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Abstract. Sequential pattern mining is a popular data mining task with
wide applications. However, it may present too many sequential patterns
to users, which makes it difficult for users to comprehend the results.
As a solution, it was proposed to mine maximal sequential patterns, a
compact representation of the set of sequential patterns, which is of-
ten several orders of magnitude smaller than the set of all sequential
patterns. However, the task of mining maximal patterns remains com-
putationally expensive. To address this problem, we introduce a vertical
mining algorithm named VMSP (Vertical mining of Maximal Sequential
Patterns). It is to our knowledge the first vertical mining algorithm for
mining maximal sequential patterns. An experimental study on five real
datasets shows that VMSP is up to two orders of magnitude faster than
the current state-of-the-art algorithm.

Keywords: vertical mining, maximal sequential pattern mining, candi-
date pruning

1 Introduction

Discovering interesting patterns in sequential data is a challenging task. Multiple
studies have been proposed for mining interesting patterns in sequence databases
[11, 4]. Sequential pattern mining is probably the most popular research topic
among them. A subsequence is called sequential pattern or frequent sequence
if it frequently appears in a sequence database, and its frequency is no less
than a user-specified minimum support threshold minsup [1]. Sequential pattern
mining plays an important role in data mining and is essential to a wide range
of applications such as the analysis of web click-streams, program executions,
medical data, biological data and e-learning data [11].

Several algorithms have been proposed for sequential pattern mining such
as PrefixSpan [12], SPAM [2] and SPADE [14]. However, a critical drawback of
these algorithms is that they may present too many sequential patterns to users.



A very large number of sequential patterns makes it difficult for users to analyze
results to gain insightful knowledge. It may also cause the algorithms to become
inefficient in terms of time and memory because the more sequential patterns
the algorithms produce, the more resources they consume. The problem becomes
worse when the database contains long sequential patterns. For example, consider
a sequence database containing a sequential pattern having 20 distinct items. A
sequential pattern mining algorithm will present the sequential pattern as well as
its 220−1 subsequences to the user. This will most likely make the algorithm fail
to terminate in reasonable time and run out of memory. For example, the well-
known PrefixSpan [12] algorithm would have to perform 220 database projection
operations to produce the results.

To reduce the computational cost of the mining task and present fewer but
more representative patterns to users, many studies focus on developing concise
representations of sequential patterns. A popular representation that has been
proposed is closed sequential patterns [13, 6]. A closed sequential pattern is a se-
quential pattern that is not strictly included in another pattern having the same
frequency. Several approaches have been proposed for mining closed sequential
patterns in sequence databases such as BIDE [13] and ClaSP [6]. Although these
algorithms mines a compact set of sequential patterns, the set of closed patterns
is still too large for dense databases or database containing long sequences.

To address this problem, it was proposed to mine maximal sequential patterns
[3, 5, 8–10, 7]. A maximal sequential pattern is a closed pattern that is not strictly
included in another closed pattern. The set of maximal sequential patterns is thus
generally a very small subset of the set of (closed) sequential patterns. Besides,
the set of maximal sequential patterns is representative since it can be used to
recover all sequential patterns, and the exact frequency of these latter can also
be recovered with a single database pass.

Maximal sequential pattern mining is important and has been adopted in
numerous applications. For example, it is used to find the frequent longest com-
mon subsequences in texts, analysing DNA sequences, data compression and
web log mining [5]. Although maximal sequential pattern mining is desirable
and useful in many applications, it remains a computationally expensive data
mining task and few algorithms have been proposed for this task. MSPX [9] is an
approximate algorithm and therefore it provides an incomplete set of maximal
patterns to users. DIMASP [5] is designed for the special case where sequences
are strings (no more than an item can appear at the same time) and where no
pair of contiguous items appears more than once in each sequence. AprioriAd-
just [10] is an apriori-like algorithm, which may suffer from the drawbacks of
the candidate generation-and-test paradigm. In other words, it may generate a
large number of candidate patterns that do not appear in the input database and
require to scan the original database several times. The MFSPAN [7] algorithm
needs to maintain a large amount of intermediate candidates in main memory
during the mining process. The most recent algorithm is MaxSP [3], which re-
lies on a pattern-growth approach to avoid the problem of candidate generation



from previous algorithms. However, it has to repeatedly perform costly database
projection operations [3].

Given the limitations of previous work, we explore a novel approach, which
is to mine maximal sequential pattern by using a depth-first exploration of the
search space using a vertical representation. We propose a novel algorithm for
maximal sequential pattern mining that we name VMSP (Vertical mining of
Maximal Sequential Patterns). The algorithm incorporates three efficient strate-
gies named EFN (Efficient Filtering of Non-maximal patterns), FME (Forward-
Maximal Extension checking) and CPC (Candidate Pruning by Co-occurrence
map) to effectively identify maximal patterns and prune the search space. VMSP
is developed for the general case of a sequence database rather than strings and
it can capture the complete set of maximal sequential patterns with a single
database scan. We performed an experimental study with five real-life datasets
to compare the performance of VMSP with MaxSP [3], the state-of-the-art algo-
rithm for maximal sequential pattern mining. Results show that VMSP is up to
two orders of magnitude faster than MaxSP, and perform well on dense datasets.

The rest of the paper is organized as follows. Section 2 formally defines the
problem of maximal sequential pattern mining and its relationship to sequential
pattern mining. Section 3 describes the VMSP algorithm. Section 4 presents the
experimental study. Finally, Section 5 presents the conclusion and future works.

2 Problem Definition

Definition 1 (sequence database). Let I = {i1, i2, ..., il} be a set of items
(symbols). An itemset Ix = {i1, i2, ..., im} ⊆ I is an unordered set of distinct
items. The lexicographical order �lex is defined as any total order on I. Without
loss of generality, we assume that all itemsets are ordered according to �lex. A
sequence is an ordered list of itemsets s = 〈I1, I2, ..., In 〉 such that Ik ⊆ I (1 ≤
k ≤ n). A sequence database SDB is a list of sequences SDB = 〈s1, s2, ..., sp〉
having sequence identifiers (SIDs) 1, 2...p. Example. A sequence database is
shown in Fig. 1 (left). It contains four sequences having the SIDs 1, 2, 3 and 4.
Each single letter represents an item. Items between curly brackets represent an
itemset. The first sequence 〈{a, b}, {c}, {f, g}, {g}, {e}〉 contains five itemsets. It
indicates that items a and b occurred at the same time, were followed by c, then
f and g at the same time, followed by g and lastly e.

Definition 2 (sequence containment). A sequence sa = 〈A1, A2, ..., An〉 is
said to be contained in a sequence sb = 〈B1, B2, ..., Bm〉 iff there exist integers
1 ≤ i1 < i2 < ... < in ≤ m such that A1 ⊆ Bi1, A2 ⊆ Bi2, ..., An ⊆ Bin (denoted
as sa v sb). Example. Sequence 4 in Fig. 1 (left) is contained in Sequence 1.

Definition 3 (prefix). A sequence sa = 〈A1, A2, ..., An〉 is a prefix of a se-
quence sb = 〈B1, B2, ..., Bm〉, ∀n < m, iff A1 = B1, A2 = B2, ..., An−1 = Bn−1
and the first |An| items of Bn according to �lex are equal to An.
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i, the algorithm outputs the sequential pattern 〈{i}〉 (line 2-4). For each frequent item 

i, a projection of the database SDB by i is performed to obtain a projected database 

SDBi (line 5). Then, a recursive call is performed with parameters SDBi, minsup and 

the concatenation of the prefix P with {i} (line 6). The recursive call will then consid-

er extending the pattern 〈{i}〉 with single items to form larger patterns. By the means 

of the recursive calls, the PrefixSpan algorithm recursively appends items one item at 

a time to discover larger patterns. The database projection operation is performed as 

follows. 

 
SID Sequences  Pattern Sup. Pattern Sup. 

1 

2 

3 
4 

〈{a, b},{c},{f, g},{g},{e}〉 
〈{a, d},{c},{b},{a, b, e, f}〉 
〈{a},{b},{f},{e}〉 
〈{b},{f, g}〉 

 〈{a}〉 
〈{a},{g}〉 
〈{a},{g},{e}〉 
〈{a},{f}〉 
〈{a},{f},{e}〉 
〈{a},{c}〉 
〈{a},{c},{f}〉 
〈{a},{c},{e}〉 
〈{a},{b}〉 
〈{a},{b},{f}〉 
〈{a},{b},{e}〉 
〈{a},{e}〉 
〈{a, b}〉 
〈{b}〉 
〈{b},{g}〉 

3   C 

2  

2    CM 
3    C 

2   CM 

2 
2     CM 

2     CM 

2 
2 CM  

2 CM 

3    C 
2     CM 

4 

3  C  

〈{b},{g},{e}〉 
〈{b},{f}〉 
〈{b},{f, g}〉 
〈{b},{f},{e}〉 
〈{b},{e}〉 
〈{c}〉 
〈{c},{f}〉 
〈{c},{e}〉 
〈{e}〉 
〈{f}〉 
〈{f, g}〉 
〈{f},{e}〉 
〈{g}〉 
〈{g},{e}〉 
 

2  CM 

4  C  
2  CM 
2  CM 

3  C 

2 
2 

2 

3 
4 

2 

2 
3 

2 

 

               C =  Closed     M = Maximal 

                                                  

RECOVERY (a set of maximal patterns M)  

1. FOR each sequential pattern j ∈ M, 

2.   FOR each subsequence j of M,  

3.     IF j has not been output  
4.     THEN output j.  

Fig. 3. Algorithm to recover all frequent sequential patterns from maximal patterns 

Definition 4. The projection of a sequence database SDB by a prefix P is the projec-

tion of each sequence from SDB containing P by the prefix P.  

 

Definition 5. The projection of a sequence S by a prefix P is the part of the sequence 

occurring immediately after the first occurrence of the prefix P in the sequence S. For 

instance, the projection of 〈{a},{c},{a},{e}〉 by the item a is the sequence 

〈{c},{a},{e}〉 and the projection of 〈{a},{c},{b},{e}〉 by the prefix 〈{c},{b}〉 is 
〈{e}〉.    

 

Note that performing a database projection does not require to make a physical 

copy of the database. For memory efficiency, a projected database is rather represent-

ed by a set of pointers on the original database (this optimization is called pseudo-

projection) [5]. Also, note that the pseudo-code presented in Figure 4 is simplified. 

The actual PrefixSpan algorithm needs to consider that an item can be appended to 

Fig. 1. A sequence database (left) and (all/closed/maximal) sequential patterns found
(right)

Definition 4 (extensions). A sequence sb is said to be an s-extension of a
sequence sa = 〈I1, I2, ...Ih〉 with an item x, iff sb = 〈I1, I2, ...Ih, {x}〉, i.e. sa is a
prefix of sb and the item x appears in an itemset later than all the itemsets of
sa. In the same way, the sequence sc is said to be an i-extension of sa with an
item x, iff sc = 〈I1, I2, ...Ih ∪ {x}〉, i.e. sa is a prefix of sc and the item x occurs
in the last itemset of sa, and the item x is the last one in Ih, according to �lex.

Definition 5 (support). The support of a sequence sa in a sequence database
SDB is defined as the number of sequences s ∈ SDB such that sa v s and is
denoted by supSDB(sa).

Definition 6 (sequential pattern mining). Let minsup be a threshold set
by the user and SDB be a sequence database. A sequence s is a sequential
pattern and is deemed frequent iff supSDB(s) ≥ minsup. The problem of mining
sequential patterns is to discover all sequential patterns [1]. Example. Fig. 1
(right) shows the 29 sequential patterns found in the database of Fig. 1 (left) for
minsup = 2, and their support. For instance, the patterns 〈{a}〉 and 〈{a}, {g}〉
are frequent and have respectively a support of 3 and 2 sequences.

Definition 7 (closed/maximal sequential pattern mining). A sequential
pattern sa is said to be closed if there is no other sequential pattern sb, such that
sb is a superpattern of sa, sa v sb, and their supports are equal. A sequential
pattern sa is said to be maximal if there is no other sequential pattern sb, such
that sb is a superpattern of sa, sa v sb. The problem of mining closed (max-
imal) sequential patterns is to discover the set of closed (maximal) sequential
patterns. Example. Consider the database of Fig. 1 and minsup = 2. There are
29 sequential patterns (shown in the right side of Fig. 1), such that 15 are closed
(identified by the letter C) and only 10 are maximal (identified by the letter M).

Property 1. (Recovering sequential patterns). The set of maximal se-
quential patterns allow recovering all sequential patterns. Proof. By definition,

ph
Typewriter
{f,g},{e}



a maximal sequential pattern has no proper super-sequence that is a frequent se-
quential pattern. Thus, if a pattern is frequent, it is either a proper subsequence
of a maximal pattern or a maximal pattern. Figure 2 presents a simple algorithm
for recovering all sequential patterns from the set of maximal sequential patterns.
It generates all the subsequences of all the maximal patterns. Furthermore, it
performs a check to detect if a sequential pattern has already been output (line
3) because a sequential pattern may be a subsequence of more than one maximal
pattern. After sequential patterns have been recovered, an additional database
scan can be performed to calculate their exact support, if required.
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i, the algorithm outputs the sequential pattern {i}  (line 2-4). For each frequent item 

i, a projection of the database SDB by i is performed to obtain a projected database 

SDBi (line 5). Then, a recursive call is performed with parameters SDBi, minsup and 

the concatenation of the prefix P with {i} (line 6). The recursive call will then consid-

er extending the pattern {i}  with single items to form larger patterns. By the means 

of the recursive calls, the PrefixSpan algorithm recursively appends items one item at 

a time to discover larger patterns. The database projection operation is performed as 

follows. 

 
SID Sequences  Pattern Sup. Pattern Sup. 

1 

2 

3 
4 

{a, b},{c},{f, g},{g},{e}  

{a, d},{c},{b},{a, b, e, f}  

{a},{b},{f},{e}  

{b},{f, g}  

 {a}  

{a},{g}  

{a},{g},{e}  

{a},{f}  

{a},{f},{e}  

{a},{c}  

{a},{c},{f}  

{a},{c},{e}  

{a},{b}  

{a},{b},{f}  

{a},{b},{e}  

{a},{e}  

{a, b}  

{b}  

{b},{g}  

3     C 

2  

2      CM 

3      C 

2      CM 

2  
2     CM 

2     CM 

2  

2  CM  

2  CM 

3      C 

2      CM 

4  

3   C  

{b},{g},{e}  

{b},{f}  

{b},{f, g}  

{b},{f},{e}  

{b},{e}  

{c}  

{c},{f}  

{c},{e}  

{e}  

{f}  

{f, g}  

{f},{e}  

{g}  

{g},{e}  
 

2  CM 

4  C 
2  CM 

2  CM 

3  C 

2  

2  

2  

3  

4  

2  

2  

3  

2  

Fig. 1. A sequence database 

               C =  Closed     M = Maximal 

                                                     Fig. 2.  Sequential patterns found for minsup = 2 (right)  

RECOVERY (a set of maximal patterns M)  

1. FOR each sequential pattern j  M, 

2.   FOR each subsequence k  j,  

3.     IF k has not been output  
4.     THEN output k.  

Fig. 3. Algorithm to recover all frequent sequential patterns from maximal patterns 

Definition 4. The projection of a sequence database SDB by a prefix P is the projec-

tion of each sequence from SDB containing P by the prefix P.  

 

Definition 5. The projection of a sequence S by a prefix P is the part of the sequence 

occurring immediately after the first occurrence of the prefix P in the sequence S. For 

instance, the projection of {a},{c},{a},{e}  by the item a is the sequence 

{c},{a},{e}  and the projection of {a},{c},{b},{e} {c},{b}

{e}

 

Note that performing a database projection does not require to make a physical 

copy of the database. For memory efficiency, a projected database is rather represent-

ed by a set of pointers on the original database (this optimization is called pseudo-

projection) [5]. Also, note that the pseudo-code presented in Figure 4 is simplified. 

The actual PrefixSpan algorithm needs to consider that an item can be appended to 

Fig. 2. Algorithm to recover all sequential patterns from maximal patterns

Definition 8 (horizontal database format). A sequence database in hori-
zontal format is a database where each entry is a sequence. Example. Figure 1
(left) shows an horizontal sequence database.

Definition 9 (vertical database format). A sequence database in vertical
format is a database where each entry represents an item and indicates the list
of sequences where the item appears and the position(s) where it appears [2].
Example. Fig. 3 shows the vertical representation of the database of Fig. 1
(left).

Fig. 3. The vertical representation of the database shown in Fig. 1(left).

Vertical mining algorithms associate a structure named IdList [14, 2] to each
pattern. IdLists allow calculating the support of a pattern quickly by making



join operations with IdLists of smaller patterns. To discover sequential patterns,
vertical mining algorithms perform a single database scan to create IdLists of
patterns containing single items. Then, larger patterns are obtained by perform-
ing the join operation of IdLists of smaller patterns (cf. [14] for details). Several
works proposed alternative representations for IdLists to save time in join oper-
ations, being the bitset representation the most efficient one [2].

3 The VMSP Algorithm

We present VMSP, our novel algorithm for maximal sequential pattern mining.
It adopts the IdList structure [2, 6, 14]. We first describe the general search pro-
cedure used by VMSP to explore the search space of sequential patterns. Then,
we describe how it is adapted to discover maximal patterns efficiently.

3.1 The search procedure

The pseudocode of the search procedure is shown in Fig. 4. The procedure takes
as input a sequence database SDB and the minsup threshold. The procedure
first scans the input database SDB once to construct the vertical representation
of the database V (SDB) and the set of frequent items F1. For each frequent
item s ∈ F1, the procedure calls the SEARCH procedure with 〈s〉, F1, {e ∈
F1|e �lex s}, and minsup.

The SEARCH procedure outputs the pattern 〈{s}〉 and recursively explores
candidate patterns starting with the prefix 〈{s}〉. The SEARCH procedure takes
as parameters a sequential pattern pat and two sets of items to be appended to
pat to generate candidates. The first set Sn represents items to be appended to
pat by s-extension. The second set Si represents items to be appended to pat by
i-extension. For each candidate pat′ generated by an extension, the procedure
calculate the support to determine if it is frequent. This is done by the IdList join
operation (see [2, 14] for details) and counting the number of sequences where
the pattern appears. If the pattern pat′ is frequent, it is then used in a recursive
call to SEARCH to generate patterns starting with the prefix pat′.

It can be easily seen that the above procedure is correct and complete to
explore the search space of sequential patterns since it starts with frequent pat-
terns containing single items and then extend them one item at a time while only
pruning infrequent extensions of patterns using the anti-monotonicity property
(any infrequent sequential pattern cannot be extended to form a frequent pat-
tern)[1].

3.2 Discovering maximal patterns

We now describe how the search procedure is adapted to discover only maximal
patterns. This is done by integrating three strategies to efficiently filter non-
maximal patterns and prune the search space. The result is the VMSP algorithm,
which outputs the set of maximal patterns.
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building a top-k algorithm based on this procedure would result in an efficient algo-

rithm. 

 

 

PATTERN-ENUMERATION(SDB, minsup) 

1. Scan SDB to create V(SDB) and identify Sinit, the list of frequent items. 

2. FOR each item s ∈ Sinit, 

3.  SEARCH(〈s〉, Sinit, the set of items from Sinit that are lexically larger than s, minsup). 

 

SEARCH(pat, Sn, In, minsup) 

1. Output pattern pat. 

2. Stemp := Itemp :=   

3. FOR each item j ∈ Sn, 

4.   IF the s-extension of pat is frequent THEN Stemp := Stemp ∪{i}. 

5. FOR each item j∈ Stemp,  

6.   SEARCH(the s-extension of pat with j, Stemp , elements in Stemp greater than j, min-

sup). 

7. FOR each item j ∈ In, 

8.   IF the i-extension of pat is frequent THEN Itemp := Itemp ∪{i}. 

9. FOR each item j ∈ Itemp,  

10.   SEARCH(i-extension of pat with j, Stemp , all elements in Itemp greater than j, minsup). 

Fig. 3. The candidate generation procedure 

3.2 The TKS Algorithm 

We now present our novel top-k sequential pattern mining algorithm named TKS. It 

takes as parameters a sequence database SDB and k. It outputs the set of top-k sequen-

tial patterns contained in SDB.  

 

Strategy 1. Raising Support Threshold. The basic idea of TKS is to modify the 

main procedure of the SPAM algorithm to transform it in a top-k algorithm. This is 

done as follows. To find the top-k sequential patterns, TKS first sets an internal min-

sup variable to 0. Then, TKS starts searching for sequential patterns by applying the 

candidate generation procedure. As soon as a pattern is found, it is added to a list of 

patterns L ordered by the support. This list is used to maintain the top-k patterns found 

until now. Once k valid patterns are found, the internal minsup variable is raised to the 

support of the pattern with the lowest support in L. Raising the minsup value is used 

to prune the search space when searching for more patterns. Thereafter, each time a 

frequent pattern is found, the pattern is inserted in L, the patterns in L not respecting 

minsup anymore are removed from L, and minsup is raised to the value of the least 

interesting pattern in L. TKS continues searching for more patterns until no pattern 

can be generated, which means that it has found the top-k sequential patterns. It can 

be easily seen that this algorithm is correct and complete given that the candidate 

generation procedure of SPAM is. However, in our test, an algorithm simply incorpo-

rating Strategy 1 does not have good performance.  

 

Fig. 4. The search procedure

Strategy 1. Efficient Filtering of Non-maximal patterns (EFN). The
first strategy identifies maximal patterns among patterns generated by the search
procedure. This is performed using a novel structure named Z that stores the set
of maximal patterns found until now. The structure Z is initially empty. Then,
during the search for patterns, every time that a pattern sa, is generated by the
search procedure, two operations are performed to update Z.

– Super-pattern checking. During this operation, sa is compared with each
pattern sb ∈ Z to determine if there exists a pattern sb such that sa v sb.
If yes, then sa is not maximal (by Definition 7) and thus, sa is not inserted
into Z. Otherwise, sa is maximal with respect to all patterns found until
now and it is thus inserted into Z.

– Sub-pattern checking. If sa is determined to be maximal according to super-
pattern checking, we need to perform this second operation. The pattern sa
is compared with each pattern sb ∈ Z. If there exists a pattern sb v sa, then
sb is not maximal (by Definition 7) and sb is removed from Z.

By using the above strategy, it is obvious that when the search procedure
terminates, Z contains the set of maximal sequential patterns. However, to make
this strategy efficient, we need to reduce the number of pattern comparisons and
containment checks (v). We propose three optimizations.

1. Size check optimization. Let n be the number of items in the largest pat-
tern found until now. The structure Z is implemented as a list of heaps
Z = {Z1, Z2, ...Zn}, where Zx contains all maximal patterns found until
now having x items (1 ≤ x ≤ n). To perform sub-pattern checking (super-
pattern checking) for a pattern s containing w items, an optimization is to
only compare s with patterns in Z1, Z2...Zw−1 (in Zw+1, Zw+2...Zn) because
a pattern can only contain (be contained) in smaller (larger) patterns.



2. Sum of items optimization. In our implementation, each item is represented
by an integer. For each pattern s, the sum of the items appearing in the
pattern is computed, denoted as sum(s). In each heap, patterns are ordered
by decreasing sum of items. This allows the following optimization. Consider
super-pattern checking for a pattern sa and a heap Zx. If sum(sa) < sum(sb)
for a pattern sb in Zx, then we don’t need to check sa v sb for sb and all
patterns following sb in Zx. A similar optimization is done for sub-pattern
checking. Consider sub-pattern checking for a pattern sa and a heap Zx. If
sum(sb) < sum(sa) for a pattern sb in Zx, then we don’t need to check
sb v sa for sb and all patterns following sb in Zx, given that Zx is traversed
in reverse order.

3. Support check optimization. This optimization uses the support to avoid
containment checks (v). If the support of a pattern sa is less than the support
of another pattern sb (greater), then we skip checking sa v sb (sb v sa).

Strategy 2. Forward-Maximal Extension checking (FME). The second
strategy aims at avoiding super-pattern checks. The search procedure discovers
patterns by growing a pattern by appending one item at a time by s-extension
or i-extension. Consider a pattern x that is generated. An optimization is to not
perform super-pattern checking if the recursive call to the SEARCH procedure
generate a frequent pattern (because this pattern would have x has prefix, thus
indicating that x is not maximal).

Strategy 3. Candidate Pruning with Co-occurrence map (CPC). The
last strategy aims at pruning the search space of patterns by exploiting item
co-occurrence information. We introduce a structure named Co-occurrence MAP
(CMAP) defined as follows: an item k is said to succeed by i-extension to an item
j in a sequence 〈I1, I2, ..., In〉 iff j, k ∈ Ix for an integer x such that 1 ≤ x ≤ n
and k �lex j. In the same way, an item k is said to succeed by s-extension to an
item j in a sequence 〈I1, I2, ..., In〉 iff j ∈ Iv and k ∈ Iw for some integers v and
w such that 1 ≤ v < w ≤ n. A CMAP is a structure mapping each item k ∈ I
to a set of items succeeding it.

We define two CMAPs named CMAPi and CMAPs. CMAPi maps each
item k to the set cmi(k) of all items j ∈ I succeeding k by i-extension in no less
than minsup sequences of SDB. CMAPs maps each item k to the set cms(k) of
all items j ∈ I succeedings k by s-extension in no less than minsup sequences of
SDB. For example, the CMAPi and CMAPs structures built for the sequence
database of Fig. 1(left) are shown in Table 1. Both tables have been created
considering a minsup of two sequences. For instance, for the item f , we can
see that it is associated with an item, cmi(f) = {g}, in CMAPi, whereas it
is associated with two items, cms(f) = {e, g}, in CMAPs. This indicates that
both items e and g succeed to f by s-extension and only item g does the same
for i-extension, being all of them in no less than minsup sequences.

VMSP uses CMAPs to prune the search space as follows:



1. s-extension(s) pruning. Let a sequential pattern pat being considered for s-
extension with an item x ∈ Sn by the SEARCH procedure (line 3). If the
last item a in pat does not have an item x ∈ cms(a), then clearly the pattern
resulting from the extension of pat with x will be infrequent and thus the
join operation of x with pat to count the support of the resulting pattern
does not need to be performed. Furthermore, the item x is not considered for
generating any pattern by s-extension having pat as prefix, by not adding
x to the variable Stemp that is passed to the recursive call to the SEARCH
procedure. Moreover, note that we only have to check the extension of pat
with x for the last item in pat, since other items have already been checked
for extension in previous steps.

2. i-extension(s) pruning. Let a sequential pattern pat being considered for i-
extension with an item x ∈ In by the SEARCH procedure. If the last item a
in pat does not have an item x ∈ cmi, then clearly the pattern resulting from
the extension of pat with x will be infrequent and thus the join operation
of x with pat to count the support of the resulting pattern does not need
to be performed. Furthermore, the item x is not considered for generating
any pattern by i-extension(s) of pat by not adding x to the variable Itemp

that is passed to the recursive call to the SEARCH procedure. As before, we
only have to check the extension of pat with x for the last item in pat, since
others have already been checked for extension in previous steps.

CMAPs are easily maintained and are built with a single database scan.
With regards to their implementation, we define each one as a hash table of
hash sets, where an hashset corresponding to an item k only contains the items
that succeed to k in at least minsup sequences.

CMAPi

item is succeeded by (i-extension)

a {b}
b ∅
c ∅
e ∅
f {g}
g ∅

CMAPs

item is succeeded by (s-extension)

a {b, c, e, f}
b {e, f, g}
c {e, f}
e ∅
f {e, g}
g ∅

Table 1. CMAPi and CMAPs for the database of Fig. 1 and minsup = 2.

Lastly, since the VMSP algorithm is a vertical mining algorithm, it relies
on IDLists. We implement IDLists as bitsets as it is done in several state-of-art
algorithms [2, 6]. Bitsets speed up the join operations. Algorithms using this rep-
resentation were demonstrated to be much faster than vertical mining algorithms
which do not use them.



4 Experimental Evaluation

We performed several experiments to assess the performance of the proposed
algorithm. Experiments were performed on a computer with a third generation
Core i5 64 bit processor running Windows 7 and 5 GB of free RAM. We compared
the performance of VMSP with MaxSP, the current state-of-the-art algorithm for
maximal sequential pattern mining. All algorithms were implemented in Java. All
memory measurements were done using the Java API. Experiments were carried
on five real-life datasets having varied characteristics and representing three dif-
ferent types of data (web click stream, text from a book and protein sequences).
Those datasets are Leviathan, Snake, FIFA, BMS and Kosarak10k. Table 2 sum-
marizes their characteristics. The source code of all algorithms and datasets used
in our experiments can be downloaded from http://goo.gl/hDtdt.

dataset sequence count item count avg. seq. length (items) type of data

Leviathan 5834 9025 33.81 (std= 18.6) book
Snake 163 20 60 (std = 0.59) protein sequences
FIFA 20450 2990 34.74 (std = 24.08) web click stream
BMS 59601 497 2.51 (std = 4.85) web click stream
Kosarak10k 10000 10094 8.14 (std = 22) web click stream

Table 2. Dataset characteristics

Experiment 1. Influence of the minsup parameter. The first exper-
iment consisted of running all the algorithms on each dataset while decreasing
the minsup threshold until an algorithm became too long to execute, ran out
of memory or a clear winner was observed. For each dataset, we recorded the
execution time and memory usage.

In terms of execution time, results (cf. Fig. 5) show that VMSP outperforms
MaxSP by a wide margin on all datasets. Moreover, VMSP performs very well
on dense datasets (about 100 times faster than MaxSP on Snake and FIFA).

In terms of memory consumption the maximum memory usage of VMSP
(MaxSP) on BMS, Snake, Kosarak, Leviathan and FIFA was respectively 840
MB (403 MB), 45 MB (340 MB), 1600 MB (393 MB), 911 MB (1150 MB) and
611 MB (970 MB). Overall, VMSP has the lowest memory consumption for three
out of five datasets.

Experiment 2. Influence of the strategies. We next evaluated the benefit
of using strategies in VMSP. We compared VMSP with a version of VMSP
without strategy CPC (VMSP W3), a version without strategies FME and CPC
(VMSP W2W3), and a version of VMSP without FME, CPC and strategies in
EFN (VMSP W1W2W3). Results for the BMS and FIFA datasets are shown in
Fig. 6. Results for other datasets are similar and are not shown due to space
limitation. As a whole, strategies improved execution time by up to to 8 times,
CPC being the most effective strategy.
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Fig. 5. Execution times

We also measured the memory used by the CPC strategy to build the CMAPs
data structure. We found that the required amount memory is very small. For
the BMS, Kosarak, Leviathan, Snake and FIFA datasets, the memory footprint
of CMAPs was respectively 0.5 MB, 33.1 MB, 15 MB, 64 KB and 0.4 MB.
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Fig. 6. Influence of optimizations for BMS (left) and FIFA (right)



5 Conclusion

In this paper, we presented a new maximal sequential pattern mining algorithm
named VMSP (Vertical Maximal Sequential Pattern miner). It is to our knowl-
edge the first vertical algorithm for this task. Furthermore, it includes three novel
strategies for efficiently identifying maximal patterns and pruning the search
space (EFN, FME and CPC). An experimental study on five real datasets shows
that VMSP is up to two orders of magnitude faster than MaxSP, the state-of-art
algorithm for maximal sequential pattern mining, and that VMSP performs well
on dense datasets. The source code of VMSP and MaxSP can be downloaded
from http://goo.gl/hDtdt.
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