
Investigating Crossover Operators in Genetic
Algorithms for High-Utility Itemset Mining

M. Saqib Nawaz1, Philippe Fournier-Viger1,
Wei Song2, Jerry Chun-Wei Lin3, Bernd Noack4

1School of Humanities and Social Sciences,
Harbin Institute of Technology (Shenzhen), Shenzhen, China

2School of Information Science and Technology, North China University of
Technology, Beijing, China

3Department of Computing, Mathematics and Physics, Western Norway University of
Applied Sciences (HVL), Bergen, Norway

4Center for Turbulence Control,
Harbin Institute of Technology (Shenzhen), Shenzhen, China

msaqibnawaz@hit.edu.cn, philfv8@yahoo.com, songwei@ncut.edu.cn,
jerrylin@ieee.org, bernd.noack@hit.edu.cn

Abstract. Genetic Algorithms (GAs) are an excellent approach for min-
ing high-utility itemsets (HUIs) as they can discover most of the HUIs
in a fraction of the time spent by exact algorithms. A key feature of
GAs is crossover operators, which allow individuals in a population to
communicate and exchange information with each other. However, the
usefulness of crossover operator in the overall progress of GAs for high-
utility itemset mining (HUIM) has not been investigated. In this paper,
the headless chicken test is used to analyze four GAs for HUIM. In that
test, crossover operators in the original GAs for HUIM are first replaced
with randomized crossover operators. Then, the performance of origi-
nal GAs with normal crossover are compared with GAs with random
crossover. This allows evaluating the overall usefulness of crossover op-
erators in the progress that GAs make during the search and evolution
process. Through this test, we found that one GA for HUIM performed
poorly, which indicates the absence of well-defined building blocks and
that crossover in that GA was indeed working as a macromutation.

Keywords: High-utility itemsets, Genetic Algorithms, Crossover.

1 Introduction

High-utility itemset mining (HUIM) [1,11,17,20] is a popular data mining prob-
lem, which aims at discovering all important patterns in a quantitative database,
where pattern importance is measured using a numerical utility function. One of
the main applications of HUIM is to enumerate all the sets of items (itemsets)
purchased together that yield a high profit in customer transactions. An itemset
is called a high-utility itemset (HUI) if its utility (profit) value is no less than a
user-specified minimum utility threshold. Several exact HUIM algorithms have
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been designed to efficiently find all HUIs. However, these algorithms can still
have very long runtimes because the search space size is exponential with the
number of distinct items [1]. Long runtimes are inconvenient for users who often
have to wait hours to obtain results even on small databases.

To address this issue, an emerging research direction is to design Nature-
inspired Algorithm (NAs) for HUIM as they can solve hard optimization and
computational problems. NAs have been used for problems ranging from bioin-
formatics and scheduling applications to artificial intelligence and control en-
gineering. Some of the most popular NAs are Genetic Algorithms (GAs) [4],
Simulated Annealing (SA) [8] and Particle Swarm Optimization (PSO) [7]. NAs
were proposed to find HUIs in large databases based on GAs [6, 9, 15, 21], PSO
[9,10,15,16], Artificial Bee Colony (ABC) [14], the Bat algorithm [15] and Ant
Colony System (ACS) [18]. In this paper, we are interested by GAs as they have
excellent performance, are easy to implement and can discover most of the HUIs
in a fraction of the time spent by exact algorithms.

A key feature that differentiates GAs from other NAs is crossover operators.
The crossover process is simple: two chromosomes (solutions) are selected as
parents and parts of them are combined to generate a new solution. The main
idea of crossover is that such combination may yield better child solutions. This
intuition was formalized by Holland [4] with the concept of building blocks used
in schema theory. The mechanics of crossover provides a way to implement this
idea. Thus, all types of crossover share the same idea but the mechanics to
implement the idea can vary considerably. For example, single-point crossover
(SPC) uses a single crossing point while two-point crossover (TPC) uses two.

Despite that GAs provide excellent performance for HUIM, the influence of
crossover for that problem has not been investigated. Assessing the usefulness of
crossover operators in GAs is an important research topic. Jones [5] argued that
crossover mechanics alone can be used effectively for search and evolution even
in the absence of the crossover idea. For this, a testing method (called headless
chicken test) was proposed to examine the usefulness of crossover for a particular
problem instance. In that test, a normal GA is compared with the same GA
that uses a random version of crossover. Using this test, one can distinguish the
gains that the GA makes through the idea of crossover from those made simply
through the mechanics. If GA is not making any additional progress due to the
idea of crossover, one might do as well simply by using macromutations. A poor
performance of the original GA with normal crossover compared to the GA with
random crossover indicates the absence of well-defined building blocks.

In this paper, we perform the headless chicken test to assess the usefulness
of crossover in GAs for HUIM to better understand their performance. We ap-
plied the test on four GAs for HUIM [6, 9, 15, 21]. In the test, original GAs for
HUIM (called normal GAs) were compared with the same GAs with randomized
crossover operators (called randomized GAs). We found that three normal GAs
for HUIM [6,9,21] that use normal crossover such as SPC and uniform crossover
performed almost the same as randomized GAs. The GA for HUIM [15] that
defined a new crossover performed worse than the randomized GA.
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The remainder of this paper is organized as follows. Section 2 briefly dis-
cusses HUIM and GAs respectively. Section 3 provides the details for the headless
chicken test performed on four GAs for HUIM. Section 4 presents the experi-
ments performed in the test and discusses the obtained results. Finally, the paper
is concluded with some remarks in Section 5.

2 Preliminaries

This section introduces preliminaries about high-utility itemset mining and ge-
netic algorithms.

High-utility itemset mining. Let I = {i1, i2, ..., im} be a finite set of
m distinct items and TD = {T1, T2, T3, ..., Tn} be a transaction database.
Each transaction Tc in TD is a subset of I and has a unique integer identifier
c (1 ≤ c ≤ n) called its TID. A set X ⊆ I is called an itemset and an itemset
that contains k items is called a k-itemset. Every item ij in a transaction Tc has
a positive number q(ij , Tc), called its internal utility. This value represents the
purchase quantity (occurrence) of ij in Tc. The external utility p(ij) is the unit
profit value of the item ij . A profit table ptable = {p1, p2, ..., pm} indicates the
profit value pj of each item ij in I.

The overall utility of an item ij in a transaction Tc is defined as u(ij , Tc) =
p(ij) × q(ij , Tc). The utility of an itemset X in a transaction Tc is denoted as
u(X,Tc) and defined as u(X,Tc) =

∑
ij⊆X∧X⊆Tc

u(ij , Tc). The overall utility of
an itemset X in a database TD is defined as u(X) =

∑
X⊆Tc∧Tc∈TD u(X,Tc)

and represents the profit generated by X.
The transaction utility (TU) of a transaction Tc is defined as TU(Tc) =

u(Tc, Tc). The minimum utility threshold δ, specified by the user, is defined as
a percentage of the sum of all TU values for the input database, whereas the
minimum utility value is defined as min_util = δ×

∑
Tc∈TD TU(Tc). An itemset

X is called an HUI if u(X) ≥ min_util.
The problem of HUIM is defined as follows [19]. Given a transaction database

(TD), its profit table (ptable) and the minimum utility threshold, the goal is to
enumerate all itemsets that have utilities equal to or greater than min_util.

To reduce the search space in HUIM, an upper bound on the utility of an
itemset and its supersets called the transaction-weighted utilization (TWU) is
often used [11]. The TWU of an itemset X is the sum of the transaction util-
ities of all the transactions containing X, which is defined as TWU(X) =∑

X⊆Tc∧Tc∈TD TU(Tc). An itemset X is called a high transaction weighted-
utilization itemset (HTWUI) if TWU(X) ≥ min_util; otherwise, X is a low
transaction weighted-utilization itemset (LTWUI). An HTWUI/LTWUI with k
items is called a k-HTWUI/k-LTWUI.

Genetic Algorithms. GAs [4] are based on Darwin’s theory (survival of
the fittest) and biological evolution principles. GAs have the ability to explore
a huge search space (population) to find nearly optimal solutions to difficult
problems that one may not otherwise find in a lifetime. The foremost steps of a
GA include: (1) population generation, (2) selection of candidate solutions from a
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population, (3) crossover and (4) mutation. Candidate solutions in a population
are known as chromosomes or individuals, which are typically finite sequences or
strings (x = x1, x2 ..., xn). Each xi (genes) refers to a particular characteristics
of the chromosome. For a specific problem, GA starts by randomly generating a
set of chromosomes to form a population and evaluates these chromosomes using
a fitness function f . The function takes as parameter a chromosome and returns
a score indicating how good the solution is. The general framework of GAs to
mine HUIs is shown in Figure 1. For HUIM, the utility of an itemset is used
as the fitness function and the stopping criterion is the user-specified maximum
number of generations.

Population Initilization

Selection of HUIs

Crossover  Mutation 

YesNo Stopping
Criterion

Evaluate Fitness of
HUIs

Output HUIs

Fig. 1: General framework of GAs for HUIM

The crossover operator is used to guide the search toward the best solu-
tions. If an appropriate crossing point is chosen, then the combination of sub-
chromosomes from parent chromosomes may produce better child chromosomes.
The mutation operator applies some random changes to one or more genes. This
may transform a chromosome into a better chromosome.

3 The Headless Chicken Test for HUIM using GAs

In this study, we assess the usefulness of crossover operators in GAs for the
HUIM problem by applying the headless chicken test. In that test, a GA with
normal crossover is compared with the identical GA with random crossover. The
random crossover operator is illustrated in Figure 2. While a normal crossover
combines two parents to generate two new individuals (using either SPC or
TPC), a random crossover generates two random individuals and uses them
to do crossover with the parents. In the random crossover, there is no direct
communication between parents. As individuals involved in random crossover
are randomly selected, the operation is purely mechanical and does not carry the
spirit of crossover. Despite the identical mechanical rearrangement, it is argued
that random crossover is not a crossover [5]. A reason is that this operation
does not requires two parents. For example, for TPC, one can simply select the
crossing points and set the loci between the points to randomly chosen alleles.
Hence, random crossover is a macromutation.
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Fig. 2: Headless chicken test with random crossover [5]

This study applies the headless chicken test to four GAs implementations for
HUIM: HUIM-GA [6], HUIM-GA-tree [9], HUIF-GA [15] and HUIM-IGA [21].
The original version of each GA is compared with a random crossover version. In
all the four algorithms, each chromosome (solution) represents a set of items that
form a potential HUI. Each chromosome is composed of binary values (0 or 1)
that tell whether an item is absent or present in the chromosome. A value of 1 at
the i-th position of a chromosome means that the corresponding item is present
in the potential HUI, while a value of 0 indicates that it is absent. The total
number of 1-HTWUIs in the database represent the size of the chromosome.

In HUIM-GA [6] two GAs (called HUPEUMU -GARM and HUPEWUMU -
GARM) were proposed for HUIM. Applying HUPEUMU -GARM requires set-
ting a minimum utility threshold while HUPEWUMU -GARM does not require
a minimum utility threshold. Both GAs used the common operators (selection,
single-point crossover, and mutation) iteratively to find HUIs.

Let there be two parent chromosomes x = x1, x2, ..., xn and y = y1, y2, ...., yn
of length n [12]. Let position i (1 ≤ i ≤ n) be a randomly selected crossing point
in both parent chromosomes. The two new child chromosomes generated by the
single-point crossover operator with i are:

x′ = x1, ..., xi, yi+1, ...., yn

y′ = y1, ..., yi, xi+1, ...., xn

Differently from single-point crossover, two-point crossover selects two cross-
ing points i, j such that 1 ≤ i ≤ j ≤ n. The result is two new child chromosomes:

x′ = x1, ..., xi, yi+1, ...., yj , xj+1, ...xn

y′ = y1, ..., yj , xi+1, ...., xk, yj+1, ...yn

Examples of SPC and TPC, and their randomized versions are presented in
Figure 3(a) and Figure 3(b), respectively. There, P1, P2 represent two parents,
and C1, C2 represent the generated childs and R1, R2 are the random solutions.

HUIM-GA [6] cannot easily find the 1-HTWUIs initially to use them as
chromosomes and thus perform a very large search for selecting appropriate
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1  0  0  0  0  1  1  0  1
1  1  0  0  0  1  1  0  1
1  0  0  1  1  0  1  0  1

1  1  0  1  1  0  1  0  1
P1
P2

C1
C2

0  0  1  1  0  0  0  1  1
1  0  0  1  1  0  1  0  1P1

R1

1  1  0  1  0  1  0  1  0
1  1  0  0  0  1  1  0  1P2

R2

(a) (b)

Fig. 3: SPC and TPC with randomized versions

chromosomes for mining valid HUIs. Additionally, setting the appropriate values
for some specific parameters is a nontrivial task. The performance of HUIM-
GA [6] was improved in HUIM-GA-tree [9] by using the OR/NOR-tree structure
for pruning. SPC was also used in HUIM-GA-tree.

HUIF-GA [15] makes use of efficient strategies for database representation
and a pruning process to accelerate HUI discovery. This GA does not use any
normal crossover version such as SPC or TPC. For crossover, HUIF-GA uses a
technique called BittDiff to first find the locations in two parents (bit vectors)
where their values do no match. BittDiff is defined as follows:

Definition 1. Let P1 and P2 be the two bit vectors with n bits. The bit difference
set is defined as [15]:

BitDiff(P1, P2) = {i|1 ≤ i ≤ n, bi(P1)⊕ bi(P2) = 1} (1)

where bn(P1) is the n-th bit of P1 and ⊕ denotes the exclusive disjunction.

The total number of points that will be used for crossover in the two selected
chromosomes is:

cnum = b|BittDiff(P1, P2)| × rc (2)

where r is a random number in the range (0, 1), |BittDiff(P1, P2)| is the
number of elements in BitDiff(P1, P2), and b|BittDiff(P1, P2)| × rc denotes
the largest integer that is less than or equal to |BitDiff(P1, P2)| × r. We call
this crossover BittDiff crossover (BDC). It is explained with a simple exam-
ple. Suppose that P1 = 10010 and P2 = 11000. As 10010 ⊕ 11000 = 01010,
BitDiff(P1, P2) = {2, 4}, that is, P1 and P2 differ in their second and fourth
positions. Suppose that the random number r is 0.5. Then, cnum = b(2× 0.5)c=
b1c = 1. For P1, one position (either the second or fourth) will be selected for
crossover. Suppose the second position is selected to be changed. Then, the new
P1 is 11010 and new P2 is 10000.

In the randomized version of BDC, two random sequences (R1 and R2) are
provided as input to BitDiff, in place of the two parents. So the place for crossover
in parents is determined by using BitDiff on random sequences. Suppose P1 =
10101 and P2 = 10001, R1 = 10001 and R2 = 11010. Then, BitDiff(R1, R2) =
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{2, 4, 5}. Suppose the random number r is 0.6, cnum = b(3× 0.6)c = b1.8c = 1.
Then, the new P1 = 11101 and P2 = 10011.

Another GA for HUIM, named HUIM-IGA [21] introduced many novel strate-
gies to efficiently mine HUIs. It employs a uniform crossover (UC) operator along
with single-point mutation. In UC, each element (gene) of the first parent chro-
mosome is assigned to a child chromosome with a probability value p, and the
rest of the genes are selected from the second parent. For instance, if p = 0.5,
the child has approximately half of the genes from the first parent and the other
half from the second parent [13]. The randomized version of UC is depicted in
Figure 4. For UC, generated child chromosomes can be different for each run as
it depends on the selection probability.

1  1  0  1  0  1  1  0  1
1  1  0  0  0  1  1  0  1
1  0  0  1  1  0  1  0  1

1  0  0  0  1  0  1  0  1
P1
P2

C1
C2

1  1  0  1  0  1  1  1  1

0  0  1  1  0  0  0  1  1
1  0  0  1  1  0  1  0  1P1

R1
C1

1  1  0  1  0  1  0  1  0
1  1  0  0  0  1  1  0  1P2

R2

1  0  1  1  1  0  0  1  1

C2

Uniform crossover

Random uniform crossover

Fig. 4: Uniform crossover and its randomized version

Note that in HUPEUMU -GARM and HUIM-GA-tree, we replaced SPC by
random SPC and random TPC. The reason is to compare these two GAs with
two randomized versions to check whether the change in the crossover operator
has an effect on the overall performance of these two GAs.

4 Experiments and Results

This section presents the experimental evaluation of the headless chicken test on
the four GAs. The experiments were performed on a computer with an 8-Core
3.6 GHz CPU and 64 GB memory running 64-bit Windows 10. The programs for
randomized GAs were developed in Java. Five real standard benchmark datasets
were used to evaluate the performance of the algorithms. The Foodmart dataset
has real utility values while the remaining four datasets have synthetic utility
values. The characteristics of the datasets are presented in Table 1.

All the datasets were downloaded from the SPMF data mining library [2]. The
Foodmart dataset contains customer transactions from a retail store. The Chess
dataset originates from game steps. The Mushroom dataset describes various
species of mushrooms and their characteristics, such as shape, odor, and habitat.
The Accident dataset is composed of (anonymized) traffic accident data. Similar
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Table 1: Characteristics of the datasets

Dataset Avg. Trans. Len. #Items #Trans Type
Foodmart 4.42 1,559 4,141 Sparse
Chess 37 75 3,196 Dense

Mushroom 23 119 8,124 Dense
Accidents_10% 34 468 34,018 Dense

Connect 43 129 67,557 Dense

to previous studies [9,14,15,21], only 10% of this dataset was used in experiments.
The Connect dataset is also derived from game steps. For all experiments, the
termination criterion was set to 10,000 iterations and the initial population size
was set to 30.

In the experiments, the normal GA (that uses SPC) for HUIM [6] is called
HUPEUMU -GARM and the HUPEUMU -GARM with random SPC and random
TPC are named HUPEUMU -GARM+ and HUPEUMU -GARM++ respectively.
The normal GA (that uses SPC) for HUIM in [9] is named HUIM-GAT and
HUIM-GAT with random SPC and random TPC are named HUIM-GAT+
and HUIM-GAT++, respectively. Similarly, the original GA that uses BDC for
HUIM in [15] is named HUIF-GA and the HUIF-GA with random BDC is called
HUIF-GA+. The original GA for HUIM in [21] is named HUIM-IGA and the
HUIM-IGA with random uniform crossover is called HUIM-IGA+.

4.1 Runtime

Experiments were first carried out to evaluate the efficiency of the algorithms in
terms of runtime. The runtime was measured while varying the minimum utility
value for each dataset. Figure 5 shows the execution time of algorithms for the
five datasets.

It is observed that the randomized HUIF-GA+ algorithm was slower than
the normal HUIF-GA for all datasets. Moreover, it was slower than all other al-
gorithms except for the Foodmart database, where HUIF-GA+ was faster than
HUIM-GAT and its randomized versions (HUIM-GAT+ and HUIM-GAT++) at
the start. However, HUIF-GA+ tends to become slower than all other algorithms
as the minimum utility value is increased. On the other hand, all other algorithms
and their randomized versions have almost the same execution time with neg-
ligible difference. Almost the same execution times for HUPEUMU -GARM and
HUIM-GAT and their randomized versions suggest that the use of SPC or TPC
has no noticeable effect on the runtime of these algorithms. On the basis of run-
time, HUIM-IGA and its randomized version (HUIM-IGA+) performed better
than other algorithms on five datasets.

On the Foodmart dataset, HUPEUMU -GARM and its randomized versions
did not terminate after more than five hours. That is why their results are
not shown in the chart. For the same reason, results of HUIM-GAT and its
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Fig. 5: Execution times of compared algorithms on five datasets

randomized versions are not shown for the Accidents and Connect datasets.
They were unable to terminate in less than ten hours.

4.2 Discovered HUIs

Next, the numbers of HUIs discovered by the algorithms for the five datasets
and parameter values are compared. The results are shown in Table 2.

HUIF-GA+ outperformed HUIF-GA on all datasets. This seems to be the
reason why HUIF-GA+ was slower than the other algorithms. The performance
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Table 2: Discovered HUIs

D MUV HUIF-GA/GA+ HUIM-IGA/IGA+ GARM/GARM+/GARM++ HUIM-GAT/GAT+/GAT++

M

100K 15349/24846 5948/6221 66/75/96 68/78/94
150K 10714/18945 4490/5450 57/53/85 61/62/75
200K 8796/ 12285 3630/4568 45/31/65 47/43/57
250K 6637/11731 3082/3791 33/28/51 34/21/24
300K 5031/9498 2821/3534 22/16/47 23/31/15

Ch

200K 18269/33030 6773/6872 205/198/250 172/185/173
250K 17501/29078 5912/6142 184/157/205 137/142/138
300K 14151/25596 5120/5619 153/133/163 105/116/110
350K 13437/21148 4814/4954 128/94/130 85/95/94
400K 9828/17654 4211/4313 96/71/ 89 59/70/85

F

2.5K 2076/2436 1493/1515 x/x/x 72/77/75
5K 921/1153 1085/1084 x/ x/x 41/46/40

75.5K 508/748 707/705 x/x/x 18/19/16
10K 312/465 424/423 x/x/x 5/4/0
12.5K 196/236 207/209 x/x/x 0/0/0

A

80K 84856/98256 4836/4829 433/445/437 x/x/x
100K 80214/90365 5021/4942 384/385/378 x/x/x
120K 74785/84561 4694/4620 314/307/311 x/x/x
140K 68646/76431 4482/4392 257/272/267 x/x/x
160K 61915/69752 4577/4588 207/216/214 x/x/x

Co

1000K 58925/66154 5910/5879 137/142/147 x/x/x
1500K 52589/59745 5864/5814 102/107/105 x/x/x
2000K 48254/53856 5801/5694 88/92/98 x/x/x
2500K 45812/52380 5635/5604 57/55/61 x/x/x
3000K 40987/46982 5546/5484 32/34/37 x/x/x

D = Dataset, MUV = Minimum utility value, GARM = HUPEUMU -GARM, Mushroom, Ch = Chess, F
= Foodmart, A = Accidents, Co = Connect, x = run out of time

of other normal GAs and their randomized versions were almost similar with neg-
ligible difference. The same performance of HUPEUMU -GARM, HUIM-GAT,
HUIM-IGA and their randomized versions indicate the presence of building
blocks for the crossover operators (SPC and UC). On the other hand, the BDC
in HUIG-GA was indeed working as a macromutation and failed to incorporate
the basic idea of crossover. The reason for this is the non-availability of build-
ing blocks that makes HUIF-GA to perform more poorly than HUIF-GA+. BDC
failed to implement the crossover idea of exchanging the building blocks between
individuals as it was changing the values of bits in individuals (HUIs) at specific
locations.

Note that for the Foodmart dataset, the results for HUPEUMU -GARM and
its randomized versions (HUPEUMU -GARM+ and HUPEUMU -GARM++) were
not included because they were unable to terminate after five hours of execu-
tion. For the same reason, no results is shown for HUIM-GAT on Accidents and
Connect. HUIM-GAT and its randomized version were unable to terminate after
ten hours of execution. Lastly, HUPEUMU -GARM and HUIM-GAT and their
randomized versions discovered almost the same number of HUIs. This suggests
that the use of SPC or TPC has the same effect on the performance of these two
algorithms in terms of discovered HUIs.
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4.3 Convergence

As HUIF-GA+ outperformed HUIF-GA, we evaluate their convergence speed
for all datasets. Obtained results are shown in Figure 6.

                 

                 

 
 

0

6000

12000

18000

24000

30000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
u

m
b

e
r 

o
f 

H
U

Is

Iterations

Mushroom 100K

HUIF-GA

HUIF-GA+

0

7000

14000

21000

28000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
u

m
b

e
r 

o
f 

H
U

Is
Iterations

Chess 300K

HUIF-GA

HUIF-GA+

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
u

m
b

e
r 

o
f 

H
U

Is

Iterations

Foodmart 2500

HUIF-GA

HUIF-GA+

0

17500

35000

52500

70000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
u

m
b

e
r 

o
f 

H
U

Is

Iterations

Accidents_10% 160K

HUIF-GA

HUIF-GA+

0

10000

20000

30000

40000

50000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
u

m
b

e
r 

o
f 

h
U

Is

Iterations

Connect 3000K

HUIF-GA

HUIF-GA+

Fig. 6: Convergence performance of HUIF-GA and HUIF-GA+

HUIF-GA+ converged faster than HUIF-GA from the start on all datasets.
The convergence speed of HUIF-GA and HUIF-GA+ for the Accidents and Con-
nect datasets that contain a large number of transactions were linear. Whereas
their convergence speed on other datasets (Mushroom, Chess and Foodmart)
that have much less transactions (compared to Accidents and connect) were lin-
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ear at the start (in the first 1000 iterations). However, as the number of iterations
was increased, the convergence speed of both algorithms tend to decrease.

5 Conclusion

This paper investigated the performance of four GAs for HUIM by perform-
ing the headless chicken test. This test investigates the usefulness and worth of
crossover operators in GA. Obtained results showed that three GAs for HUIM
that employed normal crossover (such as single-point crossover and uniform
crossover) were helping GAs to make progress. However one GA that was not
employing any normal crossover was actually working as a macromutation that
indicated the absence of well-defined building blocks. Thus, the efficacy of new
crossover operators, particularly the specialized one for HUIM, can be investi-
gated with the headless chicken test.

In the future, we intend to implement the PSO algorithms with headless
chicken macromutation [3] for HUIM and compare the results with already im-
plemented PSO algorithms to mine HUIs [9, 10,15].
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