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Abstract. High-utility itemset (HUI) mining is a popular data min-
ing task, consisting of enumerating all groups of items that yield a high
profit in a customer transaction database. However, an important issue
with traditional HUI mining algorithms is that they tend to find item-
sets having many items. But those itemsets are often rare, and thus may
be less interesting than smaller itemsets for users. In this paper, we ad-
dress this issue by presenting a novel algorithm named FHM+ for mining
HUIs, while considering length constraints. To discover HUIs efficiently
with length constraints, FHM+ introduces the concept of Length Upper-
Bound Reduction (LUR), and two novel upper-bounds on the utility of
itemsets. An extensive experimental evaluation shows that length con-
straints are effective at reducing the number of patterns, and the novel
upper-bounds can greatly decrease the execution time, and memory us-
age for HUI mining.
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1 Introduction

High-Utility Itemset Mining (HUIM) [2, 13, 5–11] is a popular data mining task.
It consists of enumerating all high-utility itemsets (HUIs), i.e. groups of items
(itemsets) having a high utility (e.g. yielding a high profit) in customer trans-
action databases. HUIM is a generalization of the problem of Frequent Itemset
Mining (FIM) [1], where items can appear more than once in each transaction
and where each item has a weight (e.g. unit profit). HUIM is widely viewed as
more difficult than FIM because the utility measure used in HUIM is neither
anti-monotonic nor monotonic, i.e. a high utility itemset may have supersets
or subsets having lower, equal or higher utilities [2]. HUIM has a wide range
of applications [9, 11]. However, an important issue of traditional HUIM algo-
rithms is that they tend to find itemsets containing many items, as they are more



likely to have a high utility. This is an issue because itemsets containing many
items are generally less useful than itemsets containing fewer items. The rea-
son is that itemsets containing many items generally represent situations that
are more specific, and thus rare. For example, consider a retail manager that
has found two high-utility itemsets {mapleSyrup, pancake}, and {mapleSyrup,
pancake, orange, cheese, cereal} in a customer transaction database. If the re-
tail manager wants to increase the overall profit of his retail store, it will be more
effective to promote the first itemset than the second one, as the former con-
tains only two items and may be quite common, while the second contains five
items and is rarer. To provide HUIs that are more useful to users while filtering
those that may be less useful, it is thus desirable to incorporate the concept of
length constraints in HUIM. To our knowledge, no HUIM algorithms offer this
feature. To incorporate length constraints in HUIM, a naive approach would be
to discover all HUIs using a traditional HUIM algorithm, and then to apply the
constraints as a post-processing step. But this approach would be inefficient, as
the algorithm would not take advantage of the constraints to prune the search
space. Hence, it is desirable to push the constraints as deep as possible in the
mining process to improve the performance of the mining task. In frequent pat-
tern mining, length constraints have been previously used such as the maximum
length constraint [4]. The key idea of algorithms using a maximum length con-
straint is that since itemsets are generated by recursively appending items to
itemsets, no item should be appended to an itemset containing the maximum
number of items. Although this approach can prune the search space using length
constraints, there is a need to find novel ways of reducing the search space using
length constraints, to further improve the performance of algorithms. In this pa-
per, we address these issues by presenting a novel algorithm named FHM+ (Fast
High-utility itemset Mining+) for discovering HUIs with length constraints. It
extends the state-of-the-art FHM algorithm for HUIM with a novel concept
named Length Upper-bound Reduction (LUR), to reduce the upper-bounds on
the utility of itemsets using length constraints, and thus prune the search space.
An extensive experimental evaluation shows that the proposed algorithm can be
much faster than the state-of-the-art FHM algorithm, and greatly reduce the
number of patterns presented to the user. Moreover, results show that the LUR
concept greatly improves the algorithm’s efficiency. This is an interesting result
as the LUR concept introduced in this paper is quite general, and thus could
be integrated in other utility pattern mining algorithms. The rest of this paper
is organized as follows. Section 2, 3, 4, and 5 respectively present the problem
of HUIM and related work, the proposed FHM+ algorithm, the experimental
evaluation, and the conclusion.

2 Problem definition and related work

The problem of high-utility itemset mining is defined as follows. Let there be
a set of items (symbols) I . A transaction database is a set of transactions
D = {T1, T2, ..., Tn} such that for each transaction Tc, Tc ⊆ I and Tc has a



unique identifier c called its Tid. Each item i ∈ I is associated with a positive
number p(i), called its external utility (e.g. representing the unit profit of this
item). For each transaction Tc such that i ∈ Tc, a positive number q(i, Tc) is
called the internal utility of i (e.g. representing the purchase quantity of item i
in transaction Tc). For instance, consider the database of Fig. 1, which will be
used as running example. It contains five transactions (T1, T2...T5). For example,
transaction T4 indicates that items a, c, e and g appear in this transaction
with an internal utility of respectively 2, 6, 2 and 5. Fig. 2 indicates that the
external utilities of these items are respectively 5, 1, 3 and 1. The utility of an

Table 1: A transaction database

TID Transaction

T1 (a, 1), (b, 5), (c, 1), (d, 3), (e, 1), (f, 5)
T2 (b, 4), (c, 3), (d, 3), (e, 1)
T3 (a, 1), (c, 1), (d, 1)
T4 (a, 2), (c, 6), (e, 2), (g, 5)
T5 (b, 2), (c, 2), (e, 1), (g, 2)

Table 2: External utility values

Item a b c d e f g

Unit profit 5 2 1 2 3 1 1

item i in a transaction Tc is defined as u(i, Tc) = p(i) × q(i, Tc). The utility
of an itemset X (a group of items X ⊆ I) in a transaction Tc is defined as
u(X,Tc) =

∑
i∈X u(i, Tc). The utility of an itemset X is denoted as u(X) and

defined as u(X) =
∑

Tc∈g(X) u(X,Tc), where g(X) is the set of transactions
containing X. The problem of high-utility itemset mining is to discover all high-
utility itemsets. An itemset X is a high-utility itemset if its utility u(X) is no
less than a user-specified minimum utility threshold minutil given by the user.
For example, the utility of item a in T4 is u(a, T4) = 5 × 2 = 10. The utility of
the itemset {a, c} in T4 is u({a, c}, T4) = u(a, T4) +u(c, T4) = 5×2 + 1×6 = 16.
The utility of the itemset {a, c} is u({a, c}) = u(a) +u(c) = u(a, T1) +u(a, T3) +
u(a, T4)+u(c, T1)+u(c, T3)+u(c, T4) = 5+5+10+1+1+6 = 28. If minutil = 30,
the complete set of HUIs is {a, c, e} : 31, {a, b, c, d, e, f} : 30, {b, c, d} : 34,
{b, c, d, e} : 40, {b, c, e} : 37, {b, d} : 30, {b, d, e} : 36, and {b, e} : 31, where each
HUI is annotated with its utility. Several HUIM algorithms have been proposed.
They can generally be categorized as one-phase or two-phase algorithms [2]. Two-
phase algorithms such as Two-Phase [10], BAHUI [8], PB [5], and UPGrowth+
[11] operate in two phases. In the first phase, they identify itemsets that may
be high-utility itemsets by considering an upper-bound on the utility of itemsets
called the Transaction-Weighted Utilization (TWU) [10]. Then, in the second
phase, they scan the database to calculate the exact utility of all candidates
found in the first phase and filter those having a low utility. The TWU measure
and its pruning property are defined as follows. The transaction utility (TU ) of
a transaction Tc is the sum of the utility of all the items in Tc. i.e. TU(Tc) =∑

x∈Tc
u(x, Tc). The transaction-weighted utilization (TWU ) of an itemset X

is defined as the sum of the transaction utility of transactions containing X,
i.e. TWU(X) =

∑
Tc∈g(X) TU(Tc). For example, The TUs of T1, T2, T3, T4 and



T5 are respectively 30, 20, 8, 27 and 11. The TWU of single items a, b, c,
d, e, f and g are respectively 65, 61, 96, 58, 88, 30 and 38. TWU({c, d}) =
TU(T1) + TU(T2) + TU(T3) = 30 + 20 + 8 = 58. Because the TWU measure is
anti-monotonic, it can be used to prune the search space.

Property 1 (Pruning search space using the TWU). Let X be an itemset, if
TWU(X) < minutil, then X and its supersets are low utility. [10]

A drawback of two-phase algorithms is that they generate a huge number of
candidates in the first phase. To address this issue, one-phase algorithms were
proposed such as FHM [2], HUI-Miner [9], and EFIM [13], which discover HUIs
directly using a single phase. To our knowledge, the fastest HUIM algorithm is
EFIM, which was shown to outperform FHM, which was shown to be up to 6
times faster than HUI-Miner [2]. The FHM and HUI-Miner algorithms use the
concept of remaining utility upper-bound to prune the search space, which is
defined as follows. Let � be any total order on items from I (e.g. lexicographical
order). The remaining utility of an itemset X in a transaction Tc is defined
as ru(X) =

∑
i∈Tc∧i�x∀x∈X u(i, Tc). The remaining utility of an itemset X in

a database is defined as reu(X) =
∑

Tc∈g(X) ru(X,Tc). For example, assume

that � is the alphabetical order. The remaining utility of itemset {a, d} in the
database is 3, when assuming the alphabetical order. FHM and HUI-Miner are
depth-first search algorithms. The FHM algorithm associates a structure named
utility-list to each itemset [2, 9]. Utility-lists allow calculating the utility of any
itemset by making join operations with utility-lists of shorter patterns. Utility-
lists are defined as follows. The utility-list ul(X) of an itemset X in a database D
is a set of tuples such that there is a tuple (tid, iutil, rutil) for each transaction
Ttid containing X. The iutil element of a tuple is the utility of X in Ttid. i.e.,
u(X,Ttid). The rutil element of a tuple is defined as

∑
i∈Ttid∧i�x∀x∈X u(i, Ttid).

The utility-list of {a} is {(T1, 5, 25), (T3, 5, 3), (T4, 10, 17)}. The utility-list of
{d} is {(T1, 6, 3), (T2, 6, 3), (T3, 2, 0)}. The utility-list of {a, d} is {(T1, 11, 8),
(T3, 7, 0)}. The FHM algorithm scans the database once to create the utility-
lists of itemsets containing a single item. Then, the utility-lists of larger itemsets
are constructed by joining the utility-lists of smaller itemsets. The join operation
for single items is performed as follows. Consider two items x, y such that x � y,
and their utility-lists ul({x}) and ul({y}). The utility-list of {x, y} is obtained
by creating a tuple (ex.tid, ex.iutil + ey.iutil, ey.rutil) for each pair of tuples
ex ∈ ul({x}) and ey ∈ ul({y}) such that ex.tid = ey.tid. The join operation for
two itemsets P ∪ {x} and P ∪ {y} such that x � y is performed as follows. Let
ul(P ), ul({x}) and ul({y}) be the utility-lists of P , {x} and {y}. The utility-
list of P ∪ {x, y} is obtained by creating a tuple (ex.tid, ex.iutil + ey.iutil −
ep.iutil, ey.rutil) for each set of tuples ex ∈ ul({x}), ey ∈ ul({y}), ep ∈ ul(P )
such that ex.tid = ey.tid = ep.tid. The utility-list structure allows to calculate
the utility-list of itemsets and prune the search space as follows.

Property 2 (Calculating the utility of an itemset using its utility-list). The utility
of an itemset is the sum of iutil values in its utility-list [9].



Property 3 (Pruning search space using a utility-list). Let X be an itemset. Let
the extensions of X be the itemsets that can be obtained by appending an item
y to X such that y � i, ∀i ∈ X. If the sum of iutil and rutil values in ul(X) is
less than minutil, X and its extensions are low utility [9].

Although much work has been done on HUIM, a key problem of current HUIM
algorithms is that they tend to find a huge amount of itemsets containing many
items. As explained in the introduction, these itemsets may be less useful for
users, as they generally represent specific and rare cases. To let users find itemsets
that are more useful, we define the problem of mining high-utility itemsets with
length constraints as follows.

Definition 1 (High-utility itemset mining with length constraints). Let
minutil, minlength, and maxlength be parameters set by the user. The prob-
lem of mining high-utility itemsets with length constraints is to find all itemsets
having a utility no less than minutil and containing at least minlength items,
and at most maxlength items.

Example 1. If minutil = 30, minlength = 1 and maxlength = 3, the set of
HUIs is: {a, c, e}, {b, c, d}, {b, c, e}, {b, d}, {b, d, e}, and {b, e}.

3 The FHM+ algorithm

This section presents the proposed FHM+ algorithm for efficiently mining HUIs
with length constraints. FHM+ extends the state-of-the-art FHM [2] algorithm
with novel techniques for pruning the search space using length constraints.

3.1 Length Upper-bound Reduction

As previously mentioned, FHM performs a depth-first search to discover HUIs.
To enforce the length constraints in FHM, a simple solution is to modify FHM to
not extend an itemset with an item if its number of items is equal to maxlength,
and to check if the minlength constraints is respected for any HUI found by
FHM. This approach would find all HUIs when considering length constraints.
However, a drawback of this solution is that it does not reduce upper-bounds on
the utilities of itemsets to prune the search space. But having tight upper-bounds
is crucial in HUIM for pruning the search space efficiently [2, 9, 11]. To address
this issue, we next propose a novel concept of length upper-bound reduction.
It consists of a set of techniques for reducing upper-bounds on the utilities of
itemsets using length constraints. This results in two novel tighter upper-bounds
on the utility of itemsets called the revised TWU and revised remaining utility.
The proposed revised TWU upper-bound is defined as follows:

Definition 2 ( largest utilities in a transaction). Let there be a transaction
Tc = {i1, i2, . . . ik}. The largest utilities in Tc is the set of the maxlength largest
values in the set {u(i1, Tc), u(i2, Tc), . . . , u(ik, Tc)}, and is denoted as L(Tc).



Definition 3 (revised Transaction-Weighted Utilization). Let there be a
transaction Tc = {i1, i2, . . . ik}. The revised transaction utility of Tc is defined
as RTU(Tc) =

∑
L(Tc), and represents the maximum utility that an itemset

respecting the maxlength constraint could have in Tc. The revised TWU of an
itemset X is defined as the sum of the revised transaction utilities of transactions
where X appears, i.e. RTWU(X) =

∑
Tc∈g(X) RTU(Tc).

For example, the RTU of transactions T1, T2, T3, T4 and T5 are respectively 21,
17, 8, 22, and 9. Hence, RTWU({c, d}) = RTU(T1) + RTU(T2) + RTU(T3) =
21 + 17 + 8 = 48, which is a tighter upper-bound on the utility of {c,d} and
its supersets than the original TWU, which was calculated as 58. The proposed
RTWU has the two following important properties.

Property 4 (The revised TWU is a tighter upper-bound than the TWU). Let
there be an itemset X. The relationship RTWU(X) ≤ TWU(X) holds.

Proof. By definition, RTU(X) ≤ TU(X), for any itemset X. Hence, RTWU(X) =∑
Tc∈g(X) RTU(Tc) ≤ TWU(X) =

∑
Tc∈g(X) TU(Tc).

Property 5 (Pruning the search space using the revised TWU). Let X be an
itemset, if RTWU(X) < minutil, then X and its supersets are not high-utility
itemsets respecting the maxlength constraint.

Proof. For any transaction Tc, RTU(Tc) represents the maximum utility that an
itemset respecting the maxlength constraint could have in Tc. Thus, RTWU(X)
is an upper-bound on u(X). Furthermore, it is also a upper-bound on the utilities
of supersets of X since those cannot appear in more transactions than X.

The second tighter upper-bound introduced in this paper is called the revised
remaining utility upper-bound.

Definition 4 (largest utilities in a transaction w.r.t. an itemset). Let
there be a transaction Tc and an itemset X. Let V (Tc, X) = {v1, v2, . . . vk}
be the set of items occurring in Tc that can extend X, i.e. V (Tc, X) = {v ∈
Tc|v � x, ∀x ∈ X}. The maximum number of items that can be appended to
X so that the resulting itemset would respect the maxlength constraint is de-
fined as maxExtend(X) = maxlengh − |X|, where |X| is the cardinality of X.
The largest utilities in transaction Tc with respect to itemset X is the set of
the maxExtend(X) largest values in {u(v1, Tc), u(v2, Tc), . . . , u(vk, Tc)} and is
denoted as L(Tc, X).

Definition 5 (revised remaining utility). Let there be a transaction Tc and
an itemset X. The revised remaining utility of an itemset X in a transaction
Tc is defined as rru(X,Tc) =

∑
L(Tc, X), and represents the maximum utility

that an extension of X respecting the maxlength constraint could have. The
revised remaining utility of an itemset X in a database is defined as rreu(X) =∑

Tc∈g(X) rru(X,Tc).



For example, the revised remaining utility of itemset {a} in the running example
is 31, while the remaining utility of {a} is 45. This illustrates that the proposed
revised remaining utility can be a much tighter upper-bound than the remain-
ing utility upper-bound used in previous work. The proposed revised remaining
utility upper-bound has the two following important properties.

Property 6 (The revised remaining utility is a tighter upper-bound than the re-
maining utility). Let there be an itemset X. The relationship rreu(X) ≤ reu(X)
holds.

Proof. It can be easily shown that rru(X) ≤ ru(X), for any itemset X and trans-
action Tc. Thus, rreu(X) =

∑
Tc∈g(X) rru(X,Tc)≤ reu(X) =

∑
Tc∈g(X) ru(X,Tc).

Property 7 (Pruning search space using the revised remaining utility). Let X
be an itemset. If the sum of u(X) + rreu(X) is less than minutil, X and its
extensions are not HUIs respecting the maxlength constraint.

Proof. Since u(X) represents the utility of X, and rreu(X) represents the highest
utilities of items that could be appended to X while respecting the maxlength
constraint, in transactions where X appears, it follows that the property holds.

We have so far introduced two novel tighter upper-bounds on the utility of
itemsets, with the goal of using the maxlength constraint for reducing the search
space. We next present a novel structure called revised utility-list to calculate the
revised remaining utility of any itemset efficiently. This structure is a variation
of the utility-list structure used in FHM.

Definition 6 (revised utility-list structure). The revised utility-list rul(X)
of an itemset X in a database D is a set of tuples such that there is a tuple
(tid, iutil, llist) for each transaction Ttid containing X. The difference with the
utility-lists used in FHM is that the rutil element is replaced by the llist element,
which stores the set L(Tc, X).

For example, consider the running example, with maxlength = 3. The revised
utility-list of {a} is {(T1, 5, {10, 6}), (T3, 5, {2, 1}), (T4, 10, {6, 6})}, and the re-
vised utility-list of {b} is {(T1, 10, {6, 3}), (T2, 8, {6, 3}), (T5, 4, {3, 2})}. The pro-
posed revised utility-list structure stores the necessary information for pruning
an itemset X and its extensions using Property 7.

Property 8 (Pruning search space using the revised utility-list structure). Let X
be an itemset. If the sum of the iutil values and the llist elements in rul(X), is
less than minutil, X and its extensions are not high-utility itemsets respecting
the length constraints.

Although this property is useful, an important question is how to construct the
revised utility-list of of any itemset encountered in the search space. This is
done as follows. FHM+ initially builds the revised utility-lists of each item by
scanning the database. Then, the revised utility-lists of each larger itemset X is
obtained by performing a join operation using smaller itemsets. This operation is



the same as the join operation of FHM, except that llist elements are calculated
instead of rutil elements, for each tuple in rul(X). Consider two itemsets P ∪{x}
and P ∪{y} such that x � y. Let there be a tuple epxy in the revised utility-list
rul(P ∪ {x, y}). Let ey be the tuple in rul(P ∪ {y}) such that ey.tid = epxy.tid.
Recall that maxExtend(P ∪{x, y}) is the number of items that can be appended
to P ∪ {x, y} to generate an itemset that respects the maxlength constraint.
The llist element of the tuple epxy is calculated as the maxExtend(P ∪ {x, y})
largest values in the llist element of the tuple ey. For example, consider the
join of the revised utility-lists of items {a} and {b} to generate the revised
utility-list of itemset {a, b}, when maxlength = 3. The revised utility-list of
{a, b} contains a single tuple for the transaction T1. Since maxExtend({a, b}) =
maxlength − |{a, b}| = 1, the llist element in the tuple corresponding to T1 in
rul({a, b}) is set to the largest utility value in the corresponding llist element of
rul({b}), that is 6. The revised utility-list of {a, b} is thus {(T1, 15, {6})}.

3.2 The proposed algorithm

We next describe the proposed FHM+ algorithm in detail, which relies on the
two novel upper-bounds, and revised utility-list structure introduced in the pre-
vious subsection. The main procedure of FHM+ (Algorithm 1) takes a trans-
action database with utility values as input, and the minutil, minlength and
maxlength parameters. The algorithm first scans the database once to calculate
the RTWU of each item. Then, the algorithm identifies the set I∗ of all items
having a RTWU no less than minutil (other items are ignored since they cannot
be part of a high-utility itemset by Property 5). The RTWU values of items are
then used to establish a total order � on items, which is the order of ascending
RTWU values (similarly to the TWU ascending order used in FHM). A database
scan is then performed. During this database scan, items in transactions are re-
ordered according to the total order �, the revised utility-list of each item i ∈ I∗

is built and a structure named EUCS (Estimated Utility Co-Occurrence Struc-
ture) is built [2]. This latter structure is defined as a set of triples of the form
(a, b, c) ∈ I∗ × I∗ × R. A triple (a,b,c) indicates that RTWU({a, b}) = c. The
EUCS can be implemented as a triangular matrix that stores these triples for
all pairs of items. The EUCS is very useful as it stores the RTWU of all pairs
of items, an information that will be later used for pruning the search space.
Building the EUCS is very fast (it is performed with a single database scan)
and occupies a small amount of memory, bounded by |I∗| × |I∗|. The reader is
referred to the paper about FHM [2] for more details about the construction of
this structure and how it can be implemented efficiently using hash maps. Then,
if minlength ≥ 1, each item having a utility no less than minutil according to
its revised utility list, is output as a high-utility itemset. After the construction
of the EUCS, the depth-first search exploration of itemsets starts by calling the
recursive procedure Search with the empty itemset ∅, the set of single items I∗,
minutil, minlength, maxlength, and the EUCS structure. This exploration is
performed only if the user wants to find itemsets containing more than one item.



Algorithm 1: The FHM+ algorithm

input : D: a transaction database, minutil,minlength,maxlength:
user-specified parameters

output: the set of high-utility itemsets

1 Scan D once to calculate the RTWU of single items;
2 I∗ ← each item i such that RTWU(i) ≥ minutil;
3 Let � be the total order of RTWU ascending values on I∗;
4 Scan D to build the revised utility-list of each item i ∈ I∗ and build the EUCS

structure;
5 if minlength ≤ 1 then output each item i ∈ I∗ such that

SUM({i}.utilitylist.iutils) ≥ minutil;
6 if maxlength > 1 then Search (∅, I∗, minutil, minlength, maxlength,

EUCS);

The Search procedure (Algorithm 2) takes as input (1) an itemset P , (2)
extensions of P having the form Pz meaning that Pz was previously obtained
by appending an item z to P , (3) minutil, minlength, maxlength, and (4) the
EUCS. The search procedure operates as follows. For each extension Px of P ,
if the sum of iutil and llist values in the revised utility-list of Px are no less
than minutil, it means that Px and its extensions should be explored (Property
7). This is performed by merging Px with all extensions Py of P such that
y � x to form extensions of the form Pxy containing |Px|+1 items. The revised
utility-list of Pxy is then constructed by calling the Construct procedure to
join the utility-lists of P , Px and Py. This latter procedure performs the steps
described in the previous subsection for constructing a revised utility-list. Then,
if Pxy respects the length constraints, and the sum of the iutil values of the
utility-list of Px is no less than minutil, then Pxy is a high-utility itemset, and
it is output (cf. Property 2). Then, if the length of Pxy is less than maxlength,
a recursive call to the Search procedure with Pxy is done to calculate its utility
and explore its extension(s). Since the Search procedure starts from single items,
it recursively explores the search space of itemsets by appending single items and
it only prunes the search space based on properties 5 and 7, it can be easily seen
based on Property 1, 2 and 3 that this procedure is correct and complete to
discover all high-utility itemsets, while considering the length constraints.

4 Experimental Study

We performed an experiment to assess the performance of FHM+. The experi-
ment was performed on a computer with a third generation 64 bit Core i5 proces-
sor running Windows 7 and 5 GB of free RAM. We compared the performance
of the proposed FHM+ algorithm with the state-of-the-art FHM algorithm for
mining HUIs. All memory measurements were done using the Java API. The
experiment was carried on three real-life datasets commonly used in the HUIM
literature: chainstore, retail, and mushroom. These datasets have varied charac-



Algorithm 2: The Search procedure

input : P : an itemset, ExtensionsOfP: a set of extensions of P , minutil,
minlength, maxlength: user-specified parameters, EUCS: the EUCS

output: the set of high-utility itemsets

1 foreach itemset Px ∈ ExtensionsOfP do
2 if SUM(Px.utilitylist.iutils)+SUM(Px.utilitylist.llist) ≥ minutil then
3 ExtensionsOfPx← ∅;
4 foreach itemset Py ∈ ExtensionsOfP such that y � x do
5 if ∃(x, y, c) ∈ EUCS such that c ≥ minutil then
6 Pxy ← Px ∪ Py;
7 Pxy.utilitylist← Construct (P, Px, Py);
8 ExtensionsOfPx← ExtensionsOfPx ∪ Pxy;
9 if SUM(Pxy.utilitylist.iutils) ≥ minutil and

minlength ≤ |Pxy| ≤ maxlength then output Px;

10 end

11 end
12 if |Pxy| < maxlength then Search (Px, ExtensionsOfPx, minutil);

13 end

14 end

teristics and represent the main types of data typically encountered in real-life
scenarios (dense, sparse, and long transactions). Let |I|, |D| and A represents the
number of transactions, distinct items and average transaction length. chainstore
is a sparse dataset (|I| = 46,086 |D| = 1,112,949, A = 7.2). retail is a sparse
dataset with many different items (|I| = 16,470, |D| = 88,162, A = 10,30). mush-
room is a dense dataset (|I| = 119, |D| = 88,162, A = 23). chainstore contains
real external and internal utility values. For the other datasets, external utilities
for items are generated between 1 and 1,000 by using a log-normal distribution
and quantities of items are generated randomly between 1 and 5, as the settings
of [2, 9, 11]. The source code of all algorithms and datasets can be downloaded at
http://goo.gl/Qr8diZ. In the experiment, FHM+ was run with five different
maxlength threshold values (1, 2, 3, 4, 5), and the minlength threshold was
set to 1 as it has no influence on efficiency. Algorithms were first run on each
dataset, while decreasing the minutil threshold until they became too long to
execute, ran out of memory or a clear trend was observed. Fig. 1 compares the
performance of the algorithms in terms of execution time and pattern count.

It can be first observed that using the maxlength constraint can greatly speed
up the discovery of HUIs. Depending on how the maxlength parameter is set, on
the chainstore, retail, and mushroom datasets, FHM+ is respectively from 3 to
10 times , 2 to 17 times, and from 15 to 1400 times faster than FHM. It can also
be observed that the number of patterns can be greatly reduced by using length
constraints. On the chainstore, retail, and mushroom datasets, the number of
patterns found by FHM+ was up to 0.5 times, 13 times, and 2,700 times smaller
than the number found by FHM. But note that on the retail datasets, no result
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Fig. 1: Execution times and pattern count comparison

was obtained for FHM when minutil = 1, because it had to be stopped after
generating more than 20 GB of patterns, while FHM+ was still able to run,
even with maxlength = 5. Thus, a benefit of using constraints is that it allows
the algorithms to run for smaller minutil values. Memory consumption was
also compared (detailed results are not shown due to space limitations). On the
chainstore, retail, and mushroom datasets, FHM+ used from 5% to 50%, 5% to
50%, and 25% to 50% less memory than FHM. This is due to the ability to prune
a larger part of the search space using the proposed upper-bounds. Lastly, the
efficiency of the proposed LUR concept introduced in this paper was evaluated
(detailed results not shown due to space limitations). It was found that on the
chainstore, retail, and mushroom datasets, the proposed upper-bound reduced
the execution time by up to 4 times, 2 times, and 2 times.

5 Conclusion

This paper presented an efficient algorithm named FHM+ to efficiently discover
high-utility itemsets while considering length constraints. The proposed algo-
rithm integrates a novel concept called Length Upper-Bound Reduction (LUR)
to reduce the search space using length constraints. In particular, two novel
upper-bounds named revised TWU and revised remaining utility were presented,



and a novel data structure called revised utility-list. An extensive experimental
evaluation shows that LUR is effective at reducing the number of patterns, and
can greatly decrease the execution time and memory requirements for HUI min-
ing. This is very interesting for the end user since a huge amount of long HUIs,
representing rare cases are filtered and not presented to the user. The source code
of algorithms and datasets can be downloaded as part of the SPMF open source
data mining library [3] at http://www.philippe-fournier-viger.com/spmf/.
In future work, the concept of LUR could be incorporated in other utility mining
problems such as high-utility sequential rule mining [12]. Moreover, we intend
to apply the concept of LUR in the EFIM algorithm [13], which was recently
shown to outperform FHM for high-utility itemset mining.
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