®

Check for
updates

Interactive Discovery of Statistically
Significant Itemsets

Philippe Fournier-Viger!™) Xiang Li?, Jie Yao!, and Jerry Chun-Wei Lin®

1 School of Humanities and Social Sciences, Harbin Institute of Technology
(Shenzhen), Shenzhen, Guangdong, China
philfv8@yahoo.com, julie_j_yao@163.com
2 School of Computer Science and Technology, Harbin Institute of Technology
(Shenzhen), Shenzhen, Guangdong, China
leeideal93@gmail.com, jerrylinQieee.org

Abstract. Frequent Itemset Mining (FIM) is a fundamental data min-
ing task, which consists of finding frequent sets of items in transaction
databases. However, traditional FIM algorithms can find lot of spuri-
ous patterns. To address this issue, the OPUS-Miner algorithm was pro-
posed to find statistically significant patterns, called productive itemsets.
Though, this algorithm is useful, it cannot be used for interactive data
mining, that is the user cannot guide the search toward items of inter-
est using queries, and the database is assumed to be static. This paper
addresses this issue by proposing a novel approach to process targeted
queries to check if some itemsets of interest to the user are non redundant
and productive. The approach relies on a novel structure called Query-
Tree to efficiently process queries. An experimental evaluation on several
datasets of various types shows that thousands of queries are processed
per second on a desktop computer, making it suitable for interactive data
mining, and that it is up to 22 times faster than a baseline approach.

Keywords: Itemset mining + Productive itemsets - Query-Tree
Pattern

1 Introduction

Frequent Itemset Mining (FIM) [6], consists of finding frequently occurring pat-
terns in databases to understand the data, and support decision-making. The
input of FIM is a customer transaction database, where each transaction is a
set of items purchased by a customer. An itemset (set of items) is said to be
frequent if its support (number of transactions where it appears) is no less than
a predefined minsup threshold, set by the user. The task of FIM is to enumerate
all frequent itemsets in a transaction database. Although FIM is useful in many
domains [8], it can find a large number of patterns, depending on how the minsup
threshold is set. If the minsup threshold is set too high, no patterns are found.
But if it is set too low, millions of patterns are found, and algorithms may become
© Springer International Publishing AG, part of Springer Nature 2018

M. Mouhoub et al. (Eds.): IEA/AIE 2018, LNAI 10868, pp. 101-113, 2018.
https://doi.org/10.1007/978-3-319-92058-0_10

102 P. Fournier-Viger et al.

very slow and consume a large amount of memory. To set the minsup thresh-
old, a user typically run a FIM algorithm several times with different parameter
values to find enough but not too many patterns. It was shown that traditional
FIM algorithms can find a lot of spurious patterns that are frequent but are
uninteresting to the user because their support (frequency) can be explained by
the support of their subsets [2,7]. In other words, a pattern can be frequent just
because the items that it contains are frequent, while items in that pattern may
not be correlated. Analyzing a set of patterns containing many spurious patterns
is both inconvenient and time-consuming for the user. To address this problem,
an emerging topic is to find patterns that are statistically significant [2,7]. One
of the most popular algorithms to find statistically significant frequent itemsets
is OPUS-Miner [2]. It discovers a set of patterns called non-redundant produc-
tive itemsets by applying the Fisher test to determine if the bipartitions of each
pattern are significantly correlated. In recent years, the concept of productive
itemsets has been adapted for several applications such as discovering periodic
patterns [9] and sequential patterns [10]. Although mining productive itemsets
is useful as it only shows itemsets that are significant to the user, it has several
limitations. First, OPUS-Miner outputs the k£ patterns that are productive and
have the highest lift or leverage, where k is a user-specified parameter. But if &k
is set to a small value, patterns that are not top-k patterns will not be found,
and if k is set to a very large value, the algorithm may find these patterns but
become very slow and consume a huge amount of memory. Second, OPUS-Miner
is not designed for interactive data mining, as the user cannot guide the search
of patterns. If the user wants to know if a specific itemset is productive, he may
have to run OPUS-Miner with a large k£ value, hoping to find this itemset among
the top-k patterns. If it is not a top-k pattern, the user may then have to run
the algorithm againwith a different value of k, which is inconvenient and time
consuming. In fact, OPUS-Miner is unable to process queries to determine if
some specific itemsets are non-redundant and productive.

Supporting targeted queries is key to the development of interactive data min-
ing systems as it allows the user to perform queries to search for specific patterns,
look at the results, and then send refined queries to search for more interesting pat-
terns [1]. For example, targeted queries can let users quickly search for patterns
containing only some items, instead of considering all items [3-5]. To efficiently
process targeted queries for FIM in the context of static or incremental databases,
the Itemset Tree (IT) data structure was proposed [3], as well as improved versions
such as the Min-Max Itemset-Tree [4] and Memory Efficient Itemset-Tree [5]. The
IT is a tree structure, which can be incrementally updated and efficiently queried.
The IT structure allows processing several types of targeted queries such as (1)
calculating the frequency of a given itemset, and (2) finding all frequent itemsets
subsuming a set of items and their support. The I'T structure has various applica-
tions such as predicting missing items in shopping carts in real-time [9]. However,
it is not designed to find significant patterns, and thus can also find many spurious
patterns.

Interactive Discovery of Statistically Significant Itemsets 103

This paper addresses these limitations of previous work by proposing a novel
approach called IDPI (Interactive Discovery of Productive Itemsets) to support
targeted queries about non redundant productive itemsets in dynamic databases.
An efficient algorithm is proposed to answer queries to check if some itemsets are
non redundant and productive in a database. This algorithm relies on a novel
structure called Query-Tree. To evaluate the proposed approach, experiments
have been carried on multiple real-life datasets used in the FIM litterature.

The rest of this paper is organized as follows. Section 2 introduces preliminar-
ies and defines the problem. Section 3 presents the proposed approach. Section 4
presents the experimental evaluation. Section 5 draws the conclusion.

2 Preliminaries and Problem Statement

The problem of frequent itemset mining is defined as follows [6,8]. Let I =
{i1,12,..., in} be a set of items (symbols). A transaction database is a set of
transactions D = {T1,T5,...,T,,}, where each transaction T, (1 <z <m) is a
subset of items purchased by a customer (T' C I), and z is a unique Transaction
IDentifier (TID). An unordered set of items X C I is said to be an itemset. An
itemset X is said to be of length r or a r-itemset if it contains r items. The cover
of an itemset X in a database D is the set of transaction containing the itemset
X, that is cov(X,D) = {T|T € D A X C T}. The support of an itemset X in a
database D is the number of transactions that contain X, that is sup(X, D) =
|cov(X, D)|, denoted as sup(X) when the context is clear. For example, consider
the transaction database D of Fig. 1, which contains five items (a, b, ¢, d, ¢) and
five transactions (71, T5, ..., Ts). The first transaction represents the set of items
a and d. The cover of the itemset {a,b} is cov({a,b}, D) = {T5,T4}, and the
support of {a,b} is sup({a,b}) = {T3,T4}.

TID|Items
T [{a, d} a
T2 {b, e}

b 00
T4 {a, b, d}

T5 {ba e}

Fig. 1. A transaction database Fig. 2. The query tree of {a,b}

The traditional problem of frequent itemset mining [6,8] is to find all fre-
quent itemsets in a transaction database, that is all itemsets having a support
that is no less than a user-defined minsup threshold. To find patterns that are
not spurious, an emerging problem in data mining is to find patterns that are
statistically significant. For this purpose, Webb et al. proposed to discover the
set of productive itemsets in a database, defined as follows [2].

104 P. Fournier-Viger et al.

Definition 1 (productive itemset). Let there be an itemset X. Two itemsets
{Y,Z} are said to be a bipartition of X if Y UZ = X ANYNZ =0AY #
ONZ # (. Let bipart(X) be the set of all bipartitions of X. Let P(X C R)
be the probability that an itemset X is drawn from the same distribution as the
database D. An itemset X of length k > 2 is said to be productive if P(X C
R) > P(Y CR)x P(ZCR).

The constraint of productivity is useful as it ensures that all items within
a productive itemset contribute to the support of the itemset. For example,
the itemset {alchool, liver_cancer} is productive as the probability (support) of
drinking alchool and having liver cancer is higher than what would be expected
if those items were not correlated. On the other hand, the itemset {alchool,
liver _cancer, black_hair} is not productive because although this itemset may
be frequent the bipartition {{alchool, liver_cancer}, {black_hair}} is not corre-
lated (the support of that bipartition can explain the support of the itemset).
Thus, mining productive itemsets can filter many spurious patterns. To ensure
that productive itemsets are also statistically significant, Opus-Miner applies the
Fisher exact test [2]. Besides, OPUS-Miner filters redundant itemsets to show a
small set of non redundant productive patterns to the user [2].

max
{Y,Z}ebipart(X)

Definition 2. An itemset X is said to be non redundant if there does not exists
a proper subset Y of X having the same support, i.e. AY C X|sup(X) = sup(Y).

The concept of non redundant patterns (also called generators or key pat-
terns) [11] is interesting according to the Minimum Description Length principle
since it represents the smallest sets of items that are common to sets of transac-
tions. For example, in market basket analysis, generator itemsets represent the
smallest sets of items common to group of customers.

Discovering non redundant productive itemsets in a database is a very time-
consuming task. The reason is that to determine if an itemset X is non redundant
and productive, it is necessary to compute the support of all its bipartitions, that
is the support of all its non empty subsets. Generally, an itemset X has 2lXl 1
non empty subsets. Thus, to determine if a 6-itemset is productive, it is necessary
to compute the support of 2/ — 1 = 63 itemsets. Besides, as mentioned in the
introduction, another important issue is that the state-of-the-art OPUS-miner
algorithm is a batch algorithm, which can only be applied to find the top-k
productive itemsets in a static database. Thus, if one wants to determine if
an itemset X is productive, the user must run the algorithm with a value of
k that is large enough to ensure that the itemset X will be among the top-
k itemsets, which is very inconvenient as it may require to run the algorithm
multiple times and can cause the algorithm to have long execution times. To
address this problem, this paper defines the problem of processing queries to
determine if an itemset is non-redundant and productive.

Definition 3 (Problem statement). Given a database D, the problem of
interactive discovery of non-redundant productive itemsets is to efficiently answer
queries of the form “Is an itemset X productive and non redundant?”.

Interactive Discovery of Statistically Significant Itemsets 105

3 The Proposed IDPI Approach

To efficiently process queries, this paper proposes the IDPI approach. It consists
of three components: (1) a variation of the Itemset-Tree structure [3] to compress
the database, (2) a novel structure called Query Tree to accumulate information
about the support of itemsets to answer queries, and (3) an algorithm that
efficiently answer queries by comparing the two aforementioned structure.

3.1 Compressing the Database Using the Itemset-Tree Structure

The proposed approach compresses the database using a variation of the Itemset-
Tree structure called Memory Efficient Itemset-Tree (MEIT) [5]. The Itemset-
Tree structure was designed for interactive frequent itemset mining an can be
updated incrementally to support dynamic databases.

The Itemset-Tree structure. An IT is built for a database D by inserting each
transaction T of D into the IT. An IT node g has three fields: (1) g.itemset stores
an itemset, (2) g.sup stores its support and (3) g.childs stores pointers to the
node’s childs (if it is not a leaf). Each itemset stored in an IT node is a transaction
or the intersection of one or more transactions. An IT initially only contains a
root node denoted as IT.root, which stores the empty set, i.e. IT.root.itemset =
(). Each itemset stored in an IT node is sorted according to a total order such as
the lexicographical order. Based on that order, an itemset X = {aj,as,...ax} is
said to share the leading items with an itemset Y = {by, ba,...b;} if there exists
an integer 1 < v < argmin({k,(}) such that a; = by,a3 = ba,...a, = b,.

Constructing an Itemset-Tree. Initially, an IT only contains the root node.
The algorithm Insert-Transaction is applied for inserting each transaction of D
in the IT (Algorithm 1). It was shown that the expected cost of this algorithm
is approximately O(1) [3]. As example, Fig. 3 illustrates the construction of an
IT by successively inserting each transaction of the database of Fig. 1. Figure 3
(A) shows the tree after the insertion of transaction {a,d}. A child node has
been added to the root to store the itemset {a,d} with a support of 1. Figure 3
(B) shows the tree after the insertion of transaction {b,e}. A child node has
been added to the root, representing itemset {b, e}, with a support of 1. Figure 3
(C) shows the tree after the insertion of transaction {a,b,c}. Since the itemset
{a,b,c} shares the leading item {a} with the node {a,d}, a new node {a} has
been inserted with a support of 2, having {a,d} and {a,b, ¢} as childs. The same
process is repeated for the other transactions. Figure 3(D), (E) and (F) show the
tree after the insertion of transactions {a,b,d}, {b,e} and {b,d}, respectively.
In the proposed IDPI approach, a variation of the IT called MEIT [5] is
used. This data structure is designed to reduce the memory usage of the IT.
The difference between the MEIT and IT is that in a MEIT node, items from
the parent node are not stored. For example, Fig. 3(F) shows the MEIT corre-
sponding to the IT of Fig. 3(E). It was shown that using a MEIT instead of an
IT can reduce memory usage by up to 50% [5]. A reason for using a MEIT in
the proposed approach is that once it is constructed, it can be used to efficiently

106 P. Fournier-Viger et al.

Algorithm 1: Insert-Transaction

input: 7" a transaction, IT: an itemset-tree

1 IT.root.sup < IT.root.sup + 1;

2 if T = IT.root.it then exit;

3 Let ITT be a sub-tree of IT.root such that ITT.root.it and T share some
leading items;

4 if ITT does not exist then Add a child node g to IT.root such that
g.itemset =T and g.sup = 1;

5 else if ITT.root C T then Construct(T,ITT);

6 else if T' C ITT.root.it then Create a new node g as a son of IT.root and a
father of ITT.root where g.itemset = T and g.sup = ITT.root.sup + 1;

7 else Create a node g as a father of ITT.root such that
g.itemset =T N ITT.root, g.sup = ITT.root.sup + 1. Moreover, create a node h
as a son of g, such that h.itemset = T and h.sup = 1;

find the support of any itemset X, which is required to determine if an itemset is
productive and non-redundant. Moreover, a MEIT can be updated in real-time
by inserting new transactions if needed, thus to support interactive data min-
ing. Due to space limitation, the reader is referred to [5] for the algorithm for
calculating the support of an itemset using a MEIT. Another reason for using a
MEIT instead of an IT is that the MEIT facilitates query answering using the
proposed Query Tree structure, described in the next subsection.

3.2 Representing Queries Using the Query-Tree Structure

The second component of the proposed IDPI approach is a novel structure called
Query Tree (QT). It is designed to increase the performance of support counting
using a MEIT. Let there be a query to check if an itemset X is productive and
non redundant. To answer this query, it is necessary to compute the support of
all its non empty subsets. Using the traditional approach to count support using
a MEIT, a query for support counting would need to be performed for each of
those itemsets, that is the MEIT would need to be traversed multiple times,
which is inefficient. A better approach proposed in this paper is to store X and
all its subsets in a Query Tree. Then, this structure is used to quickly calculate
the support of all these itemsets by traversing the MEIT only once using a novel
query processing algorithm (described in the next sub-section).

The Query Tree structure. A QT is a tree where each node g has four fields:
(1) g.itemset stores an itemset, (2) g.sup stores its support, (3) g.pos stores a
position (an integer initialized to zero), and (4) g.childs stores a list of pointers
to child nodes of g (if g is not a leaf node). It is to be noted that g.child is
sorted according to a total > order such as the lexicographical order. Initially, a
Query-Tree contains a single node, which is the empty set.

Constructing a Query Tree. The QT of an itemset X is built by inserting X
and each non-empty subset of X in a QT. This is done by applying a modified

Interactive Discovery of Statistically Significant Itemsets 107

version of Algorithm 1 for each non empty subset of X. The modified algorithm
does not update the support field of each node (it remains equal to 0). Moreover,
the algorithm sorts the child nodes of each node according to the > order. The
structure of a QT is similar to that of an IT. The differences are that (1) a QT
stores itemsets instead of transactions, (2) the childs field is sorted, (3) the sup
field is used differently, and (4) the pos field is introduced for matching a query
to an MEIT to answer queries (described in the next subsection). For example,
the QT, constructed to determine if the itemset X = {a,b} is productive and
non redundant, is shown in Fig. 2. In that figure, each node ¢ contains an item,
where its subscript and superscript indicate g.sup and g.pos, respectively.

& &
e e G
W) le) G GO

Fig. 3. Construction of the Itemset-Tree for the database of Fig. 1.

3.3 Processing Queries Efficiently Using a Query-Tree

The third component of the proposed approach is a novel algorithm to process
queries (Algorithm 2), which takes as input a transaction database D and a set
of queries to be processed. Let there be a query to check if an itemset X is pro-
ductive and non redundant. To process the query, the first step is to build the
Query Tree, as described in the previous subsection (a QT can store multiple
queries) (line 2). This process creates a list QL initially containing the root of the
Query Tree. Then, the MEIT is compared with the Query Tree to calculate the
support of X and its subsets (line 3) by calling the GetSupportU singQueryTree
procedure. This procedure stores these support values in the Query Tree nodes.
After collecting all the support values, the Fisher test is applied to each bipar-
tition of X to determine if the support of X is significantly different from the
expected support of its bipartitions, and the support of X is compared with that
of its subsets to determine if X is non redundant (line 5). For each application
of the Fisher test, a p value is generated. The algorithm then shows the p values
of the itemset X to the user, and indicates if the itemset is non redundant and
productive for p < 0.05 (line 6).

108 P. Fournier-Viger et al.

Algorithm 2: IDPI

input: D: a transaction database, QD: a set of queries

1 rootMEIT = buildMEIT(D); // Build MEIT (if not previously built)
2 QL = buildQueryTree(QD); // Build the Query Tree
3 GetSupportUsingQueryTree(QL,rootMEIT); // Get support of itemsets
4 foreach query tree node QTN € QL do

5 Check if QT N.itemset is productive and non redundant using Q7'

6 Output the result for QT N; // Output itemset
7 Insert all child nodes of QTN in QL;

8 end

The GetSupportUsingQueryTree procedure (Algorithm 3) takes as input
(1) a list of query tree nodes QL sorted according to the > order (initially con-
taining the root node), and (2) a MEIT node (initially the root). The procedure
compares the MEIT with the Query Tree by performing a depth-first search on
the MEIT to update the support values of all itemsets in the Query Tree. Each
node in the MEIT is traversed at most once.

To compare a QT node QTN with a MEIT node ITN, a challenge is that
an itemset stored in a MEIT node is not completely stored (for example, the
leftmost node of Fig. 3(F) represents the itemset {a,b, c} but only {c} is stored
in that node), while itemsets in QT nodes are completely stored. To be able
to compare these two representations of itemsets, we introduce the concept of
suffiz of an itemset X = {aj,as,...ar} w.r.t a position pos, which is defined
as suf(X,pos) = {Gpos; Apos+1,---ar}. For a node QT'N, the pos field stored
in QTN indicates that only the items suf(QT N.itemset, QT N.pos) should be
compared with the items in ITN. For example, if QT N.itemset = {a,b,c}
and QT N.pos = 2, and ITN = {b}, it indicates that only the items {b,c}
of QT N.itemset should be compared with ITN. For the sake of brevity, let
QT Nsuf fix denotes suf(QTN.itemset, QT N.pos). When comparing a QT
node QT'N and a MEIT node ITN, five distinct cases are encountered:

Case 1. If suf(QT N.itemset, QT N.pos) C IT N.itemset, then it means that
QT N.itemset is included in the itemset represented by I'TN. In that case, the
support of QTN is incremented by the support of IT'N. Moreover, each child
node QTNC of QTN is added to the list QL (while preserving the > order)
with pos equal to the number of items in QT N, so that it will be processed
later. Moreover, QT N is removed from QL.

Case 2. If QI'NSuf fix has some items in common with IT N.itemset,
and all other items of QT NSuf fix are greater than the largest item in
IT N.itemset according to the > order, it means that QT N.itemset is not
included in the itemset represented by IT'N but that it may be included in
those represented by IT'N’s childs. In this case, the pos value of QTN is saved
in a map, and then pos is incremented by the number of items that QT and
ITN have in common.

Interactive Discovery of Statistically Significant Itemsets 109

Case 3. If there exists an item i in QT Nsuf fiz that is not in IT N.itemset
and 7 is smaller than the last item in IT N.itemset according to the >~ order,
it means that QTN is not included in the itemset represented by ITN and
those represented by its childs. Hence, QTN is removed from the QL list.
Case 4. If the first item in QT N.itemset is greater than the last item in IT N
according to the > order, it means that the itemsets represented by QTN
and its siblings in QL may be included those represented by ITN and its
childs. In that case, QT'N and its siblings must remain in Q)L to be processed
next when considering I'l'N’s childs.

Case 5. Otherwise, it is necessary to compare the siblings that succeed QTN
according to the > order with ITN.

It can be proven that the GetSupportU singQuerylree procedure is correct
to calculate the support of itemsets stored in a Query Tree, although the proof
is omitted due to space limitation.

Algorithm 3: GetSupportUsingQueryTree

input: QL: a QT node list (initially containing only the QT root node) ITN: a MEIT node
(initially the root node)

1 if QL is empty then exit;

2 QT Nsuffix = suf(QT N.itemset, QT N.pos);

3 foreach QTN € QL do

4 if QT'Nsuf fixz C IT N.itemset // Case 1
5 then

6 QT N.sup+=IT N.sup; foreach child QTNC of QTN do

7 QL.add(QTNC); // while preserving the > order in QL
8 tjmap|QTNC] = QT NC.pos;

9 QT NC.pos = |QT N.itemset|;

10 end

11 QL.delete(QTN);

12 end

13 else if

QT Nsuf fizNIT N.itemset # OAVi € QT Nsuf fix\IT N.itemset,i > IT N.itemset.last
// Case 2

14 then

15 tjmap[QT NC.itemset] = QT NC.pos;

16 QT N.pos + = |QT Nsuf fiz N ITN.itemset|;

17 end

18 else if 3i € QT Nsuf fixz \ ITN.itemset A i < ITN.itemset.last then

19 | QL.delete(QTN); // Case 3
20 end
21 else if QT N.itemset.first > IT N.itemset.last then break; // Case 4
22 else continue; // Case 5
23 end

24 foreach ITNC € ITN do GetSupportUsingQueryTree(QL,ITNC);
25 foreach QTN € tjmap do QT N.pos = tjmap[QT N];

The process of calculating the support of itemsets using a Query Tree is
illustrated with an example. Consider Fig.4. It shows how the Query Tree of
{a, b} is updated by traversing the MEIT using a depth-first search. Five steps
((A), (B), (C), (D), (E)) are illustrated corresponding to the comparison of the
QT with the five nodes of the MEIT, respectively. The first and second lines show

110 P. Fournier-Viger et al.

the content of the QL and Query Tree before the comparison, respectively. The
third line shows the MEIT, where the node marked in light gray is the current
node ITN used for the comparison. Initially (Fig.4(A)), all values in the QT
are equal to zero. The list QL contains only the root of the QT, representing
the empty itemset. This current node, called QT N, is compared with the root of
the MEIT, called ITN. Since QT N.itemset C IT N.itemset (& C &), case 1 is
applied. Thus, the support of ITN is added to the support of QT N, the childs
of QTN are inserted in QL with pos equal to the number of items in QTN,
and QTN is removed from QL. After this, QL contains two nodes: a) and bY.
The next node from QL to be considered as QTN is af. Because the first item
of {a} is greater than the last item of ITN, case 4 is applied (the main loop
is stopped). The current state of QL and the QT are shown in Fig.4(B). Next,
the GetSupportUsingQueryTree is recursively called to compare nodes in QL
with the first child of IT'N. Thus, the node a3 becomes the node IT'N. This
current node of QL, QTN = af, is compared with ITN. Because QT N.itemset
C ITN.itemset ({a} C {a}), case 1 is applied. Thus, the support of ITN is
added to the support of QT N, the childs of QTN are inserted in QL with pos
equal to the number of items in QT'N, and QT'N is removed from QL. After this,
QL contains two nodes: ab} and bf). The next node from QL to be considered as
QTN is ab}. Case 5 is applied, and thus the next node in QL is processed, that
is b). Because the first item of {b} is greater than the last item of ITN = {a},
case 4 is applied (the main loop is stopped). The current state of QL and the
QT are shown in Fig.4(C). The same process is repeated for the other nodes of
the MEIT following the depth-first search. The final QT is shown in Fig.4(F).
From this tree, it is found that the support of itemsets {a}, {b} and {a, b} are 3,
2, and 4, respectively. Thus, {a, b} is non redundant, and the Fisher test can be
applied using these support values to check if {a,b} is productive. Note that in
this example, the database is too small to determine if an itemset is productive.

QL: bo abp

Fig. 4. Updating the query tree of {a, b} by traversing the MEIT

QT:

Interactive Discovery of Statistically Significant Itemsets 111

4 Experimental Evaluation

To evaluate the proposed IDPI approach, an experiment was performed to com-
pare its performance with that of a baseline approach using an IT to count
the support of itemsets (as presented in Sect.3.1). The goal is to check if the
novel QT structure reduces the time to process queries, and generally how many
queries may be processed per second on a desktop computer on benchmark
datasets. Both approaches were implemented in C++. The experiment was per-
formed on a computer equipped with a Xeon E3-1270 processor running Win-
dows 10 and 64 GB of free RAM. The experiment was carried on real-life and syn-
thetic datasets commonly used in the frequent itemset mining literature, namely
Accidents, Chess, Connect, Mushrooms, Pumsb and Retail. In the experiment,
n random queries were generated for each dataset, where n was varied from 1000
to 3000, and the length of itemsets in queries was varied from 2 to 10. IDPI and
the baseline approach were applied on each set of random queries and the total
execution time was measured in seconds. Results are shown in Table 1.

Table 1. Time for processing n queries using IDPI and the baseline approach

Dataset Itemset length | Time for processing n queries (s)
IDPI Baseline (IT)

1000 | 2000 | 3000 | 1000 | 2000 |3000
Mushroom | 2-4 1 2 3 9 17 36
5-7 4 8 | 14 33 66 | 121
8-10 15 | 35 | 57 86 | 194 | 260
Connect |24 11 | 19 | 30 77| 162 | 247
57 56 |107 150 | 374 | 743 | 1192
8-10 297 1698 926 |1501 3361 | 5503
Accident |24 13 | 18 | 23 | 184 | 358 | 525
5-7 35 | 59 | 82 | 511 1063 | 1507
8-10 83 160 |230 |1007 |2240 |3345
Pumsb 2-4 11 | 23 | 35 | 111 | 220 | 328
5-7 35 | 8 139 | 262 | 522 | 777
8-10 168 448 | 782 | 461 | 922 1398
Retail 2-4 27 | 58 |110 72 | 162 | 248
57 71 217 434 | 213 | 451 | 704
8-10 244 861 1402 | 435 | 968 | 1214
Chess 2-4 1 2 2 4 9 48
57 7 15 | 20 29 56 86
8-10 50 | 93 132 | 159 | 307 | 450

112 P. Fournier-Viger et al.

It can be observed that the proposed IDPI approach is up to 22 times faster
than the baseline approach. IDPI is faster in all cases except on Retail when
n = 3000 and the itemset length is between 8 to 10. The reason is that in that
case the QT becomes very large since for example, a 10-itemset has 2'° = 1024
subsets. However, it can be argued that itemsets of length 8 to 10 are unlikely
to be productive (since all their bipartitions must be positively correlated), and
long itemsets are rarely useful in practice as they represent very specific cases.
It was also found that the proposed approach can process up to 1000 queries
per second, which makes it suitable for interactive pattern mining. Generally,
the speed of processing queries is influenced by the length of itemsets, whether
they share subsets, and the nature of the database. Note that if a QT is reused
multiple times on the same database (e.g. on different days), the time for query
processing is reduced because the QT is not rebuilt. Overall, the performance of
the proposed approach is found to be very satisfying.

5 Conclusion

This paper has defined the problem of interactively discovering non redundant
and productive itemsets in transaction databases. To efficiently process targeted
queries performed by users to check if some patterns are non redundant and
productive, an approach called IDPI was proposed. The approach relies on the
MEIT and a novel Query Tree structure to efficiently process queries. Exper-
imental results show that the IDPI approach is up to 22 times faster than a
baseline approach and can process up to 1000 queries per second on a desktop
computer, making it suitable for interactive pattern mining. In future work, the
IDPI approach will be improved to support additional query types.

References

1. Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier,
Waltham (2011)

2. Webb, G.I., Vreeken, J.: Efficient discovery of the most interesting associations.
ACM Trans. Knowl. Discov. Data 8(3), 15 (2014)

3. Kubat, M., Hafez, A., Raghavan, V.V., Lekkala, J.R., Chen, W.K.: Itemset trees
for targeted association querying. IEEE Trans. Knowl. Data Eng. 15(6), 1522-1534
(2003)

4. Lavergne, J., Benton, R., Raghavan, V.V.: Min-max itemset trees for dense and
categorical datasets. In: Chen, L., Felfernig, A., Liu, J., Ras, Z.W. (eds.) ISMIS
2012. LNCS (LNAI), vol. 7661, pp. 51-60. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34624-8_6

5. Fournier-Viger, P., Mwamikazi, E., Gueniche, T., Faghihi, U.: MEIT: memory effi-
cient itemset tree for targeted association rule mining. In: Motoda, H., Wu, Z., Cao,
L., Zaiane, O., Yao, M., Wang, W. (eds.) ADMA 2013, Part II. LNCS (LNAI), vol.
8347, pp. 95-106. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
53917-6-9

10.

11.

Interactive Discovery of Statistically Significant Itemsets 113

Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of 20th International Conference on Very Large
Databases, pp. 487-499. Morgan Kaufmann, Santiago de Chile (1994)
Llinares-Lépez, F., Sugiyama, M., Papaxanthos, L., Borgwardt, K.: Fast and
memory-efficient significant pattern mining via permutation testing. In: Proceed-
ings of 21th ACM International Conference on Knowledgs Discovery and Data
Mining, pp. 725-734. ACM (2015)

Fournier-Viger, P., Lin, J.C.-W., Vo, B., Chi, T.T., Zhang, J., Le, H.B.: A survey of
itemset mining. WIREs Data Mining Knowl. Discov. 7(4), e1207 (2017). https://
doi.org/10.1002/widm

Nofong, V.M.: Discovering productive periodic frequent patterns in transactional
databases. Ann. Data Sci. 3(3), 235-249 (2016)

Petitjean, F., Li, T., Tatti, N., Webb, G.I.: Skopus: mining top-k sequential patterns
under leverage. Data Mining Knowl. Discov. 30(5), 1086-1111 (2016)
Fournier-Viger, P., Wu, C.-W., Tseng, V.S.: Novel concise representations of high
utility itemsets using generator patterns. In: Luo, X., Yu, J.X., Li, Z. (eds.) ADMA
2014. LNCS (LNAI), vol. 8933, pp. 30-43. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-14717-8_3

