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Abstract High-utility itemset mining aims to find the set
of items with utility no less than a user-defined thresh-
old in a transaction database. High-utility itemset mining is
an emerging research area in the field of data mining and
has important applications in inventory management, query
recommendation, systems operation research, bio-medical
analysis, etc. Currently, known algorithms for this problem
can be classified as either 1-phase or 2-phase algorithms.
The 2-phase algorithms typically consist of tree-based algo-
rithms which generate candidate high-utility itemsets and
verify them later. A tree data structure generates candi-
date high-utility itemsets quickly by storing some upper
bound utility estimate at each node. The 1-phase algorithms
typically consist of inverted-list based and transaction pro-
jection based algorithms which avoid the generation of can-
didate high-utility itemsets. The inverted list and transaction
projection allows computation of exact utility estimates. We
propose a novel hybrid framework that combines a tree-
based and an inverted-list based algorithm to efficiently
mine high-utility itemsets. Algorithms based on the frame-
work can harness benefits of both types of algorithms. We
report experiment results on real and synthetic datasets to
demonstrate the effectiveness of our framework.

>4 Vikram Goyal
vikram @iiitd.ac.in

Siddharth Dawar
siddharthd @iiitd.ac.in
Debajyoti Bera
dbera@iiitd.ac.in

Department of Computer Science, Indraprastha Institute
of Information Technology, Delhi, India

Keywords Data mining - Mining methods
and algorithms - Pattern growth mining - Frequent pattern
mining - Utility mining

1 Introduction

Frequent itemset mining [1, 13, 15] finds the set of items
in a transaction database with a frequency no less than a
user defined frequency threshold. It finds applications in
mining association rules, supermarket shelf management,
mining frequent itemsets from web logs and a part of many
important data mining tasks like clustering, classification,
etc. Frequent itemset mining only considers the presence
or absence of items in the database and assumes that all
items have equal importance. However, in real life, items
in a transaction can have different quantity (often known as
the internal utility of the items) and generate different profit
(often known as the external utility of the items). For exam-
ple, someone may buy six boxes of DVDs, one video player
from a store and furthermore, the store will not make same
profit with each item.

High-utility itemset mining [20, 21, 25, 29] has emerged
as a research area to address these issues. A conventional
approach is to define the utility of an item in a transac-
tion as the product of its quantity and its associated profit.
The utility of an itemset in a transaction is defined as the
sum of the utility of individual items. However, the utility
can be defined according to a given application domain. For
example, consider the problem of query expansion where an
objective is to recommend query words to a user to improve
her search results from a documents collection. Here, each
document can be modeled as a transaction consisting of
words as its items, and frequency of a word as its quantity.
The relative importance of each word can be modeled by
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its inverse document frequency (IDF) over the corpus of
documents.

Utility-mining also finds its applications in cross-marketing
in retail stores [8, 17], web click stream analysis [16, 25],
bio-medical data analysis [6], and mobile commerce envi-
ronment planning [26]. Utility-mining has also been applied
with other mining techniques like sequential-pattern mining
[32, 33], episode-pattern mining [24, 31], stream mining [4,
16], maximal high-utility pattern mining [18, 27], and high-
utility rare pattern mining [12]. We use the terms “itemset”
and “pattern” interchangeably in this paper.

Existing algorithms for high-utility itemset mining can
be classified into two different paradigms: 1-phase and
2-phase algorithms. The tree-based algorithms [28] are 2-
phase algorithms which find candidate high-utility itemsets
in the first phase and verify them in the second phase. The
bottleneck of tree-based algorithms lies in verifying the can-
didates to find high-utility itemsets among the candidates.
However, they are generally fast in computing estimates of
utility for an itemset. Inverted-list is another data structure
for storing the database information. Inverted-list associated
with an item, stores a list of transactions which contain the
associated item. The vertical mining algorithms [19] use
an inverted-list data structure for its working and are 1-
phase. Liu et al. [19] proposed a utility-list data structure
based on inverted-list and an algorithm which finds {k}-
length high-utility itemsets by intersecting the utility-lists of
{k — 1}-length itemsets. Viger et al. [10] proposed a strat-
egy to improve the performance of HUI-Miner by reducing
the number of intersection operations. These vertical mining
algorithms use simple intersection operation on inverted-
lists of {k — 1}-length itemsets to calculate the support of
an {k}-length itemset. Solutions based on the vertical min-
ing have been shown to perform better as compared to the
tree-based approaches as they compute the estimate of util-
ity correctly. However, the cost of intersection operations is
higher for smaller itemsets as compared to that for larger

ones. The cost is higher due to the larger size of lists usually
associated with smaller itemsets.

To validate our hypothesis that algorithms based on our
hybrid framework will perform better due to avoidance of
costly intersection operations and candidate verification, we
conduct an experiment on a real life dataset called Acci-
dents available from the FIMI repository [11]. The dataset
is augmented with quantity and utility values for items as
per previous works in the literature [19, 29, 36]. The results
of the experiment are shown in Fig. 1. We observe that there are
few high-utility itemsets of small length, where the length
of an itemset is the number of individual items contained
in it. Smaller itemsets have large utility-lists as they occur
in a large number of transactions. The size of utility-lists
decreases as the number of transactions containing an itemset
decreases with the increase in itemset length. Therefore, a tree-
based algorithm can be used in the beginning to avoid cost
due to joining of long lists associated with short itemsets.

Transaction databases can be categorized by the aver-
age transaction length and the number of items. Datasets
with small average transaction length and a large number of
items are known as sparse datasets. Transaction databases
with large average transaction length and a small number
of items are known as dense datasets. Dense datasets are
known to generate a large number of long high-utility item-
sets. Ahmed et al. [3] proposed a measure R to characterize
the nature of a dataset. They used the ratio of average trans-
action length to the number of items to characterize sparsity.
If the ratio is less than 1%, the dataset can be sparse, oth-
erwise dense. Sparse datasets are generated by retail stores,
web click stream data, etc. Retail stores like Walmart usu-
ally sell millions or billions of products. On the other hand,
customers purchase very few items at a time. So, trans-
actions generated by such retail stores are usually sparse
with small average transaction length and a large number
of items to chose from. Similarly, E-commerce vendors like
Amazon, Snapdeal, etc. sell million of products online but

Fig. 1 Effect of pattern size on
the number of high-utility
itemsets and utility-list size on
Accidents dataset
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Table 1 Characteristics of real
datasets Dataset #Tx Avg. length (A) #Items (D) Density score R (%) R=(A/D)x100 Type
Retail 88,162 10.3 16,470 0.0625 Sparse
Chainstore 11,12,949 7.2 46,086 0.0156 Sparse
Kosarak 9,90,002 8.1 41,270 0.0196 Sparse
OnlineRetail 5,40,555 4.37 2,603 0.167 Sparse
BMS WebView 1 59,602 2.51 497 0.50 Sparse
BMS WebView 2 77,512 4.62 3,340 0.13 Sparse
PowerC 10,40,000 7 125 5.6 Dense
KDDCup99 10,00,000 16 135 11.8 Dense
Mushroom 8,614 23 119 19.32 Dense
Connect 67,557 43 129 33.33 Dense
Accidents 3,40,183  33.8 468 72 Dense
have small transaction length. In real life, sparse datasets also discuss several optimization techniques like mem-
are abundant, and many experimental sparse datasets are oization, early termination and transaction merging to
available like Retail, ChainStore, Kosarak, etc. as shown in enhance the performance of our hybrid algorithm.!
Table 1. 3. We demonstrate the benefit of hybridization for sparse

Recently, Zida et al. [36] proposed a depth-first search
based recursive algorithm EFIM, which is a 1-phase algo-
rithm. It generates projected databases to mine high-utility
itemsets. The algorithm uses transaction merging at each
step to reduce the size of the projected databases during
recursive invocations. EFIM was shown to have 10 to 100
times more efficiency compared to FHM on dense datasets.
Like other 1-phase algorithms, it computes the utility esti-
mates correctly. The key to superior performance of EFIM
lies in transaction merging which reduces the size of the pro-
jected database significantly during recursive invocations.
We also observed that transaction merging reduces size of
the database by 10 to 500 times for dense datasets.

In this paper, we propose a novel framework, which
combines the advantages of tree-based and vertical mining
algorithms for generating high-utility itemsets. The frame-
work exploits the benefit of both approaches, i.e. efficiently
compute utility estimates like tree-based algorithms and
prune non-candidates using correct estimates of utility like
inverted-list algorithms. We demonstrate an application of
the framework by combining UP-Growth+ and FHM algo-
rithms. Our contributions can be summarized as follows:

1.  We identify the issues with the tree-based and inverted-
list based approaches and propose a novel hybrid frame-
work which obtains the benefits of these approaches.
Our framework can combine any tree-based algo-
rithm like UP-Growth+ [29], MU-Growth [34], UP-Hist
Growth [7] etc. with inverted-list based algorithms like
HUI-Miner [19], FHM [10].

We design an efficient hybrid algorithm called UFH
based on the integration of UPGrowth+ and FHM. We

datasets by empirically comparing UFH to the state-
of-the-art algorithms, FHM and EFIM. FHM has been
previously shown to be better compared to the state-of-
the-art tree-based algorithms.

The paper is organized as follows. Section 2 reviews the
related work and problem statement is defined in Section 3.
We describe our framework in Section 4 which shows
how to combine the ideas of tree-based and inverted-list
based approach. We study the integration of UP-Growth+
and FHM algorithm in Section 5. The experimental results
are presented in Section 6 and Section 7 concludes the

paper.

2 Related work

Frequent itemset mining [1, 13, 15] has been studied exten-
sively in the literature. Agrawal et al. [1] proposed two
algorithms called Apriori and Apriori-TID for mining asso-
ciation rules from market-basket data. Their algorithms
were based on the downward closure property [1]: Every
subset of a frequent itemset is also frequent. The algorithms
explore the search space in a level-wise manner. Candidate
itemsets having k items is generated by joining itemsets hav-
ing k — 1 items. The Apriori algorithm uses the database

'In an earlier work [5], we designed a similar hybrid algorithm
for solving a similar problem of mining high-utility itemsets with
discounts where UP-Hist Growth [7] and FHM [10] were combined.
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to count the support of candidate itemsets. Apriori-TID
algorithm encodes the candidate itemsets and uses them
for counting purpose to reduce the effort in reading the
database. Park et al. [22] proposed a hash-based algorithm
which generates less number of candidates compared to
Apriori algorithm. Zaki et al. [35] proposed an algorithm
called ECLAT, which uses inverted-list of transactions asso-
ciated with each itemset to find a set of potentially maximal
frequent itemsets. Han et al. [13] proposed a pattern-growth
algorithm to find frequent itemsets by using a data structure
known as FP-tree.

Some hybrid algorithms were also proposed to find fre-
quent itemsets from sequence and transaction databases.
Agrawal et al. [1] proposed an algorithm called Apriori-
Hybrid which combines the best features of Apriori and
Apriori-TID algorithms. The algorithm uses Apriori in the
initial passes and switches to Apriori-TID when the set of
generated candidates at the end of a pass is expected to fit
into main memory. Vu et al. [30] proposed a hybrid algo-
rithm which combined FP-Growth and Eclat algorithms to
mine frequent itemsets from a transaction database. How-
ever, frequent itemset mining algorithms cannot be used to
find high-utility itemsets as it is not necessarily true that a
frequent itemset is also a high-utility itemset in the database.
Moreover, an infrequent itemset can also have high-utility
and will be missed by a frequent itemset mining algorithm.
Mining high-utility itemsets is even more challenging com-
pared to the frequent “itemsets” mining, as there is no
downward closure property.

High-utility itemset mining is a natural extension to
frequent itemset mining and has also received significant
research attention. Several tree-based algorithms have been
proposed to find high-utility itemsets of which an impor-
tant one is a two-phase algorithm given by Liu et al. [21].
The candidate high-utility itemsets are generated in the first
phase and verified in the second phase. Ahmed et al. [2]
proposed a data structure called IHUP-tree and another two-
phase algorithm to mine high-utility patterns incrementally
from dynamic databases. However, the above algorithms
generate a lot of candidate itemsets in the first phase. In
order to reduce the number of candidates, Tseng et al. [28]
proposed a new data structure called UP-Tree and proposed
two algorithms namely, UP-Growth [28] and UP-Growth+
[29]. The authors also presented some effective strategies to
reduce the overestimated utilities. Yun et al. [34] proposed a
tree data structure called MIQ-tree, which is similar to UP-
tree and stores the maximum utility of an item in each node
of the tree. However, the maximum utility information is
stored only in the global MIQ tree. Yun et al. [34] proposed
a recursive two-phase algorithm called MU-Growth which
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is similar to UP-Growth+. Dawar et al. [7] proposed another
data structure called UP-Hist tree which stores a histogram
of quantity information with each node of the tree. The idea
behind associating more information with the nodes of a tree
is that it helps in reducing the number of candidates gener-
ated by using better utility estimates. The problem with the
tree-based algorithms is that the generation and verification
of a vast number of candidate itemsets often result in poor
performance.

In the category of inverted-list based approaches to
mine high-utility itemsets, there are mainly two algorithms,
HUI-Miner [19] and FHM [10]. Liu et al. [19] proposed
a new data structure called utility-lists and an algorithm
HUI-Miner for mining high-utility itemsets. The algorithm
intersects the utility-list of itemset X with the utility-list of
each item in the external list to generate the utility-lists of
supersets of X. The algorithm avoids the costly generation
and verification of candidates by storing the exact utility of
the itemset and expected utility values of its supersets in the
utility-lists. However, the joining of utility-lists of an item-
set to produce a new itemset is a costly operation. In order
to reduce the number of join operations, Viger et al. [10]
proposed a novel data structure EUCS (Estimated Utility Co-
occurrence Structure) to prune itemsets without performing
the join operation.

Recently, a couple algorithms have been proposed which
use projection techniques to mine high-utility itemsets. Lan
et al. [14] proposed an efficient projection-based indexing
approach for mining high-utility itemsets. The algorithm
uses an indexing structure to find candidate high-utility
itemsets and utilizes the concept of projection to find the
transactions containing the itemsets. Zida et al. [36] pro-
posed an algorithm called EFIM which uses projection tech-
niques along with transaction merging to find high-utility
itemsets without generating any candidate high-utility
itemsets.

3 Problem statement

We have a set of m items I = {iy, is, ..., I,,}, Where each
item 7 has a positive external utility eu (i) associated with
it. Every item i in a transaction 7 has an internal utility
iu(i, T) associated with it. An itemset X of length k is a set
of k distinct items {iy, iy, ..., ix} € I. A transaction database
D={T, T, .... , T, } is a set of n transactions, where every
transaction has an associated itemset.

Definition 1 (Utility of an item in a transaction) The util-
ity of an item { in a transaction 7 is denoted as u(i, T')
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Fig. 2 Example database TID Transaction TU Ttem A B C D E F G H
T (A:1)(C:10)(D:1) 17 Profit 5 2 1 2 3 5 1 1
T> (A:2)(C:6)(E:2)(G:5) 27
T3 (A:2)(B:2)(D:6)(E:2)(F:1) 37
Ty (B:4)(C:13)(D:3)(E:1) 30
Ts (B:2)(C:4)(E:1)(G:2) 13
Ts (A:6)(B:1)(C:1)(D:4)(H:2) 43

and defined as the product of its internal utility and external
utility i.e., u(i, T) = iu(i, T) * eu(i).

Definition 2 (Utility of an itemset in a transaction) The util-
ity of an itemset X in a transaction 7T is denoted as u (X, T')
and defined by Y u(i, T).
5

Consider our example database shown in Fig. 2. The util-
ity of item {A} in T3 is u({A}, 73) = 2 x 5 = 10 and
u({A, B}, 13) =u(A, T3) +u(B,T3) =10+ 4 = 14.

The utility of an itemset over the database is computed
by adding the utility value of the itemset in each transaction
of the database.

Definition 3 (Utility of an itemset in database) The util-
ity of an itemset X in database D is denoted as u(X) and
defined as Y u(X,T).

XCcT
TeD

For example, u({A, B}) = u({A, B}, T3)+u({A, B}, Tg)
= 14 + 32 = 46.

Definition 4 (High-utility itemset) An itemset is called a
high-utility itemset if its utility is no less than a given
minimum user-defined threshold denoted by min _util.

For example, u({A, C}) = u({A, C}, T))+u({A, C}, T»)
+u({A,C}, Tg) = 154+ 16 + 31 = 62. If min_util =
50, then {A,C} is a high-utility itemset. However, if
min_util =75, then {A, C} is a low utility itemset.

Problem statement Given a transaction database D and
a minimum user-defined threshold min_util, the aim is to
enumerate all high-utility itemsets.

In frequent itemset mining, all subsets of a frequent item-
set are frequent. All supersets of an infrequent itemset are
infrequent. This property is known as the downward closure
property [1]. However, high-utility itemset mining does not
satisfy this property. The subset of a low utility itemset can
have high-utility as well as vice versa. The concept of trans-
action weighted utility was coined by researchers, which
satisfies the downward closure property.

Definition 5 (Transaction utility) The transaction utility
of a transaction T is denoted by TU(T) and defined as
u(T,T).

For example, the transaction utility of every transaction
in our example database is shown in Figure 2. Using TU
value of each transaction, we can now define an upper
bound utility estimate of an itemset called as Transaction-
Weighted utility (TWU).

Definition 6 (TWU of an itemset) TWU of an itemset X
is the sum of the transaction utilities of all the transactions
containing X, which is denoted as T WU (X) and defined as
S TU).

XCT
TeD

Definition 7 (High TWU itemset) An itemset X is called a
high transaction weighted utility itemset if 7 WU (X) is no
less than min_util.

For any itemset X, if X is not a high TWU itemset,
any superset of X can not be a high-utility itemset. In our
example, TU (T1) = u({ACD}, T1) = 17; TWU ({A}) =
TU(T) + TU(T) + TU(T3) + TU(Tp) 124. It
min_util = 60, {A} is a high TWU itemset. However, if
min_util = 130, {A} and none of its supersets is a high
TWU itemset.

Preprocessing Tree-based Switching
algorithm module
Inverted-list )
Inverted-list
based A
i construction
algorithm

Fig.3 Hybrid framework
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4 Hybrid framework

In this section, we propose a hybrid framework for com-
bining any tree-based and inverted-list based algorithms
for mining high-utility itemsets. Our proposed framework
consists of five steps and is illustrated in Fig. 3. In the pre-
processing step, the transactions in the database are scanned
to construct the inverted-lists of distinct items present in
the database. Every transaction is inserted to construct a
tree data structure. Each node of a tree consists of an item
name, support count, overestimated utility and a pointer to
its child node. The root of a tree is a special empty node
which represents null item and points to its child nodes. A
path from the root to a particular node in the tree, is the
set of transactions, which contain the itemset consisting of
nodes along that path. The support count of a node along
a path is the number of transactions in the database that
contain the itemset consisting of items on the path from
the root to that node. One optimization can be applied to
reduce the number of nodes of a tree. The nodes represent-
ing items whose superset itemsets can not have high-utility
can be removed from the transactions before tree construc-
tion. Such items are called unpromising items. In order to
apply this optimization during the construction of a tree, two
scans of the database are needed. In the first scan, the over-
estimated utility of each item is computed by using some
overestimated utility measure like TWU. Items with overes-
timated utility less than the minimum utility threshold are
unpromising items and must be removed from the transac-
tion database. The database is scanned again to remove the
unpromising items from each transaction.

After construction of a tree data structure, a tree-based
algorithm is called. Tree-based algorithms are recursive
two-phase algorithms. The algorithm starts with an empty
prefix and extends it with each item i present in the tree in
a bottom-up manner. An overestimated utility of itemset is
computed, and the itemset is added to the set of candidate
high-utility itemsets if overestimated utility is greater than
the minimum utility threshold. A local tree of the currently
prefix is constructed and the algorithm is called recursively.
At the end of the first phase, the complete set of candidate
high-utility itemsets is generated. In the second phase, the
exact utility of candidate itemsets is computed to find the
complete set of high-utility itemsets.

One possibility can be to run only the tree-based algo-
rithm and do not switch to the inverted-list based algorithm.
Another possibility can be to invoke the inverted-list based
algorithm directly after the pre-processing step and mine the
high-utility itemsets. The above approaches have their own
merits and demerits. In order to gain benefits of both the

@ Springer

paradigms, the third possibility is to start with a tree-based
algorithm and switch to an inverted-list based algorithm
during some point of the execution. The switching module
helps to decide a point where the execution is switched from
a tree-based algorithm to an inverted-list based algorithm.
There can be different criteria’s which can be defined for
the switching module. One possibility, can be to decide
the switching criteria by observing the data distribution.
Another possibility is to generate a candidate high-utility
itemset from a tree-based algorithm and switch the execu-
tion to an inverted-list based algorithm. We evaluate the
performance of the latter possibility in this paper.

An inverted-list based algorithm takes as input; the
inverted-list of itemset / on which it will be invoked and the
set of inverted-lists of I’s extensions. In order to ensure cor-
rectness, one can consider all the items in the set of items
present in the database. However, this approach will be inef-
ficient as it will result in the creation of inverted-lists of
itemsets which either do not exist in the transaction database
or are a low-utility itemset. The tree structure can be used
to make this process efficient. The items which have been
explored by the tree-based algorithm or items whose super-
sets can not be of high-utility can be removed from the set
of I 1-extensions.

After creation of the inverted-lists, an inverted-list based
algorithm can be called. The inverted-list based algorithm
explores the search space in a level-wise manner similar to
the Apriori algorithm [1]. An inverted-list based algorithm
generates the inverted-list of {k}-length itemset by combining
inverted-lists of {k — 1}-length itemsets. After processing all the
supersets of itemset /, the inverted-list based algorithm termi-
nates, and the execution returns to the tree-based algorithm.

5 A hybrid algorithm for high-utility itemset
mining

In this section, we will perform a case study where we
will integrate UP-Growth+ and FHM algorithms into our
proposed framework. We briefly discuss the state-of-the-art
tree-based algorithm in Section 5.1 and inverted-list based
algorithm in Section 5.2. We propose a hybrid algorithm
called UFH in Section 5.3. We will discuss several opti-
mization techniques to improve the performance of our
hybrid algorithm in Section 5.4.

5.1 UP-tree based algorithm

UP-Growth+ [29] is a two-phase recursive algorithm based
on UP-tree data structure for mining high-utility itemsets
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Fig. 4 Global UP-tree
Item | TWU | Link

C 130

D 127 —
A 124 —
B 123 —1
E 107 —
H 43 —
G 40 —
F 37

from a transaction database. Each node N in a UP-tree con-
sists of a name N.item, overestimated utility N.nu, support
count N.count, a pointer to the parent node N.parent and a
pointer N.hlink to another node, which has the same name
as N.name. The root of the tree is a special empty node
which points to its child nodes. A path from the root node
to any other node of the tree creates an itemset, which we
call as prefix-itemset of the node. The support count of a
node N defines the number of transactions that contain the
prefix-itemset of the node N. N.nu is the overestimated util-
ity of the prefix-itemset. A header table is maintained to
facilitate efficient traversal of the tree. The header table has
three columns, Item, TWU and Link. The nodes in a UP-
Tree along a path are maintained in descending order of their
TWU values. All nodes with the same label are stored in a
linked list, and the link pointer in the header table points to
the head of this list.

In the first scan, the UP-Growth+ algorithm computes
the transaction weighted utility (TWU) of all items. Items
which have their TWU values less than the minimum thresh-
old are removed from every transaction in the database as
well as items in each transaction are sorted in decreasing

order of TWU values. These reorganized transactions are
then used to construct a global UP-tree. The global UP-tree
for our example database is shown in Fig. 4. The algorithm
extends an empty prefix by item i from the header table in
a bottom-up manner. It computes the overestimated utility
of the pattern by traversing the linked list associated with
the item i of the pattern. If the overestimated node utility
is greater than the minimum threshold, the prefix pattern
is added to the set of candidate high-utility itemsets. After
extending the prefix by an item i, a conditional-pattern-
base is created. The conditional pattern base is the set of
paths from the tree which contains the prefix. The local UP-
Tree of the prefix is constructed considering the paths in the
conditional-pattern-base as transactions and the algorithm
mines candidate high-utility patterns recursively. After the
first phase of the algorithm is complete, it scans the database
once more to verify candidates for high-utility.

5.2 Inverted-list based algorithm

FHM [10] algorithm is a vertical data mining algorithm
which uses a utility-list data structure for mining high-utility

Item A B C D E F G H

Fig. 5 Reorganized transactions TID Transaction
and TWU of items ] (A:1)(D:1)(C:10)
T G:5)(E:2)(A:2)(C:6)

TWU 124 123 130 127 107 37 40 43

(
T (F:1)(E:2)(B:2)(A:2)(D:6)
T (E:1)(B:4)(D:3)(C:13)
T (G:2)(F:1)(B:2)(C:4)
T (H:2)(B:1)(A:6)(D:4)(C:1)
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TID Iutils Routils TID Iutils Rutils
1 5 12 3 4 22

2 10 6 4 8 19

3 10 12 5 4 4

6 30 9 6 2 39

Fig. 6 Utility-list of item {A} and {B}

itemsets. Utility-list is a compact data structure for stor-
ing information about the transactions in which the itemset
appears along with its utility value. A utility-list associ-
ated with an itemset / is a list of triples storing three
columns of information: 71 D, [utils and Rutils. TID is
the transaction identifier associated with each transaction in
the database and Iutils(I, T;) is the exact utility of itemset
I in the transaction 7;. FHM assumes that the items in a
transaction are sorted in ascending order of their TWU val-
ues. A transaction is called as a reorganized transaction, if
the items present in it are sorted in ascending order of their
TWU values. The reorganized transactions for our exam-
ple database is shown in Fig. 5. The TWU of items is also
shown in Fig. 5. Rutils(I, T;) is the utility of items which
occur after itemset / in transaction 7; according to a glob-
ally defined ordering (e.g. ascending order of TWU values).
For example, the utility-list of items {A} and {B} is shown
in Fig. 6.

In the first scan of the database, the algorithm finds out
the high TWU items. The utility-lists of high TWU items
are constructed in the next scan of the database. The algo-
rithm generates the utility-list of an {k}-length itemset by
combining the utility-lists of {k — 1}-length itemsets. For
example, the utility-list of itemset {AB} constructed from
the intersection of utility-list of item {A} and {B} is shown
in Fig. 7.

The algorithm generates all distinct high-utility items and
then proceeds to the generation of pairs, triplets, etc. The
FHM algorithm doesn’t generate any candidate high-utility
itemsets, which need to be verified later. However, the join-
ing of utility-lists is a costly operation. In order to reduce
the number of join operations, FHM uses a pruning strategy
called Estimated Utility Co-occurrence Pruning (EUCP).
The pruning strategy relies on a novel data structure called
EUCS. The EUCS data structure is built during the second

TID Iutils Rutils
3 14 12
6 32 9

Fig. 7 Utility-list of itemset {A B}
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scan of the database. It is defined as a set of triples (a, b, c)
such that TWU(a, b)=c. The EUCS structure for our exam-
ple database is shown in Fig. 8. Suppose we have an itemset
Px whose supersets can be explored to find high-utility
itemsets i.e. sumlutils +sumRutils > threshold. Before
extending the itemset Px with item y, which comes after
item x in the ordering of items, the algorithm will check if
there exists an entry in the EUCS structure, where TWU(x,y)
> threshold. If no such entry exists, no super-set of Pxy
will be explored further.

5.3 UFH: a hybrid algorithm by integrating
UP-Growth+ and FHM

UFH is a recursive algorithm, which requires two scans of
the database. In the first scan, the TWU of distinct items
present in the database is computed. Items which have their
TWU less than the minimum utility threshold are removed
from transactions in the next scan of the database. The
items in each transaction are sorted in decreasing order of
TWU values and inserted to form a global UP-Tree. The
utility-list of items which have their TWU no less than the
minimum threshold is also created. After the completion
of Pre-processing phase, UP-Growth+ algorithm is called.
UP-Growth+ algorithm picks the first entry from the bot-
tom of the header table and constructs a new itemset /,
by appending the item picked from the header table to the
current prefix. The transaction weighted utility(TWU) of
itemset / is computed. If the TWU is greater than or equal
to the minimum threshold, we compute an upper bound
utility estimate of the currently processed itemset. If this
estimated utility value satisfies the minimum threshold con-
dition, there is a possibility of high-utility itemsets being
generated from the currently processed itemset. The set of
prefix {1}-length extensions of itemset / is constructed from
the conditional pattern base of itemset /. After construc-
tion of the utility-lists of prefix {1}-length extensions, FHM
algorithm is invoked. Else, the local tree is generated, and
a tree-based algorithm is called recursively. We discuss the
process of creating utility-list of any itemset in Section 5.4.
The upper bound utility estimate is defined below.

Item A B C D E F G
B 80

C 87 56

D 97 110 90

E 64 67 70 67

F 37 37 0 37 37

G 27 13 40 0 40 0

H 43 43 43 43 0 0 0

Fig. 8 EUCS data structure
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Algorithm 1 UFH algorithm

Input: Transaction database D and minimum utility threshold min_util.
Output: Complete set of high-utility itemsets.

1: Scan D once to find the unpromising items.
2: Scan the database again to remove the unpromising items from each transaction.
3: Perform transaction merging.
4: Sort the items in the transactions in descending order of TWU values.
5: Insert all the reorganized transactions to form a UP-tree 7' with header table H.
6: Construct the utility-list of the promising items.
7: Call UP-Growth+(T', H, {}, min_util).
8:
9: function UP-GROWTH+(T, H, Y, min_util) > UP-Growth+ [29] with switching module.
10: for each entry {i} in H do
11: Compute node.nu by following the links from the header table for {i}.
12: Itemset I =Y Ui. > Append the extension i to the current prefix Y.
13: Compute the upper bound utility value for itemset I (ub({1})).
14: if node.nu(i) > min_util then
15: if ub(l) > min_util then > Switching criteria in UFH algorithm.
16: Construct the utility-list of / and call FHM(/, extensions of I, min_util, EUCS).
17: return.
18: else
19: Construct the conditional pattern base of itemset /.
20: end if
21: Put local promising items in the conditional pattern base of I and apply DLU strategy.
22: Construct the local UP-tree (77) with header table (Hj) .
23: if 77 # null then
24: Call UP-Growth+(Ty, Hy, I)
25: end if
26: end if
27: end for
28: end function
29:
30: function FHM (7 ,Extensions of I (Ext_I),min_util, EUCS) > FHM algorithm [10].
31: for each itemset /x in Ext_I do
32: if (then Ix.utilitylist.sumlutils > min_util))
33: Output /x as a high-utility itemset.
34: end if
35: if (then Ix.utilitylist.sumlutils + Ix.utilitylist.sumRutils > min_util ))
36: Ext_Ix={}.
37: for each itemset 7y in Ext_I such that y comes after x do
38: if 3(x, y, ¢) in EUCS such that ¢ > min_util then
39: Ixy=IxUly.
40: Ixy.utilitylist=Construct(l, Ix, Iy).
41: Ext_Ix=Extensions of the itemset {/x U Ixy}.
42: end if
43: end for
44: FHM (Ix, Ext_Ix, min_util, EUCS).
45: end if

46: end for
47: end function
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Definition 8 (Upper bound utility value) For a given sup-
port count s and for any path in the tree having itemset
1 = {ay, a, ..., a;), we define Upper bound utility value of
1, denoted by ub(I), as

k
ub(l) = Zm}ax{u(ai, T)) | VT; € D} x s

i=1

We used the implementation of UP-Growth+ algorithm
available in SPMF library [9]. The implementation avail-
able in the library sorts the transactions in the local tree
according to decreasing order of the path utility of items.
Items which have the same path utility are sorted lexico-
graphically. This ordering at a local level can cause some
I-length extensions of an itemset to be missed during the
construction of utility-lists before invoking FHM. In order
to resolve the issue, we keep the ordering of items intact
along with a path in the local tree. For example, con-
sider the database shown in Fig. 2 and let the mini-
mum threshold be 30. Let us process item {H} from the
global UP-tree shown in Fig. 4. The conditional pattern base
of item H consists of a single path (CDAB : 43) with
path utility 43. Since the path utility of all the items is
same i.e. 43, the SPMF implementation of the UP-Growth+
algorithm sorts the items lexicographically. The reorganized
path becomes (ABC D) : 43 and inserted to form the local
tree of {H}. Let us now observe the processing of itemset
{H A}. The upper bound utility of itemset H A is 32, which
is greater than the minimum utility threshold. Therefore, the
algorithm computes the {1}-length extensions of { H A} from
its conditional pattern base. Since the conditional pattern
base of { H A} is empty, no prefix extensions are considered.
However, { H AC} is a high-utility itemset with utility 33. If
we keep the ordering of the global tree intact, conditional
pattern base of {H A} would have path (C D) in it, and no
prefix extensions would have been missed.

5.4 Optimization techniques for implementing UFH
algorithm

Suppose, we have an itemset I = (aj, a2, ..., ax) and the
upper bound utility value of [ is greater than the threshold.
There are several ways to construct the utility-list of itemset
I before calling the inverted-list based algorithm. A naive
approach, is to construct the utility-list of I from scratch
by joining the utility-lists of all the items present in this
itemset. The problem with this approach is that constructing
utility-lists from scratch is inefficient. We use memoization
technique to make this construction process efficient. After
constructing the utility-list of an itemset /, we store it for
later reuse. Before the construction of the utility-list of any
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itemset 7/, we will check if the utility-list of any subset of
I is stored in memory. If subsets exist, we will reuse the
utility-list of the subset of maximum length for constructing
the utility-list of itemset /.

We use another optimization while constructing the
utility-list of an itemset / for the first time. We fetch the
utility-list of items aj, ap and join them to construct the
utility-list of itemset {ajaz}. A check is performed to find
out if the supersets of this intermediate itemset will be of
high-utility or not by using the pruning strategy proposed by
HUI-Miner [19]. If yes, we proceed with the construction
process. Else, we add this intermediate itemset into a list
which we call the black-list. Before invoking our algorithm
on any prefix, we check if the current prefix or its subset is
in the black-list or not. If the prefix is in the black-list, we
know that it is not worthy to extend this prefix further. If the
current prefix is in the black-list, we don’t invoke the tree-
based algorithm on that prefix and proceed with the next
entry from the header table. We will refer to this strategy as
the early termination strategy.

EFIM [36] uses the concept of transaction merging to
reduce the cost of database scans. After the removal of
unpromising items, it is possible that some transactions
become identical i.e. containing the same set of items. Such
transactions can be merged to create a single transaction.
The internal utility value of each item in the new transac-
tion is equal to the sum of its internal utility in the different
identical transactions. We perform transaction merging once
before the starting the mining process.

6 Experiments and results

In this section, we compare the performance of our proposed
hybrid algorithm against the state-of-the-art algorithms
FHM [10] and EFIM [36]. We obtained the Java source
code of UP-Growth+, FHM and EFIM algorithm from the
SPMF library [9]. The experiments were performed on an
Intel Xeon(R) CPU=26500@2.00 GHz with 16 GB free
RAM and Windows 8 operating system. We compared the
performance of the algorithms by total execution time as
well as the number of intermediate itemsets generated by
algorithms. The number of intermediate generated item-
sets gives an idea about the search space explored by the
algorithm. We call the intermediate generated itemsets can-
didates, as it contains the set of high-utility itemsets. We
also observe the memory consumed by different algorithms.
We use the JVisual VM coupled with Java Development Kit
for observing the memory consumed by algorithms. In our
experiments, the utility values are expressed in terms of per-
centage of the total transaction utility of the database. Every
algorithm is executed five times and an average is taken for
total time and memory.



A hybrid framework for mining high-utility itemsets in a sparse transaction database

819

Time log base 2 scale (sec) Time log base 2 scale (sec)

Time log base 2 scale (sec)

15

10

10

(@) Total time(BMS WebView 1)

(b) Number of candidates(BMS WebView 1)

T T T T T T T T T
<
<
% 30| N
[a\}
2
3
o)
w 25| .
<
8
z
] 20 —
o
<
o
o
o
5 15 -
e}
g
\A‘A\A_A E) e .,
Z
| ! | | | 10— I | I [
26.6 26.7 26.8 26.9 27 26.6 26.7 26.8 26.9 27
Minimum utility threshold% Minimum utility threshold%
(C) Total time(OnlineRetail) (d) Number of candidates(OnlineRetail)
T T T T T T T T T T
— - o < £, = = =) —F
N M M 8 18 -
w
[a\}
B g
= = —£ 8
.‘0\.\.\. 00
<
o 16 .
Q
5
S
3
=
<
o
BT 4 |
3
e}
g
A A N = A 4 4 N N
& A Z. \ g v v g %
! ! ! ! ! ! ! ! ! !
0.84 0.85 0.86 0.87 0.88 0.84 0.85 0.86 0.87 0.88

Minimum utility threshold%

(€) Total time(BMS WebView 2)

Minimum utility threshold%

(f) Number of candidates(BMS WebView 2)

T T T T T T T
)
8 E\E\
2 30 - = = 13
[a\}
2
&
S ag| )
2
8
= 26 =
=t
ks
=1
&
S oql- o
o
S
o e O o o -
P o v v — g
- h d ° —o s 22| 8
y/ — A A A =1 O— o A N
A Z. M v ¢ ¢ —0
I I I I I I I
1.9 1.95 2 2.05 1.9 1.95 2 2.05
Minimum utility threshold% Minimum utility threshold%
—=— FHM —— UFH

—— EFIM —e— EFIM(without merging)

Fig. 9 Performance evaluation on real sparse datasets

@ Springer



820

S. Dawar et al.

Time log base 2 scale (sec) Time log base 2 scale (sec)

Time log base 2 scale (sec)

12

=
(=)

o]

14

=
(V)

—_
o

[0}

(a) Total time(Retail)

Minimum utility threshold%

I T T T —
[}
?
™
£
2
)
2
| N 8 20
5
T
ke
g
<
[~ - o
o
)
5]
2 15
i A\A—‘\A | g
E
Z
! ! ! ! !
0.4 0.5 0.6 0.7 0.8
Minimum utility threshold%
(C)Total time(ChainStore)
T T T T
- . g
g 26
w
[a\]
2
s 24
2
L N 60
2
n 22
2
<
=]
= 20
<
| — o
3
5 18
S
:
Z 16
Ll | | | il
10-2 0.1 0.15 0.2 5.
Minimum utility threshold%
(e) Total time(Kosarak)
T T T 30
[~ - )
|
?
[a\]
g 25
I - B
e
60
RS
8
= - = 20
]
kel
o“\g g
. R ]
v v — o
bS]
e .« . ° 15
)
<
5
| A A A A A | Z
! ! ! ! ! 10
10 10.1 10.2 10.3 10.4

(b) Number of candidates(Retail)

L
0.5 0.6

Minimum utility threshold%

(d) Number of candidates(ChainStore)

!
0.7 0.

8

Minimum utility threshold%

(f) Number of candidates(Kosarak)

[

o
o

\ 4 o
\ g 4

]

10.1 10.2 10.3

Minimum utility threshold%

—B— FHM ——

UFH

—— EFIM —e— EFIM(without merging)

Fig. 10 Performance evaluation on real sparse datasets

@ Springer

-
O &



A hybrid framework for mining high-utility itemsets in a sparse transaction database

821

(@) Total time(KDDCup99)

T T T
o
12 |- | -
#
> ™
X3 2
o 10 |- g e
g ¥
17} —_—
~ 8
o 8| B 3
z <
2 3
kS g
[} 6 - B
E :
= :
4 §
A A 5 R o

A Z

| | | | |

25 30 35 40 45
Minimum utility threshold%
(C) Total time(PowerC

T T T T T
E— = = B g =
o 2 2
o ~
Q4.5 | ,;:D
g 3
™ 8
[ +~
2 4 1 2
Q !
r e
9 3.5 \4 & o | [
E 5
3 3
5 \ g
A A A Z

| | | | |

2 3 4 5 6

Minimum utility threshold%

(e) Total time(Mushroom)
T T

Time log base 2 scale (sec)
~ o
T T

|

|
Number of candidates log base 2 scale

9 10

Minimum utility threshold%

16

15

14

11.5

11

10.5

10

9.5

25.5

25

24.5

24

23.5

23

—8— FHM —— UFH
—6— EFIM

Fig. 11 Performance evaluation on real dense datasets

(b) Number of candidates(KDDCup99)

[\

5

‘(d) Numl

30 35 40

Minimum utility threshold%

ber of candidates(PowerC)

'S
ot

Minimum utility threshold%

(f) Number of candidates(Mushroom)

o

Minimum utility threshold%

@ Springer



822

S. Dawar et al.

(a) Total time(Connect)
T T T

12 |-

Time log base 2 scale (sec)
(=2} [0}
T T
\ \

Number of candidates log base 2 scale

I

e
>

V)
I
@
J)
|

L L L L
88 90 92 94

Minimum utility threshold%

(C) Total time(Accidents)
T T T

Time log base 2 scale (sec)
_
(=2} oo} o
T T T
\ \ \

Minimum utility threshold%

(b) Number of candidates(Connect)
T T T T

18 |-

6l B\ N
14 |- -
12 |- -

10 & ! ! : | =
88 90 92 94

Minimum utility threshold%

(d) Number of candidates(Accidents)
T T T T T

18 i
16 .
14 i
121 .
10 .

0 60 70 80 90

Number of candidates log base 2 scale

[

Minimum utility threshold%

—6— EFIM

—&— FHM —— UFH

Fig. 12 Performance evaluation on real dense datasets

We conducted experiments on various real and syn-
thetic dataset. The description of the real datasets is shown
in Table 1. The datasets vary in the number of transac-
tions (#Tx), average transaction length and the number
of items (#Items). All datasets, except Chainstore, were
obtained from SPMF library [9]. The ChainStore dataset
was obtained from NU-Minebench 2.0 repository [23].
BMS WebView 1 and BMS WebView 2 contain sequences
of click-stream data. Kosarak also contains sequences of
click-stream data obtained from a Hungarian news portal.
Retail is a market basket data obtained from an anony-
mous Belgian retail store. Chainstore and OnlineRetail
are also obtained from a retail store. KDDCup99 is a
transformed dataset from KDD Cup 1999. PowerC is a
dataset about household electric power consumption. The
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Accidents dataset is prepared from an anonymized traffic
accident data. The Connect dataset contains the positions
in the game of connect-4. Only ChainStore had the quan-
tity and external utility associated with each item in the
database. The quantity information for items in the other
datasets was chosen randomly from 1 to 5. The exter-
nal utility values were generated between 1 to 1000 using
log-normal distribution.

In the first set of experiments, we observe the total time
as well as the number of candidates for different minimum
utility threshold. We will first discuss the results for sparse
datasets. We compare against two variants of EFIM algo-
rithm; with and without transaction merging. For sparse
datasets, we observe that EFIM without transaction merging
performs better than EFIM for all sparse datasets. Sparse
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Fig. 15 Scalability on 12F
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datasets consist of transactions of small average length and
a large number of items. The probability of an item pres-
ence in a transaction is less, compared to dense datasets.
We believe that transaction merging does not perform well
for sparse datasets. Our experimental results validate our
hypothesis.

The results for BMS WebView 1, BMS WebView 2 and
OnlineRetail is shown in Fig. 9. For BMS WebView 1, our
UFH algorithm performs better than FHM by at least 400
times and EFIM by at least 66 times in terms of total execu-
tion time. UFH also generates fewer candidates compared to
FHM and EFIM. For BMS WebView 2, UFH is better than
FHM by at least 40 times and EFIM by 1.5 times. For BMS
WebView 2, EFIM generates fewer candidates compared
to UFH. However, the cost of creating projected database
recursively is a key factor in the performance of EFIM. For
OnlineRetail, UFH performs better than FHM by at least
10 times and EFIM by 7 times. UFH and EFIM produce a
similar number of candidates for the OnlineRetail dataset.

The results for Retail, ChainStore, and Kosarak is shown
in Fig. 10. For Retail, UFH performs better than FHM by at
least 7 times and EFIM by 6.5 times. For Kosarak dataset,
UFH beats FHM by 65 times and EFIM by 2 times. For
ChainStore, FHM beats EFIM and EFIM with merging in
terms of total execution time. Our algorithm UFH beats
FHM by 5 times and EFIM by 9 times in terms of total exe-
cution time. The results show that FHM beats EFIM on a
real sparse dataset like ChainStore. EFIM without transac-
tion merging performs better than EFIM on sparse datasets.
The total execution time and the number of candidates
reduce with an increase in the minimum utility threshold for
all datasets.

We will now discuss the performance of different algo-
rithms on dense datasets. The results for KDDCup99, Pow-
erC and Mushroom is shown in Fig. 11. UFH performs
well on PowerC and KDDCup99 datasets as our algorithm

performs an initial transaction merging before starting the
mining process. The initial transaction merging reduces the
size of the database by 99% for these datasets. The results
for Connect and Accidents is shown in Fig. 12. We observe
that EFIM is the state-of-the-art algorithm for datasets like
Mushroom, Connect, and Accidents where initial transac-
tion merging is not quite effective. Transaction merging
works quite well in these datasets during the mining process.

We also observed the memory consumed by the algo-
rithms on real datasets. The results are shown in Figs. 13
and 14. Our proposed algorithms consume less memory
than FHM on different datasets. Our algorithm consumes
memory comparable to EFIM on BMS WebView 1 and
PowerC dataset. EFIM consumes less memory on other
datasets as it computes the utility and heuristic information
for an itemset from projected database only without creating
utility-lists.

In order to assess the impact of scalability on the per-
formance of our algorithm, we conduct another experiment
on ChainStore dataset. The minimum utility threshold is
fixed to 0.1%. The total time and number of candidates are
observed for varying number of transactions in the database.
The number of transactions is varied from 200k to 1000k.
The results are shown in Fig. 15. The results show that our
algorithm is scalable and perform well with an increase in
the number of transactions.

7 Conclusions

In this paper, we proposed a hybrid framework for min-
ing high-utility itemsets from transaction databases. Our
proposed framework can combine any tree-based recursive
algorithm with an inverted-list based algorithm. We per-
form a case study of the integration of the UP-Growth+ and
FHM algorithm. Experimental results on real and synthetic
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datasets demonstrate that the hybrid algorithm built on our
framework performs better than the state-of-the-art algo-
rithms on sparse datasets. We observed, that our hybrid
algorithm beats FHM and EFIM on few dense datasets. As a
part of our future work, we will try to identify characteristics
of dense datasets on which algorithms based on our frame-
work will become more efficient compared to EFIM. We
will further study the impact of different switching criteria
on the performance of hybrid algorithms.

Acknowledgments This work was supported in parts by Infosys
Centre for Artificial Intelligence, IIIT-Delhi and Visvesvaraya Ph.D
scheme for Electronics and IT.

Compliance with Ethical Standards

Conflict of interests
of interest.

The authors declare that they have no conflict

References

1. Agrawal R, Srikant R et al (1994) Fast algorithms for mining
association rules. In: Proceeding 20th international conference on
very large data bases, VLDB, vol 1215, pp 487—499

2. Ahmed CF, Tanbeer SK, Jeong BS, Lee YK (2009) Efficient
tree structures for high utility pattern mining in incremen-
tal databases. IEEE Trans Knowl Data Eng 21(12):1708-1721.
doi:10.1109/TKDE.2009.46

3. Ahmed CF, Tanbeer SK, Jeong BS, Lee YK (2011) Huc-prune: an
efficient candidate pruning technique tomine high utility patterns.
Appl Intell 34(2):181-198. doi:10.1007/s10489-009-0188-5

4. Ahmed CF, Tanbeer SK, Jeong BS, Choi HJ (2012) Interactive
mining of high utility patterns over data streams. Expert Syst Appl
39(15):11,979-11,991. doi:10.1016/j.eswa.2012.03.062. http://
www.sciencedirect.com/science/article/pii/S0957417412005854

5. Bansal R, Dawar S, Goyal V (2015) An efficient algo-
rithm for mining high-utility itemsets with discount
notion. Springer International Publishing, Cham, pp 84-98.
doi:10.1007/978-3-319-27057-9_6

6. Chan R, Yang Q, Shen YD (2003) Mining high utility itemsets. In:
Third IEEE international conference on data mining, 2003. ICDM
2003, pp 19-26. doi:10.1109/ICDM.2003.1250893

7. Dawar S, Goyal V (2014) Up-hist tree: an efficient data struc-
ture for mining high utility patterns from transaction databases. In:
Proceedings of the 19th international database engineering &#38;
applications symposium, ACM, New York, NY, USA, IDEAS "15,
pp 56-61. doi:10.1145/2790755.2790771

8. Erwin A, Gopalan RP, Achuthan NR (2008) Efficient mining of
high utility itemsets from large datasets. Springer, Berlin, pp 554—
561. doi:10.1007/978-3-540-68125-0_50

9. Fournier-Viger P, Gomariz A, Gueniche T, Soltani A, Wu CW,
Tseng VS (2014) Spmf: a java open-source pattern mining library.
J Mach Learn Res 15(1):3389-3393

10. Fournier-Viger P, Wu CW, Zida S, Tseng VS (2014) FHM: Faster
High-utility itemset mining using estimated utility co-occurrence
pruning. Springer International Publishing, Cham, pp 83-92.
doi:10.1007/978-3-319-08326-1_9

11. Goethals B, Zaki M (2003) The frequent itemset mining imple-
mentations repository. http://fimi.ua.ac.be/

@ Springer

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Goyal V, Dawar S, Sureka A (2015) High utility rare itemset min-
ing over transaction databases. Springer International Publishing,
Cham, pp 27-40. doi:10.1007/978-3-319-16313-0_3

Han J, PeiJ, Yin Y (2000) Mining frequent patterns without candi-
date generation. In: Proceedings of the 2000 ACM SIGMOD inter-
national conference on management of data, ACM, New York,
NY, USA, SIGMOD ’00, pp 1-12. doi:10.1145/342009.335372
Lan GC, Hong TP, Tseng VS (2014) An efficient projection-based
indexing approach for mining high utility itemsets. Knowl Inf Syst
38(1):85-107. doi:10.1007/s10115-012-0492-y

Leung CKS, Khan QI, Li Z, Hoque T (2007) Cantree: a canonical-
order tree for incremental frequent-pattern mining. Knowl Inf Syst
11(3):287-311. doi:10.1007/s10115-006-0032-8

Li HF, Huang HY, Chen YC, Liu YJ, Lee SY (2008) Fast and
memory efficient mining of high utility itemsets in data streams.
In: 2008 8th IEEE international conference on data mining,
pp 881-886. doi:10.1109/ICDM.2008.107

Li YC, Yeh JS, Chang CC (2008) Isolated items discarding strat-
egy for discovering high utility itemsets. Data & Knowledge Engi-
neering 64(1):198-217. doi:10.1016/j.datak.2007.06.009. http://
www.sciencedirect.com/science/article/pii/S0169023X07001218
Li YC, Yeh JS, Chang CC (2008) Isolated items discarding
strategy for discovering high utility itemsets. Data Knowl Eng
64(1):198-217.  doi:10.1016/j.datak.2007.06.009.  http://www.
sciencedirect.com/science/article/pii/S0169023X07001218

Liu M, Qu J (2012) Mining high utility itemsets without can-
didate generation. In: Proceedings of the 21st ACM inter-
national conference on information and knowledge manage-
ment, ACM, New York, NY, USA, CIKM ’12, pp 55-64.
doi:10.1145/2396761.2396773

Liu Y, Liao Wk, Choudhary A (2005) A fast high utility itemsets
mining algorithm. In: Proceedings of the 1st international work-
shop on utility-based data mining, ACM, New York, NY, USA,
UBDM °05, pp 90-99. doi:10.1145/1089827.1089839

Liu Y, Liao Wk, Choudhary A (2005) A two-phase algorithm for
fast discovery of high utility itemsets. Springer, Berlin, pp 689—
695. doi:10.1007/11430919_79

Park JS, Chen MS, Yu PS (1995) An effective hash-based
algorithm for mining association rules. In: Proceedings of the
1995 ACM SIGMOD international conference on management of
data, ACM, New York, NY, USA, SIGMOD °95, pp 175-186.
doi:10.1145/223784.223813

Pisharath J, Liu Y, Wk Liao, Choudhary A, Memik G, Parhi J
(2005) Nu-minebench 2.0. Department of Electrical and Computer
Engineering, Northwestern University, Tech Rep

Rathore S, Dawar S, Goyal V, Patel D (2016) Top-k high utility
episode mining from a complex event sequence. In: 21St interna-
tional conference on management of data, COMAD 2016, Pune,
India, March 11-13, 2016, pp 56—63. http://comad.in/comad2016/
proceedings/paper-19.pdf

Shie BE, Tseng VS, Yu PS (2010) Online mining of tem-
poral maximal utility itemsets from data streams. In: Pro-
ceedings of the 2010 ACM symposium on applied comput-
ing, ACM, New York, NY, USA, SAC ’10, pp 1622-1626.
doi:10.1145/1774088.1774436

Shie BE, Hsiao HF, Tseng VS, Yu PS (2011) Mining high util-
ity mobile sequential patterns in mobile commerce environments.
Springer, Berlin, pp 224-238. doi:10.1007/978-3-642-20149-3_18
Shie BE, Yu PS, Tseng VS (2012) Efficient algorithms for
mining maximal high utility itemsets from data streams with
different models. Expert Syst Appl 39(17):12,947-12,960.
doi:10.1016/j.eswa.2012.05.035.  http://www.sciencedirect.com/
science/article/pii/S095741741200749X

Tseng VS, Wu CW, Shie BE, Yu PS (2010) Up-growth: an effi-
cient algorithm for high utility itemset mining. In: Proceedings of
the 16th ACM SIGKDD international conference on knowledge


http://dx.doi.org/10.1109/TKDE.2009.46
http://dx.doi.org/10.1007/s10489-009-0188-5
http://dx.doi.org/10.1016/j.eswa.2012.03.062
http://www.sciencedirect.com/science/article/pii/S0957417412005854
http://www.sciencedirect.com/science/article/pii/S0957417412005854
http://dx.doi.org/10.1007/978-3-319-27057-9_6
http://dx.doi.org/10.1109/ICDM.2003.1250893
http://dx.doi.org/10.1145/2790755.2790771
http://dx.doi.org/10.1007/978-3-540-68125-0_50
http://dx.doi.org/10.1007/978-3-319-08326-1_9
http://fimi.ua.ac.be/
http://dx.doi.org/10.1007/978-3-319-16313-0_3
http://dx.doi.org/10.1145/342009.335372
http://dx.doi.org/10.1007/s10115-012-0492-y
http://dx.doi.org/10.1007/s10115-006-0032-8
http://dx.doi.org/10.1109/ICDM.2008.107
http://dx.doi.org/10.1016/j.datak.2007.06.009
http://www.sciencedirect.com/science/article/pii/S0169023X07001218
http://www.sciencedirect.com/science/article/pii/S0169023X07001218
http://dx.doi.org/10.1016/j.datak.2007.06.009
http://www.sciencedirect.com/science/article/pii/S0169023X07001218
http://www.sciencedirect.com/science/article/pii/S0169023X07001218
http://dx.doi.org/10.1145/2396761.2396773
http://dx.doi.org/10.1145/1089827.1089839
http://dx.doi.org/10.1007/11430919_79
http://dx.doi.org/10.1145/223784.223813
http://comad.in/comad2016/proceedings/paper_19.pdf
http://comad.in/comad2016/proceedings/paper_19.pdf
http://dx.doi.org/10.1145/1774088.1774436
http://dx.doi.org/10.1007/978-3-642-20149-3_18
http://dx.doi.org/10.1016/j.eswa.2012.05.035
http://www.sciencedirect.com/science/article/pii/S095741741200749X
http://www.sciencedirect.com/science/article/pii/S095741741200749X

A hybrid framework for mining high-utility itemsets in a sparse transaction database 827

29.

30.

31.

32.

33.

34.

35.

36.

discovery and data mining, ACM, New York, NY, USA, KDD ’10,
pp 253-262. doi:10.1145/1835804.1835839

Tseng VS, Shie BE, Wu CW, Yu PS (2013) Efficient algo-
rithms for mining high utility itemsets from transactional
databases. IEEE Trans Knowl Data Eng 25(8):1772-1786.
doi:10.1109/TKDE.2012.59

VuL, Alaghband G (2011) A fast algorithm combining fp-tree and
tid-list for frequent pattern mining. In: Proceedings of information
and knowledge engineering, pp 472477

Wu CW, Lin YF, Yu PS, Tseng VS (2013) Mining high utility
episodes in complex event sequences. In: Proceedings of the 19th
ACM SIGKDD international conference on knowledge discovery
and data mining, ACM, New York, NY, USA, KDD ’13, pp 536—
544. doi:10.1145/2487575.2487654

Yin J, Zheng Z, Cao L (2012) Uspan: an efficient algorithm for
mining high utility sequential patterns. In: Proceedings of the 18th
ACM SIGKDD international conference on knowledge discovery
and data mining, ACM, New York, NY, USA, KDD ’12, pp 660—
668. doi:10.1145/2339530.2339636

Yin J, Zheng Z, Cao L, Song Y, Wei W (2013) Efficiently
mining top-k high utility sequential patterns. In: 2013 IEEE
13th international conference on data mining, pp 1259-1264.
doi:10.1109/ICDM.2013.148

Yun U, Ryang H, Ryu KH (2014) High utility item-
set mining with techniques for reducing overestimated util-
ities and pruning candidates. Expert Syst Appl 41(8):3861-
3878. doi:10.1016/j.eswa.2013.11.038. http://www.sciencedirect.
com/science/article/pii/S0957417413009585

Zaki MJ, Parthasarathy S, Ogihara M, Li W et al. (1997) New
algorithms for fast discovery of association rules. In: KDD, vol 97,
pp 283-286

Zida S, Fournier-Viger P, Lin JCW, Wu CW, Tseng VS (2015)
EFIM: A highly efficient algorithm for high-utility itemset
mining. Springer International Publishing, Cham, pp 530-546.
doi:10.1007/978-3-319-27060-9_44

Siddharth Dawar received
his B.Tech degree in Infor-
mation Technology in 2012
from Guru Gobind Singh
Indraprastha University, Delhi,
India and his M.Tech degree
in  Information  Security
from Indraprastha Institute
of Information Technology,
Delhi, India in 2014. Since
2014 he is a Ph.D scholar at
Indraprastha Institute of Infor-
mation Technology, (IIIT-
Delhi), Delhi, India. His
research interests include data
mining, machine learning and
information security.

Vikram Goyal received his
M.Tech. in Information Sys-
tems in 2003 at Netaji Sub-
hash Institute of Technology,
Delhi, India and his Ph.D
degree in Computer Science
from the Department of Com-
puter Science and Engineer-
ing at IIT Delhi, India in
2009. Since 2009 he is a
faculty at Indraprastha Insti-
tute of Information Technol-
ogy, (IIIT-Delhi), New Delhi,
India. His research interests
include Knowledge Engineer-
ing and Data Privacy. Other
areas of interest are data mining, big data analytics & information
security.

He has completed a couple of projects with DST India and Deity,
India on the problems related to Privacy in Location-based services
and Digitized Document Fraud Detection, respectively.

Debajyoti Bera Debajyoti
Bera received his B.Tech.
in Computer Science and
Engineering in 2002 at Indian
Institute of Technology (IIT),
Kanpur, India and his Ph.D.
degree in Computer Science
from Boston University, Mas-
sachusetts, USA in 2010.
Since 2010 he is an assis-
tant professor at Indraprastha
Institute of Information Tech-
nology, (IIIT-Delhi), New
Delhi, India.

His research interests
include computational com-
plexity theory and quantum complexity. Other areas of interest are
application of algorithmic techniques in data mining, network analysis
and information security.

@ Springer


http://dx.doi.org/10.1145/1835804.1835839
http://dx.doi.org/10.1109/TKDE.2012.59
http://dx.doi.org/10.1145/2487575.2487654
http://dx.doi.org/10.1145/2339530.2339636
http://dx.doi.org/10.1109/ICDM.2013.148
http://dx.doi.org/10.1016/j.eswa.2013.11.038
http://www.sciencedirect.com/science/article/pii/S0957417413009585
http://www.sciencedirect.com/science/article/pii/S0957417413009585
http://dx.doi.org/10.1007/978-3-319-27060-9_44

	A hybrid framework for mining high-utility itemsets in a sparse transaction database
	Abstract
	Introduction
	Related work
	Problem statement
	Problem statement

	Hybrid framework
	A hybrid algorithm for high-utility itemset mining
	UP-tree based algorithm
	Inverted-list based algorithm
	UFH: a hybrid algorithm by integrating UP-Growth+ and FHM
	Optimization techniques for implementing UFH algorithm

	Experiments and results
	Conclusions
	Acknowledgments
	Compliance with Ethical Standards
	Conflict of interests
	References


