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Abstract. Many algorithms have been proposed to find high utility
itemsets (sets of items that yield a high profit) in customer transactions.
Though, it is useful to analyze customer behavior, it ignores information
about item categories. To consider a product taxonomy and find high
utility itemsets describing relationships between items and categories,
the ML-HUI Miner was recently proposed. But it cannot find cross-level
itemsets (itemsets mixing items from different taxonomy levels), and it
is inefficient as it does not use relationships between categories to reduce
the search space. This paper addresses these issues by proposing a novel
problem called cross-level high utility itemset mining, and an algorithm
named CLH-Miner. It relies on novel upper bounds to efficiently search
for high utility itemsets when considering a taxonomy. An experimental
evaluation with real retail data shows that the algorithm is efficient and
can discover insightful patterns describing customer purchases.
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1 Introduction

Pattern mining is a sub-field of data mining that aims at discovering interesting
patterns in data to better understand the data or support decision-making. One
of the most popular pattern mining tasks is frequent itemset mining (FIM),
which consists of finding all frequently co-occurring itemsets (sets of values)
in a customer transaction database [?,14]. Although FIM is useful, it does not
consider purchase quantities of items and their relative importance. To address
this issue, a more general problem was proposed called high utility itemset mining
(HUIM) [5,6,12,18], where items in transactions have purchase quantities and
items have weights indicating their relative importance. The goal of HUIM is
to find itemset that have a high utility (importance) such as those that yield a
high profit in a customer transaction database. As HUIM is more general than
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FIM, it is also more difficult. The reason is that the utility measure is not anti-
monotonic (the utility of an itemset may be larger, smaller thann or equal to
that of its subsets). Thus, FIM techniques cannot be directly used in HUIM.

Although HUIM has many applications, it ignores that items are often orga-
nized in a taxonomy. For example, two items dark chocolate and milk chocolate
are both specializations of the abstract item chocolate, which can in turn be a
specialization of an item snack and treats. Traditional HUIM can only find pat-
terns involving items at the lowest abstraction level. This is a major problem
because although some items like milk chocolate and dark chocolate may not ap-
pear in HUIs, the item chocolate could be part of some HUIs. Thus, important
information may be missed by traditional HUIM algorithms.

To mine frequent itemsets that contain items of different abstraction levels,
many algorithms were developed [1,9, 11,13, 16, 20, 21]. But these algorithms all
rely on the fact that the support (frequency) measure is anti-monotonic to reduce
the search space. But this property does not hold for the utility. Hence, it is an
important but difficult challenge to mine high utility itemsets containing items of
different abstraction levels. Recently, a first work has been done in this direction
by Cagliero et al. [2]. They proposed an algorithm named ML-HUI Miner to mine
HUIs where items are of different abstraction levels. However, the algorithm has
two important limitations. First, it can only find HUIs where all items are of the
same abstraction level. This assumption makes the problem easier to solve but
results in missing all patterns where items are of different levels, which are often
interesting. Second, the algorithm utilizes simple properties to reduce the search
space. It mines the different abstraction levels independently and does not use
the relationships between abstraction levels to reduce the search space.

To address these limitations, this paper defines the more general problem
of mining all cross-level high utility itemsets and studies its properties, and an
algorithm named CLH-Miner is proposed to find all these itemsets efficiently.
The algorithm relies on novel upper bounds and pruning properties to reduce
the search space using relationships between items of different abstraction levels.
Experiments on transaction data collected from two chains of retail stores show
that interesting patterns are discovered, and that the algorithm’s optimizations
considerably improve its performance.

The rest of this paper is organized as follows. Section 2 reviews related work.
Section 3 defines the problem of cross-level HUIM. Section 4 presents CLH-
Miner. Section 5 describes experiments. Lastly, Section 6 draws a conclusion.

2 Related work

Several algorithms were designed to discover frequent itemsets in transaction
databases [?]. FIM was then generalized as HUIM to find itemsets of high im-
portance (e.g. profit) in datasets where items are annotated with purchase quan-
tities and weights (e.g. unit profit) [5]. Some representative HUIM algorithms
are Two-Phase [12], HUI-Miner/HUI-Miner* [18] and FHM [6]. Two-Phase [12]
adopts a breadth-first search to explore the search space of itemsets and an up-
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per bound on the utility measure called TWU that is anti-monotonic to reduce
the search space. But Two-Phase has two important drawbacks: (1) the TWU
upper bound is loose, and (2) Two-Phase can perform numerous database scans.
HUI-Miner [18] addressed these limitations by introducing the tighter remain-
ing utility upper bound and relying on a novel vertical structure called utility-
list. HUI-Miner avoids performing numerous database scans by directly joining
utility-lists to calculate the utility and upper bound values of itemsets. An im-
proved version of HUI-Miner called FHM was then proposed [6] and developing
efficient HUIM algorithms is an active research area [5]. Although traditional
HUI mining algorithms are useful to identify important (e.g. profitable) pat-
terns, most of these algorithms ignore item taxonomies. Thus, they are unable
to reveal insightful relationships between items of different taxonomy levels (e.g.
product categories).

In FIM, several studies have aimed at extracting generalized patterns using
a taxonomy. Srikant and Agrawal [20] first proposed using a taxonomy of items
linked by is-a relationships to extract frequent itemsets and association rules
containing items from different abstraction levels. The Cumulate algorithm [20]
proposed in that study requires that the user sets a minimum support thresh-
old. Then, Cumulate performs a breadth-first search starting from single items
to generate larger itemsets. Cumulate can find cross-level patterns, that is pat-
terns containing items from different abstraction levels, with the constraint that
an item and its taxonomy ancestor may not appear together in a pattern. Then,
Hipp et al. proposed the Prutax algorithm [11] to more efficiently find cross-
level frequent itemsets using a depth-first search and a vertical database format.
Prutax uses two search space pruning strategies: eliminating an itemset from
the search space if one of its subsets is infrequent or if it has a taxonomy an-
cestor that is infrequent. Another depth-first search algorithm called SET was
proposed [21] for cross-level FIM, which was claimed to outperform Prutax. Han
and Fu [9] proposed a variation of the above problem called multi-level pattern
mining, where a different minimum support threshold can be set for each taxon-
omy level but items in a frequent itemset must be from the same taxonomy level.
They designed breadth-first search algorithms that start from abstract itemsets
and recursively specialize frequent itemsets. Lui and Chung [13] then proposed a
variation to mine cross-level itemsets using multiple thresholds. Their algorithm
performs a breadth-first search and finds generalized itemsets by recursively gen-
eralizing infrequent itemsets based on a concept of item taxonomy distance. Ong
et al. [16] then proposed a FP-tree based pattern-growth algorithm for multi-
level itemset mining using a concept of taxonomy-based quantities. Another
FP-tree based algorithm was proposed by Pramudiono for cross-level itemset
mining [17], and an algorithm based on the AFOPT-tree structure [15] was de-
signed. Rajkumar et al. [19] proposed using different thresholds for different
taxonomy levels and itemset lengths in multi-level itemset mining. Other vari-
ations of the above problems have also been studied such as to find misleading
multi-level itemsets [1], concise representations of generalized itemsets [10], and
mining multi-level association rules using evolutionary algorithms [23].
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To our knowledge only one algorithm named ML-HUI Miner was proposed
to consider taxonomies in high utility itemset mining [2]. This algorithm extends
HUI-Miner but has several important drawbacks: (1) it is unable to find cross-
level patterns (containing items from multiple taxonomy levels), (2) it mines each
taxonomy levels independently, and (3) it does not use relationships between
taxonomy levels for search space pruning with the utility measure. This paper
addresses these issues by defining a more general problem of cross-level HUIM
and an efficient algorithm named CLH-Miner to find the desired patterns.

3 Preliminaries and Problem Definition

This section introduces key definitions and then defines the proposed problem.

Definition 1 (Transaction database). Let I = {i1,i2,...,%m} be a set of
items. A transaction database is a multiset of transactions D = {T1,T»,...,T,}
such that for each transaction T,, T. € I, and T, has a unique identifier ¢ called
its Tid. Each item i € I is associated with a positive number p(i), called its
external utility (e.g. unit profit). For each item i € T,, a positive number q(i,T,)
is called the internal utility of © (e.g. purchase quantity of i in T.).

Definition 2 (Taxonomy). A tazonomy 7 is a directed acyclic graph (a tree)
defined for a database D. It contains a leaf for each item i € I. An inner node
represents an abstract category that aggregates all descendant leaf nodes (items)
or descendant categories into a higher-level category. A child-parent edge between
two (generalized) items i,j in T represents an is-a relationship. Inner nodes are
called generalized items or abstract items. The set of all generalized items is
denoted as GI, and the set of all generalized or non-generalized items is denoted
as AI = GIUI. Also, let there be a relation LR C GI x I such that (g,i) € LR
iff there is a path from g to i. And, let there be a relation GR C Al x Al such
that (d, f) € GR iff there is a path from d to f. An itemset X is a set of items
such that X C Al and Ai,j € X|i € Desc(j, 7). An itemset X is a generalized
itemset iff 3g € X such that g € G1.

FEzxzample 1. Table 1 depicts a database, which will be used as running example,
having seven transactions (71,13, ..., T7) and five items (I = {a, b, ¢, d, e}), where
internal utilities (e.g. quantities) are shown as integers beside items. For instance,
transaction T3 indicates that 1, 5, 1, 3 and 1 units of items a, b, ¢, d, e were
bought, respectively. Table 2 indicates that the external utilities (unit profits) of
these items are 5, 2, 1, 2, 3. Fig 1 depicts an item taxonomy for this database.
For instance, items a and b are aggregated into the generalized item Y.

Definition 3 (Descendant/Specialization/Sibling). The leaf items of a
generalized item g in a taxonomy T are all the leaves that can be reached by
following paths starting from g. This set is formally defined as Leaf(g,7) =
{i|(g,i) € LR}. The descendant items of a (generalized) item d is the set
Desc(d, ) = {f|(d, f) € GR}. An itemset X is called a descendant itemset



Mining Cross-Level High Utility Itemsets 5

Table 1. A transaction database Table 2. External utility values
TID Transaction Ttem|Unit profit
T (a71)7(c71) a |5
1> (e,1) p)
Ts (a,1),(b75),(c71),(d,3)7(671) c |1
Ty (b,4),(c,3),(d,3),(e,1) d |2
T5 (CL,l),(C,l),(d,l) (& 3
Ts (a72)7(076)7(ea2)
T7 (b72)7(672)7(671)
1]
© Xz
X z /Y\ (\: ZX d e
N N a b cy .. ‘ ‘
Y c d e [ aA
N\ ba cd cb
a b cﬁa
Fig. 1. A taxonomy of items Fig. 2. A part of the search space

of an itemset Y if | X| = |Y| and Vf € X,3d € Y|f € Desc(d, ). An itemset
X is called a specialization of an itemset Y if | X| = |Y| and Vf € X, f €
Y Vv3d eY|f € Desc(d, 7). Two items a and b are said to be siblings if they
have the same parent in 7. Furthermore, let level(d) denotes the number of edges
to be traversed to reach an item d starting from the root of T.

Ezample 2. In the taxonomy of Fig. 1, Leaf({X},7) = {a,b, c} and Desc({X},
7) ={Y,a,b,c}, The itemset {Y,d} is a descendant of {X, Z}, and a specializa-
tion of {Y, Z}. Moreover, the items Y and c are siblings, and level(Y) = 2.

Definition 4 (Utility of an item/itemset). The utility of an item i in a
transaction T, is denoted as u(i,T.) and defined as p(i) x q(i,T.). The utility
of an itemset X (a group of items X C I) in a transaction T, is denoted as
uw(X,T.) and defined as u(X,Te) = > ,cx u(i,Tc). The utility of an itemset X
(in a database) is denoted as u(X) and defined as w(X) = > 5 cox) WX, Te),
where g(X) is the set of transactions containing X [12].

Ezample 3. The utility of a in T3 is u(a, T5) = 5 x 1 = 5. The utility of {a, c} in
T3 is u({a,c}, T5) = u(a,T3)+u(c, T3) = 5x141x1 = 6. The utility of {a,c} in
the database is u({a, c¢}) = u(a)+u(c) = u(a, T1)+u(a, T3)+u(a, Ts) +u(a, Ts) +
u(e, Th) +u(c, T3) + u(e, Ts) + u(c,Ts) =5 +5+5+10+1+1+1+6 = 34.

Definition 5 (Utility of a generalized item/itemset). The utility of a
generalized item g in a transaction T, is denoted and defined as u(g,T.) =
Yicreaf(gr) P(8) X (i, T¢). The utility of a generalized itemset GX in a trans-
action T, is defined as u(GX,T.) = Y jcax uld, Tc). The utility of a generalized
itemset GX (in a database) is denoted and defined as u(GX) = X 1 ¢ (ax) WGX,
T.), where g(GX) = {T. € D|3X CT. A X s a descendant of GX}.
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Ezample 4. The utility of the generalized item Y in T3 is u(Y, T5) = u(a,T5) +
u(b,T5) =1 x 5+ 5 x 2 =15. The utility of the generalized itemset {Y,c} in T3
is u({Y,c},T5) = w(Y,T5) + u(c,T3) = 15+ 1 = 16. The utility of the general-
ized itemset {Y,c} is u({Y,c}) = w({Y,c}, T1) + u({Y,c}, T3) + u({Y,c}, Ta) +
u({Y,c}, Ts) + u({Y, c}, T6) + u({Y,c}, Tr) =6+ 16 + 11+ 6 + 16 + 6 = 61.

Definition 6 (Cross-level high utility mining). The problem of cross-level
high wutility mining is defined as finding all cross-level high-utility itemsets
(CLHUIs). A (generalized) itemset X is a CLHUI if w(X) > minutil for a
user-specified minutil threshold.

Ezxample 5. If minutil = 60, the cross-level high utility itemsets in the database
of the running example are { X },{Y, ¢}, {Z, X},{Z,Y},{Z,Y,c},{e, X}, {e, Y, c}
with respectively a utility of 61, 61,84, 71,84, 64, 64.

4 Proposed Algorithm

To efficiently discover all cross-level HUIs, a novel algorithm is proposed, named
CLH-Miner. It assumes that a processing order > is defined on items of AI. That
total order > is defined such that a < b for two items a,b € Al if level(a) <
level(b) or level(a) = level(b) NGWU (a) < GWU(b), where GWU is a utility
measure. This ordering between levels ensures that the algorithm considers items
that are higher in the taxonomy before those that are lower, which is important
as it enables to prune specializations of itemsets using techniques that will be
presented in this section. The algorithm explores the search space of all itemsets
by recursively performing two types of extensions on itemsets, defined as follows.

Definition 7 (Extension). Let X be an itemsel. The join-based extensions
of X are the itemsets obtained by appending an item y to X such that y € Al,
y =1, Vi€ X,y & Desc(i, 7). The tax-based extensions of X are the itemsets
obtained by replacing the last item y of X according to >= by a descendant of y.

For example, if Z = X, the itemset { X, d} is a tax-based extension of {X, Z},
which is a join-extension of {X} with item Z. A part of the search space of the
running example is shown in Fig. 2.

To quickly calculate the utility of an itemset and those of its extensions, the
CLH-Miner algorithm creates a taz-utility-list structure for each itemset visited
in the search space. This vertical structure extends the utility-list structure used
in traditional HUIM [18] with taxonomy information, and is defined as follows.

Definition 8 (Tax-Utility-list). Let there be an itemset X, a database D,
and the total order »-. The tax-utility-list tuList(X) of X contains a tuple
(tid, tutil, rutil) for each transaction Tyq containing X. The iutil element of a
tuple is the utility of X in Tyq. i.e., w(X,Tia). The rutil element of a tuple is
defined as ) icm  niswveex Wi, Tria). Also, tuList(X) contains childs, a set of
pointers to the tax-utility-list of the child items of X in the taxonomy.
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For example, assume that X < Z <Y <d <b < a < e < c. The tax-utility-
list of itemset {X,d} is tuList({X,d}) = {(3,22,3), (4,17,3),(5,8,0)}.

The proposed algorithm initially constructs the tax-utility-lists of single items
by scanning the database, and then applies a modified version of the construct
procedure of HUI-Miner [18] to create the tax-utility-lists of their extensions
by joining the tax-utility-lists of other itemsets. The difference between the con-
struct procedure of CLH-Miner and that of HUI-Miner is that childs is updated.
A tax-utility list of an itemset X allows to quickly obtain the utility of X without
scanning the database, as w(X) = 3., 1i51(x) €-tutil [18]. For example, based
on tuList({X,d}), the utility of {X,d} is u({X,d}) =22+ 1748 =47.

By doing an exhaustive search of all transitive extensions of single items and
calculating their utility using their tax-utility-lists, all cross-level HUIs can be
found. But this approach is time-consuming if the number of items is large, which
is the case for many real-life databases. To efficiently find cross-level HUIs, two
search space pruning techniques are introduced next. The first one is a novel
technique generalizing the TWU measure used in traditional HUIM [12].

Definition 9 (The GWU measure). The transaction utility (TU) of a
transaction T, is the sum of the utilities of all the items in T,. i.e. TU(T.) =
> wer, Wz, Tc). The generalized-weighted utilization (GWU) of a (gener-
alized) itemset X C Al is defined as the sum of the transaction utilities of
transactions containing X, i.e. GWU(X) = X 1 ¢ x) TU(T0).

Property 1 (The GWU is a monotone upper bound on the utility measure). Let
there be two itemsets X and Y such that Y is a specialization of a superset of
X. The GWU of X is no less than its utility (GWU(X) > u(X)). Moreover, the
GWU of X is no less than the utility of its supersets (GWU(X) > w(Y)VY D X).

Proof. It Y C X, then w(Y) < GWU(Y) < GWU(X) < minutil. If Y is a
specialization of X, then (V) < w(X) < GWU(X) < minutil.

To reduce the search space, the next property is derived from Property 1.

Property 2 (Pruning the search space using the GWU). For any itemset X, if
GWU(X) < minutil, then X is a low utility itemset as well as all its join-based
and tax-based extensions.

For example, if minutil = 50, GWU ({c,d,e}) = 45 < minutil, and thus
{¢,d, e} and all its extensions can be ignored, as they are not CLHUIs.

The third pruning technique utilizes information from the tax-utility-list of
an itemset to prune its transitive extensions. This technique generalizes the
remaining utility pruning technique of HUI-Miner for a taxonomy.

Property 3 (Pruning the search space using the remaining utility). Given the
total order < on a taxonomy, the remaining utility upper bound of an itemset
X is the sum of the util and rutil values in its tax-utility-list. Formally, this
upper bound is defined as reu(X) = 3" ¢, 1is(x) (€-dutil + erutil). Iif reu(X) <
minutil, then X and all its tax-based extensions are not CLHUIs.
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Ezample 6. If minutil = 25, reu({c,d,e}) = 19 < minutil, and thus {c,d, e}
and all its tax-based extensions can be ignored, as they are not CLHUIs.

The proposed CLH-Miner algorithm takes as input a transaction database
with utility, a taxonomy 7, and the user-defined minutil threshold. CLH-Miner
outputs the set of all CLHUIs. The pseudocode is shown in Algorithm 1. The
algorithm first reads the database to calculate the GWU of each item and gener-
alized item. Then, the algorithm identifies the set I* of each item ¢ whose GWU
is no less than minutil and for which GWU (g) > minutil if g is a generalized
item such that ¢ € Desc(g, 7). Next the algorithm identifies the set GI* of all
generalized items having a GWU no less than minutil. Thereafter, all items not
in I'* and GI* and their extensions are ignored according to pruning Property 2.
Then, item taxonomy levels and GWU values are used to calculate the total
order < on items (items first sorted by ascending taxonomy levels, and then by
ascending GWU values). A second database scan is then performed to reorder
items in transactions according to the > order, and build the tax-utility-lists of
each item ¢ € I"* and generalized item g € GI*. Then, the depth-first search of
itemsets starts by calling the recursive Search procedure with the set TU Ls of
generalized items of taxonomy level 1, and the minutil threshold.

Algorithm 1: The CLH-Miner algorithm

input : D: a transaction database, 7: a taxonomy, minutil: the threshold
output: the CLHUIs

1 Scan D and 7 to calculate the GWU of each item ¢ € I and each generalized item g € GI;
I* « {ili € I ANGWU (i) > minutil AVg € GI such that Desc(g,T) > i,
GWU(g) > minutil};
GI* «+ {glg € GI AGWU(g) > minutil};
Calculate the total order < on I* UGI*;
Scan D and 7 to build the tuList of each item ¢ € I" and of generalized item g € GI™;
TULs < {glg € GI™ N level(g) = 1};
Search (T'ULs, minutil);

N

N0 A ®

The Search procedure takes as input (1) PULs, a set of itemsets of the form
Pz that extend an itemset P with some item x (initially P = @), and (2) the
user-specified minutil threshold. The search procedure is applied as follows. For
each itemset Px € TU Ls, if the sum of the iutil values of the tuList(Px) is no
less than minutil, then Pz is a CLHUI and it is output. Then, join-based exten-
sions of Pz are generated by joining Pz with all extensions Py of TU Ls such
that « > y to generate extensions of the form Pzy containing |Pz|+ 1 items. If
the GWU of the join-based extensions is larger or equal than minutil, they are
added to ExtensionsO fX. The tuList(Pzy) is then constructed by applying a
modified version of the Construct procedure of HUI-Miner to join the tuList(P),
tuList(Px) and tuList(Py). The difference with the original Construct proce-
dure is that the tax-utility-list is added as a child item of y. This procedure is
not shown due to the space limitation. Then, if the sum of iutil and rutil values
in the tuList(Px) is no less than minutil, taz-based-extensions of Px should be
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Algorithm 2: The Search procedure

input : TULs: a set of extensions of an itemset P, minutil: the threshold
output: the CLHUIs that are transitive extensions of P

1 foreach itemset X € TULs do

2 if SUM (X .tuList.iutils) > minutil then Output X;
3 ExtensionsOfX «+ 0;

4 foreach itemset Y € TULs such that X <Y do

5

6

JoinExtension.tuList < Construct(X,Y);
if GWU (JoinEztension) > minutil then
ExtensionsO fX < ExtensionsOfX U {JoinExtension};
7 end
8 if SUM (X .tuList.tutils)+SUM (X.tuList.rutils) > minutil then
9 foreach itemset T' € X.childs do
10 TaxExtension.tuList < Construct(X,T);
11 if GWU (TaxExtension) > minutil then
ExtensionsOfX < ExtensionsOfX U {TaxExtension};
12 end
13 end
14 Search (ExtensionsO fX ,minutil);
15 end

explored (by Property 3). This is done by replacing item x with each child item
of z. Also, if the GWU of taz-based extensions is larger or equal to minutil, they
are added to EztensionsO fX. Then, a recursive call to the Search procedure
with extensions of Pz is done to calculate its utility and explore its extension(s).
When the algorithm terminates all the cross-level high utility itemsets have been
output. Since the algorithm only eliminate itemsets using Properties 2 and 3, it
can be proven that the algorithm outputs all CLHUISs.

5 Experiment

To evaluate CLH-Miner’s performance, experiments were done on a computer
equipped with an Intel(R) Xeon(R) CPU W-2123 3.60GHz, 32 GB of RAM, and
running Windows 10. We compared the performance of CLH-Miner for CLHUI
mining with ML-HUI Miner for multi-level HUIM, and HUI-Miner for HUIM.
Algorithms were implemented in Java, and runtime and memory were measured
using the standard Java API. Two real-world datasets were used, named Liquor
(|ID| = 9,284, |I| = 2,626, |GI| = 77, Tipaz = 5, Towg = 2.7, Level = 7) and
Fruithut (|D| = 181,970, |I| = 1,265, |GI| = 43, Ter = 36, Taug = 3.58, Level
= 4), where |D| is the transaction count, |I| is the item count, |GI| is the
generalized item count, T},q, is the maximum transaction length, Ty,4 is the
average transaction length, and Level is the maximum level. Liquor and Fruithut
contain transactions from US liquor stores and grocery stores, respectively.

In a first experiment, minutil was varied to evaluate its influence on the
performance of CLH-Miner. Three versions of CLH-Miner were compared: (1)
CLH-Miner, (2) CLH-Miner without the GWU pruning strategy, and (3) CLH-
Miner without the remaining utility pruning strategy. Results for runtime and
peak memory usage are shown in Fig. 3 for the two datasets. It is found that as
manutil increases runtime decreases. This is reasonable since the lower minutil
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is, the more CLHUIs are found, and the larger the search space is. For exam-
ple, on Liquor, for minutil values of 40,000 and 50,000, there are 939 and 469
CLHUISs, and the runtimes are 47.76 and 19.83 seconds, respectively. It is also
found that GWU-based pruning generally greatly decreases runtime, and mem-
ory usage. For instance, on Fruithut, when minutil = 20,000,000, CLH-Miner
with GWU-based pruning is up to 3.74 times faster than CLH-Miner without
it and uses up to 1.68 times less memory. Also, it is found that the remaining
utility pruning strategy reduces memory usage, and slightly reduces runtime.
For example, on Fruithut, when meinutil = 25,000,000, memory is reduced by
up to 47%. The remaining utility pruning strategy reduces runtime and memory
because when the strategy is applicable, less extensions are stored in memory.

We also evaluated the proposed algorithm’s scalability in terms of runtime
and pattern count when transaction count is varied. For this experiment, Fruithut
was divided into five parts and the algorithm’s performance was measured after
adding each part to the previous ones. Fig. 4 shows the results for minutil =
10,000, 000. It is found that runtime and pattern count increase with database
size. This is because the utility of itemsets may be greater in a larger database,
which increases the number of tax-utility-list to be created for itemsets, and
more time is needed to search a larger search space.
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Fig. 3. Runtime and peak memory usage of three versions of CLH-Miner

In a third experiment, CLH-Miner’s performance was compared with that
of HUI-Miner and ML-HUI Miner. Table 3 and 4 show the runtime and peak
memory usage for the two datasets. It is found that CLH-Miner takes more time
than HUI-Miner and ML-HUI Miner, and that CLH-Miner generally consumes
more memory than HUI-Miner and ML-HUI Miner on Liquor, and less memory
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Fig. 4. Scalability of CLH-Miner when variying the database size

than ML-HUI Miner on Fruithut. This is reasonable since the proposed problem
of CLHUI mining has a much larger search space than HUIM and multi-level
HUIM. Thus, more patterns are considered and kept in memory.

Table 3. Comparison of CLH-Miner, ML-HUI Miner and HUI-Miner on Liquor

inutil Runtime (s) Memory (MB)
CLH-Miner| ML-HUI Miner|HUI-Miner|CLH-Miner| ML-HUI Miner|HUI-Miner
9k 877.74 39.23 0.08 222 130 59
10k 738.77 40.65 0.08 146 67 104
11k 515.81 39.00 0.06 183 111 27
12k 448.82 39.76 0.05 229 180 73
13k 406.77 40.74 0.05 150 316 118

Table 4. Comparison of CLH-Miner, ML-HUI Miner and HUI-Miner on Fruithut

inutil Runtime (s) Memory (MB)
CLH-Miner | ML-HUI Miner|HUI-Miner|CLH-Miner| ML-HUI Miner|HUI-Miner
4E406 | 1,198.20 76.36 1.43 938 378 140
5E+06 | 1,166.74 83.26 1.16 778 1,788 129
6E-+06 806.20 92.22 1.03 668 1,892 121
TE+06 694.89 97.96 0.69 581 2,162 100
8E+06 603.69 96.70 0.55 520 1,803 92

The number of pattern found by the algorithms was also compared for differ-
ent minutil values. Results are shown in Table 5. It is observed that CLH-Miner
finds more patterns than HUI-Miner (HUIs) and ML-HUI Miner (Multi-level
HUIs). For example, for Liquor and minutil = 50,000, the number of CLHUIs
is 9.57 times and 39.08 times greater than that of multi-level HUIs and HUIs, re-
spectively. Hence, CLH-Miner finds some patterns that HUI-Miner and ML-HUI



12 Fournier-Viger, P., Wang, Y., Lin, J. C.-W., Luna, J.M., Ventura, S.

Table 5. Comparison of pattern count on Liquor and Fruithut

Liquor Fruithut
minutil | CLHUIs|Multi-level HUIs|HUIs|minwutil|{CLHUIs|Multi-level HUIs|HUIs
10k 5537 234 241 |4E+06 | 1248 55 11
20k 2136 119 86 | 5E4+06| 833 45 8
30k 1391 79 43 |6E4+06| 586 36 4
40k 939 56 19 | 7TE406| 435 30 2
50k 469 49 12 |8E+06 | 331 23 1

Miner cannot find. For example, for minutil = 500,000, CLH-Miner can find
interesting HUIs containing items of multiple taxonomy levels in Liquor such
as {Cordials& Liqueurs, Neutral Grain Spirits} and {Liqueurs, Distilled
Spirits Specialty} that HUI-Miner and ML-HUI Miner cannot find.

6 Conclusion

This paper has defined a novel problem of mining cross-level HUIs, studied its
properties and presented a novel algorithm named CLH-Miner to efficiently mine
all cross-level HUIs. The algorithm integrates novel pruning strategies to reduce
the search space by taking advantages of the relationships between abstraction
levels. An extensive experimental evaluation has shown that the algorithm has
excellent performance, that optimizations improves its performance, and that
interesting patterns are found in real-life retail data. Source code and datasets
of CLH-Miner are available in the SPMF data mining library [4]. In future work,
we will generalize the proposed problem to consider using a hierarchy in other
pattern mining problems such as episode mining [7, 8], subgraph mining [3], and
high-average utility mining [24].
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