{I⇒J∪{c}}.

5. IF | sids (I⇒J∪{c})| / | sids (I)| ≥ minconf THEN SAVE(I⇒J∪{c}, L, k, minsup).

6. END FOR

7. END FOR

Fig. 5. The EXPAND-R procedure

EXPAND-L(I⇒J, L, R, k, minsup, minconf)

1. FOR each sid ∈ sids(I⇒J), scan the sequence sid. For each item cJ appearing in

sequence sid that is lexically larger than all items in I and appear before J, record sid in a

variable sids(I∪{c}⇒J)

2. FOR each item c such that |sids (I∪{c}⇒J)| / |S| ≥ minsup :

3. Set flag expandLR of I⇒J∪{c} to true.

4. sids(I∪{c}) := Ø.

5. FOR each sid ∈ sids(I) such that sid ∈ sids(c), sids(I∪{c}):= sids(I∪{c}) ∪{sid}.

6. SAVE(I∪{c}⇒J, L, k, minsup).

7. IF |sids(I∪{c}⇒J)| / |sids(I∪{c})| ≥ minconf THEN R := R∪{I∪{c}⇒J}.

8. END FOR

Fig. 6. The EXPAND-L procedure

3.4 Extensions

The TopSeqRules algorithm can be extended in several ways. We list two.

Extension 1: using a different definition of what is a top-k sequential rule. In

section 2, we presented two possible definitions of what is a top-k sequential rule, and

selected definition I for presenting the algorithm. However, TopSeqRules could easily

be modified so that the support is fixed instead of the confidence for finding the top-k

rules. This would result in a mining algorithm for definition II. However, the resulting

algorithm would be inefficient unless the support is set high, because the confidence

could not be raised dynamically to prune the search space because the confidence is

not monotonic with respect to left/right expansions (cf. section 3).

Extension2: using different interestingness measures. This paper considered the

confidence and support because they are the standard measures for sequential rules.

But other measures could be used. For example, more than twenty interestingness

measures have been proposed for association rule mining [17]. Many of those could

be adapted for sequential rule mining and integrated in the TopSeqRules algorithm

because the calculation is done similarly to the calculation of the confidence and

support. For example, the lift [17] could be adapted for sequential rules as lift(I⇒J) =

sup(I⇒J)/ (sup(I) × sup(J)) for a sequential rule I⇒J. Compared to the confidence,

using the lift would just require to calculate sup(J) for each rule in addition to sup(I).

However, to be able to prune the search space, it is necessary that the “top-k”

condition is defined on a monotonic interestingness measure like the support. For

example, with just a few modifications, one could mine the k rules having a support

higher or equal to minsup such that their lift is no less than a minlift threshold.

4 Evaluation

We evaluated TopSeqRules on a notebook with a 2.53 Ghz processor, Windows XP

and 1 GB of free RAM. Experiments were carried on three real-life datasets

representing three types of data. Table 1 summarizes the characteristics of the

datasets. BMSWebview1 was downloaded from http://fimi.ua.ac.be/data/. Sign was

downloaded from http://cs-people.bu.edu/panagpap/Research/asl_mining.htm. Snake

was obtained from the authors of [4].

Table 1. Datasets characteristics

Datasets |S| |I| Avg. item count / sequence Type of data

BMSWebView1 59601 497 2.5 (σ = 4.85) click-stream from web store

Sign 730 310 93.39 (σ = 4.59) language utterances

Snake 163 20 60.61 5 (σ = 0.89) protein sequence

4.1 Influence of k
The first experiment was done to evaluate the influence of k on the execution time and

the memory consumption. We ran TopSeqRules with minconf = 0.3 on each dataset

while varying k from 500 to 5000. Results are shown in figure 7. Our first observation

is that the execution time and the maximum memory consumption is excellent for

these real-life datasets (in the worst case, the algorithm took a little less than 1 minute

to terminate and used about 1 gigabyte of memory). Furthermore, it can be seen that

the algorithm performance and memory usage grows linearly with k. The only

exception is for k=3000 to k=4500 for the BMS-WebView1 dataset where the memory

usage remains the same and the execution time increases more quickly. We found that

this is not caused by the algorithm design. But it is caused by the Java garbage

collection mechanism overhead when the memory usage is close to the 1GB limit set

for the experiment.

Execution time (seconds)

 BMSWebview1 Sign Snake

Maximum memory usage (megabytes)

 BMSWebview1 Sign Snake

Fig. 7. Results of varying k

4.2 Influence of minconf

In a second experiment, we tested the influence of minconf on the execution time and

memory consumption. We ran TopSeqRules on the same datasets with k = 1000 while

varying minconf to observe its influence on the execution time and the memory usage.

Results are shown in figure 8. It can be seen that as the confidence increases, the

execution time and memory usage increase in an exponential manner. The reason is

that setting the confidence higher means that the algorithm has to generate more rules

to be able to raise the minimum support threshold when searching for the top-k

sequential rules. Nevertheless, the algorithm ran successfully with high minconf

thresholds in our experiment within the memory limit (up to 0.7, 0.85 and 0.99,

respectively for BMSWebview1, Sign and Snake).

Execution time (seconds)

 BMSWebview1 Sign Snake

Maximum memory usage (megabytes)

 BMSWebview1 Sign Snake

Fig. 8. Results of varying minconf

0

20

40

60

0 1000 2000 3000 4000 5000
k

0

10

20

30

0 1000 2000 3000 4000 5000
k

0

5

0 1000 2000 3000 4000 5000
k

0

500

1000

0 1000 2000 3000 4000 5000
k

0

500

1000

0 1000 2000 3000 4000 5000
k

0

50

100

150

0 1000 2000 3000 4000 5000
k

0

100

200

0,1 0,2 0,3 0,4 0,5 0,6 0,7
minconf

0

10

20

30

0 0,5 1
minconf

0

5

10

15

0,5 0,75 1
minconf

0

100

200

0,1 0,2 0,3 0,4 0,5 0,6 0,7
minconf

0

500

1000

0 0,5 1k

0

50

100

0,5 0,75 1
minconf

4.3 Influence of |S|

In a third experiment, we tested the scalability with respect to the number of

sequences, by applying TopSeqRules with minconf=0.3 and k=1000 on 50% to 100 %

of the sequences of each dataset. Figure 9 shows the results. It can be seen that the

execution time and memory usage increase slowly when the number of sequences

increases. This is because the performance of TopSeqRules depends more on the

number of rules generated and stored in R than the number of sequences, and the

number of rules generated remains more or less the same when the database size

increase. This shows that TopSeqRules has an excellent scalability.

Execution time (seconds)
 BMSWebview1 Sign Snake

Maximum memory usage (megabytes)

 BMSWebview1 Sign Snake

Fig. 9. Results of varying the database size

4.4 Performance comparison

In a fourth experiment, we compared the performance of TopSeqRules with

RuleGrowth [6] (also implemented in Java), the state of the art algorithm for the

problem of mining sequential rules presented in section 2. To compare their

performance, we first considered the scenario where the user would choose the

optimal parameters for RuleGrowth to produce the same amount of result produced by

TopSeqRules. For this scenario, we ran TopSeqRules on the three datasets with the

parameters used in section 4.1. We then ran RuleGrowth with minsup equals to the

lowest support for the rules found by TopSeqRules, for each k and each dataset.

Results are shown in figure 10. It can be observed that the execution time of

TopSeqRules is generally close to RuleGrowth’s execution time except for

BMSWebView1 where the gap is larger. But the main difference between the

performance of TopSeqRules and RuleGrowth is in the memory usage. TopSeqRules

uses more memory because it keeps the set R of rules to be expanded into memory.

For this reason, as k is set to larger value, the memory requirement of TopSeqRules

increases. These results are excellent considering that the parameters of RuleGrowth

were chosen optimally, which is rarely the case in real-life if the user has no a priori

knowledge of the database. If the parameters of RuleGrowth are not chosen optimally,

it can run much slower than TopSeqRules, or generate too few or too many results.

8

9

10

11

0,5 0,6 0,7 0,8 0,9 1

% of |S|

4

6

8

10

0,5 0,6 0,7 0,8 0,9 1
% of |S|

0

1

2

3

0,5 0,6 0,7 0,8 0,9 1

% of |S|

300

320

340

0,5 0,6 0,7 0,8 0,9 1
% of |S|

125

127

129

131

0,5 0,6 0,7 0,8 0,9 1
% of |S|

30

40

50

0,5 0,6 0,7 0,8 0,9 1

% of |S|

For example, consider the case where the user wants to discover the top 1000 rules

from a database and do not want to find more than 2000 rules. To find this amount of

rules, the user needs to choose minsup from a very narrow range of values (shown in

Table 2 for each dataset). For example, for BMSWebView1, the range of minsup

values that will satisfy the user is 0.0011 to 0.0009. This means that a user having no

a priori knowledge of the database has only a 0.02 % chance of selecting a minsup

value that will make him satisfied. If the users choose a higher minsup, not enough

rules will be found, and if minsup is set lower, too many rules will be found and the

algorithm may become slow. This clearly shows the benefits of using TopSeqRules.

Execution time (seconds)

 BMSWebview1 Sign Snake

 Maximum memory usage (megabytes)

 BMSWebview1 Sign Snake

Fig. 10. Performance comparison for optimal parameters selection

Table 2. Interval of minsup values to find the top 1000 to 2000 rules for each dataset

Datasets minsup for k=1000 minsup for k=2000 interval size

BMSWebView1 0.0011 0.0009 0.0002

Sign 0.420 0.384 0.036

Snake 0.960 0.944 0.016

4.5 Influence of optimizations and of expanding the most promising rules first

Lastly, we evaluated the benefit of using the optimizations and of expanding the most
promising rules first. Due to space limitations, we do not show the results as charts.
We observed that optimization 1 (data structures) and optimization 2 (merging
database scans) each reduce the execution time by about 20% to 40 % on all datasets.
For the strategy of expanding the most promising rules first with the set R, we found
that if this strategy is deactivated, the algorithm cannot terminate within 1 hour on all
datasets because the algorithm cannot prune the search space efficiently. This is
because in the worst case a top-k algorithm has to explore the whole search space
before finding the top-k rules. If there are d items, the number of rules to consider is

in the worst case 123×
1

1 1
















 








 









ddd

k

kd

j j

kd

k

d , which is exponential. For this

reason, it is necessary to use the set R to expand the most promising rules first to try
to raise minsup as fast as possible and prune the search space.

0

5

10

15

20

k

TopSeqRules
RuleGrowth

0

10

20

30

0 2000 4000
k

0

5

0 2000 4000k

0

200

400

600

800

250 500 750 10001250150017502000k

TopSeqRules
RuleGrowth

0

200

400

600

0 2000 4000
k

0

50

100

150

0 2000 4000k

5 Conclusion

Mining sequential rules requires specifying parameters (e.g. the minimal confidence

and the minimal support) that are difficult to set. To address this problem, we propose

an efficient algorithm named TopSeqRules that let the user specify k, the amount of

sequential rules to be output. Experimental results with real-life datasets show that the

algorithm has excellent scalability, that its execution time linearly increases with the

parameter k and that the algorithm had no problem running in reasonable time and

memory limits for k values of up to 5000 for all datasets. Results also show that when

parameters are chosen optimally, RuleGrowth can be slightly faster than

TopSeqRules. However, if minsup is set higher than a narrow range of values,

RuleGrowth generates too few results and if it is set lower, it generates too many

results and can become much slower. This clearly shows the benefit of using

TopSeqRules when the user has no a priori knowledge about a sequence database.

References

1. Laxman, S., Sastry, P.: A survey of temporal data mining. Sadhana 3, 173-198 (2006)
2. Agrawal, R., Srikant, R.: Mining Sequential Patterns. Proc. ICDE 1995, pp. 3-14 (1995)
3. Zaki, M. J.: SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine

Learning 42(1/2), 31-60 (2001)
4. Jonassen, I., Collins, J.F, Higgins, D.G.: Finding flexible patterns in unaligned protein

sequences. Protein Science 4(8), 1587-1595 (1995)
5. Fournier-Viger, P., Nkambou, R., Tseng, V. S.: RuleGrowth: Mining Sequential Rules

Common to Several Sequences by Pattern-Growth. Proc. SAC 2011, pp. 954-959 (2011)
6. Fournier-Viger, P., Faghihi, U., Nkambou, R., Mephu Nguifo, E.: CMRules: Mining

Sequential Rules Common to Several Sequences. Knowledge-based Systems, 25(1), 63-76
(2012)

7. Das., G., Lin, K.-I., Mannila, H., Renganathan, G., Smyth, P.: Rule Discovery from Time
Series. Proc. ACM SIGKDD’98, pp. 16-22 (1998)

8. Deogun, J.S., Jiang, L.: Prediction Mining – An Approach to Mining Association Rules for
Prediction. Proc. RSFDGrC, pp. 98-108 (2005)

9. Hamilton, H. J., Karimi, K.: The TIMERS II Algorithm for the Discovery of Causality.
Proc. PAKDD 2005, pp. 744-750 (2005)

10. Harms, S. K., Deogun, J., Tadesse, T.: Discovering Sequential Association Rules with
Constraints and Time Lags in Multiple Sequences. Proc. ISMIS 2002, pp. 373-376 (2002)

11. Lo, D., Khoo, S.-C., Wong, L.: Non-redundant sequential rules – Theory and algorithm.
Information Systems 34(4-5), 438-453 (2009)

12. Mannila, H., Toivonen, H., Verkano, A.I.: Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery 1(1), 259-289 (1997)

13. Wang, J., Han, J., Lu, Y., Tzvetkov, P.: TFP: An Efficient Algorithm for Mining Top-k
Frequent Closed Itemsets. IEEE TKDE 17 (5), 652-664 (2005)

14. Pietracaprina, A., Vandin, F.: Efficient Incremental Mining of Top-k Frequent Closed
Itemsets. Proc. Discovery Science 2007, pp. 275-280 (2007)

15. Tzvetkov, P., Yan, X., Han, J.: TSP: Mining top-k closed sequential patterns. Knowledge
and Information Systems, 7(4), 438-457 (2005)

16.Chuang, K.-T., Huang, J.-L., Chen, M.-S.: Mining top-k frequent patterns in the presence of
the memory constraint. VLDB 17(5), 1321-1344 (2008)

17. Tan, P.-N., Kumar, V., Srivastava, J.: Selecting the right objective measure for association
analysis. Information Systems, 29 (4), 293-313 (2004)

18. Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C.: Introduction to Algorithms, 3rd
edit., MIT Press (2009)

http://www.bibsonomy.org/bibtex/c5fb61cdaddf4d0894dee8c5fd9b6b74

