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Abstract High utility itemsets are sets of items having a high utility or profit in a
database. Efficiently discovering high utility itemsets plays a crucial role in real-life
applications such as market analysis. Traditional high utility itemset mining algo-
rithms generate candidate itemsets and subsequently compute the exact utilities of
these candidates. These algorithms have the drawback of generating numerous can-
didates most of which are discarded for having a low utility. In this paper, we propose
two algorithms, called HUI-Miner (HighUtility ItemsetMiner) andHUI-Miner*, for
high utility itemset mining. HUI-Miner uses a novel utility-list structure to store both
utility information about itemsets and heuristic information for search space pruning.
The utility-list of items allows to directly derives the utility-lists of other itemsets
and calculate their utilities without scanning the database. By avoiding candidate
generation, HUI-Miner can efficiently mine high utility itemsets. To further speed
up the construction of utility-lists, HUI-Miner* introduces an improved structure
called utility-list* and an horizontal method to construct utility-lists*. Experimental
results show that the proposed algorithms are several orders of magnitude faster than
the state-of-the-art algorithms, reduce memory consumption, and that HUI-Miner*
outperforms HUI-Miner especially for sparse databases.
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1 Introduction

Current database techniques facilitate the storage and usage of massive data from
business corporations, scientific organizations, and governments. Research on meth-
ods for obtaining valuable information from various databases has received consid-
erable attention and consequently many data mining problems were proposed. One
of the most famous problems is frequent itemset mining [1–3].

A set of items appearing in a database is called an itemset, the frequency of which
is measured by its support, i.e., the number of transactions containing the itemset in
the database. If the support of an itemset exceeds a user-specified minimum support
threshold, the itemset is considered frequent. Given a database and a threshold, the
problem is to find the complete set of frequent itemsets from the database. Most
frequent itemset mining algorithms employ a downward closure property [4], which
states that all supersets of an infrequent itemset are infrequent and all subsets of a
frequent itemset are frequent. This property provides a powerful pruning strategy to
algorithms. Once an itemset mining algorithm identifies an infrequent itemset, its
supersets no longer need to be considered. For example, for a database with n items,
after the algorithm identifies an infrequent itemset containing k items, there is no
need to check all of its 2(n−k) − 1 supersets.

Mining frequent itemsets takes the presence and absence of items into account,
but other information about items is not considered, such as the independent utility of
an item and the context utility of an item in a transaction. Typically, in a supermarket
database, each item has a distinct price/profit, and each item in a transaction is
associated with a count indicating the purchase quantity of the item. Consider the
sample database composed of Tables 1 and 2. There are seven items in the utility table
and eight transactions in the transaction table. To compute the support of an itemset,
an algorithm only uses the information of the first two columns in the transaction
table, whereas the information of both the utility table and the last two columns
in the transaction table is not considered. However, an itemset with a high support
may have a low utility, or vice versa. For example, the support and utility of itemset
{bd} appearing in T2, T3, and T6, are 3 and 16, respectively, and those of itemset
{de} appearing in T3 and T6, are 2 and 17 (see Sect. 2.1 for an explanation of how
utility is calculated). In some applications such as market analysis, one may be more
interested in itemset utility rather than support. Frequent itemset mining algorithms
cannot evaluate the utilities of itemsets.

Generally, itemsets with utilities no less than a user-specified minimum utility
threshold are valuable, and they are called “high utility itemsets”. Mining all high
utility itemsets from a database is intractable, because the downward closure property
does not hold for high utility itemsets. When items are appended to an itemset one
by one, the support of the itemset monotonously decreases or remains unchanged,
but the utility of the itemset may increase, decrease or stay the same. For example,
for the sample database, the supports of {a}, {ab}, {abc}, and {abcd} are 4, 3, 1,
and 1, but the utilities of these itemsets are 32, 31, 15, and 19, respectively. If the
minimum utility threshold is set to 18, the high utility itemset {abcd} contains both
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the high utility {ab} and the low utility {abc}. Therefore, pruning strategies used in
frequent itemset mining cannot be applied for high utility itemset mining.

Recently, a number of high utility itemset mining algorithms have been proposed
[5–11]. Most of them adopt a similar framework: they first generate candidate high
utility itemsets from a database, and then compute the exact utilities of the candidates
to identify high utility itemsets. However, the algorithms often generate a very large
number of candidate itemsets and thereby are confronted with two problems: (1)
excessive running time for both candidate generation and exact utility computation;
(2) a high memory requirement for storing candidates. Algorithms that generates too
many candidates can fail to terminate due to a lack of memory, and their performance
can deteriorate due to thrashing.

To solve the above problems, this paper proposes two algorithms for high utility
itemset mining.1 The contributions are as follows.

• A novel structure called utility-list is proposed. Utility-lists store not only utility
information about itemsets but also heuristic information for search space pruning.

• An efficient algorithm called HUI-Miner (High Utility Itemset Miner) is devel-
oped. HUI-Miner uses utility-lists constructed from a database to mine high utility
itemsets and, different from traditional high utility itemsetmining algorithms, does
not generate candidate itemsets.

• Furthermore, an improved algorithm called HUI-Miner* is proposed, which uses
a modified utility-list structure called utility-list*. HUI-Miner and HUI-Miner*
mine high utility itemsets by recursively constructing utility-lists and utility-lists*,
respectively. However, utility-list* construction is more efficient than utility-list
construction, especially for sparse databases.

• Extensive experiments on various databases were performed to compare HUI-
Miner and HUI-Miner* with state-of-the-art algorithms. Experimental results are
presented, which show that the proposed algorithms outperform these algorithms.

The rest of this paper is organized as follows. Section 2 introduces the background.
Section 3 presents the proposed data structures and algorithms. Section 4 reports
experimental results, which are then discussed in Sect. 5. Finally, concluding remarks
are given in Sect. 6.

2 Background

This section gives a formal description of the search space for the high utility itemset
mining problem and subsequently introduces previous solutions to the problem.

1This is an extension of the conference paper “Mining high utility itemsets without candidate
generation” published in the proceedings of the 21st ACM International Conference on Information
and Knowledge Management (CIKM 2012).
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2.1 Preliminaries

Let I = {i1, i2, i3, …, in} be a set of items and DB be a database composed of a
utility table and a transaction table. Each item in I has a utility value in the utility
table (a positive number). Each transaction T in the transaction table has a unique
identifier (Tid) and is a subset of I , and each item in T is associated with a count
value. An itemset is a subset of I and is called a k-itemset if it contains k items.

Definition 1 The external utility of an item i, denoted as eu(i), is the utility value
of i in the utility table of DB.

Definition 2 The internal utility of an item i in a transaction T, denoted as iu(i, T),
is the count value associated with i in T in the transaction table of DB.

Definition 3 The utility of an item i in a transaction T, denoted as u(i, T), is the
product of iu(i, T) and eu(i), that is u(i, T) = iu(i, T) × eu(i).

For example, in Table 1, eu(e) = 3, iu(e, T6) = 2, and u(e, T6) = iu(e, T6) × eu(e)
= 2 × 3 = 6.

Definition 4 The utility of an itemset X in a transaction T, denoted as u(X, T), is
the sum of the utilities of items from X in T if T contains X, and 0 otherwise, that is
u(X, T) =

∑
i∈X∧X⊆T u(i, T ).

Definition 5 The utility of an itemset X, denoted as u(X), is the sum of the utilities
of X in all transactions containing X in DB, that is u(X) =

∑
T∈DB∧X⊆T u(X, T ).

For example, in Table 2, u({ae}, T3) = u(a, T3) + u(e, T3) = 4 × 2 + 1 × 3 = 11,
and u({ae}) = u({ae}, T3) + u({ae}, T6) = 11 + 16 = 27.

Table 1 A utility table

Item a b c d e f g

Utility 2 1 2 4 3 2 1

Table 2 A transaction table

TID Transaction Count TU

T1 { c, d } { 2, 1 } 8

T2 { b, d, g } { 1, 1, 1 } 6

T3 { a, b, c, d, e } { 4, 1, 3, 1, 1 } 22

T4 { c, e, f } { 2, 1, 1 } 9

T5 { d } { 1 } 4

T6 { a, b, d, e } { 5, 2, 1, 2 } 22

T7 { a, b, f } { 3, 4, 2 } 14

T8 { a, c } { 4, 1 } 10
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Fig. 1 A set-enumeration
tree

Ø

a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde   bcde

abcde     Item order: a   b   c   d   e

Definition 6 The utility of a transaction T, denoted as tu(T), is the sumof the utilities
of all items in T , that is tu(T) =

∑
i∈T u(i, T ), and the total utility of DB is the sum

of the utilities of all transactions in DB.

The last column of Table 2 indicates the utility of each transaction. For example,
tu(T7) = u(a, T7) + u(b, T7) + u(f, T7) = 6 + 4 + 4 = 14. The total utility of the database
is 95. Given a database and a user-specified minimum utility threshold denoted as
minutil, an itemset X is a high utility itemset if u(X ) exceeds minutil threshold. Note
that the minutil threshold can equivalently be specified as a percentage of the utility
of a database. The problem of finding the complete set of high utility itemsets from
a database is called high utility itemset mining.

The problem’s search space can be represented as a set-enumeration tree [12].
Given a set of items {i1, i2, …, in} and a total order on all items (suppose i1 ≺
i2 ≺ · · · ≺ in), a set-enumeration tree representing all itemsets can be constructed as
follows. Firstly, the root of the tree representing the empty set is created; secondly, the
n child nodes of the root representing n 1-itemsets are created, respectively; thirdly,
for a node representing itemset {is · · · ie} (1 ≤ s ≤ e < n), the (n − e) child nodes
of the node representing itemsets {is · · · iei(e+1)}, {is · · · iei(e+2)}, ..., {is · · · iein}
are created. The third step is done repeatedly until all leaf nodes are created. For
example, given {a, b, c, d, e} and the lexicographical order, the set-enumeration tree
representing all itemsets from I is depicted in Fig. 1.

Definition 7 In a set-enumeration tree, each itemset is represented by a node. A node
is said to be an extension of any of its ancestor nodes. For a k-itemset, its extension
containing (k + i) items is called an i-extension of the itemset.

For example, in Fig. 1, {abc} and {abd} are two 1-extensions of {ab}, and {abcd}
is a 2-extension of {ab}.

2.2 Related Work

Before the high utility itemset mining problem was formally defined [5] as above, a
variant of the problemhad been studied, namely the problemofmining share frequent
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Table 3 Transaction-weighted utility

Itemset {a} {b} {c} {d} {e} {f} {g}

TWU 68 64 49 62 53 23 6

itemsets [13–15], in which the external utility of each item is invariably defined as
1. The ZP [13], ZSP [13], FSH [14], ShFSH [15], and DCG [16] algorithms for
share frequent itemset mining can also be used to mine high utility itemsets. Since
the downward closure property cannot be applied, Liu et al. proposed an important
property [17] for search space pruning in high utility itemset mining.

Definition 8 The transaction-weighted utility (abbreviated as TWU) of an itemset
X in DB, denoted as twu(X), is the sum of the utilities of all transactions containing
X in DB, that is twu(X) =

∑
T∈DB∧X⊆T tu(T ).

Property 1 For an itemset X, if twu(X) is less than a given minutil threshold, all
supersets of X are not high utility itemsets.
Rationale. If X ⊆ X ′, then u(X ′) ≤ twu(X ′) ≤ twu(X) < minutil.

Table 3 gives the TWUs of all 1-itemsets in the sample database. For example,
itemset {f} is contained in T4 and T7, and thus twu({f}) = tu(T4) + tu(T7) = 9 + 14 =
23. Suppose that minutil is equal to 30. Then, all supersets of {f} are not high utility
itemsets according to Property 1 and thereby are not required to be checked. The
Two-Phase algorithm was the first to apply Property 1 to prune the search space [6,
17]. Afterwards, an isolated items discarding strategy was proposed [7], which can
be incorporated in the above algorithms to improve their performances. For example,
the FUM and DCG+ algorithms using that strategy outperform ShFSH and DCG,
respectively [7].

ZP, ZSP, FSH, ShFSH, DCG, Two-Phase, FUM, and DCG+ mine high utility
itemsets as the Apriori algorithmmines frequent itemsets [4]. Let there be a database
and a minutil threshold. All 1-itemsets are first considered as candidate high utility
itemsets. After overestimating the utilities of the candidates by performing a database
scan, the algorithms delete unpromising 1-itemsets and generate candidate 2-itemsets
from the remaining 1-itemsets. After overestimating the utilities of the candidates
by another database scan, the algorithms delete unpromising 2-itemsets and gener-
ate candidate 3-itemsets from the remaining 2-itemsets. The procedure is performed
repeatedly until no candidate itemset is generated. Finally, except DCG and DCG+,
these algorithms compute the exact utilities of all remaining candidates by an addi-
tional database scan to identify high utility itemsets (DCG and DCG+ compute the
exact utility in each database scan). Besides the two problems mentioned in Sect. 1,
these algorithms have the drawback of repeatedly scanning a database.

Algorithms based on the FP-Growth algorithm [18] showbetter performance, such
as IHUPTWU [8], UP-Growth [9], and UP-Growth+ [10]. Firstly, these algorithms
transform a database into a prefix-tree, which maintains the utility information about
itemsets. Secondly, for each item of the tree, if it is estimated to be valuable, that is, if
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there likely is high utility itemsets containing the item, the algorithms will construct
a conditional prefix-tree for the item. Thirdly, the algorithms recursively process
all conditional prefix-trees to generate candidate high utility itemsets. Finally, the
algorithms compute the exact utilities of all candidates byperformingdatabase scan to
identify high utility itemsets. By speeding up candidate generation and decreasing the
number of candidate itemsets, these algorithmsoutperformApriori-based algorithms.
Even so, the number of candidates generated by these algorithms is still far larger
than the number of high utility itemsets in most cases. Hence, generating low utility
candidates and computing their exact utilities result in a huge waste of space and
time.

Some studies have also considered mining an approximate set of all high utility
itemsets [19, 20], a condensed set of all high utility itemsets [21, 22], and a set of
top-k high utility itemsets [23]. In this study, we focus on the problem of mining the
complete set of all high utility itemsets from a database, and present algorithms that
discover high utility itemsets without candidate generation.

3 Mining High Utility Itemsets

3.1 Utility-List Structure

To mine high utility itemsets, traditional high utility itemset mining algorithms are
directly applied to a database. FP-Growth-based algorithms generate candidate item-
sets from prefix-trees, but they have to scan the database to compute the exact utilities
of candidates. This subsection proposes a utility-list structure to maintain the utility
information about itemsets to avoid repeatedly scanning a database to mine high
utility itemsets.

3.1.1 Initial Utility-Lists

In the HUI-Miner algorithm, each itemset is associated with a utility-list. The utility-
lists of 1-itemsets are the initial utility-lists, which can be constructed by two database
scans.

During the first database scan, the TWUs of all items are accumulated. If the TWU
of an item is less than the given minutil threshold, the item is no longer considered in
the subsequent mining process according to Property 1. Items having TWU values
that are no less than theminutil are sorted in order of ascending TWU. For the sample
database, suppose that minutil is set to 38 (40% of the total utility). In that case, the
algorithm no longer takes items f and g into consideration after the first database
scan. The remaining items are sorted as: c ≺ e ≺ d ≺ b ≺ a.
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Table 4 Database view

Tid Item Util. Item Util. Item Util. Item Util. Item Util.

T1 c 4 d 4

T2 d 4 b 1

T3 c 6 e 3 d 4 b 1 a 8

T4 c 4 e 3

T5 d 4

T6 e 6 d 4 b 2 a 10

T7 b 4 a 6

T8 c 2 a 8

Definition 9 A transaction is considered as “revised” after (1) all items having
TWU values less than the given minutil threshold have been eliminated from the
transaction; (2) the remaining items are sorted in order of ascending TWU.

During the second database scan, the algorithm revises each transaction to con-
struct the initial utility-lists. The database view in Table 4 lists all revised transactions
from the sample database. In the rest of this paper, a transaction is always considered
as revised, and all items in an itemset are in order of ascending TWU.

Definition 10 For any itemset X and transaction (or itemset) T such that X⊆T, the
set of all items after the last item in X in T is denoted as T/X.

For example, consider the database view of Table 4, T3/{cd} = {ba} and
T3/{e} = {dba}.

Definition 11 The remaining utility of an itemset X in a transaction T, denoted as
ru(X, T), is the sum of the utilities of all items in T/X in T in which X is contained,
where ru(X, T) =

∑
i∈(T/X)∧X⊆T u(i, T ).

Definition 12 The remaining utility of itemset X, denoted as ru(X), is the sum of
the remaining utilities of X in all transactions containing X in DB, where ru(X) =∑

T∈DB∧X⊆T ru(X, T ).

Each element in the utility-list of itemset X contains three fields: tid, iutil, and
rutil.

• The tid field indicates transaction T containing X.
• The iutil field is the utility of X in T, i.e., u(X, T).
• The rutil field is the remaining utility of X in T, i.e., ru(X, T).

After the second database scan, the initial utility-lists constructed by HUI-Miner
are as shown in Fig. 2. For example, consider the utility-list of {e}. In T3, u({e},
T3) = 3, ru({e}, T3) = u(d, T3) + u(b, T3) + u(a, T3) = 4 + 1 + 8 = 13, and thus the
<3, 3, 13> element is in the utility-list of {e} (< x, y, z >means<tid, iutil, rutil>



Efficient Algorithms for High Utility Itemset Mining Without Candidate Generation 139

1 4 4
3 6 16
4 4 3
8 2 8

3 3 13
4 3 0
6 6 16

1 4 0
2 4 1
3 4 9
5 4 0
6 4 12

2 1 0
3 1 8
6 2 10
7 4 6

3 8 0
6 10 0
7 6 0
8 8 0

tid  iutil rutil

{c} {e} {d} {b} {a}

Fig. 2 Initial utility-lists

3 9 13
4 7 0

1 8 0
3 10 9

3 7 8 3 14 0
8 10 0

{ce} {cd} {cb} {ca}1   3   4   8

1   2   3   5   6

(a) (b)

Fig. 3 a Tid comparison. b Utility-lists of 2-itemsets

where x represents transaction Tx). In T4, u({e}, T4) = 3, ru({e}, T4) = 0, and thus
element<4, 3, 0> is also in the utility-list. The last element is generated in the same
manner.

3.1.2 Utility-Lists of 2-Itemsets

Without scanning the database, the utility-list of 2-itemset {xy} can be constructed
by the intersection of the utility-list of {x} and that of {y}. The algorithm compares
the tids in the two utility-lists to identify common transactions. The identification
process is a two-way comparison, because all tids in a utility-list are stored according
to the order of ascending natural numbers. For example, the tid comparison between
the utility-lists of itemsets {c} and {d} in Fig. 2 is illustrated in Fig. 3a.

For each common transaction t , the algorithm generates an element E and sub-
sequently appends it to the utility-list of {xy}. The tid field of E is the tid of t . The
iutil of E is the sum of the iutils of the elements associated with t in the utility-lists
of {x} and {y}. The rutil of E is assigned as the rutil of the element associated with
t in the utility-list of {y} (x precedes y).

Figure 3b depicts the utility-lists of all the 2-itemsets having itemset {c} as prefix.
For example, to construct the utility-list of itemset {ce}, the algorithm intersects the
utility-list of {c}, i.e., {<1, 4, 4>, <3, 6, 16>, <4, 4, 3>, <8, 2, 8>}, and that of
{e}, i.e., {<3, 3, 13>, <4, 3, 0>, <6, 6, 16>}, which results in {<3, 9, 13>, <4,
7, 0>}. One can observe from the database view of Table 4 that {ce} only appears
in T3 and T4. In T3, u({ce}, T3) = u(c, T3) + u(e, T3) = 6 + 3 = 9, and ru({ce}, T3)
= u(d, T3) + u(b, T3) + u(a, T3)= 4 + 1 + 8 = 13. Similarly, in T4, u({ce}, T4) = 4 +
3 = 7, and ru({ce}, T4) = 0.
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Fig. 4 a An incorrect result.
b Utility-lists of 3-itemsets

3 13 9 3 10 8 3 17 0
{ced} {ceb} {cea}

(b)(a)

3 19 9
{ced}

3.1.3 Utility-Lists of k-Itemsets (k≥3)

To construct the utility-list of a k-itemset {i1 · · · i(k−1)ik} (k≥3), we can directly
intersect the utility-list of {i1 · · · i(k−2)i(k−1)} and that of {i1 · · · i(k−2)ik} as we do to
construct the utility-list of a 2-itemset. For example, consider the utility-list of {ced},
the direct intersection of the utility-lists of {ce} and {cd} in Fig. 3b results in the
utility-list depicted in Fig. 4a. Itemset {ced} does appear in T3 as shown in Table 4,
but the utility of the itemset in T3 is 13 rather than 19.

Algorithm 1 Construct(P.UL, Px.UL, Py.UL)
Input: P.UL, the utility-list of itemset P;

Px.UL, the utility-list of itemset Px;
Py.UL, the utility-list of itemset Py.

Output: Pxy.UL, the utility-list of itemset Pxy.
Pxy.UL = NULL
foreach element Ex ∈ Px.UL do

if ∃Ey∈Py.UL and Ex.tid==Ey.tid then
if P.UL is not empty then

search such E∈P.UL that E.tid==Ex.tid Exy = <Ex.tid, Ex.iutil+Ey.iutil-E.iutil,
Ey.rutil>

else
Exy = <Ex.tid, Ex.iutil+Ey.iutil, Ey.rutil>

end
append Exy to Pxy.UL

end
end
return Pxy.UL

The reason for miscalculating the utility of {ced} in T3 is that the sum of the
utilities of both {ce} and {cd} in T3 contains the utility of {c} in T3. Thus, this utility
is counted twice. Generally, the utility of {i1 · · · i(k−2)i(k−1)ik} in T can be calculated
as follows: u({i1 · · · i(k−2)i(k−1)ik}, T) = u({i1 · · · i(k−2)i(k−1)}, T) + u({i1 · · · i(k−2)ik},
T) – u({i1 · · · i(k−2)}, T).

In this way, the iutil of the element associated with T3 in the utility-list of {ced} is:
u({ced}, T3) = u({ce}, T3) + u({cd}, T3) – u({c}, T3) = 9 + 10 – 6 = 13. The values
of u({ce}, T3), u({cd}, T3), and u({c}, T3) can be obtained from the utility-lists of
{ce}, {cd}, and {c}, respectively.

Suppose that itemsets Px and Py are the combinations of itemset P with items x
and y (x precedes y), respectively, and P.UL, Px.UL, and Py.UL are the utility-lists of
P, Px, and Py. Procedure 1 shows how to construct the utility-list of itemset Pxy. The
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utility-list of a 2-itemset is constructed if P.UL is empty, that is, if P is empty (line
8), and the utility-list of a k-itemset (k≥3) is constructed if P.UL is not empty (lines
5–6). Note that element E in line 5 can always be found out if P.UL is not empty,
because each tid in either Px.UL or Py.UL derives from a tid in P.UL. According to
Procedure 1, the constructed utility-lists of all the 3-itemsets having {ce} as prefix
are shown in Fig. 4b.

3.2 The Proposed Method: HUI-Miner

After constructing the initial utility-lists from a database, HUI-Miner can mine all
high utility itemsets from the utility-lists in a manner similar to the way the Eclat
algorithm mines frequent itemsets [24]. In this subsection, a pruning strategy used
by HUI-Miner is introduced, and subsequently the pseudo-code and details of the
algorithm are presented.

3.2.1 The Pruning Strategy

HUI-Miner searches for high utility itemsets in a set-enumeration tree in depth-first
order. The items in the tree are sorted in order of ascending TWU. The following
property holds for all itemsets represented by the tree.

Property 2 If X’ is an extension of X, (X’−X) = (X’/X).
Rationale. X’ is a combination of X and the item(s) after the last item in X.

Starting from the root of the set-enumeration tree, for an itemset, HUI-Miner first
constructs the utility-lists of all 1-extensions of the itemset. After identifying and
outputting high utility itemsets among these extensions by checking their utility-
lists, HUI-Miner recursively processes promising extensions one by one and ignores
unpromising extensions. But which extensions are “promising”?

To reduce the search space, HUI-Miner uses the iutils and rutils in utility-lists. The
sum of all iutils in the utility-list of an itemset is the utility of the itemset according
to Definition 5, and thus the itemset is high utility if that sum exceeds the minutil
threshold. The sum of all rutils in the utility-list of an itemset is the remaining utility
of the itemset according to Definition 12. The following lemma can be used to judge
whether an itemset should be extended or not.

Lemma 1 If the sum of all iutils and rutils in the utility-list of an itemset X is less
than the minutil threshold, any extension X’ of X is not high utility.

Proof For ∀ transaction T ⊇ X ′:

∵ X ′ is an extension of X ⇒ (X ′ − X) = (X ′/X)
X ⊂ X ′ ⊆ T ⇒ (X ′/X) ⊆ (T/X)
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∴ u(X ′, T ) = u(X, T ) + u((X ′ − X), T )

= u(X, T ) + u((X ′/X), T )

= u(X, T ) +
∑

i∈(X ′/X)

u(i, T )

≤ u(X, T ) +
∑

i∈(T/X)
u(i, T )

= u(X, T ) + ru(X, T )

Let id(T ) denotes the tid of transaction T, X.tids denotes the set of all tids in the
utility-list of X, and X’.tids that in the utility-list of X’, then:

∵ X ⊂ X ′ ⇒ X ′.tids ⊆ X.tids

∴ u(X ′) =
∑

id(T )∈X ′.tids

u(X ′, T )

≤
∑

id(T )∈X ′.tids

(u(X, T ) + ru(X, T ))

≤
∑

id(T )∈X.tids
(u(X, T ) + ru(X, T ))

< minutil

For example, suppose that minutil is 38. Then, {c} should be extended according
to Lemma 1, because the sum of all iutils and rutils in its utility-list (see Fig. 2)
is 47, which is larger than minutil. However, all 1-extensions of {c} (see Fig. 3b)
should not be extended according to the lemma, so there is no need to construct their
utility-lists in Fig. 4b.

3.2.2 The Mining Procedure of HUI-Miner

The mining procedure of HUI-Miner is shown in Procedure 2, in which Px and
Py are 1-extensions of an itemset P . Px .UL and Py.UL represents the utility-
lists of Px and Py, respectively. For each utility-list Px.UL in ULs (the second
parameter), if the sum of all iutils in Px.UL exceeds minutil, Px is high utility and
is output. According to Lemma 1, only when the sum of all iutils and rutils in
Px.UL exceeds minutil should it be processed further. When initial utility-lists are
constructed from a database, they are sorted and processed in order of ascending
TWU. Therefore, all utility-lists in ULs follow the same order as the initial utility-
lists. To explore the search space, the algorithm intersects Px.UL and each utility-list
Py.UL after Px.UL in ULs. Construct(P.UL, Px.UL, Py.UL) in line 8 is a procedure
that constructs the utility-list of itemset Pxy as stated in Procedure 1. Finally, the set
of the utility-lists of all 1-extensions of Px is recursively processed. Given a database
and aminutil threshold, after initial utility-lists IULs have been constructed,Mine(∅,
IULs, minutil) outputs all high utility itemsets.
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Fig. 5 Relabeling transactions

We next provide implementation details about HUI-Miner.
In Procedure 1, for the Ex element, if there is an element Ey of tid equal to

Ex .t id, HUI-Miner will generate a new element with the same tid for the utility-list
of itemset Pxy. In the implementation of HUI-Miner, the tid of the new element is
set to i if Ex is the i-th element in Px .UL . For example, Fig. 5 shows the utility-list
of itemset {c} duplicated from Fig. 2 and the utility-lists of all 1-extensions of {c}
derived from Fig. 3b. The transactions of tids 1, 3, 4, and 8, associated with the first,
second, third, and fourth elements in the utility-list of {c}, are relabeled as 1, 2, 3, and
4 in the elements in the utility-lists of {c}’s 1-extensions. The purpose of relabeling
transactions is to facilitate the search in line 5, because the new tids of transactions in
both Px .UL and Py.UL directly indicate the locations of the elements associated
with the transactions in P.UL . For example, in Fig. 5, when HUI-Miner processes
element<2, 9, 13> in the utility-list of {ce} and element<2, 10, 9> in that of {cd},
the algorithm can immediately locate the second element in the utility-list of {c}
according to tid 2.

Algorithm 2Mine(P.UL, ULs, minutil)
Input: P.UL, the utility-list of itemset P, initially empty;

ULs, the set of the utility-lists of all P’s 1-extensions;
minutil, a minimum utility threshold.

Output: all high utility itemsets with P as prefix.
foreach utility-list Px.UL in ULs do

if SUM(Px.UL.iutils)≥minutil then
output Px

end
if SUM(Px.UL.iutils)+SUM(Px.UL.rutils)≥minutil then

exULs = NULL foreach utility-list Py.UL after Px.UL in ULs do
exULs = exULs+Construct(P.UL, Px.UL, Py.UL)

end
Mine(Px.UL, exULs, minutil)

end
end

In Procedure 2, lines 2 and 5 use the sums of the iutils and rutils in a utility-list,
and the sums can be computed by scanning the utility-list. To avoid utility-list scan,
in the process of constructing a utility-list, HUI-Miner simultaneously accumulates
the iutils and rutils in each utility-list.
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3.3 An Improved Method: HUI-Miner*

HUI-Miner mines high utility itemsets by recursively constructing utility-lists, in
which tid comparisons are basic operations. Although tid comparisons are very sim-
ple, HUI-Miner has to perform a large number of comparisons during the mining
process. In this subsection, we propose an improved method called HUI-Miner*, in
which a modified utility-list structure named utility-list* is used. HUI-Miner* can
construct utility-list*s without tid comparison, which leads to performance improve-
ment because not all tid comparisons are effective in HUI-Miner.

3.3.1 Effective Comparison Ratio

In the process of constructing a utility-list, comparisons of tids are considered as
effective if they result in new elements in the utility-list. For example, in Fig. 3a,
there are six comparisons, two of which are effective.

Suppose thatHUI-Miner performs c tid comparisons to intersect twoutility-lists of
lengths m and n, namely two utility-lists containing m and n elements, respectively.
If the first tid in the longest utility-list is larger than all tids in the shortest one,
c reaches the minimum value min(m, n) denoting the minimum value among m
and n. Except for the first comparison involving two tids, each comparison at least
involves a tid that is different from the tids in the last comparison. Therefore, if all
tids in the two utility-lists are used in the intersection, c is the maximum number
of comparisons, that is 2 + (m − 1) + (n − 1) = m + n. The number of effective
comparisons k varies from 0 to min(m, n).

In a mining process, suppose that HUI-Miner totally performs u utility-list in-
tersections, in which the numbers of tid comparisons and effective comparisons are
c1, c2, . . . , cu and k1, k2, . . . , ku , respectively.The effective comparison ratio denoted
by ECR is defined as (k1 + k2 + · · · + ku)/(c1 + c2 + · · · + cu) × 100%. The ratio
ranges from 0% to 100%, because ki is always smaller than or equal to ci (1 ≤ i ≤ u).
The higher ECR is, the more efficiently HUI-Miner constructs utility-lists. However,
we empirically found out that ECRs are very low and do not exceed even 1% when
HUI-Miner mines some sparse databases, which indicates that HUI-Miner has a low
efficiency in utility-list construction.

3.3.2 Utility-List* Structure

To avoid ineffective tid comparisons, HUI-Miner* uses a utility-list* structure. In the
utility-list*s of all 1-extensions of an itemset, the elements associated with the same
transaction are linked together. In the utility-list* of itemset X , an element associated
with transaction T contains three fields: next, item, and iutil.

• The next field points to the next element associated with T or stores a number
identifier for T.
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Fig. 6 Utility-list* structure

• The item field stores the extended (i.e., last) item in X.
• The iutil field is the utility of X in T, i.e., u(X, T).

Figure 6 shows the initial utility-list*s that HUI-Miner* constructs by two scans of
the sample database. During the first database scan, HUI-Miner* performs the same
operations as HUI-Miner (see Sect. 3.1.1). During the second scan, HUI-Miner*
processes the items in each transaction in reverse order. For example, when T4 in
Table 4, namely {(c, 4), (e, 3)}, is processed, HUI-Miner* first stores (e, 3) in an
element in the utility-list* of {e}; secondly, the algorithm stores (c, 4) in an element in
the utility-list* of {c}, and links the next field of the previous element to the element.
For a sequence of elements derived from the i th transaction, HUI-Miner* links the
i-th component in a vector called T-header to the first element; the next of the last
element is assigned as the number identifier for the transaction (or the component),
namely i . Thus, the fourth component in the T-header in Fig. 6 points to the (e, 3)
element, and 4 is assigned to the next of the (c, 4) element.

The utility-list* of an itemset doesn’t need to store the information about remain-
ing utility, because HUI-Miner* processes the items in each transaction in reverse
order and thereby can accumulate the remaining utility for the itemset in the process
of constructing its utility-list*. For example, consider itemset {e} which is contained
in T3, T4, and T6. When item e in T3 is processed, HUI-Miner* has traversed the
items after e in T3, and the sum of the utilities of these items is 13. Thus, the remain-
ing utility of itemset {e} increases from 0 to 13. Similarly, when item e in T4 and
T6 is processed, it increases by 0 and 16, respectively. Finally, the remaining utility
of itemset {e} is 13 + 0 + 16 = 29.

3.3.3 Fast Utility-List* Construction

HUI-Miner vertically constructs utility-lists except for initial ones, that is, only when
an entire utility-list is constructed will HUI-Miner start to construct another utility-
list. In contrast, HUI-Miner* constructs utility-list*s in a horizontal way.
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Fig. 7 Utility-list* construction

To construct the utility-list*s of all 1-extensions of an itemset, HUI-Miner* will
process each element E in the utility-list* of the itemset. Firstly, suppose that the next
of E is a number identifier u. Then, HUI-Miner* can locate element E1 based on the
uth component in a related T-header. Subsequently, starting from E1, HUI-Miner*
traverses a sequence of elements E1, E2, …, En until E by following their nexts.
For each Ei (1 ≤ i ≤ n), HUI-Miner* will store (Ei .i tem, E .iutil + Ei .iutil) in a
new element in the utility-list* of itemset {E .i temEi .i tem}. Simultaneously, HUI-
Miner* links a component in a new T-header to the first new element, links these
new elements in sequence, and assigns k to the next of the last new element if the
component is the k-th one in the T-header.

Figure 7 demonstrates how HUI-Miner* constructs the utility-list*s of all {c}’s
1-extensions from the initial utility-list*s in Fig. 6. For example, from the second
element in {c}’s utility-list*, HUI-Miner* traverses a sequence of elements (a, 8),
(b, 1), (d, 4) and (e, 3). Thus, the algorithm stores (a, 6+8), (b, 6+1), (d, 6+4), (e,
6+3) in new elements in the utility-list*s of {ca}, {cb}, {cd}, {ce}, respectively, and
simultaneously links these new elements. Because this is the second sequence, the
second component in the T-header is linked to the (a, 14) element, and the next of
the (e, 9) element is assigned as 2.

3.3.4 The Details of HUI-Miner*

The mining framework of HUI-Miner* is similar to that of HUI-Miner except that
HUI-Miner* employs the utility-list* structure and performs horizontal construction.
The following paragraphs provide additional details about HUI-Miner*.
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In the utility-list*s of all 1-extensions of an itemset, the next of an element may be
a link rather than a number identifier, if the element is not in the first utility-list*. For
example, in the utility-list* of itemset {e} in Fig. 6, the next of the third element is a
number identifier, while the nexts of the first two elements are links. For an element
whose next is a link, starting from the element, HUI-Miner* will traverse a sequence
of elements by following their links until a number identifier is obtained. After that,
the number is assigned to the next of the element, which can reduce the number of
traversed elements when HUI-Miner* searches for the number again in the process
of processing the elements in subsequent utility-list*s.

The value in a component of a T-Header is the entrance to a transaction, and the
number identifier for the component functions as a new identifier for the transaction,
which facilitates element location when HUI-Miner* constructs the utility-list*s of
k-itemsets (k ≥ 3) as explained in Sect. 3.2.2.

Due to horizontal construction, HUI-Miner* must estimate the size of the utility-
list* of each 1-extension of an itemset (or the number of elements in the utility-list*),
and allocate memory for the utility-list* before constructing it. Suppose the utility-
list* of itemset Px contains m elements and that of itemset Py contains n elements,
and then the utility-list* of itemset Pxy contains min(m, n) elements at most. For
example, before constructing the utility-list*s of {ce}, {cd}, {cb}, and {ca} in the
above example, HUI-Miner* estimates that these utility-list*s contain 3, 4, 4, and 4
elements, respectively.

4 Experimental Evaluation

Wehave done extensive experiments on various databases to compareHUI-Miner and
HUI-Miner* with state-of-the-art mining algorithms. In this section, experimental
results are reported.

4.1 Experimental Setup

Besides HUI-Miner and HUI-Miner*, our experiments include the following algo-
rithms: IHUPTWU (the fastest one among the algorithms proposed in [8]), UP-
Growth [9], and UP-Growth+ [10]. The main procedure of IHUPTWU has been
introduced in Sect. 2.2. Based on IHUPTWU, UP-Growth incorporates four strate-
gies to lessen the estimated utilities of itemsets and thereby reduces the number of
candidate itemsets. UP-Growth+, an improved UP-Growth algorithm, can generate
fewer candidates than UP-Growth for a mining task. The smaller the number of can-
didates is, the less the costs of generating candidates and computing their utilities.
The three algorithms were shown to outperform other algorithms such as Two-Phase,
ShFSM, DCG, FUM, and DCG+. Furthermore, we optimized the compared algo-
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rithms by transforming a database into a view similar to that of Table 4. The view
is implemented in memory, which can reduce database size and speed up utility
computation.

The five algorithms were implemented in C++, using the same libraries, and were
compiled using g++ (version 4.7.0). The experiments were performed on a 2.8 GHz
PC machine (Intel Core i5 760) with 4 GB of memory, running a Debian (Linux
2.6.32) operating system.

Twelve databases were used in the experiments. The BMS-POS and BMS-
WebView-2 databases were downloaded from the KDD Cup Center [25]. The former
contains several years’ worth of point-of-sale data from an electronics retailer and
the latter contains several months’ worth of click stream data from an e-commerce
web site [26]. The chain database was downloaded from NU-MineBench 2.0 [27],
and contains transactions taken from amajor grocery store chain in California. Food-
mart was derived from Microsoft foodmart 2000 database. It contains sale data of
a commercial corporation in 1997 and 1998. The other databases were downloaded
from the FIMI Repository [28]. The accidents, chess, connect, kosarak, mushroom,
and retail databases are real. Synthetic databases T10I4D100K and T40I10D100K
were generated using the IBM Quest Synthetic Data Generation Generator. Except
for chain and foodmart, the other databases do not provide the external and internal
utilities of items. As in the performance evaluation of previous algorithms [8–10],
the external utilities of items are generated between 0.01 and 10 using a log-normal
distribution and the internal utilities of items are generated randomly ranging from
1 to 10. Table 5 shows statistical information about these databases, including the
number of transactions, the number of distinct items, the average number of items
in a transaction, and the maximal number of items in the longest transaction(s).

Table 5 Statistical information about databases

Database #Transactions #Items AvgLength MaxLength

Accidents 340,183 468 33.8 51

BMS-POS 515,597 1,657 6.5 164

BMS-WebView-2 77,512 3,340 4.6 161

Chain 1,112,949 46,086 7.3 170

Chess 3,196 75 37 37

Connect 67,557 129 43 43

Foodmart 55,624 1,559 4.5 27

Kosarak 990,002 41,270 8.1 2,498

Mushroom 8,124 119 23 23

Retail 88,162 16,470 10.3 76

T10I4D100K 100,000 870 10.1 29

T40I10D100K 100,000 942 39.6 77
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Fig. 8 Runtime comparison

4.2 Running Time

The running time of the five algorithms on all the databases is depicted in Fig. 8.
Running time was recorded by the “time” command and includes input time, CPU
time, and output time. For a mining task, all algorithms output the same results,
which were written to “/dev/null”. We terminated a mining process if its running
time exceeded 10000s.

When measuring running time, we varied the minutil threshold for each database.
The lower minutil is, the more high utility itemsets are found, and running times
increase. For example, for the chain database, when the minutil is set to 0.004% and
0.009%, the numbers of high utility itemsets are 18480 and 4578, respectively, and
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the running times of HUI-Miner are 635.9 s and 497.8 s, respectively, as shown in
Fig. 8d. It can be observed that HUI-Miner and HUI-Miner* perform the best for
almost all mining tasks.

HUI-Miner and HUI-Miner* are two or three orders of magnitude faster than the
other algorithms for the dense accidents, chess and mushroom databases, as shown
in Fig. 8a, e and i. For example, the running times of HUI-Miner and UP-Growth+
are 36.8 and 4016.2 s for mushroom, when minutil is 2%. From Fig. 8f, we can see
that except for HUI-Miner and HUI-Miner*, the running times of all the algorithms
exceed 10000s for the connect database and anyminutil values. For dense databases,
HUI-Miner and HUI-Miner* have similar performance.

For the sparse BMS-POS, BMS-WebView-2, foodmart, T10I4D100K and
T40I10D100K databases, which have a relatively small number of distinct items,
HUI-Miner is also two to three orders of magnitude faster than the compared algo-
rithms while HUI-Miner* is several times faster than HUI-Miner, as shown in Fig.
8b, c, g, k and l. For sparse databases with a relatively large number of distinct items,
such as chain and retail, HUI-Miner no longer has a big advantage over UP-Growth+,
as shown in Fig. 8d and j. In contrast, HUI-Miner* is still several orders of magnitude
faster than previous algorithms and also significantly outperforms HUI-Miner.

4.3 Memory Consumption

The peakmemory consumption of the five algorithms on all the databases is shown in
Fig. 9. Peakmemory consumptionwas recordedby the “massif” tool of the “valgrind”
software [29].

It can be observed from the figure that the amount of memory used by HUI-
Miner and HUI-Miner* does not significantly change for most tasks, as minutil is
decreased, while the amount of memory used by the other algorithms increases. The
reason is that these algorithms have to consume much memory to store candidate
itemsets while HUI-Miner and HUI-Miner* do not generate candidates. Generally,
the memory consumption of previous algorithms is proportional to the number of
generated candidates. For example, for the T10I4D100K database, IHUPTWU gen-
erates 3826341 candidates and consumes 144.6MB of memory while UP-Growth+
generates 1007230 candidates and consumes 68.5MB of memory, when minutil is
set to 0.005%. However, only 313509 high utility itemsets are found. HUI-Miner and
HUI-Miner* neither generate nor store candidate itemsets, and they thereby consume
only 28.7MB and 23.3MB of memory, respectively. We can also see from Fig. 9 that
for most databases, HUI-Miner* consumes less memory than the other algorithms.

Another observation is that UP-Growth+ consumes more memory than UP-
Growth in some cases, as shown in Fig. 9d and h, although UP-Growth+ always
generates fewer candidates than UP-Growth. This is because each node of the prefix-
trees used by UP-Growth+ holds more information than that in the prefix-trees used
by UP-Growth [10]. For a very sparse database, the sizes of prefix-trees that UP-
Growth and UP-Growth+ construct are relatively large, while the numbers of candi-
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Fig. 9 Memory consumption comparison

dates they generate are relatively small. For example, the size of the kosarak database
is 47.55MB, but UP-Growth and UP-Growth+ only generate 80 and 74 candidates,
respectively, when minutil is set to 1.5%.

4.4 Orders of Processing Items

The processing order of items significantly influences the performance of mining
algorithms [8]. To evaluate the influence of the processing order on performance,
we tested HUI-Miner and HUI-Miner* using the ascending TWU order (asctwu),
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Fig. 10 Performance comparison for different processing orders of items. a Running time. b
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lexicographical order (lexic), and descendingTWUorder (destwu). Figure 10a shows
the running time for the BMS-WebView-2 and mushroom databases.

The figure shows that the ascending TWU order leads to the best performance for
the two algorithms. The reason is that such order results in a decrease in the number
of constructed utility-lists. Figure 10b shows the numbers of constructed utility-lists
for the above mining tasks. Using the samemining framework, the number of utility-
lists constructed by HUI-Miner is the same as that of utility-list*s constructed by
HUI-Miner* for a mining task, if the algorithms adopt the same processing order
for items. Obviously, the number of utility lists for the ascending TWU order (too
small to be clearly visible in some cases in Fig. 10b) is far smaller than that for the
descending TWU or lexicographical order.

We also tested the two algorithms using the ascending and descending orders
of frequency as processing order. HUI-Miner/HUI-Miner* with the ascending (or
descending) frequency order almost shows the same performance as the algorithm
with the ascending (or descending) TWU order, and therefore results are not shown.
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The reason is that, in most cases, the TWU of an item is proportional to its frequency
in the database and there is hardly any difference between the item ordering accord-
ing to the ascending (or descending) frequency order and that of the ascending (or
descending) TWU order.

4.5 Scalability

We tested the scalability of all the algorithms by running themon databases generated
by the IBMQuest Synthetic Data Generator obtained from Paolo Palmerini’s website
[30]. In these databases, the numbers of transactions range from 200 thousand to 1
million; the number of distinct items is 1000; the average transaction length is 10.
Figure 11a compares the running times of all the algorithms for different database
sizes, when minutil is set to 0.05%. All the algorithms show similar scalability.

It can be seen in Fig. 11b that the numbers of candidates generated by IHUPTWU,
UP-Growth, and UP-Growth+ do not significantly change for these databases. For
these algorithms, the time for computing the exact utilities of candidates increases,
as the number of transactions is increased. For HUI-Miner or HUI-Miner*, the more
transactions are processed, the larger the size of utility-lists or utility-list*s is, and
thereby the more time is required for utility-list or utility-list* construction.

5 Discussions

5.1 Comparison with Previous Algorithms

The experimental results show that HUI-Miner and HUI-Miner* outperform the
three state-of-the-art algorithms. Table 6 gives the numbers of candidate itemsets
generated by the three algorithms and the number of high utility itemsets for each
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Table 6 Number of candidates and high utility itemsets
Accidents 15% 20% 25% 30% 35% 40%

IHUPTWU 2,953,170 978,215 378,987 163,371 74,149 35,116

UP-Growth 184,255 18,763 1,215 34 1 0

UP-Growth+ 178,743 18,194 1,193 34 1 0

#HUI 280 0 0 0 0 0

BMS-POS 0.07% 0.08% 0.09% 0.1% 0.11% 0.12%

IHUPTWU 154,686,457 93,068,269 60,220,569 41,165,914 29,378,289 21,700,316

UP-Growth 6,831,360 4,311,723 2,892,396 2,034,779 1,484,988 1,118,242

UP-Growth+ 863,605 593,183 427,411 319,498 246,582 194,622

#HUI 155,312 106,502 76,429 56,954 43,917 34,557

BMS-WebView-2 0.07% 0.08% 0.09% 0.1% 0.11% 0.12%

IHUPTWU — — 18,640,622 6,793,990 4,426,791 3,438,437

UP-Growth 4,546,538 3,038,009 2,202,442 1,581,982 1,149,274 837,163

UP-Growth+ 2,424,607 1,647,378 1,149,378 796,095 557,606 397,644

#HUI 638,373 401,901 253,909 166,883 116,963 87,820

Chain 0.004% 0.005% 0.006% 0.007% 0.008% 0.009%

IHUPTWU 43,969,001 9,477,024 738,861 557,703 429,246 345,320

UP-Growth 124,380 82,316 61,153 48,152 39,609 33,630

UP-Growth+ 72,503 51,486 40,702 33,942 29,256 25,850

#HUI 18,480 12,244 9,040 6,920 5,585 4,578

Chess 18% 20% 22% 24% 26% 28%

IHUPTWU 453,507,091 283,147,932 181,541,274 118,825,976 79,065,830 53,468,020

UP-Growth 50,226,810 22,578,752 9,891,124 4,242,056 1,786,382 702,604

UP-Growth+ 31,670,469 13,725,398 5,795,827 2,464,758 957,931 273,424

#HUI 34,870 4,872 230 0 0 0

Connect 30% 30.5% 31% 31.5% 32% 32.5%

IHUPTWU 1,356,692,999 1,263,731,170 1,179,167,256 1,099,517,006 1,026,138,358 958,370,972

UP-Growth 67,475,214 55,813,038 45,861,674 37,422,297 30,329,922 24,355,235

UP-Growth+ 67,414,717 55,765,677 45,821,301 37,386,177 30,300,180 24,330,378

#HUI 1,030 359 119 24 2 0

Foodmart 0.009% 0.0095% 0.01% 0.0105% 0.011% 0.0115%

IHUPTWU 144,690,079 135,836,314 135,827,988 134,248,566 134,243,789 134,240,071

UP-Growth 132,787,922 130,273,567 124,391,075 106,042,113 62,838,717 17,458,319

UP-Growth+ 9,291,606 4,113,786 1,540,343 476,180 117,019 22,700

#HUI 3,919,159 1,487,772 471,886 121,424 25,098 4,892

Kosarak 1% 1.5% 2% 2.5% 3% 3.5%

IHUPTWU —- —- 246,577 35,725 14,238 6,977

UP-Growth 27,748 80 38 31 18 12

UP-Growth+ 660 74 38 31 18 12

#HUI 48 20 15 10 8 8

Mushroom 2% 2.5% 3% 3.5% 4% 4.5%

IHUPTWU 29,593,410 17,342,264 11,985,060 7,396,748 5,981,220 3,741,960

UP-Growth 17,594,597 10,295,645 6,383,808 4,361,733 3,122,163 2,349,568

(continued)
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Table 6 (continued)
UP-Growth+ 16,681,768 9,602,409 6,145,028 4,037,699 2,942,180 2,246,587

#HUI 3,583,596 1,879,322 1,059,350 640,404 400,136 256,989

Retail 0.02% 0.025% 0.03% 0.035% 0.04% 0.045%

IHUPTWU 3,280,842 695,677 308,952 170,145 111,503 79,649

UP-Growth 304,143 112,923 55,037 35,925 27,208 22,436

UP-Growth+ 27,919 21,047 17,006 14,279 12,329 10,781

#HUI 8,723 6,026 *4,377 3,340 2,676 2,212

T10I4D100K 0.005% 0.01% 0.015% 0.02% 0.025% 0.03%

IHUPTWU 3,826,341 802,811 335,855 197,699 133,849 105,689

UP-Growth 2,155,596 421,548 188,071 115,330 85,544 70,147

UP-Growth+ 1,007,230 226,460 114,951 78,282 61,452 51,523

#HUI 313,509 81,582 51,457 40,898 34,092 29,176

T40I10D100K 0.35% 0.4% 0.45% 0.5% 0.55% 0.6%

IHUPTWU 4,214,063 2,229,140 1,752,510 1,410,603 1,240,640 1,105,825

UP-Growth 1,703,395 1,298,210 1,079,156 912,472 759,912 541,858

UP-Growth+ 178,123 141,241 127,304 71,355 5,341 2,007

#HUI 20,448 4,618 328 147 28 19

mining task. For the BMS-WebView-2 and kosarak databases and the two smallest
minutil values used in the experiments, IHUPTWU spends somuch time (�10000 s)
to generate candidates that we had to terminate its execution.

For IHUPTWU, UP-Growth and UP-Growth+, it can be observed in Figs. 8 and
9, and Table 6, that their running times and memory consumption is proportional to
the number of candidates they generate. Although the algorithms can significantly
reduce the number of candidates, the number is still far larger than the number
of high utility itemsets in most cases. For example, IHUPTWU, UP-Growth and
UP-Growth+ generate 557703, 48152 and 33942 candidates, when minutil is set to
0.007% for the chain database, but there are only 6920 high utility itemsets.

Compared with the previous algorithms, HUI-Miner and HUI-Miner* avoid
costly candidate generation and much utility computation. For the above exam-
ple, IHUPTWU, UP-Growth, and UP-Growth+ have to process 550783 (=557703−
6920), 41232 (=48152−6920), and 27022 (=33942−6920) candidates, respectively.
These algorithms not only generate these candidates but also compute their exact util-
ities on 1112949 transactions. Unfortunately, these candidates are discarded because
they are not high utility. In addition, because there is no candidate itemset in HUI-
Miner and HUI-Miner*, a large amount of memory is saved. For example, the size
of the mushroom database is only 0.92MB, but for minutil = 2% UP-Growth and
UP-Growth+ consume 834.9MB and 790.2MB of memory to store 17594597 and
16681768 candidates, respectively. Although the algorithms can bemodified to swap
candidates to disk, the disk space requirement is also considerable and, moreover,
the algorithms’ performance will deteriorate.
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Table 7 Effective comparison ratio

Accidents 15% 20% 25% 30% 35% 40%

ECR (%) 72.24 64.31 55.81 56.84 58.17 –

BMS-POS 0.07% 0.08% 0.09% 0.1% 0.11% 0.12%

ECR (%) 7.488 6.863 6.396 6.003 5.668 5.413

BMS-WebView-2 0.07% 0.08% 0.09% 0.1% 0.11% 0.12%

ECR (%) 5.143 4.318 3.648 3.128 2.771 2.485

Chain 0.004% 0.005% 0.006% 0.007% 0.008% 0.009%

ECR (%) 0.055 0.054 0.054 0.055 0.056 0.057

Chess 18% 20% 22% 24% 26% 28%

ECR (%) 93.67 90.04 83.69 76.94 72.58 67.00

Connect 30% 30.5% 31% 31.5% 32% 32.5%

ECR (%) 95.90 94.81 93.64 92.31 91.05 89.75

Foodmart 0.009% 0.0095% 0.01% 0.0105% 0.011% 0.0115%

ECR (%) 5.143 2.771 1.317 0.585 0.286 0.190

Kosarak 1% 1.5% 2% 2.5% 3% 3.5%

ECR (%) 2.589 5.903 8.837 14.73 18.24 25.16

Mushroom 2% 2.5% 3% 3.5% 4% 4.5%

ECR (%) 92.70 92.12 91.43 90.77 90.16 89.43

Retail 0.02% 0.025% 0.03% 0.035% 0.04% 0.045%

ECR (%) 0.134 0.136 0.140 0.145 0.150 0.157

T10I4D100K 0.005% 0.01% 0.015% 0.02% 0.025% 0.03%

ECR (%) 1.655 1.540 1.557 1.562 1.550 1.533

T40I10D100K 0.35% 0.4% 0.45% 0.5% 0.55% 0.6%

ECR (%) 9.252 8.553 8.111 7.453 6.695 5.877

5.2 HUI-Miner Versus HUI-Miner*

Given a mining task, there is a one-to-one correspondence between the utility-lists
constructed by HUI-Miner and the utility-list*s constructed by HUI-Miner*.

We can assess the performance of HUI-Miner using the ECR. Table 7 gives the
ECRs of HUI-Miner for the above mining tasks (there is no tid comparison for
the accidents database when minutil is set to 40%). For the dense accidents, chess,
connect and mushroom databases, ECRs are high, which indicates that most tid
comparisons performed by HUI-Miner are effective, and therefore the running time
curves of HUI-Miner and HUI-Miner* are close, as shown in Fig. 8a, e, f and i. In
contrast, ECRs are small for sparse databases such as chain and retail. In this case,
HUI-Miner performs so many ineffective tid comparisons that it is far slower than
HUI-Miner*, as shown in Fig. 8d and j. Even for the same database, the difference
between the running time of HUI-Miner and that of HUI-Miner* changes if the ECR
changes when minutil is set to different values. For example, as minutil is increased,
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the ECR becomes smaller and smaller for the foodmart database, and thereby the
two curves for HUI-Miner and HUI-Miner* in Fig. 8g are farther and farther apart.
The opposite is observed for the kosarak database.

In all algorithm implementations, a transaction/item identifier or a link is repre-
sented as a 4-byte integer value, and a basic unit related to various utilities, such
as a iutil, is represented as an 8-byte double value, which is necessary for exact
results because performing many summations and multiplications of internal and
external utilities with several decimals can result in error accumulation. The size of
an element in a utility-list is 20 (= 4 + 8 + 8) bytes, while that in a utility-list* is
16 (= 4 + 4 + 8) bytes. Therefore, the memory consumption of HUI-Miner* should
decrease by a factor of about 1/5 (= (20 − 16)/20), compared with the memory con-
sumption of HUI-Miner. The experimental results confirm this, as shown in Fig. 9.
For example, for the BMS-POS database, HUI-Miner* consumes 75MB of memory
while HUI-Miner consumes 93.4MB of memory when minutil is set to 0.08%.

5.3 The Ascending TWU Order

In IHUPTWU,UP-Growth, andUP-Growth+, items are sorted in order of descending
TWU,which can increase the chance of sharingmore prefix paths and thereby reduce
the size of prefix-trees used by these algorithms. However, these algorithms process
items in order of ascending TWU [8–10]. HUI-Miner and HUI-miner* employ list
structures, the size of which is constant, no matter what order items are sorted in.
In HUI-Miner and HUI-Miner*, items are sorted in order of ascending TWU and,
moreover, processed in the same order.

As shown in Fig. 10, the ascending TWU order leads to decreases in the number
of constructed utility-lists, that is, reduces of search space. This is illustrated by an
example: for the sample database andminutil 38, the {edba} itemset is high utility and
its utility is 38. Suppose that there is a perfect pruning strategy, which can guarantee
that an itemset is not extended if any extension of the itemset is not high utility.
Then Fig. 12 depicts the search spaces when the items are processed in ascending

Ø

c e d b a

 ed eb ea

 edb eda

 edba

Ø

a b c d e

ab ac ad ae

abc abd abe

 abde

Ø

a b d e c

ab ad ae ac

abd abe abc

abde abdc

     c < e < d < b < a
(Ascending TWU order)

a < b < c < d < e
(Lexicographic order)

       a < b < d < e < c
(Descending TWU order)

Fig. 12 Search spaces for three item processing orders
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TWU order, lexicographic order, and descending TWU order, respectively. It can be
observed that an algorithm checks 11 itemsets for the first order, while the algorithm
checks 13 and 14 itemsets for the last two orders, respectively.

The algorithms adopting the ascending TWU order are based on the assumption
that most low utility itemsets should appear in the first subtrees of a set-enumeration
tree, which can increase the probability of pruning these subtrees. The first subtrees
contain more nodes than the remaining subtrees. For example, half of all nodes in a
set-enumeration tree are in the first subtree. Therefore, pruning the first subtrees can
result in a massive reduction of the search space. One can further consult the related
work in [31, 32].

6 Conclusion

In this study, we have presented two efficient algorithms, HUI-Miner and HUI-
Miner*, for high utility itemset mining. A novel utility-list structure was proposed to
provide HUI-Miner with the required information for utility calculation and pruning.
Subsequently, based on that structure, a utility-list* structure was developed and an
improved algorithm named HUI-Miner* was introduced.

In the process of mining high utility itemsets, previous algorithms have to process
a very large number of candidate itemsets in many cases. However, most candidates
are not high utility and thereby discarded. Using utility-lists, HUI-Miner can mine
high utility itemsets without candidate generation, which avoids the high cost of
candidate generation and much of the cost for utility computation.

Further, we found that HUI-Miner performs many ineffective tid comparisons,
especially for sparse databases. Using utility-list*s, HUI-Miner* can mine high util-
ity itemsets without tid comparison, which speeds up the construction of its core
structures.

Experimental results show that the proposed algorithms significantly outperform
the state-of-the-art algorithms on various databases and that HUI-Miner* gains con-
siderable performance improvement over HUI-Miner.

The proposed HUI-Miner algorithm was first published in the proceedings of
CIKM 2012. Afterwards, several algorithms based on HUI-Miner were proposed.
This includes FHM [33], HUP-Miner [34] and HMiner [35]. HUI-Miner has been
also used as the basis for developing dozens of algorithms for variations of the high
utility itemset mining problem. This includes algorithms formining top-k high utility
itemsets [23, 36], algorithms for mining high utility itemsets in uncertain data [37,
38], and algorithms for mining high utility itemsets with multiple thresholds [39].
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