TSP: Mining Top-K Closed Sequential Patterns *

Petre Tzvetkov

Xifeng Yan

Jiawei Han

Department of Computer Science
University of Illinois at Urbana-Champaign, lllinois, U.S.A.
{tzvetkov, xyan, hanj} @cs.uiuc.edu

Abstract

Sequential pattern mining has been studied extensively
in data mining community. Most previous studies require
the specification of a minimum support threshold to per-
form the mining. However, it is difficult for users to pro-
vide an appropriate threshold in practice. To overcome
this difficulty, we propose an alternative task: mining top-
k frequent closed sequential patterns of length no less than
min_£, where k is the desired number of closed sequential
patterns to be mined, and min_¢ is the minimum length of
each pattern. We mine closed patterns since they are com-
pact representations of frequent patterns.

We developed an efficient algorithm, called TSP, which
makes use of the length constraint and the properties of top-
k closed sequential patterns to perform dynamic support-
raising and projected database-pruning. Our extensive per-
formance study shows that TSP outperforms the closed se-
quential pattern mining algorithm even when the latter is
running with the best tuned minimum support threshold.

1 Introduction

Sequential pattern mining is an important data mining
task that has been studied extensively [1, 5, 3, 7, 11, 2]. It
was first introduced by Agrawal and Srikant in [1]: Given
a set of sequences, where each sequence consists of a list
of itemsets, and given a user-specified minimum support
threshold (min_support), sequential pattern mining is to find
all frequent subsequences whose frequency is no less than
min_support. This mining task leads to the following two
problems that may hinder its popular use.

First, sequential pattern mining often generates an ex-

*The work was supported in part by National Science Foundation under
Grant No. 02-09199, the Univ. of lllinois, and Microsoft Research. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views
of the funding agencies.

ponential number of patterns, which is unavoidable when
the database consists of long frequent sequences. The sim-
ilar phenomena also exists in itemset and graph patterns
when the patterns are large. For example, assume the
database contains a frequent sequence {(a1)(az2) - . - (ass))
(Vi # j,a; # a;), it will generate 264 — 1 frequent subse-
quences. Itis very likely some subsequences share the exact
same support with this long sequence, which are essentially
redundant patterns.

Second, setting min_support is a subtle task: A too
small value may lead to the generation of thousands of pat-
terns, whereas a too big one may lead to no answer found.
To come up with an appropriate min _support, one needs to
have prior knowledge about the mining query and the task-
specific data, and be able to estimate beforehand how many
patterns will be generated with a particular threshold.

A solution to the first problem was proposed recently by
Yan, et al. [10]. Their algorithm, called CloSpan, can mine
closed sequential patterns. A sequential pattern s is closed
if there exists no superpattern of s with the same support
in the database. Mining closed patterns may significantly
reduce the number of patterns generated and is information
lossless because it can be used to derive the complete set of
sequential patterns.

As to the second problem, a similar situation occurs in
frequent itemset mining. As proposed in [4], a good so-
lution is to change the task of mining frequent patterns to
mining top-k frequent closed patterns of minimum length
min_£, where k is the number of closed patterns to be
mined, top-k refers to the & most frequent patterns, and
min_¢ is the minimum length of the closed patterns. This
setting is also desirable in the context of sequential pat-
tern mining. Unfortunately, most of the techniques devel-
oped in [4] cannot be directly applied in sequence mining.
This is because subsequence testing requires order match-
ing which is more difficult than subset testing. Moreover,
the search space of sequences is much larger than that of
itemsets. Nevertheless, some ideas developed in [4] are still
influential in our algorithm design.

In this paper, we introduce a new multi-pass search space
traversal algorithm that finds the most frequent patterns
early in the mining process and allows dynamic raising
of min_support which is then used to prune unpromising
branches in the search space. Also, we propose an effi-
cient closed pattern verification method which guarantees
that during the mining process the candidate result set con-
sists of the desired number of closed sequential patterns.
The efficiency of our mining algorithm is further improved
by applying the minimum length constraint in the mining
and by employing the early termination conditions devel-
oped in CloSpan [10].

The performance study shows that in most cases our al-
gorithm TSP has comparable or better performance than
CloSpan, currently the most efficient algorithm for mining
closed sequential patterns, even when CloSpan is running
with the best tuned min_support.

The rest of the paper is organized as follows. In Section
2, the basic concepts of sequential pattern mining are intro-
duced and the problem of mining the top-% closed sequen-
tial patterns without minimum support is formally defined.
Section 3 presents the algorithm for mining top-% frequent
closed sequential patterns. A performance study is reported
in Section 4. Section 5 gives an overview of the related
work on sequential pattern mining and top-% frequent pat-
ten mining. We conclude this study in Section 6.

2 Problem Definition

This section defines the basic concepts in sequential pat-
tern mining, and then formally introduces the problem of
mining the top-k closed sequential patterns. We adopt the
notations used in [10].

Let I = {i1,12,...,1} be a set of items. A subset of
I is called an itemset. A sequence s = (t1,t2,...,tm)
(t; € I)is an ordered list. We assume there exists a linear
order in I and items in each itemset are sorted. The length
of s, I(s), is the total number of items in s. A sequence
a = {ai,az,...,an,) is a sub-sequence of another se-
quence 8 = (b1, ba, ..., by), denoted by « C 3, if and only
if Jiq,42,...,9m, Suchthatl < iy <ixa < ... <%, <N

and a3 C b;,,a2 C by,,..., and am C b; . We also call
3 a super-sequence of a.
A sequence database, D = {si, s3,...,8,}, IS a set of

sequences. The (absolute) support of a sequence « in a se-
quence database D is the number of sequences in D which
contain «, support(c) = [{s|s € D and o C s}|.

Definition 2.1 (top-k closed sequential pattern) A se-
quence s is a frequent sequential pattern in a sequence
database D if its support (i.e., occurrence frequency) in
D is no less than min_support. A sequential pattern s
is a closed sequential pattern if there exists no sequen-
tial pattern s’ such that (1)s C s, and (2) support(s) =

support(s'). A closed sequential pattern s is a top-k closed
sequential pattern of minimum length min _¢ if there ex-
ist! no more than (k — 1) closed sequential patterns whose
length is at least min_¢ and whose support is higher than
that of s. |

Our task is to mine the top-k closed sequential pat-
terns of minimum length min_¢ efficiently in a sequence
database.

Example 1 Table 1 shows a sample sequence database.
We refer to this databases as D and will use it as a run-
ning example in the paper. Suppose our task is to find
the top-2 closed sequential patterns with min £ = 2 in
D. The output should be: ((a)(e)) : 4, {((ac)(e)) : 3. Al-
though there are two more patterns with support equal to
3: {(ac)) : 3,{(c)(e)) : 3, they are not in the result set be-
cause they are not closed and both of them are absorbed by

{(ac)(e)) = 3. u

Seq ID. | Sequence

0 {(ac)(d)(e))
1 {(e)(abe)(e))
2 {(a)(e) (b))

3 ((d)(ac)(e))

Table 1. Sample Sequence Database D

3 Method Development

Our method of mining is developed in this section.
First, the concept of projection-based sequential pattern
mining, PrefixSpan[7], is introduced, which provides the
background for the development of our method. Next,
we present a novel multi-pass search space traversal algo-
rithm for mining the most frequent patterns and an effi-
cient method for closed pattern verification and the mini-
mum support raising during the mining process. Finally,
two additional optimization techniques are proposed to fur-
ther improve the efficiency of the algorithm.

3.1 Projection-based Sequential Pattern Mining

Definition 3.1 Given two sequences, s = (t1,...,tn) and
p=(t),...,t,), s o p means s concatenates with p. It can
be itemset-extension, s ¢; p = (t1,...,tm Ut],...) if

1Since there could be more than one sequential pattern having the same
support in a sequence database, to ensure the result set is independent of
the ordering of transactions, the proposed method will mine every closed
sequential pattern whose support is no less than the support of the k-th
frequent closed sequential pattern.

<>

/a)>'4\ <(b)>:2 <(c)>:3 <(d)>:2 <(e)>:4

<(ac)>:3 <(a)(e)>:4 <c)(e)>3 <(d)(e)>2 <(e)(b)>:2

<(ac)(e)>:3

Figure 1. Lexicographic Sequence Tree

Yu € ty,,v € t),u < v; Or sequence-extension, s o5 p =
(t1ye oy tm,th, ...,). If s =pos, pisaprefix of s’ and
s is a suffix of s’ [10]. [

For example, ((ae)) is an itemset-extension of ((a)),
whereas {(a)(c)) is a sequence-extension of {(a)). {(ac))
is a prefix of ((ac)(d)(e)) and {(d)(e)) is its suffix.

Definition 3.2 An s-projected database is defined as D, =
{p| s € D,s’ =rop, s.t.risthe minimum prefix (of s’)
containing s (i.e., s C r and #', s C ' r)}. Notice that
p can be empty. =

For Table 1, Dy@c) = {((d)(e)), ((-d)(e)), ((-€))},
where(_d) means that d and the item c in {(ac)) come from

the same itemset.

Sequence Lexicographic Order is given as follows: (i) if
s'=s0p,thens < §;(ii)ifs=ao;pand s’ = a o, p/,
thens < &'; (ii)ifs=ao;p, s =ao;p',and p < p',
thens < &'; (iv) if s = o, p, 8’ = ao,p',and p < p’
then s < s';and (v) if s = {(uw))op, s’ = ((v)) ¢ p', and
u < v, then s < s’ (u and v are the smallest item in the first
itemset of s and s’ respectively).

For example, ((a, f)) < ((b, f)), ((ab)) < ((ab)(a))
(i.e., a sequence is greater than its prefix), ((ab)) <
((a)(a)) (i.e., a sequence-extended sequence is greater than
an itemset-extended sequence if both of them share the
same prefix).

A Lexicographic Sequence Tree is constructed as fol-
lows: Each node in the tree corresponds to a sequence; each
node is either an itemset-extension or sequence-extension
of its parent; and the left sibling is less than the right sibling
in sequence lexicographic order.

Figure 1 shows a lexicographic sequence tree which
records the frequent patterns of the sample database (Ta-
ble 1) with min_support = 2. The numbers in the figure
represent the support of each frequent sequence. We define
the level of a node by the number of edges from the root to
this node. If we do pre-order transversal in the tree, we can
build an operational picture of lexicographic sequence tree
(Figure 2). It shows that the process extends a sequence by
performing an itemset-extension or a sequence-extension.

O O 0 0
AN W]
O O O O O

Figure 2. Prefix Search Tree

PrefixSpan [7] provides a general framework for depth-
first search in the prefix search tree. For each discovered se-
quence s and its projected database Dy, it performs itemset-
extension and sequence-extension recursively until all the
frequent sequences with prefix s are discovered.

3.2 Multi-Pass Mining and Support Threshold
Raising

Since our task is to mine top-& closed sequential patterns
without min_support threshold, the mining process should
start with min_support = 1, raise it progressively during
the process, and then use the raised min_support to prune
the search space. This can be done as follows: as soon as at
least k£ closed sequential patterns with length no less than
min_¢ are found, min_support can be set to the support
of the least frequent pattern, and this min_support-raising
process continues throughout the mining process.

This min_support-raising technique is simple and can
lead to efficient mining. However, there are two major
problems that need to be addressed. The first is how to
verify whether a newly found pattern is closed. This will
be discussed in Section 3.3. The second is how to raise
min_support as quickly as possible. When min_support
is initiated or is very low, the search space will be huge and
it is likely to find many patterns with pretty low support.
This will lead to the slow raise of min_support. As a re-
sult, many patterns with low support will be mined first but
be discarded later when enough patterns with higher sup-
port are found. Moreover, since a user is only interested in
patterns with length at least min_¢, many of the projected
databases built at levels above min_¢ may not produce any
frequent patterns at level min_¢ and below. Therefore, a
naive mining algorithm that traverses the search spaces in
sequence lexicographic order will make the mining of the
top-k closed sequential patterns very slow.

In this section we propose a heuristic search space traver-
sal algorithm which in most cases mines the top-£ frequent
patterns as quickly as the currently fastest sequential pat-
terns mining algorithm, even when the latter is tuned with
the most appropriate min_support threshold.

3.2.1 Multi-pass mining and projected-database tree

Algorithm 3.1 TopSequencesTraversal

Input: A sequence s, a projected DB D,, min_¢,
histograms H[1..min_¢], and constant factor ¢
Output: The top-k frequent sequence set T'.
1: if support(s) < min_support then return
2:if I(s) = min_£ then
3: Call PrefixSpanWithSupportRaising(s, Ds,
min_support, T);
return;
: scan D, once, find every frequent item « such that
s can be extended to s ¢ a;
insert « in histogram H[I(s) + 1];
: sort items in H[I(s) + 1] based on their support;
7: next_level top_support <
GetTopSupportFromHistogam (8, H[I(s) + 1])
8: for each a, support(a) > next_level top_support do
9: Call TopSequencesTraversal(s ¢ a, Dgoq, min_£);
10: return;

AN

(o2}

Assuming that we have found the & most frequent closed
sequential patterns for a given database, we call the sup-
port of the least frequent pattern final_support. This is
the maximum min_support that one can raise during the
mining process. In Example 1, final _support = 3.

Our goal is to develop an algorithm that builds as
few prefix-projected databases with support less than
final_support as possible. Actually, we can first search
the most promising branches in the prefix search tree in Fig-
ure 2 and use the raised min_support to search the remain-
ing branches. The algorithm is outlined as follows: (1) ini-
tially (during the first pass), build a small, limited number
of projected databases for each prefix length, I(I < min_¢),
(2) then (in the succeeding passes) gradually relax the lim-
itation on the number of projected databases that are built,
and (3) repeat the mining again. Each time when we reach
a projected database Dg, where [(s) = min_l — 1, we
mine D, completely and use the mined sequences to raise
min_support. The stop condition for this multi-pass min-
ing process is when all projected databases at level min_¢
with support greater than min_support are mined com-
pletely. We limit the number of projected databases con-
structed at each level by setting different support thresholds
for different levels. The reasoning behind this is that if we
set a support threshold that is passed by a small number
of projected databases at some higher level, in many cases
this support will not be passed by any projected databases
at lower levels and vice versa.

Algorithm 3.1 performs a single pass of TSP. Line 2-4

Pass |

a4 b: c:3
O O O O O
c‘/ eS:N e.:3 es2 b2
O O O O O
e:3
O
Pass Il <>
/ c,3 dﬁ\
O O] O O
C‘V e;k\ e.3 eg2 b2
O O O O O
e:3
O

Figure 3. Multi-pass mining

calls PrefixSpan to find frequent patterns which have pre-
fix s. Once there are at least k£ closed patterns discovered,
it raises the minimum support threshold to the support of
the least frequent one. We call this procedure PrefixSpan-
WithSupportRaising. In order to find the complete result
set we need to call Algorithm 3.1 multiple times to cover
all potential branches. The limit on the number of pro-
jected databases that are built during each pass is enforced
by function GetTopSupportFromHistogam, which uses his-
tograms of the supports of the sequences found earlier in the
same pass or in the previous passes and the factor 8 which
is set in the beginning of each pass. Figure 3 illustrates the
multi-pass mining on the problem setting from Example 1,
the bolded lines show the branches traversed in each pass.
In this example, the mining is completed after the second
pass because after this pass the support threshold is raised
to 3 and there are no unvisited branches with support greater
than or equal to 3.

In our current implementation the factor 6 is a percentile
in the histograms and the function GetTopSupportFromHis-
togam returns the value of the support at 8-th percentile in
the histogram. The initial value of @ is calculated in the be-
ginning of the mining process using the following formula:
0 = (k*minl)/Nrtems, Where Nrgems is the number of dis-
tinct items in the database. In each of the following passes
the value of @ is doubled. Our experiments show that the
performance of the top-%£ mining algorithm does not change
significantly for different initial values of € as long as they
are small enough to divide the mining process in several
passes.

In order to efficiently implement the multi-pass mining
process described above we use a tree structure that stores
the projected databases built in the previous passes. We call
this structure Projected Database Tree or PDB-tree. The
PDB-tree is a memory representation of the prefix search

Level MinL.

Figure 4. PDB-tree: A tree of prefix-projected
databases

tree and stores information about partially mined projected
databases during the multi-pass mining process. Since the
PDB-tree consists of partially mined projected databases,
once a projected database is completely mined, it can be
removed from the PDB-tree. Because of this property, the
PDB-tree has a significantly smaller size than the whole pre-
fix search tree traversed during the mining process. The
maximum depth of the PDB-tree is always less than min ¢
because TSP mines all projected databases at level min_¢
and below completely. In order to further reduce the mem-
ory required to store the PDB-tree, we use pseudo-projected
databases [7] at the nodes of the PDB-tree, i.e., we only
store lists of pointers to the actual sequences in the original
sequence database. Figure 4 shows an example of PDB-
tree, where each searched node is associated with a pro-
jected database.

3.3 Verification of Closed Patterns

Now we come back to the question raised earlier in this
section: how can we guarantee that at least k& closed pat-
terns are found so that min_support can be raised in min-
ing? Currently there is only one other algorithm, CloSpan,
that mines closed sequential patterns. CloSpan stores can-
didates for closed patterns during the mining process and
in its last step it finds and removes the non-closed ones.
This approach is infeasible in top-£ mining since it needs
to know which pattern is closed and accumulates at least &
closed patterns before it starts to raise the minimum sup-
port. Thus closed pattern verification cannot be delayed to
the final stage.

In order to raise min_support correctly, we need to
maintain a result set to ensure that there exists no pattern
in the database that can absorb more than one pattern in
the current result set. Otherwise, if such a pattern exists, it
may reduce the number of patterns in the result set down to
below k& and make the final result incomplete or incorrect.
For example, assume k = 2, min_£ = 2, and the patterns
found so far are: {{(a), (b)) : 5, {(a),(c)) : 5}. If these

patterns are used to raise min_support to 5 but later a pat-
tern ((a), (b), (c)) : 5 is found, the latter will absorb the first
two. Then the result set will consist of only one pattern in-
stead of 2. Thus it is not correct to set min_support to 5. In
this case the correctness and completeness of the final result
can be jeopardized because during some part of the mining
one might have used an invalid support threshold.

Here we present a technique that handles this problem
efficiently.

Definition 3.3 Given a sequence s, s € D, the set of the se-
quence IDs of all sequences in the database D that contain
s is called sequence ID list, denoted by SIDList(s). The
sum of SIDList(s) is called sequence 1D sum, denoted by
SIDSum(s).

We have the following results:

Remark 3.1 Given sequences s’ and s”, if ¢ C "
and support(s’) = support(s”) then SIDList(s') =
SIDList(s") and SIDSum(s') = SIDSum(s").

Lemma 3.1 Given sequences s’ and s”, if support(s’) =
support(s"), SIDList(s") # SIDList(s"), then neither
s’ is subpattern of s”, nor s” is a subpattern of s'.

Remark 3.2 If there exists a frequent item u,u € I, such
that support(s o; {(v))) = support(s) or support(s os
((w))) = support(s), then s should not be added to the
current top-k result set, because there exists a superpattern
of s with the same support.

Based on Remarks 3.1 and 3.2 and Lemma 3.1, we de-
veloped an efficient verification mechanism to determine
whether a pattern should be added to the top-k set and
whether it should be used to raise the support threshold.

A prefix tree, called TopK T'ree, is developed to store
the current top-k result set in memory. Also, in order to im-
prove the efficiency of the closed pattern verification, a hash
table, called ST DSum_Hash, is maintained that maps se-
quence id sums to the nodes in TopK Tree.

In our top-k£ mining algorithm when a new pattern is
found the algorithm takes one of the following three ac-
tions: (1) add_and_raise: the pattern is added to the top-
k result set and is used to raise the support threshold, (2)
add_but_no_raise: the pattern is added to the top-k result
set but is not used to raise the support threshold, and (3)
no_add: the pattern is not added to the top-% result set.

Algorithm 3.3 implements closed pattern verification.
Notice that Algorithm 3.3 returns add_but_no_raise for
patterns that have the same SIDList as some other pat-
terns that are already in the top-k result set. Such patterns
are stored separately and are not used to raise the support
threshold min_support. This eliminates the problem men-
tioned earlier: If two patterns in the top-k result set are ab-
sorbed by a single new pattern, it may lead to less than &

Algorithm 3.2 Closed Pattern Verification

Input: A sequential pattern s

Output: One of the following three operations:

add_and_raise, add_but_no_raise, and no_add.

1: if Janitem u, such that support(s o; ((u))) =
support(s) or support(s os ((u))) = support(s) then
return(no_add);

2: if SIDSum(s) is not in SIDSum_Hash then
return(add_and_raise);

3: for each s’ such that SIDSum(s') = SIDSum(s) and

Support(s') = Support(s) do

4 if s C s’ then return(no_add);

5. if s’ C sthen

6 replace s’ with s;

7 return(add_but_no_raise);

if SIDList(s") = SIDList(s) then

10: return(add_but_no_raise);

11: return(add_and_raise);

® NG

patterns in the result set. In summary, our strategy is to
maintain top-£ patterns in the result set where no two pat-
terns can be absorbed by a single new pattern.

3.4 Applying the Minimum Length Constraint

Now we discuss how to reduce the search space using
the minimum length constraint min £.

Remark 3.3 (Minimum Length Constraint) For any se-
quence s’ € D, such that I(s") + I(s) < min_{, the se-
quence s’ will not contribute to a frequent sequential pat-
tern of minimum length min_¢, and it can be removed from
the projected database D;.

Based on Remark 3.3, when our algorithm builds a pro-
jected database, it checks each projected sequence to see
whether it is shorter than min_¢ — I(s) before adding it to
the projected database.

Notice that the minimum length constraint can be used
to reduce the size of a projected database D, only when
I(s) < min_¢ — 1. Thus when the prefix s is longer than
min_£ — 2, the program does not need to check the length
of the projected sequences.

3.5 Early Termination by Equivalence

Early termination by equivalence is a search space re-
duction technique developed in CloSpan [10]. Let Z(D)
represent the total number of items in D, defined as

n

(D) = 1(s:).

i=1

We call Z(D) the size of the database. For the sample
dataset in Table 1, Z(D) = 16. The property of early ter-
mination by equivalence shows if two sequences s C s’ and
Z(Ds) = Z(Ds), then YV, support(s o v) = support(s’ o
7). It means the descendants of s in the lexicographical
sequence tree must not be closed. Furthermore, the descen-
dants of s and s’ are exactly the same. CloSpan uses this
property to quickly prune the search space of s.

To facilitate early termination by equivalence in the
top-£ mining, we explore both the partially mined pro-
jected database tree, PDB _Tree, and the result set tree,
TopK Tree. Two hash tables are maintained: one,
called PDB_Hash, mapping databases sizes to nodes in
PDB_Tree and the other, called TopK _Hash, mapping
databases sizes to nodes in TopK T'ree.

For each new projected database D, that is built, we
search the two hash tables using Z(D;) as a key and check
the following conditions:

o If there exists a sequence s’, s’ € PDB _Tree, such
that Z(D,) = Z(D) and s C s’ then stop the search
of the branch of s.

e If there exists a sequence s’, s’ € PDB _Tree, such
that Z(Ds) = Z(Dy) and s’ C s then remove s’ from
PDB _Tree and continue the mining of the branch of
S.

o If there exists a sequence s’,s’ € TopK Tree and
s’ ¢ PDB Tree, such that Z(D;) = Z(D,/) and s C
s’ then stop the search of the branch of s.

With this adoption of early termination in TSP, the per-
formance of TSP is improved significantly.

4 Experimental Evaluation

This section reports the performance testing of TSP in
large data sets. In particular, we compare the performance
of TSP with CloSpan. The comparison is based on assign-
ing the optimal min_support to CloSpan so that it gener-
ates the same set of top-k closed patterns as TSP for spec-
ified values of k and min_£. The optimal min_support is
found by first running TSP under each experimental condi-
tion. Since this optimal min_support is hard to speculate
without mining, even if TSP achieves the similar perfor-
mance with CloSpan, TSP is still more valuable since it
is much easier for a user to work out a k value for top-k
patterns than a specific min_support value.

The datasets used in this study are generated by a syn-
thetic data generator provided by IBM. It can be obtained at
http://www.almaden.ibm.com/cs/quest. Table 2 shows the
major parameters that can be specified in this data genera-
tor, more details are available in [1].

abbr. | meaning

Number of sequences in 000s
Average itemsets per sequence
Average items per itemset

Number of different items in 000s
Average itemsets in maximal patterns
Average items in maximal patterns

=l ZH 0|0

Table 2. Synthetic Data Parameters

All experiments were performed on a 1.8GHz Intel
Pentium-4 PC with 512MB main memory, running Win-
dows XP Professional. Both algorithms are written in C++
using STL and compiled with Visual Studio .Net 2002.

12 T T T T 80 T

Running Time (in seconds)
©
Running Time (in seconds)
g
X

CloSpan -—--x-—- e 70 | Clospan -—-x-— P

0 2;.1) 4‘00 el)o E‘OO 10‘00 0 200 400 600 800 1000
(@) min =6 (b) min_£=10

Figure 5. Dataset D100C5T2.5N10S412.5

Tsp —— TP ——
CloSpan ---X--- ¥ 10 |- Clospan -

Running Time (in seconds)
Running Time (in seconds)

0 2 4 6 8 10 12 1 0
Minimum Length

Minimum Length

(@) K =50 (b) K = 500

Figure 6. Dataset D100C5T2.5N10S412.5

The performance of the two algorithms has been com-
pared by varying min_¢ and k. When k is fixed, its value
is set to either 50 or 500 which covers the range of typi-
cal values for this parameter. Figures 5 and 6 show per-
formance results for dataset D100C5T2.5N10S412.5. This
dataset consists of relatively short sequences, each sequence
contains 5 itemsets on average and the itemsets have 2.5
items on average. The experimental results show that TSP
mines this dataset very efficiently and in most cases runs
several times faster than CloSpan. The difference between

the running time of the two algorithms is more significant
when longer patterns are mined (larger min_¢). There are
two major reasons for the better performance of TSP in this
dataset. First, it uses the min_€ constraint to prune short
sequences during the mining process which in some cases
significantly reduces the search space and improves the per-
formance. Second, TSP has more efficient closed pattern
verification scheme and stores a result set that contains only
a small number of closed patterns, while CloSpan keeps a
larger number of candidate patterns that could not be closed
and removes the non-closed ones at the end of the mining
processes.

Tsp —— |
Clospan ---x---

Running Time (in seconds)
8

Running Time (in seconds)
g

0

0

L L L L L L L
0 100 200 300 400 500 600 700 800
K K

(a) min_£=6 (b) min_£ =12

Figure 7. Dataset D100C10T10N10S6I5

Figures 7 and 8 show the experiments on dataset
D100C10T10N10S4I5 which consists of longer patterns
compared to the previous one. The average number of item-
sets per sequence in this dataset is increased from 5 to 10.
For this dataset the two algorithms have comparable per-
formance. The reasons for the similar performance of the
two algorithms are that the benefit of applying the min_¢
constraint is smaller because the sequences in the dataset
are longer, and also the major cost for mining this dataset
is the construction of prefix-projected databases which has
similar implementation in both algorithms.

S S S
0 100 200 300 400 500 600 700 800

350 T T 450 T T T
Tsp —— Tsp ——
300 | Clospan —x-— x J 400 |- Clospan ---x--- x 4
; sl /
300 -
200 250 - P

Running Time (in seconds)
®
»
g

Running Time (in seconds)

Minimum Length Minimum Length

(@ K =50 (b) K = 500

Figure 8. Dataset D100C10T10N10S6I5

As we can see, min_£ plays an important role in im-
proving the performance of TSP. If we ignore the perfor-

mance gain caused by min_¢, TSP can achieve the com-
petitive performance with well tuned CloSpan. We may
wonder why minimum support-raising cannot boost the per-
formance like what min_¢ does. The rule of thumb is that
the support of upper level nodes should be greater than
lower level nodes (the support of short sequences should
be greater than that of long sequences). Then, few nodes
in the upper level can be pruned by the minimum support.
Since we cannot access the long patterns without accessing
the short patterns, we have to search most of upper level
nodes in the prefix search tree. As we know, the projected
database of the upper level nodes is very big and expensive
to compute. Thus, if we cannot reduce checking the up-
per level nodes’ projected databases, it is unlikely we can
benefit from support-raising technique a lot. However, the
support-raising technique can free us from setting minimum
support without sacrificing the performance.

5 Related Work

Agrawal and Srikant [1] introduced the sequential pat-
tern mining problem. Efficient algorithms like GSP [8],
SPADE [11], PrefixSpan [7], and SPAM [2] were devel-
oped. Because the number of frequent patterns is too huge,
recently several algorithms were proposed for closed pat-
tern mining: CLOSET [6] and CHARM [12] for closed
itemset mining, CloSpan [10] for closed sequence mining,
and CloseGraph [9] for closed graph mining. All of these
algorithms can deliver much less patterns than frequent pat-
tern mining, but do not lose any information. Top-% closed
pattern mining intends to reduce the number of patterns fur-
ther by only mining the most frequent ones.

As to top-k closed sequential pattern mining, CloSpan
[10] and TFP [4] are the most related work. CloSpan
mines frequent closed sequential patterns while TFP dis-
covers top-k closed itemsets. The algorithm proposed in the
present paper adopts the problem definition of TFP and pro-
vides an efficient solution to this problem in the more chal-
lenging setting of mining frequent closed sequential pat-
terns in sequence databases.

6 Conclusions

In this paper, we have studied the problem of mining
top-k (frequent) closed sequential patterns with length no
less than min _¢ and proposed an efficient mining algorithm
TSP, with the following distinct features: (1) it adopts a
novel, multi-pass search space traversal strategy that allows
mining of the most frequent patterns early in the mining
process and fast raising of the minimum support threshold
min_support dynamically, which is then used to prune the
search space, (2) it performs efficient closed pattern ver-
ification during the mining process that ensures accurate

raising of min_support and derives correct and complete
results, and (3) it develops several additional optimization
techniques, including applying the minimum length con-
straint, min_¢, and incorporating the early termination pro-
posed in CloSpan.

Our experimental study shows that the proposed algo-
rithm delivers competitive performance and in many cases
outperforms CloSpan, currently the most efficient algo-
rithm for (closed) sequential pattern mining, even when
CloSpan is running with the best tuned min_support.
Through this study, we conclude that mining top-% closed
sequential patterns without min_support is practical and in
many cases more preferable than the traditional minimum
support threshold based sequential pattern mining.

References

[1] R. Agrawal and R. Srikant. Mining sequential patterns. In
ICDFE'’ 95, pp. 3-14, Taipei, Taiwan, Mar. 1995.

[2] J. Ayres, J. E. Gehrke, T. Yiu, and J. Flannick. Sequential
pattern mining using bitmaps. In KDD’02, pp. 429-435,
Edmonton, Canada, July 2002.

[3] S.Guha, R. Rastogi, and K. Shim. Rock: A robust clustering
algorithm for categorical attributes. In ICDE'99, pp. 512—
521, Sydney, Australia, Mar. 1999.

[4] J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining top-
k frequent closed patterns without minimum support. In
ICDM’ 02, pp. 211-218, Maebashi, Japan, Dec. 2002.

[5] H. Mannila, H. Toivonen, and A. I. Vlerkamo. Discovering
frequent episodes in sequences. In KDD’95, pp. 210-215,
Montreal, Canada, Aug. 1995.

[6] J.Pei,J. Han, and R. Mao. CLOSET: An efficient algorithm
for mining frequent closed itemsets. In DMKD’ 00, pp. 11—
20, Dallas, TX, May 2000.

[7] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen,
U. Dayal, and M.-C. Hsu. PrefixSpan: Mining sequential
patterns efficiently by prefix-projected pattern growth. In
ICDFE' 01, pp. 215-224, Heidelberg, Germany, April 2001.

[8] R.Srikantand R. Agrawal. Mining sequential patterns: Gen-
eralizations and performance improvements. In EDBT 96,
pp. 3-17, Avignon, France, Mar. 1996.

[9] X. Yan and J. Han. CloseGraph: Mining closed frequent
graph patterns. In KDD’ 03, Washington, D.C., Aug. 2003.

[10] X. Yan, J. Han, and R. Afshar. CloSpan: Mining closed
sequential patterns in large datasets. In SDM’'03, pp. 166—
177, San Fransisco, CA, May 2003.

[11] M. Zaki. SPADE: An efficient algorithm for mining frequent
sequences. Machine Learning, 40:31-60, 2001.

[12] M.J. Zaki and C. J. Hsiao. CHARM: An efficient algorithm
for closed itemset mining. In SDM’02, pp. 457-473, Arling-
ton, VA, April 2002.

