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Abstract

Graph data is found in numerous domains such as for the analysis of social networks,
sensor networks, bioinformatics, industrial systems, and chemistry. Analyzing graphs to

identify useful and interesting patterns is an important research area. It helps
understanding graphs, and hence support decision making. Since two decades, many graph

mining algorithms have been proposed to identify patterns such as frequent subgraphs,
paths, cliques and trees. But most of them assume that graphs are static. This simplifying
assumption makes it easy to design algorithms but discard information about how graphs
evolve. This paper provides a detailed survey of techniques for mining interesting patterns

in dynamic graphs, which can serve both as an introduction and as a guide to recent
advances and opportunities in this research area. The main tasks related to mining

patterns in dynamic graphs are reviewed such as discovering frequent subgraphs, evolution
rules, motifs, subgraph sequences, recurrent and triggering patterns, and trend sequences.

In addition, an overview of strategies and approaches to solve dynamic graph mining
problems is presented, and their advantages and limitations are highlighted. Various

extensions are also discussed such as to discover patterns in data streams and big data.
Lastly, the article mentions several research opportunities.
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INTRODUCTION

Pattern mining is a key research area in data mining, which consists of applying algorithms

to identify interesting patterns in data. Generally, a pattern can be considered interesting if

it reveals some novel information that is useful to understand the past or predict the future.

Over the years, techniques have been designed to extract patterns from several types of

data such as transactional data9,10, time series14–16, business process logs11, trajectories12,

spatial data17, sequences1,5,8,13,19–21 and graphs2–4. Depending on the applications, what

is an interesting pattern differs. Thus, algorithms have been proposed that apply various

criteria to identify patterns such as finding those having a high occurrence frequency and

confidence10,18, rarity22,23, profitability24, or a low-cost6,7. Pattern mining tasks can be

very challenging because an algorithm must consider a potentially huge number of possible

patterns to discover the desired ones. Consequently, efficient algorithms have been designed

based on efficient data structures and search space pruning strategies1,10.

Among the various types of data studied in this research area, graphs are one of the

most important ones as they are found in numerous domains such as social networks95,

chemistry27, vehicular networks45, computer networks25, bioinformatics41, XML data41, and

geographical data102. Algorithms have been proposed to find various types of patterns in

graphs such as subgraphs2,27,34,35, trees41,42 and traversal paths56–58. Moreover, various types

of graphs have been studied such as weighted graphs56, directed graphs32,42, attributed

graphs50,89,97,99,101,102, and graph databases2,3. A graph type that has attracted the interest

of many researchers is dynamic graphs. Those are graphs that change over time in terms

of attributes (labels) or structures (edges, vertices). Considering the time dimension when

mining graphs allows understanding how they evolve and is key to many applications such as

social network analysis. However, mining patterns in dynamic graphs is also more challenging

because the search space is larger when taking time into account.

Graph mining is a very active research field. Although some surveys have been published

on discovering patterns in graphs3, there is none on mining patterns in dynamic graphs.

This paper addresses this issue by providing an up-to-date and detailed survey that is not

only an introduction to the field but also reviews recent advances and opportunities.
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It is to be noted that this survey focuses on analyzing graphs to find patterns, i.e. in-

teresting sets of value that are appearing several times in data, are correlated or meet some

other interestingness criteria set by the user. Other useful graph analysis tasks are considered

to be outside the scope of this survey such as identifying prestigious nodes52, detecting com-

munities52,53, calculating descriptive measures54, clustering nodes54, graph summarization55,

automatic node labeling (relational classification)51, and graph visualization54.

This survey is organized as follows. It first presents important concepts and challenges

related to mining patterns in static graphs. Then, the following sections discusses techniques

for discovering patterns in a single dynamic graph, common to several dynamic graphs (a

graph database), and in attributed graphs. In these sections, an overview of techniques

employed for discovering different kinds of patterns is presented. Then, the paper discusses

research opportunities. Finally, a conclusion is drawn.

MINING PATTERNS IN STATIC GRAPH(S)

Before discussing techniques for mining patterns in dynamic graphs, this section presents a

brief overview of techniques for mining patterns in static graphs, as they are related. Then,

the next section reviews techniques for mining patterns in dynamic graphs.

Note that this section is not as detailed as the following one about dynamic graphs

because in-depth surveys dedicated to mining patterns in static graphs have been published3,

and the focus of this paper is dynamic graphs.

PRELIMININARY DEFINITIONS

In its most simple form, a graph is a tuple G = (V,E) such that V is a vertex set and E is

an edge set. The vertex set of a graph is a non empty finite set of elements called vertices.

The edge set contains zero or more edges, defined as two-elements subsets of V . In other

words, E ⊆ V × V . Let there be two vertices u, v ∈ V . If there exists an edge {u, v} ∈ E,

then u and v are said to be adjacent, connected and reachable from each other, and {u, v}

is said to connect or join u and v. Moreover, it is said that {u, v} is incident to u and to v.

Two edges e1 and e2 are adjacent if they are incident to a same vertice w, i.e. ∃w ∈ e1 ∩ e2.
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Some common vocabulary to describe graphs is presented below. Note that in the above

definition of graph, self-loops (edges connected to themselves) are not allowed.

A graph is connected if there exists a walk from any vertex u to any other vertex v. A

walk in a graph is a sequence of vertices 〈v1, v2, . . . vn〉 such that v1 is adjacent to v2, v2 is

adjacent to v3, . . . vn−1 is adjacent to vn. If such walk exists then vn is said to be reachable

from v1. A graph that is not connected is said to be disconnected.

A directed graph (also called digraph) is a graph G = (V,E), where V is a non empty

finite vertex set and E is a set of directed edges. A directed edge is an ordered vertex pair

(u, v) where u, v ∈ V , which indicates that v can be reached from u, or equivalently that v

is a successor of u, and that u is connected and adjacent to v. A directed edge (u, v) is often

represented visually as an arrow from u to v, and is different from the reverse edge (v, u).

Note that a directed graph may contain self-loops.

A graph is weighted if weights are assigned to edges and/or vertices. This is done by

adding two functions mapping vertices and/or edges to positive real numbers, that is VW :

V 7→ R+ and EW : E 7→ R+, respectively. A weight can be interpreted as indicating the

relative importance of an edge or vertex, or have other application specific meanings.

A graph is said to be simple if it is not weighted, undirected, has no self-loop and has at

most one edge between any pair of vertices.

The above graph types are useful to model how some elements (objects) are connected

to each other. To encode semantic information in a graph, labels may be added. A labeled

graph is a tuple G = (V,E, LV , LE, φV , φE) where V is an edge set, E ⊆ V × V is an edge

set, LV is a set of vertex labels, LE is a set of edge labels, φV is a function mapping vertex

to labels (φV :V 7→ LV ), and φE is a function mapping edges to labels (φE:E 7→ LE).

An attributed graph is a tuple G = (V,A,E, λ) where V is a vertex set, A is an attribute

set, E ⊆ V × V is an edge set, and λ : V × A 7→ R is a function that maps each vertex-

attribute pair to a number, which may represents a value or label. Note that it is also

possible to define attributed graphs in a more general way such that edges may also have

multiple attributes. That definition would then be similar to that of multi-relational graphs

(graphs where multiple edges of different types may connect a same pair of nodes) and that

of multi-labeled graphs (graphs where nodes and edges can have multiple labels). But a
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Figure 1: Different types of static graphs

difference with these latter definitions is that attributed graphs explicitly group labels by

attributes, while multi-labeled graphs and multi-relational graphs do not explicitly represent

attributes. Various other types of graphs have also been studied. Fig. 1 shows examples of

the main types of graphs, discussed above.

MINING PATTERNS IN A STATIC GRAPH DATABASE

Several tasks have been proposed to find patterns in a database of static graphs.

Frequent subgraph mining. It is one of the most popular graph mining task. It aims

at finding all subgraphs that appear frequently in a database of simple connected graphs2–4,25.

Given a parameter called the minimum support threshold (minsup), a graph is frequent if it

appears in no less than minsup input graphs. The assumption of frequent subgraph mining

is that a subgraph is interesting if it appears many times in a set of graphs. For example,

this task can be useful to find an association between elements that is common to several

chemical molecules.

Formally, frequent subgraph mining is defined as follows. Let there be a graph database

GD = {G1, G2 . . . Gn} consisting of n simple labeled graphs. Consider two labeled graphs

Gx = (Vx, Ex, LV x, LEx, φV x, φEx) and Gy = (Vy, Ey, LV y, LEy, φV y, φEy). The graph Gx is

said to be isomorphic to Gy if and only if there exists a bijective function f : Vx → Vy

such that (1) ∀v ∈ Vx, LV x(v) = LV y(f(v)) and (2) ∀ {u, v} ∈ Ex, {f(u), f(v)} ∈ Ey and

LEx(u, v) = LEy(f(u), f(v)). A graph Gx is said be a subgraph isomorphism of (to appear
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Figure 2: A graph database and frequent subgraphs found for minsup = 2

in) a graph Gz, denoted as Gx v Gz, if there exists a subgraph Gy ⊆ Gz such that Gx

is isomorphic to Gy. A subgraph isomorphism is also called an embedding. The support

of a graph Gx in a graph database GD is defined as sup(Gx) = |{g|g ∈ GD ∧ Gx v g}|.

Given a graph database GD and a minsup threshold (minsup > 0), the task of frequent

subgraph mining is to enumerate all frequent subgraphs (graphs having a support no less

than minsup).

For example, consider the graph database of Fig. 2 a) containing three graphs, G1, G2

and G3. If minsup = 2, seven frequent subgraphs are found, represented on Fig. 2 b) with

their support. For example, the subgraph g6 has a support of 2 because it appears in G1

and G3, while subgraph g1 has a support of 3 because it appears in G1, G2 and G3. It is to

be noted that support calculations ignore that a graph may have multiple occurrences in an

input graph (e.g. g1 appears multiple times in G1).

The problem of frequent subgraph mining is difficult because a potentially very large

number of subgraphs must be considered, and their support must be calculated, to find

the frequent subgraphs. Several efficient algorithms have been proposed to find frequent

subgraphs efficiently. Generally, they start searching from graphs each having a single vertex

or edge, and recursively append edges to these graphs to obtain larger graphs. Algorithms

such as FSG26 perform a breadth-first search to explore the search space of all subgraphs.

They first find all subgraphs having one edge. Then, the algorithms grow these subgraphs

to find those having two edges. Then, those having three edges are considered and so on,
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until no patterns can be generated. Other algorithms adopt a depth-first search. They also

start from patterns each having a single edge but recursively grow a pattern before growing

others. Such algorithms are MoFa27, gSpan2, FFSM34, Gaston35 and FPGraphMiner25.

These algorithms have the same input and output but use different search strategies and

data structures in their search for patterns.

Generally, two key challenges for designing an efficient frequent subgraph mining algo-

rithm are how to explore the search space and how to perform support counting. To avoid ex-

ploring the whole search space, a key property is that the support measure is anti-monotonic,

i.e. the support of a subgraph is always greater or equal to those of its supergraphs2,26,34,35.

Thus, if a subgraph is infrequent, all its supergraphs can be eliminated from the search

space as they cannot be frequent subgraphs. This property, often called downward closure

property or Apriori property is used by most frequent subgraph mining algorithms, and has

been used for several other pattern mining problems such as itemset mining10,18,120,121 and

sequential pattern mining1. Another problem related to search space exploration is that an

algorithm may generate candidate subgraphs that are isomorphic (equivalent) to subgraphs

that it has previously considered. To avoid considering these subgraphs again several algo-

rithms perform isomorphism checking. Though both efficient exact and approximate linear

time isomorphism checking algorithms have been proposed36, it remains a computationally

expensive task.

A few key strategies adopted by some popular frequent subgraph mining algorithms are

described in more details. The FSG algorithm26 performs a breadth-first search. It gener-

ates candidate subgraphs having k + 1 edges by joining pairs of frequent subgraphs having

k edges that have k − 1 edges in common. This join strategy can avoid considering many

infrequent subgraphs. However, a drawback is that many k edge subgraphs may need to be

kept in memory to generate the k + 1 edge subgraphs. Besides, this approach can produce

some subgraphs that do not exist in the database. To calculate the support of a generated

subgraph, FSG utilizes a vertical database representation which consists of annotating each

subgraph with the list of input graphs and nodes where the subgraph appears. When join-

ing two subgraphs, their lists are then combined to obtain that of the generated subgraph,

and hence its support. To facilitate graph comparison, FSG calculates a unique code for
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each subgraph. Such unique code, called a canonical labelling or canonical representation,

facilitates isomorphism checking since all isomorphic graphs have the same code. The gSpan

algorithm2 is arguably the most popular frequent subgraph mining algorithm. It performs a

depth-first search, which starts from single edge subgraphs and extends each one recursively

by adding one edge at a time. To avoid generating graphs that do not exist, gSpan utilizes

a pattern-growth approach. That is, it searches for extensions of a subgraph by scanning

the input graphs where the subgraph appears. For each identified frequent subgraph, gSpan

calculates a canonical code called DFS code based on the depth-first search traversal order.

If the DFS code is not minimal, the subgraph is a duplicate of another subgraph and can be

ignored. This technique is an efficient solution for identifying duplicate subgraphs. gSpan

performs isomorphism checking only to check if a subgraph appears in an input graph. An

advantage of the depth-first search approach of gSpan over the breadth-first search is that

only subgraphs of the current recursive call are kept in memory at any time. The FFSM34

algorithm also performs a depth-first search, but a different scheme is used for the canon-

ical labelling of subgraphs, which is based on a canonical adjacency matrix representation

of graphs. Besides, FFSM adopts both the concept of join between subgraphs to generate

larger subgraphs and that of extension, and was shown to be competitive with gSpan. The

FPGraphMiner25 algorithm first creates a BitCode structure (a bit vector) for each single

edge subgraph that indicates in which input graphs the subgraph appears. Then, FPGraph-

Miner stores all subgraphs in a special graph called FP-graph, where subgraphs having a

same bitcode are stored in a same node, and nodes having the same support are grouped in

clusters. Then, frequent subgraphs are mined directly from the FP-graph structure using a

depth-first search without back-tracking. This approach was shown to be very efficient when

compared with several previous algorithms.

Although frequent subgraph mining is useful, a problem is how to set the minsup thresh-

old28–31. If it is set too high, few patterns are found, while if it is set too low, too many

patterns may be found and algorithms may have very long runtimes or run out of memory.

To address this issue, the problem of top-k frequent subgraph mining was proposed, where

the user can directly set the number k of patterns to find rather than using the minsup

threshold. The first algorithm for this problem, named TGP 29, initially reads an input
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graph database to obtain the DFS codes of all subgraphs of each input graph. Thereafter,

TGP stores all these DFS code in a large structure named Lexicographical Pattern Net.

Then, TGP searches for the top-k subgraphs using that structure, while gradually raising

an internal minsup threshold initially set to 0. A major issue with TGP is that it explicitly

generates all patterns to then find the top-k patterns, which makes it inefficient even for

moderately large graph databases28,29. An alternative algorithm named FS3 was designed

to trade result completeness and accuracy for efficiency30. To apply FS3, a user must set k,

the size s for subgraphs to be found, and a number of iterations. During each iteration, FS3

samples a graph from the database, and then (2) samples a s-size subgraph biased toward

frequent subgraphs in the whole database using the Markov Chain Monte Carlo method. A

reason for FS3’s efficiency is that it does not perform subgraph isomorphism checking but a

drawback is that it may incorrectly calculate the support of patterns. Hence, the algorithm

may return infrequent patterns and miss frequent patterns. Another approximate algorithm

named kSIM31 was proposed to process a restricted type of graphs called induced subgraphs,

and was shown to outperform FS3 in runtime and accuracy. Recently, an exact algorithm

for top-k frequent subgraph mining was presented, named TKG28, which extends gSpan and

has similar performance.

Besides top-k frequent subgraph mining, many other extensions of the frequent subgraph

mining problems have been proposed to find subgraphs using other measures to select pat-

terns such as density, edge connectivity and vertex connectivity37, and subgraphs having a

high correlation40.

To reduce the number of patterns that are presented to the user, algorithms have also been

proposed to mine concise representations of frequent subgraphs such as closed and maximal

subgraphs. A frequent closed subgraph is a frequent subgraph that is not a subgraph of

any other frequent subgraph having the same support29,32. A frequent maximal subgraph

is a frequent subgraph that is not a subgraph of any other frequent subgraph38,39. Hence,

closed subgraphs are a subset of maximal subgraphs. For example, in Fig. 2 (right), closed

and maximal frequent subgraphs are indicated. An interesting property is that frequent

maximal subgraphs allow recovering all frequent subgraphs without scanning the database,

while frequent closed subgraphs also allow deriving their support values. Moreover, mining
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maximal and closed subgraphs is often faster than mining all frequent subgraphs. Another

notable concise representation of frequent subgraphs that is useful for classification tasks

is frequent generator subgraphs 33. They are the frequent subgraphs that have no proper

subgraphs having the same support32.

Some frequent subgraph mining algorithms can also be extended with small modifications

to mine partially labeled graphs, directed graphs, graphs with self-loops, and multiple edges

between vertices32.

Frequent subtree mining. Another popular task for mining patterns in static graphs is

frequent subtree mining 41,42. The problem consists of identifying a set of subtrees appearing

frequently in a database of trees. Several types of trees are considered in the literature42

(which are graphs). A tree T = (V,E) is an undirected connected graph that is acyclic (there

exists no vertex v ∈ V such that there is a walk 〈v, . . . , v〉 that starts from v and leads to

v). A rooted tree T = (V,E, r) is a directed acyclic graph where a vertex (node) r ∈ V is

called the root. Moreover, there exists a walk from the root to every other node, and no walk

leading to the root. Note that a tree that has no node designated as root is sometimes called

a free tree. An ordered rooted tree is a rooted tree where each vertex’s childs are ordered

as a list from first to last.https://www.overleaf.com/project/5cd2f5574ae8d80fa8148eb2 A

labeled tree is a tree such that each vertex has a label. Fig. 3 shows examples of these main

types of trees. Trees can represent many types of data. For example, the tag structures of

XML documents and hierarchies of DNS servers can be viewed as ordered rooted trees.

Three main types of subtrees can be extracted from a tree database41,42. They are defined

as follows. Let there be two ordered labeled trees Tx = (Vx, Ex, LV x, LEx, φV x, φEx) and Ty =

(Vy, Ey, LV y, LEy, φV y, φEy). The tree Tx is a bottom-up subtree of Ty if Ex ⊆ Ey, Vx ⊆ Vy,
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labels of nodes/edges and the ordering of child nodes are preserved in Tx, and all descendants

of each node v ∈ Vy are also in Tx. The tree Tx is an induced subtree of Ty if Ex ⊆ Ey,

Vx ⊆ Vy, labels of nodes/edges are preserved in Tx, and parent-child relationships between

nodes are preserved. The tree Tx is an embedded subtree of Ty if Ex ⊆ Ey, Vx ⊆ Vy, labels of

nodes/edges are preserved in Tx, and ancestor/descendant relationships between nodes are

preserved. Thus, all bottom-up subtrees are induced subtrees, and all induced subtrees are

embedded subtrees (BottomUpSubtrees ⊆ InducedSubtrees ⊆ EmbeddedSubtrees). Three

examples of subtrees of the tree of Fig. 3 d) are shown in Fig. 4. The goal of frequent

subtree mining is to find all subtrees that are bottom-up, induced or embedded subtrees of

at least minsup trees of a tree database. Some classic algorithms are TreeMiner41 for mining

frequent ordered embedded subtrees in a database of rooted ordered trees, and FREQT43 to

discover all frequent induced subtrees in a database of rooted ordered trees. Tree mining has

applications in bioinformatics such as identifying common philogenetic subtrees and RNA

structures41. Subtree mining can be viewed as a special case of subgraph mining. But

the former is a tractable problem while the latter is intractable. Recently, the problem of

frequent tree mining has been generalized as frequent attributed tree mining to consider trees

and subtrees where each node may have multiple labels (attributed trees)50.

Algorithms such as TreeMiner can also be extended with minor modifications for similar

tree mining problems such as discovering unlabeled subtrees, unordered subtrees and frequent

sub-forests (disconnected subtrees)41.

Other tasks. Several variations of the above tasks have also been proposed such as to

discover frequent sub-DAG in a database of DAG (directed acyclic graphs)59, and to discover

frequent subgraphs in a database of outter-planar graphs (a type of graphs that can be drawn
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on a plane without any crossing edges)60.

MINING PATTERNS IN A SINGLE STATIC GRAPH

The previous subsection has reviewed techniques for mining patterns in a database of static

graphs. This section reviews the main tasks for discovering patterns in a single static graph.

Frequent subgraph mining in a single graph. Some frequent subgraph mining

algorithms can be adapted to mine frequent subgraphs appearing frequently in a single

graph. To do this, it is necessary to define an appropriate support counting function. A

simple solution is to define the support of a pattern as its number of occurrences in the

graph. For example, consider the graph G of Fig. 5 (left). Fig. 5 (right) shows frequent

subgraphs found in G when the minimum threshold is set to 2 occurrences (right). However,

this simple definition raises two important problems. First, it allows subgraph occurrences

to be overlapping, which may be undesirable for some applications. Second, this support

measure is not anti-monotonic (the support of a subgraph may be greater, smaller or equal to

the support of its supergraphs), and thus the powerful downward closure property cannot be

directly used to reduce the search space47,48. This is illustrated with a simple example48. In a

graph X − Y − X , the subgraph Y has one occurrence: X − Y − X . The subgraph

X − Y has two overlapping occurrences: X − Y − X and X − Y − X . And,

X − Y − X has a single occurrence: X − Y − X . To address this issue, several

alternative support counting functions that are anti-monotonic have been defined47. An

example of such frequency measure is the MNI (Minimum Node Image) support88, defined as

follows. Consider a subgraphGx = (Vx, Ex) that hasm subgraph isomorphisms (embeddings)

in a single connected labeled graph G. For each such subgraph isomorphism Gi = (Vi, Ei),

let fi : Vx → Vi be the mapping between vertices in Gx and Gi. The MNI support of Gx

in G is defined as MNI(Gx, G) = minv∈Vx|{fi(v)|i = 1, 2 . . .m}|, i.e. the smallest number

of vertices in G that match with a vertex in Gx as parts of its embeddings. For example,

the MNI support of X − Y in the graph X − Y − X is 1, while that of X is 2,

respecting the downward closure property. The MNI support has been used in several papers

because it is anti-monotone and can be calculated efficiently49,66,88. An up-to-date overview

of other support measures for a single graph is presented in a paper by Meng and Tu47.
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Three representative algorithms to discover frequent subgraphs in a single graph are

SIGRAM65, GRAMI66 and MuGram49. SIGRAM first identifies all vertices that appear at

least minsup times in the input graph and stores their embeddings. Then, SIGRAM uses

these embeddings to extend these patterns to find larger subgraphs and in turn, calculate

their embeddings and support. This process is then repeated to find all frequent subgraphs

using either a breadth-first search or depth-first search. However, a drawback of that ap-

proach is that storing embeddings can consume a large amount of memory66. To address

this issue, GRAMI66 does not store all embeddings and only tries to find enough embeddings

of any subgraph to prove that it is frequent according to the MNI support. Support calcula-

tion are viewed as a constraint satisfaction problem. To avoid finding duplicate subgraphs,

GRAMI uses the same canonical labeling as gSpan (called DFS code). GRAMI can support

both directed and undirected graphs, some simple constraints (e.g. a label cannot appear

more than a given number of times in a subgraph), and an approximate version was also de-

signed. But the above algorithms do not support mining patterns in a multi-relational graph

(where multiple edges of different types may connect a same pair of nodes such as in a social

network)49. The MuGram49 algorithm was proposed to handle this case. MuGram performs

a depth-first search starting from frequent edges to find all frequent subgraphs. When a

frequent subgraph is found, its canonical representation is compared with those of previ-

ously found subgraphs to detect duplicate patterns. Similarly to GRAMI, MuGram applies

heuristics to just find enough embeddings of a subgraph to prove that it is frequent. Besides

the above studies, to improve efficiency of subgraph mining in a single graph, researchers

have also proposed distributed algorithms67.

Compressing patterns. Some algorithms have also been designed to find subgraphs

that compress a graph61–64. The most representative algorithm of this type is SUBDUE61.

It finds subgraphs that compress an input graph well when replacing those subgraphs with

single vertices. SUBDUE applies an heuristic beam search to reduce the search space, and

evaluates compression based on the minimum description length principle. Finding com-

pressing patterns is insightful for some domains but it is not guaranteed that those patterns

are frequent65. In recent years, various algorithms inspired by SUBDUE have been pro-

posed62–64.
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Motifs. A different perspective is adopted in the field of network sciences, where several

studies have been done on identifying network motifs (subgraphs) that explain the underlying

principles of a graph68,69. The key idea in these studies is to compare motifs from an input

graph with those in randomly generated graph(s) to identify motifs that are significantly

different in the former compared to the latter with respect to a measure69. For example,

if the frequency measure is used, the aim is to find motifs that appear significantly more

often in the input graph than in random graph(s). For such comparison, it is important

that the randomly generated graph(s) have structural properties that are similar to those of

the input graph (e.g. in terms of average number of edges per vertex). A detailed survey

of a dozen measures for network motif discovery was published by Xia et al.68. These

measures can be generally categorized as statistical measures (e.g. frequency) and structural

measures (e.g. number of edges per vertex)68. Moreover, some measures are designed for

using motifs for clustering and classification47. Several algorithms have been proposed for

identifying network motifs69. While some of them guarantee an exact solution71–73, others

apply a sampling approach and find an approximate solution70. The algorithms use several

ideas also utilized in frequent subgraph mining such as relying on canonical labelings to

identify duplicate motifs69, performing a pattern-growth exploration to avoid generating

non existing candidates70,72,73, and applying symmetry breaking techniques to reduce the

number of calculations70,71. Studies on network motifs have several important applications

for analyzing biological networks and have also been applied in other fields68,70,71,73.

Frequent subtree mining in a single tree. Finding subtrees in a tree database is an

important data mining task, which was discussed in the previous subsection. It was shown

that some algorithms for mining subtrees in a tree database such as TreeMiner can also be

easily adapted to mine frequent trees from a single large tree41.
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Figure 6: A directed labeled graph, three traversal paths, and some traversal patterns found

for minsup = 2

Traversal pattern mining. This task consists of identifying all frequent sub-paths

(traversal patterns) in a database of paths over a single graph. This task has applications

such as analyzing webpage access patterns on a website (where pages are nodes and links are

edges) and finding common car trajectories (where nodes are road intersections and edges are

road segments connecting them)56–58. The basic problem is to find all sub-paths appearing

in at least minsup paths, where minsup is a threshold set by the users57. For example,

consider the graph of Fig. 6 a) and three trajectories over this graph depicted in Fig. 6 b).

By setting minsup = 2, frequent subpaths of Fig. 6 c) are obtained. Sub-paths must preserve

the visiting order of nodes but may skip some nodes. To obtain these patterns, a sequential

pattern mining (SPM) algorithm1 can be applied by considering each path as a sequence of

symbols. The task of SPM consists of finding all subsequences that frequently occur in a set

of sequences. In the context of traversal pattern mining, a SPM algorithm starts by finding

frequent paths containing a single node and then recursively extends these frequent paths to

find larger paths using a breadth-first or depth-first search, while pruning the search space

using the anti-monotonicity of the support. However, a drawback of SPM algorithms is that

they ignore the graph structure.

To exploit the graph structure, Nanopoulos and Manolopoulos57 proposed three algo-

rithms relying on different search strategies. Then, various extensions of traversal pattern

mining have been proposed. The WTPMiner algorithm56 mines frequent sub-paths from

paths over a graph where weights are associated to edges or vertices to indicate their relative

importance. A framework was also proposed to find traversal paths in a directed graph for

specific time periods (e.g. to find the most frequent paths to reach a destination during

lunch time)58.
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MINING PATTERNS IN DYNAMIC GRAPHS

Pattern mining algorithms reviewed in the previous section have many applications but do

not consider the time dimension. Designing algorithms that consider time is desirable for

many applications but is challenging for three main reasons. First, problem definitions and

interestingness measures for selecting patterns in a static graph must often be redefined to

handle time. But considering novel or adapted measures requires to study their properties

and design novel strategies to handle them during the mining process79–81,102. Second, while

some algorithms can be extended in a relatively simple way to consider time74,75, other al-

gorithms are not easily adapted because optimizations, data structures and search strategies

for mining patterns in static graphs are sometimes too specialized, and thus hard to extend.

In such case, novel techniques must be designed. Third, adding the time dimension to an

existing pattern mining problem generally makes the problem much more difficult. For in-

stance, increasing the number of timestamps for some problems can greatly increase the size

of the search space74,75,102.

Several algorithms have been designed to efficiently discover patterns revealing how

graph(s) evolve over time. These studies often draw inspiration from those on static graphs

as some challenges remain the same but also include many novel ideas. The next three sub-

sections review studies on discovering patterns in three main types of data: (1) a dynamic

graph, (2) a database of dynamic graphs, and (3) a dynamic attributed graph. Then, the last

subsection discusses other extensions. For the convenience of the reader, Fig. 7 shows a tree

indicating the main data types and pattern types discussed in this section. Relationships

between studies on dynamic graphs and those on static graphs will be discussed through the

section.

MINING PATTERNS IN A SINGLE DYNAMIC GRAPH

Several studies have been done on finding patterns in a single dynamic graph. Researchers

that have contributed to these studies are from various research fields such as data mining,

statistics and network science. Several names have been used with a more or less simi-

lar meaning to refer to a graph that changes over time such as dynamic graph, dynamic
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Figure 7: Main types of patterns discovered in dynamic graphs

network, evolving graph, temporal graph, graph sequence, time-series of graph, and time-

varying graph. There are two main research sub-areas: (1) techniques to analyze a social

network with a focus on community detection52,53, and (2) pattern mining techniques to

identify interesting patterns74,79,82,89. As explained in the introduction, this survey focuses

on techniques for mining patterns in dynamic graphs. To know more about community

detection techniques, the interested reader may refer to recent surveys on this topic52,53.

This subsection first introduces a formal definition of a dynamic graph and important

related terms. Then, a taxonomy of the main types of dynamic graphs is presented based

on what is changing in a graph. Lastly, key studies on pattern mining in a dynamic graph

are discussed.

Single dynamic graph. Formally, a single dynamic graph is a sequence of labeled

graphs G = 〈G1, G2, ..., GT 〉 in which a graph Gt represents the state of the dynamic graph

at time t. The graph Gt = (Vt, Et, λt) consists of a set of vertices Vt at time t, a set of edges

Et ⊆ Vt× Vt at time t, and a labelling function λt : Vt ∪Et → R mapping edges and vertices

of Gt to labels (represented by numbers or literals) at time t. A graph at a time t is also

called a snapshot of the dynamic graph G. For the sake of brevity, this subsection will refer

to a single dynamic graph as a dynamic graph.

A taxonomy of dynamic graphs. The above definition is a generic definition of

dynamic graph. Different variations of this definition are considered in the literature for

the needs of different applications. They can be categorized based on their structure as

discussed in the previous section (e.g. directed/undirected graphs, weighted graphs, trees,
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and attributed graphs), but more importantly they can be described in terms of what is

changing in a graph over time. Two main types of evolutions (changes) have been mainly

considered. A topological evolution refers to changes in a graph topology such as adding and

removing vertices and edges. A label evolution refers to changes of labels associated to edges

and/or vertices.

Based on these concepts, three types of dynamic graphs can be identified: (1) dynamic

graphs with only topological evolution74,76,79,80,82–84, (2) dynamic graphs with only label

evolution89, and (3) dynamic graphs with both topological and label evolution75,86,87,90,91.

Studies on the third type of dynamic graphs mostly focus on a type of graph called dynamic

attributed graphs, which will be discussed in a following subsection. Studies on such graphs

mainly aim to analyze the evolution of multiple attributes and their relationships over time.

Fig. 8 provides examples of these different types of dynamic graphs, which evolve over three

timestamps t1, t2 and t3. Although only vertices are labelled in this example, edge labels can

also be considered. Note that besides these main types of graphs, some authors also use the

terms evolving graph or streaming graph to refer to a graph that is continuously updated

with new snapshots76,113,114. Mining patterns in a streaming graph is more challenging as

results must often be updated in real-time as new data arrives, and if the stream is infinite,

data can only be read once.

The following paragraphs discuss the main types of patterns that are discovered in a

dynamic graph.

Mining frequent subgraphs in a dynamic graph. FSM is the most well-studied

problem for mining patterns in a static graph. Several studies have been done on mining

frequent subgraphs in a single large graph47,48 (see previous section). And in general, FSM

has inspired most studies on pattern mining in graphs. Nowadays, with the increasing

amount of data, more and more data has rich temporal information that can be modeled as

dynamic graphs. Hence, FSM was naturally extended to analyze dynamic graphs74.

The first formal definition of FSM in a dynamic graph was proposed by Borgwardt et

al.74. They designed an algorithm, which internally represents a dynamic graph (a sequence

of snapshots) as a single union graph. In this graph, each edge is labeled with a bit string

(a sequence of 0s and 1s), which describes the edge’s status over time. For instance, an edge
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labeled as ”010” means that this edge did not exist at time 1, appeared at time 2, and did

not exist at time 3. This graph representation is very similar to that used for FSM in a single

large static graph47,48. The difference is that strings are added to edges to store information

about edge evolution. To find frequent subgraphs, Borgwardt et al. extended the GREW

algorithm78, which is designed for FSM in a single graph. The modified algorithm is called

Dynamic GREW74. It is a breadth-first search algorithm, which generates large dynamic

subgraphs by joining smaller frequent dynamic subgraphs previously found. To find frequent

subgraphs, Dynamic GREW generates more candidates than GREW because many frequent

substrings may need to be considered for a same subgraph. Moreover, isomorphism checking

is more complex in Dynamic GREW because substring checking must be performed when

comparing two subgraphs. The output of Dynamic GREW is a series of subgraphs with

bit strings representing temporal behaviors over consecutive timestamps that frequently oc-

curred in the input dynamic graph. The algorithm can output either synchronous subgraphs

(each occurrence must start at the same time) or asynchronous subgraphs (occurrences of a

subgraph are not required to start at the same time). Patterns found using Dynamic GREW

can help understanding how graph edges evolve (appear or disappear)78. It was shown to
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reveal interesting patterns in e-mail interactions between employees of a company, which

were modelled as a dynamic graph. But Dynamic GREW has three key limitations: it uses

a greedy heuristic approach like GREW that trades completeness of results for speed, it

considers that edges are unlabelled, and it can have long runtimes75.

Wackerseuther et al. improved upon that work in several ways75. They considered a

richer graph model where each graph edge is annotated with a string that contains edge

labels for each timestamp, rather than only 0s and 1s. An edge label is either a symbol

(e.g. a, b and c) to describe an edge, or a special ε label indicating that an edge did not

exist at the corresponding timestamp. Before mining patterns, a union graph is created by

combining the information of all timestamps. For instance, Fig. 9 a) shows a dynamic graph

and Fig. 9 b) shows the corresponding union graph representation.

Based on that graph representation, Wackerseuther et al. designed a framework to dis-

cover dynamic frequent subgraphs where edge strings indicate label evolution. For instance,

Fig. 9 c) shows a frequent subgraph found for a minimum support of 2. To discover such

patterns, Wackerseuther et al. designed a generic framework that first applies a traditional

FSM algorithm to find all frequent subgraphs in the static input graph, while ignoring edge

strings. Then, the framework searches in each subgraph to find dynamic frequent subgraphs

with edge strings. This is done by checking all embeddings (occurrences) of a subgraph
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to find frequently appearing edge substrings. To efficiently compare graph occurrences, a

canonical edge order similar to the one used by gSpan2 was defined, and a suffix-tree is

used to find the frequent longest subtrings in linear time. Advantages of this approach are

that it is efficient, it guarantees finding all the desired patterns, it relies on existing FSM

algorithms, and it considers label evolution. Wackerseuther et al. applied their approach

to find interesting patterns in a single graph representing protein-protein interactions from

yeast, where gene expression levels vary over time75.

Contrary to the above two algorithms, which focus on finding frequent subgraphs rep-

resenting dynamic behaviors, Abedlhamid et al.76 proposed to identify subgraphs that are

frequent in each snapshot of a dynamic graph. To perform this task, a simple solution is

to apply a traditional FSM algorithm to each snapshot and then to combine the results.

However, this is inefficient because it does not take advantage of the fact that consecutive

snapshots are generally similar. To address this problem, Abedlhamid et al. developed an

efficient incremental algorithm named IncGM+. Unlike the previous two algorithms, it does

not model a dynamic graph as a single graph. It instead processes each new graph one

by one using an approach inspired by the Moment algorithm for frequent itemset mining

in a stream77. This approach consists of mining frequent subgraphs in the first snapshot,

and then to only update the ”fringe” patterns (those who are at the boundary between

frequent and infrequent patterns) when a new transaction (graph) is processed. This allows

to reduce the computational cost of the mining task. IncGM+ also introduces three other

performance optimizations. First, instead of storing all embeddings of each fringe subgraph,

IncGM+ keeps a minimal number of embeddings for each fringe subgraph which can sig-

nificantly reduce runtimes and memory usage. Second, a data structure was proposed to

efficiently maintain embedding lists to perform fast support calculations. Third, graphs can

be processed by batches to further improve efficiency. IncGM+ was applied to mine patterns

in (1) Twitter data where a node is a person and a link indicates that a person follows an-

other, (2) a graph where nodes are US patents and links are citations, (3) a similar graph for

citations between research papers, and (4) a dynamic graph representing communications

between users of an instant messaging software.

Mining periodic patterns in a dynamic graph. The second main type of patterns
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that has been studied in a single dynamic graph is periodic patterns79–81. Lahiri et al.79

introduced this concept to find repeating interactions in a dynamic graph. For example,

one could study a dataset about cellphone calls between people to find interactions that

are repeating over time. That study considered finding patterns in a dynamic graph, where

snapshots are equally spaced in time (a time-series of graphs), edges representing interactions

between vertex are directed or undirected, and vertex labels are unique. This latter assump-

tion greatly simplifies subgraph mining problems as a graph can be represented as a set of

integers (each representing the presence of an edge or vertex), which allows to efficiently

perform isomorphism checking using the subset operator ⊆. In that study, a subgraph is

considered to be periodic in a time interval if it appears some minimum number of times

in that interval, every consecutive occurrences of the subgraph in that interval is separated

by the same amount of time, and the time interval cannot be extended while preserving the

previous properties. Furthermore, to eliminate redundancy, it was proposed to only discover

closed subgraphs32, and to find a minimal set of patterns that covers all periodic occurrences

of all periodic subgraphs. An example of periodic pattern in the time interval [t1, t5] is shown

in Fig. 10 c), which appears at timestamps t1, t3, and t5 of the dynamic graph of Fig. 10 a).

Fig. 10 b) shows two frequent subgraphs that are found for a minimum support of 3 where the

second one is filtered because it is not periodic. To assess the periodic behavior of a pattern,

the Purity measure is used, which filters out periodic patterns that occur too frequently in

a time sub-interval. Moreover, to allow finding periodic patterns that are not eqally spaced

in time, it was proposed to apply smoothing to the snapshots as a preprocessing step. An

algorithm named PSEMiner was designed to find the desired patterns in polynomial time.

PSEMiner was applied to discover interesting repeating interactions in four types of dynamic

graphs: (1) e-mail communications between employees of a business, (2) social interactions

of plain zebras in Kenya, (3) cellphone interactions between university students, and (4) as-

sociations between celebrities that are photographed together in the press79. Several other

algorithms have then been proposed to improve the efficiency of mining periodic subgraphs

in a dynamic graph80,81. One of those studies applied periodic subgraph mining to analyze

social interactions on the Youtube website to find patterns indicating how users join groups,

and on data from the Facebook social network to study how users interact through wall
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messages80.

Mining association rules in a dynamic graph. The third main type of patterns

found in a dynamic graph is rules82–84,86,87. Such studies draw inspiration from the traditional

data mining task of discovering association rules in transaction databases10.

Berlingerio et al.82 introduced an algorithm named GERW to discover a novel type of

rules called graph evolution rules (GER) in a dynamic graph. Similar to previous algorithms,

GERW first transforms a graph sequence into a single union graph to then mine patterns in

that graph. In the union graph of GERW, a label on each edge indicates the timestamp of its

first appearance. Then, a FSM algorithm for a large static graph can be applied on the union

graph to find frequent subgraphs88. However, the constraint that labels should be identical

for two embeddings of a subgraph should not be enforced because edge labels represent

timestamps instead of attribute values. Thus, the GERW algorithm first mines relative-time

patterns, that is subgraphs having embeddings that are structurally isomorphic and where

edge labels (timestamps) differ only by a constant. For instance, Fig. 11 a) shows a union

graph, and Fig. 11 b) shows two embeddings of a subgraph where timestamps differ only

by 1 time unit. These embeddings are said to belong to the same equivalence class though

their edge labels are not the same. After finding all frequent patterns, the algorithm extracts

graph evolution rules from these patterns. A rule has the form body→ head where head is a

frequent pattern and body is obtained by removing the edges having the largest timestamps

such that the subgraph remains connected. A rule is output if the confidence between body
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and head satisfies a minimum confidence threshold. GERW was applied to analyze (1)

friendships links between users on the Flickr and Yahoo 360 websites, and (2) co-autorship

of research papers on the Arxiv and DBLP websites82. Thereafter, other algorithms were

proposed based on the same framework to mine rules in different kinds of dynamic graphs

and/or to address limitations of GERW such that it does not consider edge deletion and

edge relabeling.

Leung et al.83 proposed to mine Link Formation Rules (LFR) in directed dynamic graphs

with multiple edge labels. LFR are discovered by enforcing more strict constraints on rules

than GERW does. A LFR indicates how a subgraph is extended by adding a new link from

a start node to an end node, with the restriction that every node in the subgraph must have

a direct link to the start node or end node. A GER is equivalent to a set of LFR having the

same base patterns and where edge timestamps respect the GER’s definition. However, these

two studies focus on finding association rules in two different types of dynamic graphs. Ozaki

et al. 84 then adapted the concept of LFR for simple dynamic graphs. In that work, a LFR

represents the addition of an undirected edge to a base pattern (subgraph). Furthermore,

two relationships between LFR are defined. First, two LFR are said to be correlated if

their base pattern is the same and the two extra edges always appear together when the

base pattern appears. Second, two LFR are said to be contrast when their base pattern is

the same and always one or the other extra edge appears when the base pattern appears.

To reduce redundancy among patterns and improve pattern mining efficiency, the study

only consider δ-closed subgraphs85 as base patterns. The above studies have been applied

to analyze interactions between users of a product review website named Epinions and a

mobile social network called MyGamma83, as well as e-mail communications and student
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interactions84.

All the above rule mining algorithms are useful but have the limitation that they cannot

handle dynamic graphs with edge or vertex deletion and relabeling. This is because their

union graph structure only considers the timestamp of the first appearance of each edge.

To address this limitation, two methods were proposed that keep more information about

dynamic graphs by transforming them into a database of union graphs. The first method

named DGRMiner was introduced by Vaculik86. It can find rules either in a dynamic graph

or in a database of dynamic graphs, where any type of changes may appear and where

edges may be directed or undirected. To mine patterns in a dynamic graph containing n

snapshots, DGRMiner first transforms the dynamic graph into a set of n − 1 union graphs

that will then be treated as a set of static graphs for mining patterns. The k-th union

graph contains the union of the first k snapshots and indicates changes between the k-

th and the (k + 1)-th snapshot using relative timestamps. After creating union graphs,

a modified frequent subgraph mining algorithm inspired by gSpan is applied on them to

mine rules that have a high support and confidence (an estimation of the rule’s conditional

probability). The algorithm applies a depth-first search and detects duplicate subgraphs

using a modified version of gSpan’s DFS code, which stores information about timestamps

and edge directions. DGRMiner was applied to analyze e-mail interactions and student

resolution proofs in propositional logics. The second method proposed by Scharwachter et

al.87 is named EvoMine and supports dynamic graphs with edge deletion and relabeling.

EvoMine has many similarities with DGRMiner, the main difference being that EvoMine

relies on bit strings to represent the status of edges and vertices for FSM. Moreover, EvoMine

creates union graphs only from pairs of consecutive snapshots. The EvoMine implementation

uses the gSpan algorithm as its core for finding frequent subgraphs. Scharwachter et al.

applied EvoMine to analyze research paper co-authorship relationships on DBLP as well as

interactions between users on the EPinion website.

Mining motifs in a dynamic graph. The fourth main type of patterns found in a

dynamic graph are motifs, which are small patterns of interconnections that occur more

frequently in a large graph than they would in a randomized or reference graph. Motifs thus

characterize a graph’s structure and can reveal its design principles. The concept of motifs
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was initially proposed by the network science community in the context of static graphs to

analyze various types of data such as biological, ecological and web data111,112 (as discussed

in the previous section). Then, it was extended for dynamic graphs.

Jin et al.89 proposed to extract trend motifs from a labeled dynamic graph where the

topology is fixed, vertices have weights, and only weights are changing over time. A trend

Motif is defined as a connected subgraph consisting of nodes that show a trend (increasing or

decreasing weights) over some time span. The assumption is that a change of a node’s weight

is not an isolated event and it tends to be correlated with that of its neighbors. Jin et al.

designed an algorithm to find all frequent trend motifs that are over-represented in a dynamic

graph. The algorithm first finds maximal time intervals where trends appear for each vertex.

Then, a depth-first search is applied to find induced subgraphs combining either increasing

or decreasing trends for several vertices, and finally a breadth-first search is performed to

generate frequent motifs combining several motif occurrences. As in many other studies, a

canonical code is calculated for each pattern to detect duplicates. The algorithm revealed

interesting patterns in stock market and micro-array data.

Ahmed and Karypis then proposed to mine coevolving relational motifs (CRM)90 in

a dynamic labeled graph where labels can change, and edges may be added or removed

over time. A CRM is set of motifs (sets of vertices) that change in a consistent way over

time. The biggest difference between trend motifs and CRM is that the latter can capture

multiple trends over several timestamps (a consecutive sequence of motifs), while each node

in a trend motif can only have a single trend (increase or decrease) over a time span. An

algorithm named CRMminer was proposed to extract all frequent CRM. The algorithm

first finds frequent motifs occurrences using a depth-first search, which relies on a modified

version of gSpan’s DFS code to provide a canonical labelling for CRM. Then, a traditional

sequential pattern mining algorithm1 performing a depth-first search is applied to combine

motifs occurrences into frequent sequences. CRMminer was applied to analyze real data

including cell culture bioprocess data collected from bioreactors and years of sales data from

retail stores. To further improve the efficiency and reduce redundancy, Ahmed and Karypis

proposed to mine coevolving induced relational motifs (CIRM)91, by adding the constraint of

finding only induced subgraphs for CRM. An algorithm efficient algorithm named CIRMiner
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was designed for this task.

The above motif definitions can only capture temporal changes that appear between

two consecutive snapshots, which is very restrictive and can miss some important changes.

Paranjape et al. proposed to find another type of motifs in dynamic graphs with only

topological changes92. The proposed method creates an union graph to represent dynamic

graphs where edge labels store all appearing timestamp of edges. Considering the edge

appearing order, a δ-temporal motif is defined as an ordered sequence of edges within a

time window δ such that the induced static graph of its edges is connected. The authors

developed algorithms to count the number of instances of δ-temporal motifs. Though the

algorithms are fast and can scale to large graphs, they can only find 2-node motifs and

3-node, 3-edge star or triangle motifs. Moreover, the algorithms only count the number of

instances of each motif but do not enumerate them, and do not use search space pruning

strategies (differently from most algorithms reviewed in this survey). The algorithms were

applied on various datasets of user interactions including cryptocurrency transactions, SMS

and phone calls.

Other patterns. Besides the four main types of patterns described above, a few other

types of patterns have been studied. The next paragraphs discuss four of them.

Robardet et al. proposed a constraint-based pattern mining approach93 to find dense

and isolated subgraphs. Finding such patterns is similar to the task of community detection.

Dense and isolated subgraphs are detected in each snapshot and their evolution is studied

over time in terms of formation, dissolution, growth, and stability. The approach was utilized

to analyze the usage of public shared bikes and interactions among students.

Another type of evolution patterns was proposed by Ahmed and Karypis94. That study

focuses on the evolution of Induced Relational Subgraphs (IRS). An IRS is an induced

subgraph where vertices, edges and labels remain unchanged for a long time (a parameter).

They designed an algorithm to find evolving induced relational states, which are patterns

having the form S1 −→ S2 −→ S3 where the notation Si denotes an IRS. The algorithm was

applied to analyze e-mail communications, patent citations as well as the import and export

relations of 192 countries.

Bogdanov et al.95 designed an algorithm named MEEDEN to find patterns in a spe-
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cial type of dynamic graphs having binary edge labels {−1, 1}. The algorithm finds the

highest-scoring temporal subgraphs, called Heaviest Dynamic Subgraph (HDS). The score of

a subgraph is the sum of its edge weights. A HDS in a dynamic graph representing traf-

fic movement can for example indicate the most congested connected streets during some

periods of time. While finding high-scoring subgraphs in a static graph is easy, the prob-

lem is difficult in a dynamic graph because various time sub-intervals must be considered.

To find patterns efficiently, MEEDEN utilizes pruning techniques to ignore unpromising

time sub-intervals. The algorithm was applied to analyze transportation, social media and

communication graphs.

In another study, Yang et al.96 proposed to detect areas of an undirected dynamic graph

that are frequently changing. This is useful for several applications such as analyzing traffic

data as frequently changing areas may face frequent traffic jam. Yang et al. proposed to

mine the most frequently changing components of a dynamic graph, where components are

dense and connected subgraphs. Using that proposed approach, patterns were mined in

internet traffic data, comments on a news website, and shopping data.

Summary. This subsection has reviewed algorithms for mining various types of patterns

in a single dynamic graph. Several of those algorithms use a union graph-based represen-

tation, but encode time in different ways and utilize different measures, according to the

task82,86,87,92. While some studies directly apply a traditional FSM algorithm on a union

graph with some preprocessing or post-processing techniques75,87, others apply custom algo-

rithms. Moreover, the reviewed algorithms generally adapt concepts used for static graph

mining such as that of using a canonical labeling to detect duplicate patterns75,87,89,90, that

of using a breadth-first search by combining smaller patterns to generate larger patterns82,89,

or that of using a pattern-growth approach to avoid generating candidates that do not exist

in the database86. Some algorithms such as CRMminer also find subgraphs and then use a

sequential pattern mining algorithm to combine subgraphs into sequences90. Besides, some

motif discovery algorithms utilize more of a brute-force approach by simply evaluating all

patterns without search space pruning strategies92.
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Figure 12: A graph sequence database containing two graph sequences

MINING PATTERNS IN A GRAPH SEQUENCE DATABASE

Studies reviewed in the previous section have considered mining patterns in a single dynamic

graph (a graph sequence). This section reviews studies on mining patterns in a graph

sequence database, that is patterns appearing in several graph sequences. The section first

introduces important definitions, and then describes the main types of patterns that are

found in a graph sequence database. Graph sequence databases are found in several domains

such as in social networks and gene networks. For example, in a social network, each person

may have a graph sequence representing the evolution of its relationships with others108–110.

Formally, a graph sequence database GDB is a set of tuples 〈sid, d〉, where sid is a

unique sequence identifier (ID) and d is a graph sequence. Recall that a graph sequence

d = 〈G(1), G(2), ..., G(m)〉 is an ordered list of graphs (as defined in the previous subsection).

For example, Fig. 12 shows a graph sequence database that contains two graph sequences

having the IDs Sid1 and Sid2. In sequence Sid1, there are five elements (graphs), unique

IDs (1, 2, 3 and 4) are used to refer to vertices, and each vertex has a label (A, B or C).

Real-life graph sequence databases are often large and sparse. Representing a graph

sequence database as a list of graphs can require a considerable amount of space because

many parts of a graph may remain unchanged over time. Storing these unmodified elements

for consecutive timestamps results in storing redundant information. Using this simple

representation can also make it time and memory consuming for mining knowledge in a

large and sparse graph sequence database. To compactly represent a graph and facilitate its

analysis, several methods have been proposed such as Graph Grammar106. However, this

latter was designed to be applied to a single graph. To compactly and efficiently represent a
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graph sequence, Akihiro et al.104 focused on the differences between each pair of successive

graphs and proposed a novel graph grammatical framework which describes a graph sequence

as the application of several transformation rules to an initial graph.

A transformation rule indicates a change (e.g. adding an edge or changing a label) that

appeared between two consecutive snapshots of a graph sequence. In other words, a rule

indicates how a snapshot has changed from a timestamp to the next. A graph sequence

can then be described by the successive application of transformation rules to the initial

snapshot. Such sequence of transformations is called a transformation rule sequence. A

more formal definition is given below104.

Intrastate sequence. Let there be a graph sequence d = 〈G(1), G(2), ..., G(m)〉 containing

m snapshots. Consider two graphs G(j) and G(j+1) from consecutive timestamps that have

mj differences. The differences between these two graphs can be described by a sequence

of intermediate graphs s(j) = 〈G(j,1), G(j,2), ..., G(j,mj)〉 called intrastate sequence such that

each intermediate graph has only a single difference with the preceding intermediate graph,

and where G(j,1) = G(j) and G(j,mj) = G(j+1). Based on this idea, the sequence d can be

represented as an interstate sequence defined as 〈s(1), s(2), ..., s(m−1)〉.

Transformation rule (TR). A transformation rule that transforms a graph G(j,k) into

another G(j,k+1) of an intrastate sequence is denoted as 〈tr(j,k)[ojk,ljk]
〉 where tr is a literal in-

dicating the transformation type, ojk is the unique ID of the vertex or edge to which the

transformation is applied, and ljk is a label that the transformation assigns to a vertex or an

edge. Six types of transformation rules are considered, named and denoted as follows: vertex

insertion vi
(j,k)
[u,l] , vertex deletion vd

(j,k)
[u,·] , vertex relabeling vr

(j,k)
[u,l] , edge insertion ei

(j,k)
[(u1,u2),l]

, edge

deletion ed
(j,k)
[(u1,u2),·] and edge relabeling er

(j,k)
[(u1,u2),l]

.

Transformation rule sequence. Based on the concept of transformation rule, an

intrastate sequence s(j) = 〈G(j,1), G(j,2), . . . , G(j,mj)〉 of a sequence d can be represented by a

sequence of transformation rules seqtr(s(j)) = 〈tr(j,1)[o,l] , tr
(j,2)
[o,l] , . . . , tr

(j,mj−1)
[o,l] 〉. And an interstate

sequence d′ can be represented as seqtr(d) = 〈seqtr(s(1)), seqtr(s(2)), . . . , seqtr(s(m−1))〉.

Inclusion relation. Let there be an intrastate sequence s(j) of a graph sequence d, and

another s′(h) of a graph sequence d′. Their transformation rule sequences are seqtr(s(j)) =

〈tr(j,1)[o,l] , tr
(j,2)
[o,l] , . . . , tr

(j,mj−1)
[o,l] 〉 and seqtr(s′(h)) = 〈tr(h,1)[o,l] , tr

(h,2)
[o,l] , . . . , tr

(j,mh−1)
[o,l] 〉, respectively. Iff
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∀tr(h,r)[o,l] ∈ seqtr(s′(h)),∃tr(j,k)[o,l] ∈ seqtr(s(j)) such that tr
(h,r)
[o,l] = tr

(j,k)
[o,l] , then seqtr(s′(h)) ⊆

seqtr(sj). An inclusion relation is similarly defined for two graph sequences as seqtr(d) =

〈seqtr(s(1))and . . . , seqtr(s(m−1))〉, seqtr(d′) = 〈seqtr(s′(1)), . . . , seqtr(s′(m′−1))〉. Iff there

exist integers 1 ≤ j1 ≤ . . . < jm−1 ≤ m − 1 such that seqtr(s′(h)) ⊆ seq(s(jh)) for

h = 1, 2, . . . ,m′ − 1, then seqtr(d′) ⊆ seqtr(d).

The support (occurrence frequency) of a transformation rule sequence in a graph se-

quence database GDB is denoted and defined as sup(seqtr(d)) = |{di|di∈GDB,seqtr(d)⊆seqtr(di)}|
|GDB| .

For example, Fig 13 a) and b) show the intrastate sequences corresponding to sequence

Sid1 and Sid2 of Fig 12, respectively, and Fig 13 c) shows one of their subsequences. Transfor-

mation rule sequences of Sid1 and Sid2 are seqtr(Sid1) = 〈vi(1,1)[2,B]ei
(1,2)
[(1,2),·]vi

(1,2)
[3,C]vd

(3,1)
[3,·] ed

(3,2)
[(1,2),·]

vd
(3,3)
[1,·] vi

(4,1)
[3,C] ei

(4,2)
[(2,2),·]〉 and seqtr(Sid2) = 〈vi(1,1)[4,B]vd

(2,1)
[4,·] ed

(2,2)
[1,2),·]vd

(2,3)
[1,A]vd

(3,1)
[3,C]〉, respectively. The

subsequence c) is represented by the transformation rule sequence 〈vi(1,1)[3,C]ed
(2,1)
[1,2),·]vd

(2,2)
[1,A]〉 and

has a support of 2/2 = 1.

Mining frequent transformation rules. Given a minimum support threshold, Ak-

ihiro et al.104 proposed to mine the transformation rule sequences whose support is no

less than a user-defined minimum support threshold, called Frequent Transformation Rule

Sequence (FTRS). To efficiently find the FTRSs, Akihiro et al. designed a depth-first

pattern growth algorithm named FTSMiner based on a sequential pattern mining algo-

rithm named PrefixSpan107. FTSMiner relies on the anti-monotonicity property of the sup-

port measure to reduce the search space, which states that if seqtr(d1) ⊂ seqtr(d2) then
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sup(seqtr(d1)) ≥ sup(seqtr(d2)). The algorithm considers that each transformation rule

is an item in a sequence to transform the problem of mining frequent transformation se-

quences into that of frequent sequential pattern mining1. Akihiro et al.104 also extended the

above problem to mine FTRSs from connected graphs. Given a minimum support threshold,

the connected graphs of all graph sequences in a GDB are enumerated. Then, all frequent

connected subgraphs of those connected graphs representing graph sequences are generated

by applying the traditional GASTON algorithm35 for frequent subgraph mining. Finally,

FTRSs are mined from each connected subgraph. FTRSs are interesting because they re-

veal the evolution sequences that frequently occur in a GDB. Thus, FTRSs may be used to

understand a graph and do predictions in some applications. The algorithms were applied

to analyze e-mail communications and interactions between persons.

Mining frequent, relevant induced subgraph subsequences. A limitation of trans-

formation rule sequence mining is that changes in graphs have to be small or gradual and

that there should not be too many vertices, otherwise the performance of the algorithm

decreases. To address this problem and discover long sequences in large graphs, Akihiro

and Takashi105 proposed an algorithm named FRISSMiner to mine another type of patterns

called frequent relevant induced subgraph subsequence (FRISS).

A graph G′(V ′, E ′, L′, l′) is called a subgraph of G(V,E, L, l) denoted as G′ ⊆ G if three

conditions are satisfied, which are 1. (φ(v1), φ(v2)) ∈ E, if (v1, v2) ∈ E ′, 2. l′(v) = l(φ(v)),

and 3. l′((v1, v2)) = l((φ(v1)), φ(v2)), where φ is a mapping function φ : V ′ 7→ V , and

the reverse relation holds. Induced means that if two vertices in V (G′) are adjacent in

G′, then they are also adjacent in G. Formally, an induced subgraph subsequence b′ =

(G′(1), G′(2), .., G′(m)) of a graph sequence b = (G(1), G(2), .., G(n)), where G′(i) ⊆ G(i) and

φ(L′) → L, is denoted as G′ ⊆i G. The support of b′ is denoted and defined as supi(b
′) =

|{sid| (〈sid, d〉 ∈ GDB) ∧ (b′⊆id)}|. The anti-monotocity property holds for ISSs.

Given a minimum support threshold, Akihiro et al.105 proposed to mine frequent ISSs

from connected graph sequences, which are called frequent relevant induced subgraph sub-

sequences (FRISS). By defining a mapping function, the main focus is to mine subgraph

subsequences that share the same structure with graph sequences in the GDB and where

vertex labels match.
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For example, a frequent ISS found in the GDB of Fig. 13 a) b), for a minimum support

of 1, is shown in Fig. 14. It can be observed that the vertices that are adjacent in the

frequent pattern are also adjacent in the GDB. Moreover, there is a correspondence relation

between vertex labels in the graph sequence of the GDB and the subgraph sequence, where

the mapping function is φ(1) = 2, φ(2) = 3, φ(3) = 1.

The proposed FRISSMiner algorithm can be applied to directed or undirected graphs.

FRISSMiner first generates a connected union graph for each graph sequence of the GDB.

Then, all frequent connected induced subgraphs and their embeddings are found in each

union graph by using a frequent subgraph mining algorithm. Then, frequent connected

induced subgraphs are given as input to a modified version of the Prefixspan sequential

pattern mining algorithm107 to mine FRISS. Akihiro et al. have shown that FRISSMiner is

useful to study e-mail interaction patterns.

Summary. Because dynamic graph sequence databases are often large and contain a

large amount of information about vertices and edges from different graph sequences, it is

difficult to mine knowledge (patterns) from such databases. The above algorithms mine

frequent patterns that compactly represent graph sequences using transformation rules and

by considering a mapping relation between vertex labels among different graph sequences.

FRISS can reveal evolution patterns that are common to several sequences of a GDB, which

is helpful to understand the distinct and representative features of a GDB. It is interesting

to observe that the above algorithms break down pattern mining problems into two sub-

problems that can be solved using traditional algorithms: (1) applying a traditional FSM

algorithm on a union graph representation of graph sequences to find frequent subgraphs and

their occurrences, and (2) then combining them using a modified sequential pattern mining

algorithm.

It is challenging and useful to mine patterns in graph sequence databases and potential
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applications are found in many domains. For example, besides the reported applications,

algorithms could be used to analyze transportation data, where a graph sequence and its

attributes may represent relationships between roads and indicate their states (e.g. light

congestion or blocked) at different times. Furthermore, as there are much fewer algorithms

for mining patterns in a graph sequence database than in a single dynamic graph, there are

many research opportunities for developing novel algorithms.

MINING PATTERNS IN A DYNAMIC ATTRIBUTED GRAPH

Until now, this survey has mostly discussed studies for mining patterns in one or more

dynamic labelled graphs, where a label may be associated to each vertex or edge. Although

labelled graphs are used in many domains, it is desirable in some domains to consider more

than one label per edge or vertex. For example, in social network analysis, a social graph

may describe relationships (edges) between persons (vertices), where each person may be

described using multiple attributes such as age, country and gender. Another example

is research collaboration analysis where a research collaboration graph indicates the co-

authorship relations (edges) between persons (vertices), and each person may be described

using multiple attributes such as a publication count for different journals and conferences.

Such data can be viewed as a dynamic graph where attribute values change over time, that

is a dynamic attributed graph.

Formally, a dynamic attributed graph is a sequence of attributed graphs G = 〈G1, G2,

. . . , Gtmax〉 where Gt = (Vt,At, Et, λt), Vt is a set of vertices, At is a set of attributes,

Et ⊆ Vt × Vt is a set of edges, and λt : Vt × At → R is a function that associates a real

value to each vertex-attribute pair, for the timestamp t. To be less influenced by noise

when analyzing raw numerical values, a common practice is to convert numerical attribute

values of a dynamic attributed graph into trends (attribute variations)89,102. For example,

Fig. 15 shows a dynamic attributed graph observed at six timestamps. In that figure, vertices

are named 1, 2, 3, 4 and 5, attributes are named a1, a2 and a3, and attribute values are

numbers. Fig. 16 shows the result of converting that graph into a sequence of trend graphs. In

particular, Fig. 16 (a) shows how attribute values have changed (trends) from the timestamp

t1 to t2 either by increasing (+) or decreasing (−). Similarly, Fig. 16 (b), (c), (d) and (e)
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shows trends for timestamps t2 to t3, t3 to t4, t4 to t5, and t5 to t6. In the following these

time intervals are called ti1, ti2, ti3, ti4 and ti5, respectively.

A dynamic attributed graph is a generalization of the concept of dynamic graph, as

defined in the previous subsection. Considering more than one attribute makes it possible

to find more interesting patterns than when considering a single attribute. The reason is

that patterns may involve one or more attributes, which provide information about how a

graph evolves over time. Moreover, complex relationships between topological variations

and attribute variations may be discovered. Using the concept of dynamic attributed graph

also provides more flexibility to the user because rich information can be encoded using

several attributes, such as local and global topological properties. The process of creating

or selecting attributes for specific needs to then mine patterns is similar to that of feature

engineering in machine learning. A user employing an algorithm for mining patterns in a

dynamic attribute graph can change attributes and run the algorithm again, without having

to change the algorithm. It is to be noted that to our best knowledge no studies on pattern

mining in a dynamic attributed graph have considered assigning attributes to edges. The

following paragraph describes the main pattern mining tasks for discovering patterns in

dynamic attributed graphs.

Mining trend motifs. Trend motifs are a type of patterns found in dynamic attributed

graphs having a single attribute89. A trend motif is a connected subgraph whose vertices

show the same trend (e.g. increase or decrease of an attribute value) during a time interval

of two consecutive timestamps. Discovering trend motifs allows to find important changes in

a dynamic system. A more detailed description of trend motifs was given in the subsection

about mining patterns in a single dynamic graph.

Mining cohesive co-evolution patterns. The concept of cohesive co-evolution pattern

was proposed by Desmier et al.99. It is a set of vertices that are similar (based on a similarity

measure) and display the same trends for some attribute(s) during a time interval. A co-

evolution pattern may appear multiple times in a dynamic attributed graph, where each

occurrence consists of time intervals formed by different pairs of timestamps that may or

may not be consecutive. For example, Fig. 17 a) shows a cohesive co-evolution pattern found

in the dynamic attributed graph of Fig. 16. This pattern indicates that during time intervals
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ti1, ti2, ti3 and ti4, values of attributes a3 of vertices 2, 4 and 5 have increased.

To filter uninteresting cohesive co-evolution patterns, several constraints have been con-

sidered such as a minimum similarity between vertices in a pattern and a volume constraint

to ensure that patterns are less influenced by noise. Using these constraints can not only

filter patterns but also improve the efficiency of pattern discovery. Because of the simple

structure of co-evolution patterns, mining them does not require isomorphism checking or

canonical labeling. Desmier et al. proposed an algorithm that directly enumerates cohesive

co-evolution patterns by recursively appending vertices to patterns following a logical enu-

meration tree, and checking that constraints are satisfied. This approach ensures that no

duplicates are generated.

The algorithm was applied on a landslide dataset consisting of a series of satellite images

where vegetation declines have been observed99. These images were transformed in a dy-

namic attributed graph and patterns were extracted representing regions having experienced

landslides. To make full use of the topological structure among vertices and provide more

possibilities for the user, the authors also proposed other interestingness measures. A user

can utilize these interestingness measures to more precisely express his preferences to select

patterns, which can improve the efficiency of the algorithm (because constraints can help to

reduce the search space).

Mining recurrent patterns. Cheng et al.97 generalized the concept of cohesive co-

evolution pattern by proposing a new type of patterns called recurrent patterns. These

patterns capture how attribute values changed for a set of vertices over a sequence of time

intervals. While a cohesive pattern is a subgraph, a recurrent pattern is a sequence of

subgraphs (vertex sets), where each subgraph can be described using different attributes

and trends. For example, Fig. 17 shows a recurrent pattern indicating changes appearing

at three time intervals. This pattern has two instances, the first one is appearing at ti1,

ti2 and ti3 of Fig. 16, and the second one at ti3, ti4 and ti5. The algorithm proposed

by Cheng et al., named RPMiner, performs loops to consider the different combinations of

time-intervals, to enumerate all patterns. This procedure does not require duplicate checking

and canonical labeling. To select interesting recurrent patterns and improve the efficiency

of pattern discovery, Cheng et al. also considered several constraints such that a pattern

37



5

4

T = <ti1 ,ti2 ,ti3, ti4>

A = {a3+}

5

4

5

1

4

5

1

4

{a1-,a3+}

{a1+,a3+}

{a3+}

{a1+}

{a3+}

a) A cohesive co-evolution pattern b) A recurrent pattern

{a3+}
2 2 2

{a2+,a3+}

{a1+,a3+}

{a3+}

{a1-}

{a2+}

2

c) A significant trend sequence

ti1 ti2 ti3

ti3 ti4 ti5

{a1+,a2+}

{a3-}

tix tix+1

Supporting points:

(ti2, 4) -> (ti3, 1)

(ti4, 1) -> (ti5, 2)

(ti4, 1) -> (ti5, 4)

Figure 17: Examples of patterns found in the dynamic attributed graph of Fig. 16

38



must appear a minimum number of times, non-redundancy, and constraints on the volume

of a vertex set and temporal continuity. Recurrent patterns allow to capture the frequent

evolutions of trends for nodes in a dynamic attributed graph. RPMiner was applied to extract

patterns from a satellite image time series about aquaculture ponds to provide information

to experts about how a set of connected ponds evolve together over time98.

Mining triggering patterns of topological changes. Another type of patterns are

triggering patterns 101. A triggering pattern is a rule of the form L → R where L is a

sequence of attribute variations followed by a single topological change, R. An example of

triggering pattern is {a+, b+}{c−, d−, e−} → {closeness−}, where a, b, c, d and e are node

attributes or topological attributes, the symbol + and − indicate trends, and closeness is a

topological attribute. This pattern indicates that trends on the left side of the rule triggered

the topological change “closeness-” on the right side of rule. Furthermore, the growth rate of a

pattern is measured to ensure that attribute variations triggered the topological change. The

growth rate is defined in that paper as follows. Consider that vertices of the input graph are

divided into two virtual databases. The first one consists of vertices whose attribute variation

sequence contain R and the second one consists of the other vertices. The growth rate is the

ratio of the frequency of L in the first database to its frequency in the second database. In

the above example, a, b, c, d, and e can be topological attributes such as closeness, degree,

number of cycles since such attributes can be encoded as node attributes.

To discover triggering patterns, it was proposed to convert a dynamic attributed graph

into a sequence database and then to apply a frequent sequential pattern mining algorithm1

to extract the desired patterns. In that sequence database representation, each sequence rep-

resents the set of attribute variations of a vertex over time. For example, a frequent sequence

shared by several vertices may be 〈{closeness−, a+}, {numcycles+, b−}, {eigenvector+,

c+}〉. The proposed approach was applied to analyze a trend graph of social bookmarking

activity. Some discovered patterns revealed interesting insights such that if a user increases

its number of bookmarks on some topics, it may trigger an increase of his number of followers.

Mining significant trend sequence. Although mining triggering patterns can reveal

strong correlations between changes in a dynamic attributed graph, there are two main lim-

itations. The first one is that to identify a triggering pattern, the correlation (growth rate)
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is only calculated between the last attribute variation and the topological change. Hence,

patterns may be found where attribute variations in L are weakly correlated with each other.

Such patterns may be misleading for the user. The second limitation is that relationships

between entities are only captured as topological properties, which cause considerable infor-

mation loss and limit the information that can be expressed by the patterns.

To find more interesting strongly correlated patterns, Fournier-Viger et al.102,103 proposed

a novel type of patterns called significant trend sequences. A significant trend sequence

is an ordered list of attribute variations, where consecutive items are strongly correlated.

For example, 〈{a1+, a2+}, {a3−}〉 in Fig. 17 c) is a significant trend sequence that can

be extracted from Fig. 16. To measure the correlation (significance), a novel significance

measure is proposed, which is also based on the growth rate but calculated for all consecutive

attribute variations. In the above example, {a3−} is strongly correlated with {a1+, a2+}

because {a3−} is not globally frequent but it very often follows {a1+, a2+}.

Mining trend sequences is not an easy problem as increasing the number of trends can

exponentially increase the size of the search space. To efficiently mine the proposed patterns,

two projection based algorithms named TSeqMinerdfs and TSeqMinerbfs were designed.

They decompose the pattern mining task into two sub-tasks: (1) finding sets of frequent

attribute variations for a time intervals using a modified itemset mining algorithm, (2) and

extending patterns by combining sets from different time intervals using either a depth-first

search or a breadth-first search. The two algorithms rely on several search space pruning

strategies such as upper bound filtering to avoid exploring the whole search space while

ensuring that all patterns are found. As most algorithms reviewed in this subsection, no

duplicates are generated, and techniques commonly used in FSM such as canonical labeling

and isormorphism checking are not required.

The two algorithms were first applied to the DBLP dataset, which is a dynamic at-

tributed graph about co-authorship relationships between researchers in different confer-

ences and journals over several years. Some interesting trend sequences were found such as

〈{V LDB+}, {ICDE+, V LDB =}〉, which indicates that an author publishing an increas-

ing number of papers in VLDB is likely to publish more ICDE papers while having a stable

number of publications in VLDB at the next timestamp (in terms of years). The two al-
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gorithms were also applied on US flight data collected during several years. An interesting

pattern found is {(NbCancellation−−, NbDivertedF lights−−, NbDelayedDepartures−),

(NbDepartures−, NbCancellations−, NbDivertedF lights−, DelayedDepartures−,

NbDelayedArrivals+)}, which indicates that after an airport recovered from a hurricane’s

damage, the number of cancellations, diverted flights and delayed departures decreased,

which then influenced airports that were not damaged by the hurricane (but are connected).

In that pattern, the symbols − and + indicate a small increase or decrease, while −− and

++ indicate a large increase or decrease, respectively.

Summary. This subsection has reviewed several tasks of mining patterns in a dynamic

attributed graph. Different patterns are discovered using different measures, which can be

suitable for different needs. It is interesting to observe that most algorithms in this subsection

do not rely on traditional FSM techniques, except for the algorithm of Jin et al.89. This is

because the pattern types presented in this section are based on simple forms of subgraphs

(e.g. a vertex set), though they include the time dimension and multiple attributes. Because

of this, some algorithms instead rely on modified itemset mining or sequential pattern mining

algorithms101,102, or use custom pattern enumeration procedures97,99. It is also interesting

that pattern mining problems in a dynamic attributed graph can sometimes be decomposed

into two sub-tasks corresponding to the attribute dimension and the time dimension102.

EXTENSIONS

The previous sections have described the main tasks for discovering patterns in dynamic

graphs. There exists various extensions of these tasks that have not been discussed so far.

This section gives a brief overview.

Several studies have been done on mining patterns in a data stream of graphs113, also

sometimes called streaming graphs or evolving graphs76. A stream is an infinite sequence

of graphs arriving at high speed. To mine patterns in a stream, adapted algorithms need

to be designed because unlike a database, a stream can only be read once and the full

stream cannot be kept in memory. Moreover, data distribution may change over time in

a stream. For instance, Nishioka et al.113 proposed two algorithms for mining frequent

subgraphs in dense graph streams with limited memory using a disk-based structure. In
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another study, Ray et al.114 proposed an algorithm to mine frequent subgraphs in a large

attributed streaming graph. The algorithm is an approximate algorithm, which assumes that

updates arrive as batches, and where each update is composed of adding nodes and edges.

The algorithm timely reports the likely frequent subgraphs, which can help to monitor the

network. The study was applied to social network and movie related data, among others.

Some papers have extended graph pattern mining tasks to consider uncertainty of the

data. For example, Leung and Cuzzocrea115 proposed algorithms to mine frequent subgraphs

in an uncertain data stream where edges are annotated with existential probabilities. Some

papers have also considered finding rare patterns instead of frequent ones118 and weighted

patterns119.

Other papers have also been proposed to solve pattern mining problems of specific appli-

cations. For example, Javel et al.116 designed a method for detecting sequences of changes

in ontologies to reveal how it is edited over time. In that work, an ontology is represented

as a dynamic attributed graph.

Another extension is about privacy-preserving data mining, where the goal is to hide

sensitive patterns that may reveal important information. For example, Cheng et al.117

designed a two-phase algorithm for hiding sensitive subgraphs in the context of frequent

subgraph mining from a graph database. Although this work is not on dynamic graphs, it is

relevant as some dynamic subgraph mining algorithms rely on traditional subgraph mining

algorithms.

RESEARCH OPPORTUNITIES

Mining patterns in dynamic graphs is an active research area. Although several papers have

been published in this field, there are numerous research opportunities. Some of the key

research opportunities are:

• Design more efficient algorithms. Since pattern mining is generally quite com-

putationally expensive, it is important to design more efficient algorithms in terms of

runtime and memory. This can be done by developing novel algorithms, search space

pruning strategies and data structures. Moreover, GPU, multi-thread, and parallel
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algorithms can be designed to scale to very large datasets. Moreover, additional con-

straints may be integrated in algorithms to select more interesting patterns and reduce

the search space.

• Discover patterns in more complex data. A trend in recent years has been to

consider more complex data types such as attributed graphs97,99,100,102, streams113,114,

and graphs with uncertainty115. The reason is that complex data are found in many

applications. Developing models to handle complex data is thus important to address

real-life problems. Examples of novel problems that could be studied are to mine

patterns in attributed graphs with attributes not only on vertices but also on edges and

to mine patterns in a database of attributed graphs. Another interesting possibility

is to consider other graph representations for representing dynamic graphs besides

the snapshot-based model, which is used in all reviewed papers on pattern mining

in dynamic graphs. Wehmuth et al.122 provide an interesting review of alternative

models that could be used. For instance, one could consider a model with continous

time intervals.

• Discover more complex pattern types. Another important research direction

is to develop algorithms to identify more complex patterns that provide more useful

information to users. This can be done by extending pattern definitions or considering

additional constraints or interestingness measures. A source of inspiration can be

other pattern mining tasks such as itemset mining10 and sequential pattern mining1,

for which many extensions have been developed. For example, various types of patterns

involving time have been proposed such as peaks123, trends125 and patterns having a

stable behavior over time124.

• Novel applications. Algorithms for mining patterns in dynamic graphs can be ap-

plied to novel applications where data can be represented as dynamic graphs. This is

especially interesting for emerging applications such as the Internet of Things46, edge

computing44, and Vehicular Ad-hoc NETworks (VANET)45. This may not only pro-

vide solutions to applied problems but the applications may raise new challenges that

may inspire further research.
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CONCLUSION

Dynamic graphs are a type of data commonly found in numerous fields. Discovering patterns

in such graphs can provide insights on data. This survey has provided an overview of

algorithms for discovering patterns in dynamic graphs, including those for mining patterns

in a dynamic graph, graph sequence database, and dynamic attributed graphs. Moreover,

other extensions have been discussed such as graph mining in streams and uncertain data.

Finally, research opportunities have been discussed.
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