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Abstract High utility itemset mining is a popular pattern mining task, which
aims at revealing all sets of items that yield a high profit in a transaction database.
Although this task is useful to understand customer behavior, an important limi-
tation is that high utility itemsets do not provide information about the purchase
quantities of items. Recently, some algorithms were designed to address this issue
by finding quantitative high utility itemsets but they can have very long exe-
cution times due to the larger search space. This paper addresses this issue by
proposing a novel efficient algorithm for high utility quantitative itemset mining,
called FHUQI-Miner (Fast High Utility Quantitative Itemset Miner). It performs
a depth-first search and adopts two novel search space reduction strategies, named
Exact Q-items Co-occurrence Pruning Strategy (EQCPS) and Range Q-items Co-
occurrence Pruning Strategy (RQCPS). Experimental results show that the pro-
posed algorithm is much faster than the state-of-art HUQI-Miner algorithm on
sparse datasets.
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1 Introduction

Data mining techniques can be generally described as descriptive or predictive [14].
The former are used to perform predictions, while the latter can summarize data
or reveal interesting information from it to help users to understand the data.
One of the main types of descriptive data mining is pattern mining, which aims
at revealing interesting, useful or unexpected patterns in databases. Many pattern
mining algorithms have been designed to find various types of patterns such as
frequent itemsets [25], association rules [36] and frequent sequential patterns [13].
Early studies on pattern mining have mainly focused on finding frequent patterns,
with the assumption that frequent patterns are interesting to users.

In recent years, motivated by the need to analyze more complex data and find
more useful patterns, high utility pattern mining has emerged as a key pattern
mining task. The goal is to find patterns that have a high importance as measured
by a numeric utility function [8]. The utility can be used to measure the occur-
rence frequency but also other more interesting criteria. For example, to study
purchasing habits in a customer transaction database, the utility of a pattern (a
set of items) can be measured in terms of profit that it yields, while for analyzing
click-stream data, utility can represent the time spent on webpages. Various types
of high utility patterns have been studied such as high utility itemsets (HUIs)
[8, 12, 35], high utility sequential patterns [1, 28, 31], high utility periodic pat-
terns [4, 7] and high utility episodes [11, 21, 32]. Among these different kinds of
patterns, High Utility Itemset Mining (HUIM) is the most studied problem.

The goal of HUIM is to enumerate all sets of items that have a utility that
is no less than a user-defined minimum utility threshold (e.g. all sets of products
purchased together that yield a high profit). The input database format of HUIM
is a database of transactions with weight and quantities. This format can be used
to model data from many domains and it is richer than the format used for the
traditional problem of Frequent Itemset Mining (FIM) [9, 25]. More precisely, the
input database in FIM is a table where each transaction (row) is described using
binary attributes (items) such that each item can appear no more than once in each
transaction, and all items are considered as equally important. In HUIM, these
restrictions are lifted. Each item can appear more than once in each transaction,
and each item can have a utility value (a weight) indicating its relative importance
in terms of factors such as profit, cost, and time [8, 12, 17, 35].

HUIM has numerous applications. However, a critical limitation of traditional
HUIM algorithms is that the discovered patterns do not provide information about
quantities to the user, even though quantities are encoded in the input database.
To address this limitation, High Utility Quantitative Itemset Mining (HUQIM) was
proposed as an extension of HUIM. The objective of HUQIM is to discover all
sets of items that have a high utility while also providing information about item
quantities that led to this utility [18, 19, 30, 33]. The additional information about
item quantities can be very useful as illustrated by the following example. Con-
sider the analysis of a costumer transaction database. Applying traditional HUIM
algorithms on this data will identify sets of items (itemsets) such as “coffee, cook-

ies” that yield a high profit. This information is interesting for purposes such as
marketing as these items could be co-promoted to increase sales. However, this
kind of patterns does not inform the user about how many boxes of coffees or how
many cookies a customer typically buy. HUQIM algorithms addresses this issue
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by discovering high utility itemsets that also indicate quantities, which is more
accurate and thus more useful for taking decisions and understanding customer
behaviors [33]. For instance, a HUQIM algorithm could discover a quantitative
high utility itemset “coffee:3, cookies:2, eggs:6”, indicating that buying 3 boxes of
coffee with 2 cookies, and 6 eggs yields a high profit. Note that HUQIM is not
restricted to finding patterns with single quantities. It can also find patterns con-
taining range of quantities. For example, a pattern “cheese:3-6, juice:5-7” indicates
that buying 3 to 6 pieces of cheese with 5 to 7 bottles of juice generates a high
profit. It can be seen from this example, that patterns found by HUQIM are more
informative than those found by HUIM since quantity information is provided.
This information can help decision makers to take more accurate decisions. For
example, by designing tailored promotions such as offering a discount to customers
that buy at least 7 bottles of juice with 5 pieces of cheese.

Hence, HUQIM can be viewed as more useful than HUIM. However, HUQIM is
much more difficult than HUIM. The reason is that while HUIM does not consider
item quantities in patterns, HUQIM associates a quantity or range of quantities
to each item. Then, the same item with two different quantities can be viewed as
distinct quantitative items (Q-items). As a result, the search space of HUQIM is
much larger than that of HUIM. An itemset that is composed of a set of quanti-
tative items is called a quantitative itemset (Q-itemset). A Q-itemset is said to be a
high utility quantitative itemset if its utility is no less than a user-specified minimum

utility threshold θ.

Despite the proposal of several HUQIM algorithms [18, 19], a major issue is
that they can still have very long runtimes due to the very large search space.
This is inconvenient for users who must often wait a long time to obtain results.
Hence, it is desirable to propose more efficient algorithms based on novel search
space pruning strategies to efficiently reduce the search space and therefore make
the task of HUQIM faster.

This paper addresses this issue by proposing a novel algorithm called FHUQI-
Miner (Fast High Utility Quantitative Itemset Miner). It is based on two novel search
space pruning strategies, namely the Exact Q-items Co-occurrence Pruning Strat-

egy (EQCPS) and Range Q-items Co-occurrence Pruning Strategy (RQCPS). These
strategies allows to eliminate unpromising itemsets early from the search space.
This paper also describes an extensive experimental evaluation to compare the
performance of FHUQI-Miner with the previous state-of-the-art HUQI-Miner al-
gorithm. Results show that FHUQI-Miner outperforms HUQI-Miner on sparse
datasets.

The rest of this paper is organized as follows: The next section presents a
review of the main approaches for mining high utility itemsets and high utility
quantitative itemsets. Section 3 introduces the background related to HUQIM.
Section 4 describes the utility-list structure and how it can be used in HUQIM.
Section 5 presents the proposed FHUQI-Miner algorithm and its proposed prun-
ing strategies. Section 6 presents the experimental evaluation of FHUQI-Miner.
Finally, a conclusion is drawn and some research opportunities are discussed in
Section 7.
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2 Related Work

FIM [9, 25] is a fundamental data mining task, which aims at finding all sets
of items that appear at least some minimum number of times in a transaction
database. Finding frequent itemsets is useful but is based on the assumption that
frequent patterns are interesting. For some applications, other importance criteria
are more appropriate than the frequency such as the amount of profit obtained
by the sales of item. Besides, another limitation of FIM is that items have binary
quantities (presence or absence of each item) in transactions and all items are
treated as equally important. Several FIM algorithms have been proposed [2, 9,
15]. They take advantage of the anti-monotonicity of the support (occurrence
frequency) to reduce the search space. This property states that an itemset cannot
have a support greater than that of its subsets. Hence, all supersets of an infrequent
itemset do not need to be considered, which speeds up the discovery of frequent
itemsets.

FIM was extended as HUIM to address its aforementioned limitations [3, 23,
24, 29]. In HUIM, each item can have non binary quantities in transactions (e.g.
a customer may purchase five breads and three apples), called internal utility.
Moreover, each item can have a numeric value, called external utility, indicating
its relative importance (e.g. selling one apple yield a 1 $ profit while selling a bread
yield a 2$ profit). The goal of HUIM is then to find all sets of items that have a
utility that is not less than some minimum utility threshold specified by the user.
In HUIM, the utility is a numeric function that assesses the importance or value
of a set of items. For applications such as market basket analysis, it can represent
the amount of profit generated by the sale of items, but HUIM can also be applied
in other contexts such as web click-stream analytics where utility could measure
other aspects such as the amount of time spent on a website. HUIM can reveal
interesting insights in real data such as itemsets that yield a high profit but are
infrequent, which are ignored by FIM. However, finding high utility itemsets is
more difficult than mining frequent itemsets because the utility function typically
considered in HUIM is neither monotonic nor anti-monotonic. In other words, the
utility of an itemset may be greater than that of its subsets or supersets. For
that reason, strategies used to efficiently mine frequent itemsets are not directly
applicable to solve the HUIM problem.

In recent years, several HUIM algorithms were proposed. These algorithms can
be roughly classified in two categories: Two-phase based approaches and one-phase
based approaches. As indicated in its name, two-phase based approaches discover
HUIs in two phases. To reduce the search space, they rely on upper bounds on the
utility that are anti-monotonic such as the Transaction-Weighted Utility (TWU)
upper bound [24]. In the first phase, a set of candidate HUIs are generated by
overestimating the utility of itemsets, and thus these candidates may contain low
utility itemsets (LUIs). However, the first phase does not underestimate the utility
of high utility itemsets. Hence, some LUIs are selected in the set of candidates
during the first phase. Then, the second phase consists of calculating the exact
utility of candidate itemsets to filter out LUIs. The first two-phase based algorithm,
abbreviated as TP, was proposed by Liu et al. [24]. Then, other more efficient two-
phase-based algorithms were designed such as IHUP [20], UP-Growth [29] and
HUP-Growth [34].
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A fundamental problem of two-phase based algorithms is the generation of a
very large number of candidate itemsets in the first phase, especially for large
databases or databases with long transactions. Consequently, the cost of scanning
the database to calculate the exact utility of each candidate itemset in the second
phase can also be very high. Hence, two-phase based algorithms may have long
runtimes and may consume much memory.

To address this problem, one-phase based algorithms were introduced. They
immediately identify low and high utility itemsets in only one phase without gen-
erating candidate itemsets. Moreover, another improvement of one phase based
algorithms is that they use tighter upper bounds on the utility of itemsets that
are based on the exact utilities of itemsets.

HUI-Miner is the first one-phase based algorithm [23]. It is based on a novel
data-structure called Utility-List (UL). The utility-list of an itemset stores all nec-
essary information to quickly calculate the itemset’s utility without reading the
database. Moreover, using Utility-Lists(ULs), HUI-Miner can directly calculate an
upper bound on the utility of an itemset and all its extensions to reduce the search
space. This upper bound is based on a concept of remaining utility, representing
the utility that could be used when extending an itemset with additional items.
HUI-Miner starts by constructing utility-lists of itemsets having a single item (1-
itemsets). Then, HUI-Miner recursively builds utility-lists of larger itemsets by
joining utility-lists of their subsets. Despite the fact that, HUI-Miner was shown
to outperform the state-of-the-art two-phase based algorithms, it was observed
that the join operation used to obtain utility-lists of larger itemsets remains costly
in terms of running time. To deal with this problem, another efficient algorithm
called Faster High-Utility Itemset Mining Algorithm (FHM) has been proposed
[10].

FHM was designed with the goal of reducing as much as possible the number of
join operations. To this end, an additional pruning strategy, called Estimated Utility

Co-occurrence Pruning (EUCP), is adopted that can prune some low utility itemsets
without performing the join operation. The proposed strategy first calculates the
TWU measure of all pairs of items that co-occur in the database. Then, during
the recursive pattern mining process, low TWU itemsets (LTWUIs), i.e, itemsets
having TWU values that are less than the pre-defined minimum utility value θ,
are eliminated early as well as all their supersets. It was shown that, this strategy
can greatly reduce the search space as FHM was found to be much faster than
HUI-Miner.

Using similar approaches, several other one phase based algorithms have been
proposed such as: mHUIMiner [26], d2HUP [22], EFIM [37], HMiner [16], HUI-
Miner* [27] and ULB-Miner [5]. In those studies, it was observed that one-phase
based algorithms generally outperform two-phase based algorithms. However, both
types of algorithms only discover patterns that generate a high profit in databases
without giving information to the user about item quantities. To overcome this
limitation, HUQIM algorithms came into play where both utilities and quanti-
ties of itemsets are taken into account. The first algorithm for mining high util-
ity quantitative itemsets is HUQA [33]. HUQA introduced the concept of weak

utility quantitative itemsets to efficiently discover High Utility Quantitative Itemsets

(HUQIs). Weak utility quantitative itemsets are itemsets that can be extended
to get high utility quantitative itemsets. To prune unpromising Q-itemsets, the
k-support bound measure is used.
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Motivated by the success of utility-list based algorithms, a vertical based algo-
rithm (VHUQI) for HUQIM was proposed [19]. It utilizes a variation of the utility-
list structure. Experimental results have shown that VHUQI outperforms HUQA.
However, a key problem with these two algorithms is that they only adopt the
k-support bound to eliminate Low Utility Quantitative Itemsets (LUQIs) which is
insufficient to reduce the search space.

To address this problem, Li et al. [18] have recently proposed a novel algo-
rithm, named HUQI-Miner (High Utility Quantitative Itemsets Miner), where both
the TWU and a remaining utility-based upper bound are used to quickly eliminate
LUQIs.

Although HUQI-Miner was found to outperform previous algorithms, the run-
time of HUQI-Miner is still very long due to the huge number of join operations
that are performed during the mining process. A reason is that the same item with
two different quantities is regarded as two different Q-items in HUQIM. Accord-
ingly, the search space in HUQIM is much larger than the search space in HUIM.
As a result, the number of join operations for HUQIM can be much larger than in
HUIM.

To overcome this limitation, this paper proposes a novel improved algorithm
named FHUQI-Miner where the EUCP strategy [10] utilized in traditional HUIM
is modified and extended to deal with Q-itemsets in HUQIM. More precisely, two
new pruning strategies, EQCPS and RQCPS, are proposed and used for mining
HUQIs.

3 Background

This section first describes preliminary concepts of HUQIM. Then, the combining
operation of HUQIM is presented. After that, the formulation of the HUQIM
problem is given. Finally, the TWU pruning strategy is introduced.

3.1 Preliminaries

Let I = {I1, I2, . . . , lN} be a set of N distinct items, a quantitative transaction

database D is composed of a set of transactions, denoted as D = {T1, T2, ..., TM},
where each transaction Tq ∈ D (1 ≤ q ≤ M) has a unique identifier called Tid
(Transaction Identifier) and each transaction is a subset of I. Besides, every item
i ∈ I that appears in a transaction Tq has a positive number q(i, Tq), called internal

utility, which represents the quantity of item i in Tq. Moreover, each item i has a
profit pi (a positive number) called external utility.

Table 1 presents an example of a quantitative transaction database D, which is
composed of four transactions, T1 to T4. Moreover, Table 2 presents the external
utilities of items in D. The database D will be used as example through this section
to illustrate the different concepts of HUQIM. Taking item A as example, we can
see in Table 2 that the profit of item A is 3, and in Table 1 that the internal utility
of A in T1 (resp. T2, T3, T4) is 2 (resp. 0, 2, 2).

In HUQIM, there are two kinds of quantitative items: Exact quantitative items,
also called Exact Q-items, and range quantitative items, also named Range Q-items.
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Table 1: An example of a transaction database

Tid Transaction

T1 (A,2) (B,5) (C,2) (D,1)
T2 (B,4) (C,3)
T3 (A,2) (C,2)
T4 (A,2) (B,6) (D,1)

Table 2: Profit table

Item A B C D

Profit 3 1 2 2

An exact Q-item x is defined as a pair (i, q) where i ∈ I and q is the quantity
of item i. Thus, each transaction Tq ∈ D is composed of a set of exact Q-items,
Tq = {x1, x2, . . . , xk}.

For example, the transaction of T1 in Table 1 is composed of exact Q-items
(A,2), (B,5), (C,2) and (D,1).

A range Q-item is another type of Q-items where the quantity of the corre-
sponding item has not a unique value but it is defined as a range. Range Q-items

do not exist explicitly in the database but they are obtained by combining exact
Q-items. A range Q-item x is defined as a triple (i, l, u) where i ∈ I, l (resp. u)
represents the lower (resp. upper) bound of the quantity of item i. The interval size
of a range Q-item, called a Q-interval, is defined as (u− l+ 1). Note that, an exact
Q-item (i, q) can be formulated as a range Q-item (i, l, u) where q = l = u.

For example, (A,5,7) is a range Q-item that has a Q-interval of size 3.

A quantitative itemset X, denoted as Q-itemset X, is a set of Q-items. A k-Q-

itemset is a Q-itemset consisting of k distinct Q-items, X = [x1, x2, . . . , xk]. If X
is composed only of exact Q-items, X is an exact Q-itemset. If there is at least one
range Q-item, X is a range Q-itemset.

For example, [(A,5), (B,6), (D,3)] is an exact Q-itemset. Or more precisely,
an exact 3-Q-itemset. [(B,6), (D,3,5)] is a range Q-itemset. More precisely, it is a
range 2-Q-itemset.

Definition 1 (Inclusion of Q-items). Given an exact Q-item x = (i, q) and a
range Q-item y = (j, l, u), we say that y includes x, or x is included in y, if i = j

and l ≤ q ≤ u.

Given two range Q-items, x = (i, l, u) and y = (i′, l′, u′), y includes x, or x is

included in y, if i = j, l ≥ l′ and u ≤ u′.
For example, the exact Q-item (A,3) is included in the range Q-item (A,1,5).

Definition 2 (Occurrence of a Q-item). An exact Q-item x = (i, q) occurs in

a transaction Td = {y1, y2, . . . , yk} if x ∈ Td.
A range Q-item x = (i, l, u) occurs in a transaction Td = {y1, y2, . . . , yk} if

one of its included exact Q-items occurs in this transaction. Formally, x occurs

in transaction Td if there exists a Q-item y = (j, q′) ∈ Td such that i = j and
l ≤ q′ ≤ u.

For example, (B,4) appears in T2, while (B,4,6) appears in transactions T1, T2
and T4.
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Definition 3 (Occurrence of a Q-itemset). A Q-itemset X = {x1, x2, . . . xk}
occurs in a transaction Td if ∀x ∈ X, x occurs in Td.

For example, we can observe that Q-item (A,2) occurs in transactions T1, T3
and T4 and that the Q-itemset [(A,2),(D,1)] occurs in transactions T1 and T4.

Definition 4 (Occurrence-set of a Q-itemset). The occurrence-set of a Q-
itemset X, denoted as OCC(X), it the set of transactions where X appears.

For example, OCC([(A, 2), (C, 2)]) = {T1, T3}.
Definition 5 (Support count of a Q-itemset). Given a Q-itemset X, the

support count of X, denoted as SC(X), is defined as the number of transactions
where X appears, i.e., SC(X) = |OCC(X)| [19].

For example, SC([(A, 2), (C, 2)]) = |{T1, T3}| = 2.

Definition 6 (Utility of a Q-item in a transaction). The utility of an exact Q-

item x = (i, q) in a transaction Td, denoted as u(x, Td), is defined as u(x, Td) = pi×q
[19].

The utility of a range Q-item x = (i, l, u) in a transaction Td is the sum of utilities
of all exact Q-items that are included in x. Formally, u(x, Td) =

∑u
j=l u((i, j), Td)

[19].

For example, u((A, 2), T1) = 3×2 = 6. Moreover, u((A, 2, 3), T3) = u((A, 2), T3)+
u((A, 3), T3) = 6 + 0 = 6

Definition 7 (Utility of a Q-itemset in a transaction / in the database).
Given a Q-itemset X = [x1, x2, . . . , xk], the utility of a Q-itemset X in a transaction

Td, denoted as u(X,Td), is the sum of utilities of Q-items from X in Td. Formally,

u(X,Td) =
∑k
j=1 u(xj , Td) [19].

The utility of a Q-itemset X in a database D, denoted as u(X), is the sum of util-
ities of X in all transaction where X occurs. Formally, u(X) =

∑
Td∈OCC(X) u(X,

Td) [19].

For instance, u([(A, 2, 3)(C, 2, 3)], T1) =u((A, 2, 3), T1)+u((C, 2, 3), T1) = 6+4 =
10. Similarly, u([(A, 2)(C, 2)])=u((A, 2)(C, 2), T1) + u((A, 2)(C, 2), T3) = 10 + 10 =
20.

Definition 8 (Utility of a transaction). The utility of a transaction Td =
{y1, y2, . . . , yk}, denoted as TU(Td), is the sum of utilities of all Q-items that

occurred in Td, that is TU(Td) =
∑k
i=1 u(yi, Td) [19].

For example, TU(T2) = u((B, 4), T2) + u((C, 3), T2) = 4 + 6 = 10

Definition 9 (Total utility of a database). The total utility of a database D,
denoted as σ, is the sum of its transaction utilities. Formally, σ =

∑
Td∈D TU(Td)

[19].

For example, the total utility of the database D given in Table 1 is σ = TU(T1)+
TU(T2) + TU(T3) + TU(T4) = 17 + 10 + 10 + 14 = 51.

Definition 10 (High utility quantitative itemset). Given a user-defined min-

imum utility threshold θ(0 ≤ θ ≤ σ) and a Q-itemset X, X is a high utility quantitative

itemset, abbreviated as HUQI, if the utility of X is no less than θ. Otherwise, X is
a low utility quantitative itemset , abbreviated as LUQI [19].

For example, if the minimum utility threshold θ is set to 15, then the Q-itemset
[(A,2), (C,2)] is a HUQI because u([(A, 2), (C, 2)]) = 20 > 15.

Similarly to HUIM [23], the utility function of HUQIM is also not monotonic

nor anti-monotonic. In other words, the utility of a Q-itemset may be less, greater,
or equal to the utility of its supersets. Accordingly, alternative pruning strategies
are necessary to prune unpromising itemsets. Before presenting the TWU pruning
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strategy, we first introduce some concepts and definitions that are related to the
combination process of Q-itemsets.

3.2 Q-itemsets Combination

As mentioned above, range Q-itemsets do not explicitly exist in the database,
but they are produced by combining exact Q-itemsets. In fact, mining range Q-
itemsets in addition to exact Q-itemsets is more advantageous since it gives the
opportunity to discover more interesting patterns by providing quantity range
information within the discovered patterns.

The combination operation is performed by merging Q-itemsets that have Q-
items with consecutive quantities. To apply the combination process, it is required
to define: (1) The combining method to be applied.

(2) The set of candidate Q-itemsets to be possibly combined.
(3) A quantitative related coefficient (qrc) [33].
Three combining methods have been proposed for HUQIM, namely Combine

Max, Combine Min and Combine All [6, 18]. In the next section, an explanation
of each combining method is given with illustrative examples.

Candidate Q-itemsets are a set of LUQIs that may be used to perform the
combination process. It is worth noticing that, not all LUQIs are selected to be
candidate Q-itemsets but only those having utility values that are high enough.
The selection of candidate Q-itemsets for combination is done based on the ober-
vation that although some Q-itemsets are LUQIs, they have a utility values that
are close to that required for HUQIs. Therefore, it is highly probable that some
combinations of these Q-itemsets will produce high utility range Q-itemsets.

The qrc coefficient was introduced to avoid continuously combining Q-itemsets
with adjacent quantities, which may produce range Q-itemsets with very large
Q-intervals [33]. Such kind of range Q-itemsets are undesirable since their in-
terpretation may be meaningless. Therefore, the combination process should be
stopped if the Q-interval of a generated Q-itemset is larger than qrc. Moreover,
qrc is also used to avoid combining LUQIs and considering only some Q-itemsets
that may lead to produce HUQIs.

Formally, candidate Q-itemsets and the combining constraint are respectively
defined as follows:

Definition 11 (The candidate quantitative itemset). Given a user-defined

minimum utility threshold θ where 0 ≤ θ ≤ σ and a quantitative related coefficient

(qrc > 0), a Q-itemset X is a candidate Q-itemset if θ
qrc ≤ u(X) ≤ θ.

Definition 12 (Last Q-items combining constraint). Given a quantitative

related coefficient (qrc > 0) and two Q-itemsets X = [(x1, l1, u1), (x2, l2, u2), . . . ,
(xk, lk, uk)] and Y = [(y1, l

′
1, u
′
1), (y2, l

′
2, u
′
2),. . . ,(yk, l

′
k, u
′
k)].

X and Y can be combined together to form a range Q-itemset Z = [(i1, l1, u1),
(i2, l2, u2), . . . , (ik, lk, u

′
k)], if the following conditions hold [18]:

(1) X and Y are both candidate Q-itemsets.
(2) X and Y have the same prefix. i.e, the first (k− 1) Q-items in X and Y are

the same. Formally, ∀(1 ≤ i ≤ k − 1): xi = yj , li = l′j and ui = u′j .
(3) For the last Q-item, xk = yk and l′k = (uk + 1).
(4) The Q-interval of the last Q-item to be generated should be less than qrc,

i.e, u′k − lk ≤ qrc.
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It can be seen that, the combination process is always performed on the last Q-
item of two Q-itemsets that have a same prefix and quantities of their last Q-items
are consecutive.

For example, suppose that qrc = 3 and that there are 4 candidate Q-itemsets
X1=[(A,2), (B,3), (C,5)], X2=[(A,2), (B,3), (C,6)], X3=[(A,2), (B,3), (C,7)] and
X4=[(A,2), (B,3), (C,8)]. X1 can be combined with X2 because the four conditions
of the combining constraint are verified (Definition 12). The result of combining
X1 and X2 is Y1=[(A,2), (B,3), (C,5,6)]. Again, Y1 can be combined with X3 to
form Q-itemset Y2=[(A,2), (B,3), (C,5,7)]. However, Y2 cannot be combined with
X4 because the Q-interval of the last Q-item in the generated Q-itemset [(A,2),
(B,3), (C,5,8)] is larger than qrc.

3.2.1 Combining Methods

Based on the combining constraint presented in Definition 12, there exist three
combining methods in HUQIM, namely Combine Max, Combine Min and Combine
All. These methods differ from each other on how the combining constraint is used
[6, 18]. Basically, candidate Q-itemsets have the same prefix and they differ only
on the last Q-item. Thus, Q-itemsets are first ordered according to the last Q-
item. Then, the combining method continuously combines each Q-itemset with
Q-itemsets that come after according to a processing order. This process is re-
peated until traversing all candidate Q-itemsets.

A. Combine All Method

The Combine All method outputs all possible high utility range Q-itemsets
that can be generated by either combining candidate Q-itemsets or by combining
candidate Q-itemsets with range Q-itemsets [18].

To better illustrate the Combine All method, let’s assume that there is a
sorted set C of 6 candidate Q-itemsets {[(A,2),(B,6)], [(A,2),(C,4)], [(A,2), (C,5)],
[(A,2),(C,6)], [(A,2),(C,7)], [(A,2),(C,9)]} and qrc = 4. The combining process on
C using the Combine All method is illustrated in Figure 1.

(A,2)(B,6) (A,2)(C,4) (A,2)(C,5) (A,2)(C,6) (A,2)(C,7) (A,2)(C,9)

(A,2)(C,4,6)

(A,2)(C,4,7)

11 44 6611 44 66

(A,2)(C,4,5) (A,2)(C,5,6)

(A,2)(C,5,7)

(A,2)(C,6,7)

Fig. 1: Example of combining process
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Besides, arrows are labeled with numbers that indicate the order of generation
of range Q-itemsets. Moreover, colors are used to show range Q-itemsets that can
be generated after traversing one candidate Q-itemset. The method first generates
Q-itemsets in rectangles with rounded corners, followed by Q-itemsets in rectangles
with sharp corners, and then Q-itemsets in Parallelograms.

The method tries to combine each Q-itemset in C with all Q-itemsets that
come after this current Q-itemset. Back to our example, the method tries to com-
bine the first Q-itemset in C which is [(A,2),(B,6)] with the second Q-itemset
[(A,2),(C,4)]. However, since the 3rd condition of the combining constraint (Defi-
nition 12) is not valid, the method passes directly to the second Q-itemset. The sec-
ond Q-itemset [(A,2),(C,4)] can be combined with the third Q-itemset [(A,2),(C,5)]
because all conditions of the combining constraint are verified. The resulting Q-
itemset is [(A,2),(C,4,5)]. Similarly, this range q-itemsets is combined with the
next Q-itemset in C which is [(A,2),(C,6)] and Q-itemset [(A,2),(C,4,6)] is gener-
ated. Once again, the method combines [(A,2),(C,4,6)] with [(A,2),(C,7)] to gen-
erate [(A,2),(C,4,7)]. Moving to the next Q-itemset, the method does not combine
[(A,2),(C,4,7)] with [(A,2),(C,9)] because the 3rd condition of the combining con-
straint presented in definition 12 is not satisfied. After traversing the Q-itemset
[(A,2), (C,4)], three range Q-itemsets are generated which are [(A,2), (C,4,5)],
[(A,2), (C,4,6)] and [(A,2), (C,4,7)].

At this point, the method passes to the next Q-itemset in C, [(A,2),(C,5)]
and repeats the above process by trying to combine this Q-itemset with the
rest of Q-itemsets that come after it. As a result, Q-itemsets [(A,2),(C,5,6)] and
[(A,2),(C,5,7)] are generated. The above process is repeated with the rest of Q-
itemsets until traversing all Q-itemsets.

It is worth noticing that, at each generation of a new range Q-itemset, the
method checks its utility to keep only range Q-itemsets having high utilities. More
precisely, the method will keep only HUQIs from the set of generated Q-itemsets
{[(A,2),(C,4,5)], [(A,2),(C,4,6)], [(A,2), (C,4,7)], [(A,2),(C,5,6)], [(A,2),(C,5,7)],
[(A,2),(C,6,7)]}.

B. Combine Min Method

The Combine Min method differs from Combine All method in the fact than
it only outputs high utility range Q-itemsets with minimal Q-intervals.

More precisely, the Combine Min method follows the same traversing pro-
cess of the Combine All method. However, after generating a range HUQI, the
Combine Min method will immediately stop combining the current Q-itemset with
the rest of Q-itemsets and it will directly pass to the next candidate Q-itemset in
C.

Back to our example presented in Figure 1, after generating [(A,2),(C,4,5)],
there are two cases, if this Q-itemset is not a HUQI, the Combine Min method
continues with this Q-itemset by combining it with [(A,2),(C,6)] as the Combine
All method does. However, if [(A,2),(C,4,5)] is a HUQI, the Combine Min method

will move directly to combine the next Q-itemset [(A,2),(C,5)] with [(A,2),(C,6)] to
generate [(A,2),(C,5,6)] without producing the remaining Q-itemsets presented in
rectangles with rounded corners, i.e, Q-itemsets {[(A,2),(C,4,6)], [(A,2),(C,4,7)]}.
Similarly, if [(A,2),(C,5,6)] is not a HUQI, the method combines it with [(A,2),(C,7)]
and generates [(A,2),(C,5,7)]. If [(A,2),(C,5,6)] is a HUQI, the method moves di-
rectly to combine [(A,2),(C,6)] with [(A,2),(C,7)] without generating [(A,2),(C,5,6)].
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After traversing all candidate Q-itemsets, the method performs the minimal Q-
interval checking to keep only range Q-itemsets with minimal Q-intervals. Suppose
that HUQIs resulting from the above process are: [(A,2),(C,4,6)], [(A,2), (C,5,6)]
and [(A,2),(C,6,7)]. After performing the minimal Q-interval checking, the method
will keep {[(A,2),(C,5,6)], [(A,2),(C,6,7)]} while Q-itemset [(A,2),(C,4,6)] will be
discarded because the Q-interval of its last Q-item (C,4,6) is larger than the Q-
interval of the last Q-item in [(A,2),(C,5,6)].

C. Combine Max Method

The Combine Max method does the contrary of the Combine Min method. It
outputs only high utility range Q-itemsets having maximal Q-intervals. More pre-
cisely, for each traversed candidate Q-itemset, the Combine Max method keeps
combining Q-itemsets as long as the conditions of the combining constraint pre-
sented in Definition 12 are verified. Following the same example depicted in Fig-
ure 1, the method first combines [(A,2),(C,4)] with [(A,2),(C,5)] and Q-itemset
[(A,2),(C,4,5)] is generated. Then, [(A,2),(C,4,5)] is combined with [(A,2),(C,6)]
and [(A,2),(C,4,6)] is generated. Once again, [(A,2),(C,4,6)] is combined with
[(A,2),(C,7)] to generate [(A,2),(C,4,7)]. The method does not combine [(A,2),
(C,4,7)] with [(A,2),(C,4,9)] because the 3rd condition of the combining constraint
is not satisfied. After traversing the Q-itemset [(A,2),(C,4)], only one range Q-
itemset is generated which is [(A,2),(C,4,7)].

At this point, the method moves to the next Q-itemset [(A,2),(C,5)] and re-
peats the above process. As a result, the Q-itemset [(A,2),(C,5,7)] is generated.
The method then moves to [(A,2),(C,6)] and so on until all Q-itemsets have been
traversed. Similarly to Combine Min, Combine Max checks the utility of the re-
sulting Q-itemsets to keep only HUQIs. Moreover, after traversing all candidate
Q-itemsets, the method performs the maximal Q-interval checking to keep only
Q-itemsets with maximal Q-intervals.

Following our example, Q-itemsets generated by the traversing process using
Combine Max method are: [(A,2), (C,4,7)], [(A,2),(C,5,7)] and [(A,2), (C,6,7)].
By supposing that all generated Q-itemsets are HUQIs, the maximal Q-interval
checking process will retain only Q-itemset [(A,2),(C,4,7)] which has the maximal
Q-interval and other range Q-itemsets are eliminated.

In summary, the Combine All method returns all possible patterns. The method
Combine Max allows identifying general patterns which can be seen as summa-
rizing HUQIs generated by the Combine All method. Whereas, Combine Min

provides small patterns which can be obtained by decomposing the patterns gen-
erated by the Combine Max method.

3.3 Problem Statement

Based on the previous definitions, the high utility quantitative itemset mining
(HUQIM) problem is defined as follows:

Given a set of items I = {I1, I2, . . . , lN} and a quantitative transaction database

D that is composed of items from I, a user-defined minimum utility threshold θ and
a quantitative related coefficient qrc, the problem of HUQIM is to find all exact
Q-itemsets having a utility that is no less that θ as well as all range Q-itemsets
that satisfy a user-selected combining constraint and have a utility no less than θ.
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Formally, HUIM aims to find a set H that contains both high utility exact
Q-itemsets, denoted as H1, and high utility range Q-itemsets, denoted as H2. The
set H is defined by the following equation:

H = H1 ∪H2 such that

{
H1 = {X/X ∪ I and u(X) ≥ θ}
H2 = {Y/Y = Combine(CM,C, qrc) and u(Y ) ≥ θ}

(1)

where Combine(CM,C, qrc) is a function that combines candidate Q-itemsets
in C using one of the three combining methods (Combine All, Combine Min or
Combine Max) and qrc is a parameter for the combination constraint. The reader
can refer to Subsection 3.2 to see how range q-itemsets are generated.

3.4 TWU Pruning Strategy for Q-itemsets

The TWU pruning strategy can be used to prune unpromising Q-itemsets during
the mining process [18]. This strategy is based on the calculation of the transaction
weighted utility (TWU) measure of Q-itemsets.

Definition 12 (TWU of a Q-itemset). The transaction weighted utility (TWU)

of a Q-itemset X, denoted as TWU(X), is the sum of utilities of transactions where
X appears, that is TWU(X) =

∑
Td∈OCC(X) TU(Td).

One important specificity of the TWU measure in HUQIM is that it is anti-

monotonic. More precisely, given two Q-itemsetsX and Y , ifX ⊆ Y then TWU(X) ≥
TWU(Y ). Moreover, the TWU measure is an upper bound on the utility of Q-
itemsets. In other words, ∀ (X ∈ D), TWU(X) ≥ u(X). Therefore, TWU can be
used to prune unpromising Q-itemsets with their supersets.

Definition 13 (Promising Q-itemsets). Given a user-defined minimum utility

threshold θ (0 ≤ θ ≤ σ), a quantitative related coefficient (qrc > 0) and a Q-itemset
X, X is a promising Q-itemset, if TWU(X) ≥ θ

qrc . Otherwise, X is an unpromising

Q-itemset.

Property 1 (The TWU pruning strategy). TWU pruning strategy for Q-
itemsets states that if a Q-itemset X is unpromising, then X is low utility Q-itemset
as well as all its extensions.

4 Q-itemset Utility-Lists

This section introduces the utility-list structure, which is used by the proposed
algorithm. A utility-list (UL) is a structure used to represent a pattern (Q-itemset
in our case) and additional information about this pattern that is relevant for the
pattern mining problem. A utility-list allows to quickly calculate the utility of its
associated Q-itemset without the need to scan the database. Utility-lists (ULs)
were initially used to mine high utility itemsets [23], and later have also been
adopted for HUQIM [18, 19].

Utility-list uses an upper bound based on a function called remaining utility to
prune the search space. Before calculating the remaining utility, Q-items in each
transaction are first sorted according to the pre-defined total order relation ≺.
More precisely, Q-items are first sorted according to their utilities in a descending
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order as suggested in [18, 19]. Then the remaining utility is calculated using the
following definition.

Definition 14 (Remaining utility of a Q-itemset in transaction/ in the

database). Let there be a set of distinct Q-items Q∗ extracted from a database
and sorted in each transaction according to a processing order ≺. The remaining
utility of a Q-itemset X in a transaction Td ∈ OCC(X), denoted as Rutil(X,Td),
is the sum of utilities of Q-items that come after all Q-items in X according to the
≺ order. Formally, Rutil(X,Td) =

∑
x∈Td/X

u(x, Td)
Here, Td/X denotes the set of all Q-items that appear after all Q-items of X

according to the ≺ order in Td.
The remaining utility of a Q-itemset X in a database D is the sum of the re-

maining utilities of X in all transactions of its occurrence set. Formally, Rutil(X) =∑
Td∈OCC(X)Rutil(X,Td).

Considering the database D presented in Table 1, it is found that Rutil({(A, 2)
(B, 5)}, T1) = u((C, 2), T1) + u((D, 1), T1) = 4 + 2 = 6.

Definition 15 (Utility-list of a Q-itemset). The utility-list of a Q-itemset
X, denoted as UL(X), is composed of | OCC(X) | tuples. Each tuple contains
the utility information of X in one transaction in which X has appeared. Tuples
have the form 〈Tid, Eutil, Rutil〉, where Tid is the identifier of the transaction
Td, Eutil(X,Td) is the utility of X in Td, i.e., u(X,Td), and Rutil(X,Td) is the
remaining utility of X in Td.

In addition to the list of tuples, the utility-list of a Q-itemset also stores the
sum of all Eutil values, denoted as SumEutil, which represents the exact utility
of the Q-itemset and the sum of all Rutil values, denoted as SumRutil, which will
be used to prune low utility Q-itemsets.

Figure 2 shows the initial utility-lists for Q-items of the database presented in
Table 1.

 

(A,2) TWU: 41 

Tid Eutil Rutil 

1 6 11 

3 6 4 

4 6 8 

Sums 18 23 
 

 

(B,4) TWU: 10 

Tid Eutil Rutil 

2 4 6 

Sums 4 6 

 

(B,5) TWU: 17 

Tid Eutil Rutil 

1 5 6 

Sums 5 6 

 

(B,6) TWU: 14 

Tid Eutil Rutil 

4 6 2 

Sums 6 2 
 

 

(C,2) TWU: 27 

Tid Eutil Rutil 

1 4 2 

3 4 0 

Sums 8 2 

 

(C,3) TWU: 10 

Tid Eutil Rutil 

2 6 0 

Sums 6 0 
 

 

(D,1) TWU :31 

Tid Eutil Rutil 

1 2 0 

4 2 0 

Sums 4 0 
 

Fig. 2: Initial utility-lists for Q-items of database presented in Table 1

Using utility-lists allows to not only quickly calculate the utilities of Q-itemsets
but also to prune more efficiently the search space using tighter pruning strategies
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compared with the TWU pruning strategy. More precisely, pruning the search
space is performed by the following properties.

Property 2 (SumEutil property). Given a Q-itemset X, SumEutil in UL(X)
represents the exact utility of X, i.e, u(X). Therefore, if (SumEutil < θ), then X

is a low utility Q-itemset.

Property 3 (SumRutil pruning strategy). Given a Q-itemsetX, if (SumEutil+
SumRutil < θ), X and all its extensions are low utility Q-itemsets.

There are two fundamental operations that can be performed on utility-lists:
The join operation and the merge operation. In the next subsections, these oper-
ations are presented.

4.1 Join Utility-Lists Operation

The join operation is used to obtain utility-lists of larger Q-itemsets from smaller
utility-lists. The initial case is to construct utility-lists of 2-Q-itemsets from those
of initial Q-items (Definition 16). The general case is to construct utility-lists of
(k+1)-Q-itemsets from utility-lists of k-Q-itemsets where k > 2 (Definition 17).

Definition 16 (Construction of the utility-lists of a 2-Q-itemset). Given
two Q-items x and y where x is before y according to the ≺ order (x ≺ y), the
utility-list of Q-itemset [xy] can be constructed from the intersection of tuples in
UL(x) with UL(y). More precisely, common transactions are identified, i.e. com-
mon Tid, in UL(x) and UL(y). For each common transaction Td, a new tuple E is
added to UL([xy]) where Tid of E is the common Tid, Eutil([xy], Td) = Eutil(x, Td)
+ Eutil(y, Td) and Rutil([xy], Td) = Rutil(y, Td).

Figure 3 shows an example of this operation where the utility-list of the Q-
itemset [(A,2),(D,1)] is constructed from the utility-lists of Q-items (A,2) and
(D,1).

 

(A,2) TWU: 41 

Tid Eutil Rutil 

1 6 11 

3 6 4 

4 6 8 

Sums 18 23 

 
 

 

(D,1) TWU: 31 

Tid Eutil Rutil 

1 2 0 

4 2 0 

Sums 4 0 

 
 
 

 
 
 
 
 
 
 
 
 
 

 

((A,2),(D,1)) TWU: 31 

Tid Eutil Rutil 

1 8 0 

4 8 0 

Sums 16 0 
 

Fig. 3: Constructing the utility-list of the 2-Q-itemset [(A,2),(D,1)]

Definition 17 (Construction of the utility-list of a (k+1)-Q-itemset). Let
there be two k-Q-itemsetsX, Y whereX = [(i1, l1, u1), (i2, l2, u2), . . . , (ik−1, lk−1, uk−1),
(ik, lk, uk)] and Y = [(i1, l1, u1), (i2, l2, u2), . . . , (ik−1, lk−1, uk−1), (ik′ ,lk′ ,uk′)].
If X and Y have the same prefix P = [(i1, l1, u1), (i2, l2, u2), . . . , (ik−1, lk−1,

uk−1)] and the last Q-item (ik, lk, uk) ≺ (ik′ , lk′ , uk′). The utility-list of [XY ] =
[(i1, l1, u1), (i2, l2, u2), . . . , (ik, lk, uk), (ik′ , lk′ , uk′)] can be constructed from UL(X),
UL(Y ) and UL(P ). Besides, for each common transaction Td in X and Y , a
new tuple E is added into UL([XY ]) where the Tid of E is the identifier Tid
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of transaction Td, util([XY ], Td) = Eutil(X,Td) + Eutil(Y, Td) − Eutil(P, Td) and
Rutil([XY ], Td) = Rutil(Y, Td).

Figure 4 shows an example where the utility-list of [(A,2),(C,2),(D,1)] is con-
structed from the utility-list of Q-itemset [(A,2),(C,2)], [(A,2),(D,1)] and that of
the prefix [(A,2)].

 

((A,2),(C,2)) TWU: 40 

Tid Eutil Rutil 

1 10 2 

3 10 0 

Sums 20 2 

 
 

 

((A,2),(D,1)) TWU: 31 

Tid Eutil Rutil 

1 8 0 

4 8 0 

Sums 16 0 
 

 
 

 

((A,2),(C,2),(D,1)) TWU: 17 

Tid Eutil Rutil 

1 12 0 

Sums 12 0 
 

Fig. 4: Constructing the utility-list of the k-Q-itemset [(A,2),(C,2),(D,1)]

4.2 Merge Utility-Lists Operation

The merge operation is performed to obtain the utility-list of a range Q-itemset.
Definition 18 (Constructing utility-lists of range Q-itemsets). Let there be

two k-Q-itemsets X = [(i1, l1, u1), (i2, l2, u2), . . . , (ik, lk, uk)] and Y = [(i′1, l
′
1, u
′
1),

(i′2, l
′
2, u
′
2), . . . , (i′k, l

′
k, u
′
k)]. If the following conditions hold:

(1) X and Y have the same prefix, i.e, ∀j ∈ [1, k − 1], ij = i′j , lj = l′j and
uj = u′j .

(2) For the last Q-item, ik = i′k and uk = l′k + 1.
Then, X and Y can be merged to form a range Q-itemset Z = [(i1, l1, u1),

(i2, l2, u2), . . . , (ik, lk, u
′
k)]. The utility-list UL(Z) is obtained by merging tuples of

UL(X) and UL(Y ).
Figure 5 shows the UL([B, 4, 5]] resulting from merging UL([B, 4]) with UL([B, 5]).

 

(B,4) TWU: 10 

Tid Eutil Rutil 

2 4 6 

Sums 4 6 
 

 

(B,5) TWU: 17 

Tid Eutil Rutil 

1 5 6 

Sums 5 6 
 

 
 
 
 
 
 
 
 

 

(B,4,5) TWU: 27 

Tid Eutil Rutil 

1 5 6 

2 4 6 

Sums 9 12 
 

Fig. 5: Constructing the utility-list of [(B,4,5)] by merging (B,4) and (B,5)

5 Proposed Algorithm

This section describes the proposed FHUQI-Miner algorithm. But first, the section
introduces a novel structure named TQCS (TWU of Q-items Co-occurrence based
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Structure) and the proposed search space pruning strategies that are based on
TQCS.

5.1 The TQCS Structure

The TQCS structure is composed of a set of tuples having the form (a, b, c) where a
and b are two Q-items that have co-occurred in the database and c ∈ IR is the TWU
of the 2-Q-itemset obtained by their concatenation. i.e, c = TWU([ab]). TQCS is
created by reading the database one time and similarly to the EUCS structure
of FHM [10], TQCS is not represented as a matrix that contains the TWU of all
possible 2-Q-itemsets. Alternatively, TQCS contains only TWU of all 2-Q-itemsets
that really co-occur in the database. To this end, TQCS is composed of a set of
tuples (a,b,c) such that c 6= 0. The reader can refer to the illustrative example of
Section 5.4. Besides, Table 6 provides an example of the TQCS’s construction for
Q-items of the database presented in Table 3.

5.2 Proposed Pruning Strategies

The main advantage of the proposed FHUQI-Miner algorithm compared with the
previous utility-list based algorithms [18, 19] is that FHUQI-Miner does not di-
rectly perform the join operation to form larger Q-itemsets. Alternatively, based
on the TQCS, FHUQI-Miner adopts new pruning mechanisms that allow elimi-
nating low-utility Q-itemsets with their extensions without the need to construct
their utility-lists.

In contrast with the EUCS of FHM where there exists only one type of itemsets
[10], the proposed TQCS deals with both exact and range Q-itemsets based on
the following properties:

Property 4 (Exact Q-items Co-occurrence Pruning Strategy (EQCPS)).

Given two Q-items x and y, EQCPS states that, if there is no tuple (a, b, c) such
that x = a, y = b and c ≥ θ

qrc , then the Q-itemset [xy] is not a high utility
Q-itemset and also all its extensions.

For example, we can see from the last row of Table 6 that TWU([(C, 8), (A, 3)]) =
620. If the minimum utility threshold θ is set to 1400 and qrc = 2, then Q-itemset
[(C,8),(A,3)] is pruned with all its extensions because TWU([(C, 8), (A, 3)]) <

(1400
2 ).
A limitation of this property is that, it is applicable only when Q-items x and

y are both exact Q-items. However, in the case of range Q-items, Property 4 never
returns any tuple because TQCS contains only tuples of exact Q-items. Therefore,
another pruning strategy is designed to consider range Q-items.

If x is a range Q-item, we need to take into consideration all exact Q-items that
are included in x (Definition 1). More precisely, the proposed strategy identifies
TWU values of all Q-itemsets resulting from the combination of each exact Q-item
included in x with Q-item y. TWU values can be easily found using the TQCS
structure. According to the sum of TWU values, we can decide to consider or to
prune the Q-itemset [xy] using the following property.

Property 5 (Range Q-items Co-occurrence Pruning Strategy (RQCPS)).

Given a range Q-item x = (i, l, u) and an exact Q-item y, let xi = (i, q) be an exact
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Q-item extracted from x with quantity q where l ≤ q ≤ u and let ci be the TWU
value of Q-itemset [xiy] taken from the TQCS structure. If

∑u
i=l ci <

θ
qrc , then

Q-itemset [xy] is a low utility Q-itemset as well as all its extensions.

For example, TWU([(C, 7, 8),(H, 4)]) = TWU([(C, 7),(H, 4)]) +TWU([(C, 8),(H, 4)])
= 2840 + 0=2840. If θ = 1400 and qrc = 2, then Q-itemset [(C,7,8),(H,4)] is not
pruned because TWU([(C, 7, 8), (H, 4)]) ≥ 1400

2 .

5.3 FHUQI-Miner Algorithm

This section presents the proposed FHUQI-Miner algorithm. The proposed algo-
rithm follows the same procedure as algorithms proposed in [18, 19]. However,
FHUQI-Miner adopts additional punning strategies to explore the search space
more efficiently. FHUQI-Miner takes as input four parameters: (1) The transac-
tion database D with quantities of items in different transactions (internal utilities)
and profits of different items (external utilities), (2) The pre-defined minimum util-
ity threshold (θ), (3) The Combining Method (CM) to be applied and (4) The
quantitative related coefficient (qrc). The output is the set of all Q-itemsets having
a high utility.

Algorithm 1: The FHUQI-Miner algorithm

Input : D: The quantitative transaction database, θ: The user-defined minimum
utility threshold, CM : The combining method (Combine Min,
Combine Max or Combine All), qrc: The quantitative related coefficient.

Output: The complete set of HUQIs.

1 First database scan to calculate the TWU of each Q-item;

2 Create initial set of promising Q-items P ∗ such that ∀x ∈ P ∗ : TWU(x) ≥ θ
qrc

;

3 Second database scan to create utility-lists of promising Q-items ULs(P ∗) and build
the TQCS structure;

4 foreach x ∈ P ∗ do
5 if UL(x).SumEutil ≥ θ then
6 H = H ∪ x;
7 Output x;

8 end
9 else

10 if UL(x).SumEutil + UL(x).SumRutil ≥ θ then
11 E = E ∪ x;
12 end

13 if θ
qrc

≤ UL(x).SumEutil ≤ θ then

14 C = C ∪ x;
15 end

16 end

17 end
18 Discover High Utility range Q-itemsets (HR) using CM and C;
19 QIs ← sort(H ∪ E ∪ HR);
20 Recursive Mining Search(∅, QIs, ULs(QIs), P ∗, qrc, CM , θ);

FHUQI-Miner starts by scanning the database D for the first time to calculate
the TWU values of initial Q-items using Definition 12 (line 1). Based on TWU
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values, the TWU pruning strategy (Property 1) is applied to prune unpromising Q-
items early and to keep only promising Q-items whose extensions and combinations
may be HUQIs (Definition 13). All promising Q-items are stored in the set P ∗ (line
2). After that, a total order relation ≺ on Q-items of P ∗ is established where ≺ is
the descending order of Q-items utilities as suggested in [18, 19]. A second database
scan is then performed. Besides, promising Q-items in each transaction are first
reordered according to the ≺ order. Then, the utility-list of each promising Q-item
is built. Moreover, the TQCS is built for Q-items of P ∗ (line 3).

After the construction of the TQCS, FHUQI-Miner first checks the utility of
Q-items in P ∗ (lines 4 to 17). For each Q-item x in P ∗, if u(x) ≥ θ, x is outputted
as it is a HUQI and it is put in the set H which contains HUQIs (Definition 10).
Otherwise, FHUQI-Miner performs two tests: (1) If θ

qrc ≤ u(x) ≤ θ, x is put in C

set where C contains candidate Q-itemsets that can be combined together to form
high utility range Q-itemsets (definition 11). (2) if u(x) + UL(x).SumRutil ≥ θ, x
is put in the set E which contains all Q-itemsets that should be explored because
one or more than one of their extensions may have high utilities (Property 3).

If the C set is not empty, the CM combining method is applied (line 18). The
CM method tries to combine Q-itemsets of C to produce HR and ULs(HR) where
HR is the set of high utility range Q-itemsets that are generated by combining
candidate Q-items of C (Definition 12) and ULs(HR) are their corresponding
utility-lists. Then, FHUQI-Miner creates the set QIs which is composed of the
union of Q-items in sets H, E and HR. Q-items in QIs are reordered according to
≺ order (line 19).

At this point, FHUQI-Miner calls the Recursive Mining Search procedure
(line 20). The main steps of this procedure are illustrated in Algorithm 2.

The Recursive Mining Search procedure is a recursive depth-first search algo-
rithm that takes as input the following parameters: (1) The prefix Q-itemset P ,
(2) The set of Q-itemsets QIs, (3) Utility-lists of Q-itemsets ULs(QIs), (4) The
list of promising Q-itemsets P ∗ (5) The quantitative related coefficient (qrc), (6)
The combining method CM and (7) The minimum utility threshold (θ).

At the first call of the algorithm, the prefix Q-itemset P is ∅ and QIs contains
exact and range Q-items that are identified in Algorithm 1.

The Recursive Mining Search algorithm operates as follows: For each exten-
sion [Px] of P where x ∈ QIs, the algorithm traverses all extensions [Py] of P
where y ∈ P ∗ and y � x to explore extensions of the form [Pxy] (lines 1 to 3).

For each extension [Pxy], the algorithm performs a pruning check based on
TQCS structure to decide whether to consider Q-itemset [Pxy] or to directly prune
this Q-itemset without spending time on creating its utility-list (lines 4 to 15).
There are two cases:

(1) Both Q-items x and y are exact Q-items (lines 4 to 9). In this case, prop-
erty 4 is applied. More precisely, the algorithm searches the tuple (X,Y, c) in the
TQCS structure. If c = ∅ or c < θ

qrc , the algorithm will pass directly to the next

extension Py without constructing UL([Pxy]) because the Q-itemset [Pxy] with
all its extensions are LUQIs (line 7).

(2) If x is a range Q-item (lines 10 to 15), then the algorithm applies property
5 to look for tuples in the TQCS structure that correspond to each exact Q-
item included in x with Q-item y. If the sum of obtained TWU values, i.e, sum
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of extracted c values, of these tuples is less than θ
qrc , the algorithm prunes the

combination [Pxy] without constructing its utility-list as in the first case (line 13).
For both cases, if TWU([xy]) ≥ θ

qrc , the algorithm performs the join process

to build UL([Pxy]) from UL(P ), UL([Px]) and UL([Py]) (line 16).
Based on UL([Pxy]), if [Pxy] is not promising, [Pxy] is pruned and the algo-

rithm will pass directly to another extension [Py]. Otherwise, the extension [Pxy]
is put in a new list of promising Q-itemsets P ∗ (line 18) and the algorithm per-
forms similar tests as in Algorithm 1 to check if [Pxy] is a HUQI (belongs to the
H set), [Pxy] is to be explored (belongs to the E set) or [Pxy] is a candidate
Q-itemset (belongs to the C set) (lines 18 to 28).

After traversing all extensions [Py], the combination process is performed to
extract high utility range Q-itemsets (HR) using the CM method (line 31). Then,
the new set QIs is formed from the union of H, E and HR (line 32).

At this point, the Recursive Mining Search algorithm is recursively called with
new prefix [Px] and new QIs and P ∗ with respect to prefix [Px] (line 33). Since
the algorithm starts from single Q-items and then recursively explores the search
space by appending these single Q-items, the algorithm is able to discover the
complete set of HUQIs.

5.4 An Illustrative Example

In this section, we give an example to illustrate how the designed FHUQI-Miner
algorithm is applied. Consider the database presented in Table 3 with external
utilities of different items shown in Table 4 and suppose that the Combine All

method is selected with qrc = 5 and θ=25%. Accordingly, the minimum utility
threshold value is (TU x 0.25 = 5376 x 0.25 = 1344).

First, the database is scanned to calculate TWU values of the different Q-
items. Based on TWU values, promising Q-items are identified. TWU values of all
Q-items are presented in Table 5. We can see from Table 5 that, all Q-items are
promising because their TWU values are greater than θ

qrc (Definition 13). Thus,
all Q-items should be considered during the recursive mining process. The second
database scan is then performed to construct utility-lists of all promising Q-items.
Moreover, the algorithm also constructs the TQCS structure. The TQCS structure
for this example is given in Table 6.

After that, promising Q-items are ordered based on their utilities in descending
order. The ordered list of Q-items is P ∗ = {(I,9), (C,9), (G,8), (C,8), (G,7), (C,7),
(D,5), (H,5), (H,4), (F,1), (A,3), (A,2), (B,2), (B,1), (E,1)}. At this point, the
algorithm traverses Q-items of P ∗ to check the utility of each initial Q-item using
its corresponding utility-list. Based on their utilities, Q-items are put in the set
of HUQIs (H), the set of candidates Q-itemsets (C), or the set of Q-itemsets to
be explored (E). After traversing all Q-items in P ∗, E ={(I,9), (C,9), (C,7)}, C =
{(I,9), (C,9), (G,8), (C,8), (G,7), (C,7), (D,5), (H,4)} while H set is empty because
all Q-items in P ∗ are LUQIs.

FHQUI-Miner then tries to form high utility range Q-items with their utility-
lists from the set C using the Combine All method. From Q-items (C,7), (C,8) and
(C,9), three range Q-items are generated which are (C,7,8), (C,8,9) and (C,7,9).
Moreover, from Q-items (G,7) and (G,8), one range Q-item is generated which is
(G,7,8). The utility of (C,7,8) (resp. (C,8,9), (C,7,9), (G,7,9)) is 1540 (resp. 1190,
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Algorithm 2: Recursive Mining SearchAlgorithm

Input : P : The prefix Q-itemset, QIs: The Q-itemsets list, ULs(QIs): Utility lists
of Q-itemsets, P ∗: The list of promising Q-itemsets, qrc: The quantitative
related coefficient, CM : The combining method, θ: The pre-defined
minimum utility threshold

Output: The set of HUQIs with respect to prefix P .

1 foreach [Px] such that x ∈ QIs do
2 QIs ← ∅; P ∗ ← ∅
3 foreach [Py] such that y ∈ P ∗ and y � x do
4 if [Px] is an exact Q− itemset then
5 c← TQCS(x, y);

6 if (c == Null Or c < θ
qrc

) then

7 Go to next [Py];
8 end

9 end
10 else
11 c←

∑u
q=l TQCS(xi, y);

12 if c < θ
qrc

then

13 Go to next [Py];
14 end

15 end
16 Z ← [Pxy]; UL(Z) = Construct(x, y, P );

17 if UL(Z)! = Null and TWU(Z) >= θ
qrc

then

18 P ∗ = P ∗ ∪ Z; if UL(Z).SumEutil ≥ θ then
19 H = H ∪ Z; Output Z;
20 end
21 else
22 if UL(Z).SumEutil + UL(Z).SumRutil ≥ θ then
23 E = E ∪ Z;
24 end

25 if θ
qrc

≤ UL(Z).SumEutil ≤ θ then

26 C = C ∪ Z;
27 end

28 end

29 end

30 end
31 Discover High Utility range Q-itemsets HR using CM and C;
32 QIs ← (H ∪ E ∪ HR);
33 Recursive Mining Search(Px,QIs,ULs(QIs),P ∗,qrc,CM ,θ);

34 end

2170, 1125). Thus, the algorithm outputs and keeps only high utility Q-items
(C,7,8) and (C,7,9) while Q-items (G,7,8) and (C,8,9) are discarded. Accordingly,
HR ={(C,7,8), (C,7,9)}.

After performing the combination process, the algorithm forms the QIs set
from the union of H and E and HR. In this example, QIs = {(I,9), (C,7,9), (C,9),
(G,8), (C,7,8)}.

At this point, the Recursive Mining Search procedure is invoked to perform
the depth-first search. The procedure recursively explores the search space starting
from the first Q-item in QIs until reaching the last Q-item. Besides, the join
operation is used to form larger Q-itemsets. However, before joining Q-itemsets,
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Table 3: An example of a transaction database

Tid Transaction

T1 (A,2) (C,7) (H,4) (I,9)
T2 (A,3) (C,8)
T3 (A,2) (B,1) (C,7) (G,7) (H,4)
T4 (B,2) (C,9) (G,8) (H,5)
T5 (A,2) (D,5) (E,1) (F,1)

Table 4: Profit table

Item A B C D E F G H I
Profit 20 15 70 54 11 100 75 47 96

Table 5: Promising items

Q-item TWU Q-item TWU

(A,2) 3261 (B,1) 1258
(C,7) 2840 (G,7) 1258
(H,4) 2840 (A,3) 620
(I,9) 1582 (C,8) 620
(B,2) 1495 (D,5) 421
(C,9) 1495 (E,1) 421
(G,8) 1495 (F,1) 421
(H,5) 1495

Table 6: TQCS structure for Q-items of the database presented in Table 3

a b c a b c
(A,2) 2840 (E,1) 421

(C,7) (B,1) 1258 (D,5) (A,2) 421
(H,4) 2840 (F,1) 421

(A,3) φ φ (B,2) φ φ
(A,2) (E,1) 421 (G,8) (B,2) 1495

(B,1) 1258 (H,5) 1495
(A,2) 1582 (A,2) 1285

(I,9) (C.7) 1582 (G,7) (C,7) 1285
(H,4) 1582 (B,1) 1285

(B,1) φ φ (H,4) 1285
(H,5) (B,2) 1495 (E,1) φ φ
(H,4) (A,2) 2840 (G,8) 1495

(B,1) 1258 (C,9) (B,2) 1495
(F,1) (E,1) 421 (B,5) 1495

(A,2) 421 (C,8) (A,3) 620

the algorithm first applies the proposed EQCPS and RQCPS to avoid considering
unpromising Q-itemsets.

Back to our example, the extension Px=(I,9) is processed with all extensions
Py such that y ∈ P ∗. (I,9) is first processed with extension Py =(C,9). From
Table 6, we can see that there is no tuple (a, b, c) ∈ TQCS such that a=(I,9),
b=(C,9) and c ≥ ( θ

qrc ). Thus, Q-itemset [(I,9), (C,9)] is directly ignored and the
algorithm will pass to the next Q-item y ∈ P ∗ to test a new extension Py without
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constructing UL([(I, 9), (C, 9)]). Similarly, the algorithm passes directly extensions
Py =(G,8), Py=(C,8) and Py=(G,7) until reaching Py =(C,7). From Table 6, we
can see that TWU([(I, 9), (C, 7)]) = 1582 ≥ θ

qrc . Thus, Q-items (I,9) and (C,7)

are joined to form [(I,9),(C,7)] and UL([(I, 9), (C, 7)]) is constructed. Once a new
larger Q-itemset is constructed, the algorithm puts this Q-itemset in the P ∗ set
and tests its utility to see if this Q-itemset is a HUQI (belongs to H set), is
to be explored (belongs to E set) or to be combined (belongs to C set). Since
u([(I, 9),(C, 7)]) = 1354, The Q-itemset [(I,9), (C,7)] is outputted and it is put in
the H set. The algorithm continues traversing extensions Py. After traversing all
extensions, H ={(C,7)}, C ={[(H,4),(A,2)]} and E = ∅.

The combination process is then performed on candidate Q-itemsets of C. Since
the two Q-items in C cannot be combined, the combining process does not produce
any range Q-itemset and HR = ∅. At this point, the new QIs is created, QIs =
{H ∪ E ∪ HR} = {(C,7) ∪∅ ∪ ∅} ={(C,7)}. Moreover, the new list of promising
items is P ∗ = {(C,7), (H,4), (A,2)}.

At this point, the procedure is recursively called to explore larger Q-itemsets
with new prefix P =(I,9), QIs ={(C,7)}, P ∗ ={(C,7), (H,4), (A,2)}. The procedure
continue in the same way until all HUQIs are found. The set of all HUQIs are
presented in Table 7.

Table 7: HUQIs for θ = 25%

Q-itemset Utility
[(C,7,8)] 1540
[(C,7,9)] 2170
[(I,9),(C,7)] 1354
[(I,9),(C,7),(H,4)] 1542
[(I,9),(C,7),(A,2)] 1394
[(I,9),(C,7),(H,4),(A,2)] 1582
[(C,7,9),(H,4)] 1356
[(C,7,9),(A,2,3)] 1680
[(C,7,9),(G,8),(H,5)] 1465
[(C,7,9),(G,8),(H,5),(B,2)] 1495
[(C,7,9),(H,4),(A,2)] 1436
[(C,9),(G,8),(H,5)] 1465
[(C,9),(G,8),(H,5),(B,2)] 1495
[(C,7,8),(H,4)] 1356
[(C,7,8),(A,2,3)] 1680
[(C,7,8),(H,4),(A,2)] 1436
[(C,7),(H,4)] 1356
[(C,7),(H,4),(A,2)] 1436

5.5 Complexity Analysis

Lastly, this section discusses the complexity of the FHUQI-Miner algorithm. Let
M and N be respectively the number of transactions and the number of distinct
Q-items in the database. The algorithm starts by performing two database scans,
the first scan is to calculate the TWU of Q-items. Besides, all transactions are
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scanned once where each transaction contains at most N Q-items. Thus, the first
scan requires O(MN) time.

The second database scan is performed to create initial utility-lists and the
TQCS structure. To create initial-utility lists, a sort is performed on each trans-
action. This process has complexity O(MNlog(MN)). Moreover, to create the
TQCS structure, it is necessary to check all co-occurrences in each transaction
which requires O(MN2). Thus, the complexity of the two first database scans is
O(MN +MNlog(MN) +MN2) = O(MN2 +MNlog(MN)).

The algorithm then checks the utility of each 1-Q-itemset which requires only
O(P ∗). In the worst case, the complexity of this checking process is O(N). After
that, the algorithm performs the combining operation on candidate 1-Q-itemsets.
The combining operation is performed on the set C of candidate Q-itemsets. Be-
sides, Q-itemsets are first sorted based on their names. Then, all pairs of Q-itemsets
in C are compared with each other. Thus, the complexity of the combining op-
eration is O(|C|2 + |C|log(|C|)) =O(|C|2). The complexity of the combining op-
eration depends on the number of candidate Q-itemsets in C. The worst case
corresponds to the situation where all 1-Q-itemsets are treated as candidates
Q-itemsets. In that case, the complexity of the combining operation is O(N2).
Hence, the total complexity before performing the recursive mining search is
O(MN2 +MNlog(MN) +N2)=O(MN2 +MNlog(MN)).

During the recursive search for patterns, FHUQI-Miner performs two main
operations, the join operation and the combining operation.

The join operation is performed by recursively intersecting utility-lists of smaller
Q-itemsets to get utility-lists of larger Q-itemsets. Given a prefix Q-itemset P and
two extensions Px and Py such that x ≺ y, the complexity of performing the join
operation on Px and Py to obtain Pxy is O((|Px|+ |Py|)|P |) where |P |, |Px| and
|Py| are the number of transactions in UL(P ), UL(Px) and UL(Py), respectively.
In the worst case, the number of transactions in P , Px and Py is M . Accordingly,
the complexity is O(M2).

The number of join operations to be performed depends on the pruning strat-
egy that is utilized. Mathematically, the number of join operations is exactly the
number of Q-itemsets that have not been pruned which equals the number of
all possible Q-itemsets (2N ) minus the number of Q-itemset extensions that are
pruned during the search for itemsets. Given that the number of Q-itemsets that
are not pruned during the mining search is l1, the overall complexity of join oper-
ations during the recursive search procedure is O(l1M

2).
As mentioned above, the combination operation has a complexity O(N2) in

the worst case. By assuming that the number of combining operations during the
recursive mining search is l2, the overall complexity of the combining process is
O(l2N

2).
In summary, the complexity of FHUQI-Miner is O(MN2+MNlog(MN)+N2+

l1M
2 + l2N

2) = (MN2 +MNlog(MN) + l1M
2 + l2N

2).
It is worth noticing that pruning strategies that are integrated in the pro-

posed algorithm are sufficiently effective to prune a large number of unpromising
Q-itemsets when compared with HUQI-Miner. In fact, although HUQI-Miner and
FHUQI-Miner theoretically have the same complexity, the number l1 in our algo-
rithm FHUQI-Miner is much smaller than l1 in HUQI-Miner which makes FHUQI-
Miner more efficient than the former algorithms as it will be demonstrated in the
experimental evaluation of this paper.
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6 Experimental Results

This section describes experiments that were carried out to evaluate the perfor-
mance of the proposed FHUQI-Miner algorithm. FHUQI-Miner is compared with
the current state-of-art HUQIM algorithm, which is HUQI-Miner.

All experiments were performed on a PC equipped with an Intel(R) i7-8700
processor, 16 GB RAM and running the Windows7 operating system. The com-
pared algorithms were implemented in Java by extending the SPMF Java open
source data mining library [6].

Algorithms were tested using six different datasets, namely Foodmart, Retail,
BMSWebView2, Pumsb, Mushroom and Connect. These datasets have various
characteristics and they are commonly used to evaluate HUIM algorithms. All
datasets were downloaded from the SPMF library [6]. However, except Foodmart,
other datasets cannot be directly used for HUQIM since they provide utilities of
items without giving their quantities. Thus, quantities and profits of different items
were generated using the transaction database generator of SPMF [6]. Besides,
profits of items were generated randomly between 1 and 10000 using a log-normal
distribution while quantities were randomly generated from a pre-defined range
for each dataset. The description of different parameters are presented in Table 8
while characteristics of each dataset based on these parameters are given in Table
9.

Table 8: Parameters description

Parameters description

M The number of transactions
N The number of items
Q Quantities range

Table 9: Characteristics of datasets

Dataset M N Q Type

Foodmart 4141 1559 1-10 Sparse
Retail 88162 16470 1-10 Sparse

BMSWebView2 77512 3340 1-10 Sparse
Mushroom 8416 128 1-10 Dense
Connect 67557 129 1-5 Dense
Pumsb 49046 2113 1-10 Dense

6.1 Execution Time

In the first experiment, the execution time of FHUQI-Miner was compared with
HUQI-Miner with different combining methods. We ran the two algorithms on each
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dataset with different values of θ. Results for both algorithms using Combine All,
Combine Min and Combine Max are provided in Figures 6, 7 and 8, respectively.

Results with Combine All. For the Combine All method, it is observed in
Figure 6 that FHUQI-Miner clearly outperforms HUQI-Miner on four out of the
six datasets used in these experiments. FHUQI-Miner is faster than HUQI-Miner
for the Foodmart, Retail, BMSWebView2 and Pumsb datasets while the results
are equivalent with a slight advantage for FHUQI-Miner for the Mushroom and
Connect datasets.

For Retail, BMSWebView2, Foodmart and Pumsb, FHUQI-Miner is up to
22.18, 8.31, 4.79, 1.98 times faster than HUQI-Miner. On average, FHUQI-Miner
is 12.21, 6.16, 3.39 and 1.58 faster than HUQI-Miner.

For the Mushroom and Connect datasets, the two algorithms have similar
running time. However, FHUQI-Miner still outperforms HUQI-Miner in most of
the cases. Globally, for the Mushroom and Connect datasets, FHUQI-Miner is on
average 1.08 and 1.05 times faster than HUQI-Miner.

Results with Combine Min. It is observed in Figure 7 that when the Combine
Min method is used, FHUQI-Miner is faster than HUQI-Miner on all datasets.
More precisely, for Retail, BMSWebView2, Foodmart, Pumsb, Connect and Mush-
room, FHUQI-Miner is up to 33.95, 14.72, 5.07, 2.05, 1.24 and 1.36 faster than
HUQI-Miner. On average, FHUQI-Miner is 23.47, 12.53, 3.27, 1.83, 1.20 and 1.17
faster than HUQI-Miner.

Results with Combine Max. It is found in Figure 8 that when utilizing Combine
Max, FHUQI-Miner has better runtimes than HUQI-Miner on all datasets, and
especially for Retail and BMSWebView2. In terms of results, FHUQI-Miner is up
to 41.23, 18.77, 7.17 faster than HUQI-Miner for sparse datasets Retail, BMSWe-
bView2 and Foodmart, respectively. For dense datasets Pumsb, Mushroom and
Connect, FHUQI-Miner is respectively up to 2,95, 1,58, 1,37 times faster than
HUQI-Miner.

It is worth noticing that as θ is set to smaller values, more patterns may
need to be evaluated by the algorithm. Thus, the search space becomes larger.
In Figures 6, 7 and 8, it can be observed that the difference between the two
algorithms is bigger for small θ values. More precisely, the smaller the value of
θ is, the faster FHUQI-Miner is compared to HUQI-Miner. Therefore, we can
conclude that FHUQI-Miner is more efficient than HUQI-Miner when the search
space becomes larger. This result will be further confirmed in next experiments.

6.2 Join Operations

The search space of HUQIM can be represented as a graph in where a depth-
first search algorithm os applied. Besides, the join operation which is performed
to obtain larger Q-itemsets, can be viewed as visiting a new node in the search
space. Accordingly, an efficient algorithm should perform as less join operation as
possible to avoid visiting nodes that correspond to unpromising Q-itemsets.

In this experiment, the number of join operations for each dataset with different
settings of θ was recorded.

The obtained results with Combine All, Combine Min and Combine Maxmeth-
ods are respectively presented in Figures 9, 10 and 11. Generally, it can be seen
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Fig. 6: Runtime with the Combine All method

from these figures that for all combining methods, FHUQI-Miner performs much
less join operations than HUQI-Miner for all datasets, especially sparse datasets.

For sparse datasets, the difference between the number of join operations of the
two algorithms is huge especially with low values of θ. For example, on the Retail
dataset with the Combine All method and threshold θ = 0.01, HUQI-Miner per-
forms 1979170399 join operations while FHUQI-Miner performs only 135424988
join operations. This means that HUQI-Miner processes 1843745411 unpromising
Q-itemset which will be directly pruned by FHUQI-Miner without constructing
their utility-lists. Similarly for Foodmart and a threshold 0.01, HUQI-Miner per-
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Fig. 7: Runtime with the Combine Min method

forms 60170299 join operations while FHUQI-Miner performs only 267979. The
difference between the two algorithms is huge (59902320).

Similarly to when the Combine All method is used, the number of join op-
erations performed by FHUQI-Miner is much lower than HUQI-Miner when the
Combine Min and Combine Max methods are applied. For instance, using the
Combine Min method, the difference between the number of join operations for
BMSWebView2 with threshold θ = 0.05 is 50412766 (Figure 10-(c)). For the same
dataset, when Combine Max is applied, the difference is 78732 (Figure 11-(c)).
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Fig. 8: Runtime with the Combine Max method

For dense datasets, FHUQI-Miner also performs less join operations than
HUQI-Miner. However, the gap between the two algorithms is not as large as
for sparse datasets. Moreover, the performance of FHUQI-Miner on Pumsb is
clearly better than its performance on the two other datasets, Mushroom and Con-
nect. Starting with the Combine All method, Pumsb and θ = 0.5 (Figure 9-(d)),
HUQI-Miner performs 136344145 join operations while FHUQI-Miner only per-
forms 93051302. Taking the same example, the difference of join operations for the
Combine Min and Combine Max methods is respectively 6214571 and 3994845.
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Fig. 9: Number of join operations with the Combine All method

To clarify and summarize the obtained results, the average of differences be-
tween the two algorithms in terms of number of join operations for each dataset
is calculated.

When adopting the Combine All method, the difference between the two com-
pared algorithms is 27068382.1 (resp. 329932650.6, 42762584.2, 15639851.3, 21429504)
for Foodmart (resp. Retail, BMSWebView2, Pumsb, Mushroom, Connect).

Using the Combine Min method, the difference is 19633675,5 (resp. 197506293,
21884389,9, 3604549,5, 517312,1, 39730,5) for Foodmart (resp. Retail, BMSWeb-
View2, Pumsb, Mushroom, Connect). Finally, with the Combine Max method, the
difference between the two compared algorithms is 15279436 (resp. 154308832,6,
15437347,8, 1574647,6, 332387,7, 17026,6) for Foodmart (resp. Retail, BMSWeb-
View2, Pumsb, Mushroom, Connect).
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Fig. 10: Number of join operations with the Combine Min method

6.3 Pruning Strategies Effectiveness

To demonstrate the effectiveness of the proposed pruning strategies, Tables 10 and
11 indicate the percentages of candidate Q-itemsets that FHUQI-Miner is able to
directly prune that HUQI-Miner does not prune. These percentages are called
pruning rates and they are calculated for different values of θ for both sparse and
dense datasets.

For sparse datasets, it is clear from Table 10 that FHUQI-Miner is able to prune
a large amount of unpromising candidate Q-itemsets when using all combining
methods thanks to the proposed EQCPS and RQCPS pruning strategies, used
during the search for patterns. More precisely, with the Combine All method,
FHUQI-Miner prunes up to 99.72%, 96.17% and 93.15% of unpromising Q-itemsets
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Fig. 11: Number of join operations with the Combine Max method

for the Foodmart, Retail and BMSWebView2 datasets, respectively. Using the
Combine Min method, FHUQI-Miner prunes up to 99.77%, 99.07% and 98.22%
of candidate Q-itemsets for the Foodmart, Retail and BMSWebView2 datasets,
respectively. Finally, with the Combine Max method, FHUQI-Miner prunes up to
99.82%, 99.43% and 98.88% of candidate Q-itemsets for the Foodmart, Retail and
BMSWebView2 datasets.

By comparing the average pruning rates on different datasets with each com-
bining method, it is found that, the largest average pruning rates are obtained
on Foodmart, which is known as a very sparse dataset. On that dataset, 99.64%,
99.68%, and 99.69% of candidates are pruned when using the Combine All, Combine
Min and Combine Max method, respectively. Retail is the second dataset in which



FHUQI-Miner: Fast High Utility Quantitative Itemset Mining 33

Table 10: Percentage of candidate itemsets pruned by FHUQI-Miner for sparse
datasets

Foodmart Retail BMSWebView2
θ
(%)

All
(%)

Min
(%)

Max
(%)

θ
(%)

All
(%)

Min
(%)

Max
(%)

θ
(%)

All
(%)

Min
(%)

Max
(%)

0.01 99.55 99.54 99.52 0.01 93.15 98.35 98.88 0.05 93.15 98.11 98.59
0.02 99.50 99.52 99.48 0.02 91.58 98.30 98.83 0.06 91.84 98.05 98.55
0.03 99.55 99.58 99.54 0.03 90.92 98.43 98.89 0.07 89.88 97.99 98.53
0.04 99.61 99.64 99.63 0.04 91.49 98.59 98.99 0.08 89.52 97.97 98.55
0.05 99.67 99.71 99.71 0.05 92.94 98.76 99.11 0.09 89.72 97.99 98.57
0.06 99.70 99.75 99.76 0.06 93.27 98.86 99.18 0.1 84.33 98.01 98.61
0.07 99.70 99.76 99.80 0.07 94.36 98.98 99.29 0.11 87.00 98.04 98.67
0.08 99.71 99.76 99.81 0.08 94.86 99.03 99.34 0.12 89.09 98.12 98.74
0.09 99.72 99.77 99.82 0.09 95.82 99.05 99.40 0.13 91.05 98.15 98.80
0.1 99.72 99.76 99.82 0.1 96.17 99.07 99.43 0.14 92.18 98.22 98.88
Avg 99,64 99,68 99,69 Avg 93,46 98,74 99,13 Avg 89,78 98,07 98,65

pruning averages are large. Overall, the obtained results demonstrate the effective-
ness of FHUQI-Miner on sparse datasets.

Pruning rates of FHUQI-Miner on dense datasets are given in Table 11. The
highest pruning rates are obtained on Pumsb on which FHUQI-Miner can prune on
average 40.43%, 39.23%, and 52.45% of candidate Q-itemsets with the Combine All,
Combine Min and Combine Max respectively. On the Connect dataset, FHUQI-
Miner is able to prune 1,87%, 18,73% and 36,93% of candidates using Combine All,
Combine Min and Combine Max respectively. Finally, on Mushroom dataset, FHUQI-
Miner can prune on average 8,64%, 28,74% and 48,13% with Combine All, Combine
Min and Combine Max, respectively.

Table 11: Percentage of candidate solutions pruned by FHUQI-Miner for dense
datasets

Pumsb Connect Mushroom
θ
(%)

All
(%)

Min
(%)

Max
(%)

θ
(%)

All
(%)

Min
(%)

Max
(%)

θ
(%)

All
(%)

Min
(%)

Max
(%)

0.5 31.75 32.60 40.30 2.9 9.14 15.03 30.10 0.1 8.89 18.61 22.90
0.55 34.47 18.91 8.63 3 9.18 15.80 32.70 0.2 9.08 18.50 28.96
0.6 36.31 23.23 7.88 3.1 9.36 16.63 33.82 0.3 8.46 20.81 36.93
0.65 37.92 38.27 45.56 3.2 9.55 17.30 36.12 0.4 8.86 24.11 44.78
0.7 39.44 40.57 54.74 3.3 10.59 17.37 37.14 0.5 8.73 27.65 51.12
0.75 40.53 42.18 62.11 3.4 11.15 17.01 38.08 0.6 8.68 29.85 52.71
0.8 41.89 44.08 67.42 3.5 11.85 17.62 39.46 0.7 8.43 31.43 55.55
0.85 43.18 45.40 70.83 3.6 13.29 20.06 40.01 0.8 8.35 35.67 60.14
0.9 44.51 47.04 72.71 3.7 16.30 24.30 40.44 0.9 8.38 39.00 63.15
0.95 46.52 48.92 73.35 3.8 18.28 26.22 41.42 1 8.55 41.73 65.05
Avg 40,43 39,23 52,45 Avg 11,87 18,73 36,93 Avg 8,64 28,74 48,13

From the obtained results in terms of running time and pruning effectiveness, a
natural question arises: Why the performance of FHUQI-Miner on sparse datasets
is higher than its performance on dense datasets?

The major reason behind that is the characteristics of these datasets. Sparse
datasets contain transactions that have few similarities. Accordingly, discovered
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HUQIs are not similar to each other. Moreover, the number of HUQIs is low and
it is close to the number of distinct Q-items. For example, on Retail dataset and
θ = 0.01, the number of distinct Q-items is 101546 while the number of HUQIs
is 89459. On BMSWebView2 with θ = 0.05, the number of distinct Q-items is
101546 while the number of HUQIs is 89459. Therefore, a large part of Q-items
combinations, i.e, Q-itemsets, are unpromising and they will be pruned during
the recursive search for patterns (Algorithm 1) using the proposed EQCPS and
RQCPS strategies. Consequently, the runtime is reduced, less join operations are
performed, and more candidate itemsets are pruned.

On the other hand, transactions in dense datasets are similar and the number of
HUQIs is very high comparing with the number of distinct Q-items. For instance,
in Mushroom with threshold θ = 0.1, the number of HUQIs is 8199402 while
the number of distinct Q-items is only 1161. Due to this fact, many candidate
Q-itemsets obtained by joining different Q-items during the recursive search for
patterns are HUQIs. Accordingly, the frequency of successfully applying pruning
strategies in dense datasets is lower than that for sparse datasets. As a result,
the pruning rate of FHUQI-Miner on dense datasets is not as large as that for
sparse datasets and the running time of the two algorithms is quite similar with
an advantage for the proposed FHUQI-Miner algorithm.

It is worth noticing that, the high performance of FHUQI-Miner on sparse
datasets is more advantageous since sparse datasets are more valuable and more
common than dense datasets. In fact, most of real world problems such as customer
behavior analysis have data sparsity. Therefore, obtaining better performance for
mining patterns in sparse datasets is often viewed as more important than for
dense datasets.

7 Conclusion

In this paper, we have presented a new algorithm for high utility quantitative item-
set mining named FHUQI-Miner (Faster High Utility Quantitative Itemset Min-
ing). It relies on two new pruning strategies, named EQCPS (Exact Q-items Co-
occurrence Pruning Strategy) and RQCPS (Range Q-items Co-occurrence Prun-
ing Strategy). The proposed strategies can greatly reduce the number of join op-
erations during the search for patterns which allows to improve the efficiency
of HUQIM in terms of execution time. An extensive experimental study was
performed on various datasets. Results have demonstrated the efficiency of the
adopted pruning strategies especially for sparse datasets where the proposed al-
gorithm is up to 41.23 times faster than HUQI-Miner. Moreover, the proposed
algorithm can prune up to 99.82% of the search space.

There are many possibilities for extending this research in future work. First,
we plan to propose new tighter upper bounds that can further improve the process
of mining quantitative itemsets. Second, we plan to also integrate additional opti-
mizations to speed up the processing of the existing combining methods which will
make them faster. Third, another interesting orientation is to propose new com-
bining methods that allow to discover more meaningful patterns in a database.
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