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Abstract The genome of the novel coronavirus (COVID-19) disease was first se-
quenced in January 2020, approximately a month after its emergence in Wuhan,
capital of Hubei province, China. COVID-19 genome sequencing is critical to un-
derstand the virus behavior, its origin, how fast it mutates, and for the development
of drugs/vaccines and effective preventive strategies. This paper investigates the use
of artificial intelligence techniques to learn interesting information from COVID-19
genome sequences. Sequential pattern mining (SPM) is first applied on a computer-
understandable corpus of COVID-19 genome sequences to see if interesting hidden
patterns can be found, which reveal frequent patterns of nucleotide bases and their
relationships with each other. Second, sequence prediction models are applied to the
corpus to evaluate if nucleotide base(s) can be predicted from previous ones. Third,
for mutation analysis in genome sequences, an algorithm is designed to find the lo-
cations in the genome sequences where the nucleotide bases are changed and to cal-
culate the mutation rate. Obtained results suggest that SPM and mutation analysis
techniques can reveal interesting information and patterns in COVID-19 genome se-
quences to examine the evolution and variations in COVID-19 strains respectively.

Keywords COVID-19 · Sequential pattern mining ·Mutation · Genome Sequence ·
Nucleotide bases

1 Introduction

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus, also
known as COVID-19, was first identified in a patient with pneumonia in Wuhan,
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capital city of Hubei province, China in December 2019 [1]. The World Health Or-
ganization (WHO) declared that COVID-19 is a World Emergency on January 30,
2020 [2] and later a pandemic on March 11, 2020 [3]. According to the latest report
of WHO [4], more than 65 million people have been infected by the COVID-19, with
approximately 1.5 million deaths worldwide and this disease has spread to more than
200 countries. An effective therapeutic or vaccine has not emerged yet, due to novelty
of the virus and its behavior. Countries and health bodies are taking, and recommend-
ing, preventive and isolation measures to reduce the transmission and reproduction
rate. To develop effective therapeutics or vaccines that produce long-term immunity,
it is necessary to understand the genome of the SARS-CoV-2 and its functionalities.

Genome of an organism is the total sum of its entire genetic potential, stored as
an encoded sequence consisting of four nucleotide bases (Adenine-A, Guanine- G,
Cytosine-C and Thymine-T) that make up its nucleic acids. The COVID-19 genome
sequence is made from single-stranded sequence of nucleotides called RNA and is ap-
proximately 30 Kb long [5]. Identifying the sequence of nucleotides in a genome is
called genome sequencing. Genome of SARS-CoV-2 has been sequenced by different
groups around the world which revealed multiple strains of the virus and showed that
its genome is 79% similar to the SARS-CoV-1 and 50% to the MERS-CoV (Middle
East Respiratory Syndrome Coronavirus), respectively [6]. Identification of genome
characteristics helps biomedical experts to produce hypotheses about the effect of
these characteristics on the disease manifestations in the population. However this is
often a slow and resource intensive process that largely depends on domain expertise.
For example, for COVID-19 pandemic, the early sequencing of the genome of differ-
ent strains of SARS-CoV-2 did not turn into timely actionable insights and still many
aspects of disease behavior are unknown. The use of artificial intelligence methods
including sequential pattern mining (SPM), has the potential to accelerate the process
of finding actionable insights and eventually contribute to a better global response.

The pattern analysis field provides efficient computer-based techniques that en-
able humans, particularly bioinformaticians, to analyze complex and large genetic
and genomic data [7]. SPM [8], a special case of structured data mining, has been
applied in genomics to find patterns of specific elements in genes [9], to analyze
gene expression [10], to mine maximal contiguous frequent patterns from DNA se-
quence datasets [11], to discover motifs in DNA sequences [12], to predict protein
function [13] and diseases [14], to discover gene interactions and their character-
izations [15], to interpret patterns extracted from DNA microarrays [16], to mine
k-mers [17] and to construct the phylogenetic tree [18]. Using SPM on sequential
genome data can provide new insight about virus mutations, virulence and the var-
ious disease manifestations. Moreover, discovering important hidden information in
genomes by using SPM can help speed up the process of biological research and is
of great significance to the biological world.

The general goal of this paper is to explore the use of artificial intelligence tech-
niques for COVID-19 genome analysis. More specifically, three contributions are
made to address three subgoals.

– To evaluate if interesting patterns can be found in COVID-19 genome sequences,
we apply SPM on these sequences. For this, the genome sequences are first con-
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verted into a corpus that is suitable for learning. Then, SPM techniques are ap-
plied on the corpus to find frequent nucleotide bases (nucleotides) and their pat-
terns in the genome sequences. Moreover, relationships of nucleotides/patterns
with each other are discovered through sequential rule mining.

– Second, to evaluate if the next nucleotide bases(s) can be predicted in COVID-19
genome sequences, state-of-the art prediction models are trained and applied on
the corpus.

– Third, to analyze mutations in genome sequence, we propose an algorithm to find
the mutations that takes place in genome sequences as well as the mutation rate.
The algorithm is applied to the COVID-19 genome sequences.

The rest of this paper is organized as follows. Section 2 provides a detailed back-
ground on SARS-CoV-2 and its genomic structure. Related work on using artificial
intelligence (AI)-based techniques for studying COVID-19 are also discussed in Sec-
tion 2. Section 3 presents the SPM-based learning approach that is used to discover
nucleotides and their frequent patterns in genome sequences, their relationships, and
to predict next nucleotides bases(s). Evaluation of the proposed approach and ob-
tained results are discussed in Section 4. Then, Section 5 describes the proposed
mutation analysis technique. Finally, the paper is concluded with some remarks in
Section 6.

2 Background on SARS-CoV-2 and Related Work

This section first introduces the background about SARS-CoV-2 and then how it has
been studied using AI techniques.

2.1 SARS-CoV-2

SARS-CoV-2 is a betacoronavirus with enveloped, single-stranded (positive-sense)
RNA genomes of zoonotic origin. Their shapes are spherical to pleomorphic and their
lengths are between 80-160 nm [19]. SARS-CoV-2 contains four structural proteins:
(1) Spike (S), (2) Envelope (E), (3) Membrane (M) and (4) Nucleocapsid (N) (shown
in Figure 1). The S, M, and E proteins make the envelope of this virus. The E protein,
which is the smallest structural protein, also plays a role in the production and matu-
ration of SARS-CoV-2 [20]. The S and M proteins are also involved in the process of
virus attachment during replication. The N proteins remain associated with the RNA
to form a nucleocapsid inside the envelope. N is also involved in other aspects of the
virus replication cycle (such as assembly and budding) and the host cellular response
to viral infection. This virus is named coronavirus due to the crown-like appearance
of the S protein when seen under microscope.

SARS-CoV-2 can be contracted from animals such as bats and humans. This virus
can enter the human body through its receptors, ACE2, which are present in various
organs such as lungs, heart, kidneys and gastrointestinal tract. Thus, ACE2 facilitates
the entry of the virus into target cells [22]. The process of CoV entering into the host
cell begins when the S protein, that comprises S1 and S2 sub-units, binds itself to the
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Fig. 1: SARS-CoV-2 Structure [21]

ACE2 receptor in the host cells [23]. Therefore, infected patients not only experience
respiratory problems such as pneumonia leading to Acute Respiratory Distress Syn-
drome (ARDS), but also experience heart, kidneys disorders and digestive tract [22].
The compact ridgeness of the S protein makes the virus to attach more strongly than
other viruses of the same origin to host cells. After the S protein binds itself with
the receptor in the target cell, the viral envelope fuses with the cell membrane and
releases the viral genome into the target cell.

The genomic material released by this virus is mRNA. In its genome range, this
virus is complemented by about six to twelve open reading frames (ORFs). The
genome size of the SARS-CoV-2 varies from 29.8 kb to approximately 30 kb and
its genome structure follows the specific gene characteristics of known CoVs. At the
5’UTR (terminal region), more than two-thirds of the genome comprises ORF1ab that
encodes ORF1ab polyproteins. Whereas at the 3’UTR, one third consists of genes that
encode structural proteins (S, E, M and N) (Figure 2). SARS-CoV-2 also contains six
accessory proteins that are encoded by ORF3a, ORF6, ORF7a, ORF7b, ORF8 and
ORF10 genes [24]. Note that the untranslated regions (5’UTR and 3’UTR) are re-
sponsible for inter- and intra-molecular interactions, RNA-RNA interactions and for
binding the viral and cellular proteins [25].

2.2 Related Work

Recent work done on the use of AI-based techniques for the diagnosis, detection,
forecasting and prediction of COVID-19 is discussed in this section.

A review [26] provided a comprehensive overview on the use of mathematical
models and AI-based techniques in COVID-19 studies. AI (machine learning, data
mining and deep learning) techniques have been used mostly for medical imaging
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Fig. 2: Structure of the SARS-CoV-2 genome [24]

(such as X-ray and computed tomography (CT)) segmentation and diagnosis [27]. For
example, COVID-19 diagnosis and detection from CT scans and X-ray images were
done using deep learning techniques in [28–33], using supervised learning techniques
such as support vector machine (SVM) in [34–36], using logistic regression (LR)
in [37,38], and using decision trees (DT), random forest (RF) in [39,40] and ARIMA
models [41].

For text based COVID-19 related data, the study [42] conducted a thematic anal-
ysis of COVID-19 related tweets with the VOSviewer software to examine general
public reactions related to the COVID-19 outbreak. Moreover, SPM techniques were
used to find frequent words/patterns and their relationship in tweets. The mutation
rate was studied in [43] in genomic sequences gathered from COVID-19 patients data
from GenBank. The missense nucleotide mutation rate and codon mutation rate were
first found in genomes. After that, a recurrent neural network-based long short-term
memory (LSTM) model was used to predict the future mutation rate of this virus. In
the study, authors focused on the base substitution mutation rates and does not con-
sider the insertion and deletion rates. Some tools were also developed in [44–46] to
track SARS-CoV-2 genomic variations. Additionally, the modeling and forecasting of
COVID-19 spread in top 5 worst-hit countries (Brazil, India, Peru, Russia and USA)
was done in [47] by proposing a WCGFVL network which is a wavelet-coupled ran-
dom vector functional link (RVFL) network.

Most of the mathematical modeling studies for COVID-19 focus mainly on the
dynamics of COVID-19 and exploring the effect of prevention methods like travel
restriction, lockdowns, and studying the effect of climate on the COVID-19 propa-
gation. Similarly, AI-based techniques perform very well on test data. However, it is
a known fact that good performance of an algorithm on test data does not guarantee
that the algorithm will also perform similarly when deployed on the field. The main
reason for this is that the real-life data is more prone to noise and other artefacts that
are not usually present in the training and test data. On the other hand, in the image
based analysis, there is a lack of diverse annotated images that can be used in ex-
periments [26]. Wynants et al. [48] reviewed and critically evaluated studies that de-
scribed prediction models for COVID-19. They argued that proposed models are re-
ported badly, highly biased and models performance is probably optimistic. Authors
suggested that rigorous prediction models require participant data from COVID-19
studies that are well-documented. Additionally, new studies and research should fol-
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low methodological guidance for developing reliable prediction models, as unreliable
predictions models can cause more harm than good in guiding clinical decisions.

3 Analyzing COVID-19 Genome Sequences with SPM and Sequence Prediction
Techniques

This section presents the proposed approach to address the two first sub-goals of
this paper, which are to evaluate if pattern mining can reveal interesting patterns in
COVID-19 genome sequences and if sequence prediction models can predict nu-
cleotide bases from previous ones.

Generally, to find interesting patterns in data, several pattern mining techniques
have been designed and applied on different types of datasets ranging from transac-
tions to graphs, strings and sequences [49]. These techniques have been utilized in
many different applications. However traditional pattern mining techniques do not
work well on data that is time-based or sequentially ordered such as genome se-
quences. For such data, they fail to find patterns describing sequential relationships
between events or elements. To address this limitation, techniques for SPM have been
designed that can mine patterns in structured sequential data [8]. SPM consists of
identifying important subsequences (patterns) in a set of discrete sequences, where
the importance of a subsequence can be measured using different measures such as
the occurrence frequency of a subsequence, its profit, and length. Because genome
sequences are a form of discrete sequences, we have thus selected SPM techniques
to analyze them.

For the second sub-goal of this paper, state-of-the art sequence prediction models
are applied to see if the next nucleotide bases can be predicted from previous ones
in a genome sequence. The considered models are Compact Prediction Tree (CPT)
[50], CPT+ [51], Dependency Graph (DG) [52], All-K-Order-Markov (AKOM) [53],
Transition Directed Acyclic Graph (TDAG) [54] and LZ78 [55].

The overall proposed approach for analyzing COVID-19 genome sequences using
SPM and sequence prediction models is depicted in Figure 3. It consists of two main
parts:

1. Corpus development: COVID-19 genome sequences are transformed into a cor-
pus of discrete sequences, where each whole genome sequence is converted into
a sequence of nucleotides.

2. Learning using SPM and Sequence Prediction Techniques: SPM algorithms
are applied on the corpus to discover frequently occurring nucleotides, sequential
relationships between nucleotides, and to predict the next nucleotides base(s) of
a sequence.

These two parts are explained in more details in the next two subsections. Then, the
next section presents results.
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Fig. 3: Proposed SPM and sequence prediction approach for analyzing COVID-19
genome sequences

3.1 Corpus development

The genome sequence database GenBank [56] was used to acquire sequencing data
for strains of SARS-CoV-2. GenBank a popular online public database of nucleotide
sequences that also supports bibliographical and biological annotation. It is main-
tained by the National Center for Biotechnology Information (NCBI) and is built
primarily by submissions from individual laboratories and large-scale sequencing
centers. In the last two decades, GenBank has grown exponentially with the num-
ber of sequence records doubling approximately every 18 months [56]. Such on-
line databases allow research scientists throughout the world to immediately analyze
any particular viral structure, its function, and the molecular basis. The genome se-
quenced data for virus obtained from online database is also crucial in global efforts
to develop vaccines, antiviral drugs and particularly in accurate, sensitive diagnostic
tests. At the time of writing this paper, the NCBI database for SARS-CoV-21 contains
43,779 COVID-19 nucleotide records and 112,477 SRA (Sequence Read Archive)
runs. For computer scientists and bioinformaticians, the amount of COVID-19 re-
lated data stored in GenBank is enormous and is freely available online. COVID- 19
genome sequences can be considered as a computer-understandable corpus.

To apply SPM or sequence prediction models on genome sequence data, it must
be first transformed into an appropriate electronic format that satisfies two main re-
quirements that make it suitable for learning:

– Data must be converted into long sequences of items (symbols) to obtain discrete
sequences that allow discovering interesting patterns in the corpus and performing
accurate prediction.

– The set of symbols used for representing the data as discrete sequences must be
carefully selected to provide a suitable abstraction such that irrelevant information
can be left out while preserving all the meaningful information.

1 https://www.ncbi.nlm.nih.gov/sars-cov-2/
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To perform this transformation, the “nucleotides to integers" abstraction is em-
ployed. It consists of converting each nucleotide into a distinct item (symbol), rep-
resented as a positive integer. This abstraction is quite general and allows applying
various SPM algorithms, as well as sequence prediction models, as it will be ex-
plained.

The corpus of COVID-19 genome sequences obtained from GenBank [56] rep-
resents each genome sequence as a file in FASTA format containing the names of
genes, followed by a sequence of nucleotides (A, C, G and T). This means that after
removing the genes field, the complete genome sequence is a sequence of nucleotides
(denoted as Ns). Combining all these nucleotides sequences can produce a corpus of
discrete sequences. Formally, this corpus is defined as follows.

Definition 1 (Nucleotide base set) Let NB = {A,C,G, T} be the set of all distinct
nucleotide bases. The notation |NB| denotes the set cardinality. Hence, |NB| = 4 as
there are 4 distinct nucleotides.

Based on the definition of nucleotide base set, a COVID-19 genome sequence
corpus is represented as follows.

Definition 2 (COVID-19 genome sequence) A COVID-19 genome sequence is an
ordered list of nucleotides bases, CGS = 〈NB1, NB2 , ..., NBn〉, such that NBi ⊆
NB (1 ≤ i ≤ n).

Definition 3 (COVID-19 genome sequence corpus) A COVID-19 genome sequences
corpus CGSC is a list of genome sequences CGSC = 〈 CGS1, CGS2, ..., CGSp〉,
where each genome sequence has a unique identifier (ID). For example, Table 1
shows a CGSC that contains four lines (genome sequences) with IDs 1, 2, 3 and
4.

Table 1: A sample of a CGSC

ID Sequence
1 〈....AATAACTCTATTGCCATACCCACAAATT.....〉
2 〈....TGCAGCAATCTTTTGTTGCAATATGGC.....〉
3 〈....CAGGTGCTGCATTACAAATACCATTTG.....〉
4 〈....CCCTAATGTGTAAAATTAATTTTAGTA.....〉

Note that a codon in the genome sequence represents a sequence of three nu-
cleotide bases. There are 43 = 64 different codons, in which 61 represent different
amino acids that make up proteins. The remaining three codons represent the stop sig-
nals. As there are only 20 different amino acids and 61 possible codons, most amino
acids (except Tryptophan and Methionine) are encoded by more than one codon. For
example, the codons GGC, GGA and GGG encode the amino acid known as Glycine.
The genetic code defines a mapping between codons and amino acids; such that every
three nucleotide bases (codon) encodes one amino acid [57].

The final step is to convert the genome sequences into sequence of integers so
that common SPM algorithms can be applied to the corpus. Before this step, each
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row contains a sequence of nucleotides found in a genome. Each nucleotide in the se-
quence is replaced by a positive integer. For example, the nucleotide A is replaced by
1. Similarly, C, G and T are encoded as 2, 3 and 4 respectively. Additionally, to apply
some SPM algorithms, separator characters must be added between nucleotides such
as a negative integer -1, and a negative integer -2 at the end of each row (line) [58].

3.2 Learning using SPM and Sequence Prediction Techniques

3.2.1 SPM

After preparing the corpus, various SPM techniques can be applied to find patterns
(subsequences of nucleotides) that appear in genome sequences. But to select in-
teresting patterns, an appropriate measure must be used. The most common mea-
sure to evaluate patterns in pattern mining is the support measure (occurrence fre-
quency) [8, 49]. This measure is relevant for this study as it allows to find subse-
quences of nucleotide bases that appear in numerous genome sequences, and thus to
reveal their similarities. SPM using the support measure is known as the task of fre-
quent SPM. Generally, it consists of enumerating all frequent subsequences in a set
of discrete sequences [8]. Frequent SPM has been applied to analyze various types of
data such as text documents and sequences of clicks on webpages. For the context of
analyzing COVID-19 genome sequences, frequent SPM is defined as follows.

Definition 4 (Genome sequence containment) A genome sequence Sα = 〈 α1, α2,
...,αn 〉 is present (or contained) in another genome sequence Sβ = 〈β1, β1, ..., βm〉
iff there exist integers 1 ≤ i1 < i2 < ... < in ≤ m, such that α1 ⊆ βi1, α2

⊆ βi2, ..., αn ⊆ βim (denoted as Sα v Sβ). If Sα is contained in Sβ , then Sα is said
to be a subsequence of Sβ .

Definition 5 (Support) The support of a genome (sub-)sequence Sα in a corpus
CGSC is the total number of sequences that contain Sα. It is denoted as sup(Sα)
and defined as: sup(Sα) = |{S|Sα v S ∧ S ∈ CGSC}|.

Definition 6 (Frequent SPM in a genome sequence corpus) Let there be a genome
sequence corpus CGSC and a user-defined minimum support threshold minsup,
such that minsup > 0. The task of frequent SPM in a CGSC is to enumerate all
frequent genome subsequences. A genome subsequence S is frequent if sup(S) ≥
minsup.

For instance, consider the sample corpus of Table 1. The subsequence 〈AAT 〉 has
a support of 4 because it is contained in four lines (genome sequences).

Mining frequent sequential patterns in a corpus of COVID-19 genome sequences
is not an easy task as sequences can be very long and similar. A sequence containing n
items (nucleotides) can have up to 2n−1 distinct subsequences. This makes the naive
approach of calculating the support of all subsequences infeasible. In recent years,
several efficient algorithms have been developed that apply various optimizations to
find the exact solution to a SPM problem without exploring all the search space.
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SPM algorithms explore the search space of patterns by first identifying all fre-
quent subsequences each containing 1 item (nucleotide), called 1-sequences. Then,
an algorithm recursively appends items to these subsequences to find larger subse-
quences. This is done by two basic operations, namely s-extensions and i-extensions.
These operations are used to generate a (k + 1)-sequence from one or more k-
sequences. It is important to point out that SPM can be applied to a more general
case than what is described in this paper, where simultaneous items are allowed in
a sequence. However, this paper does not discuss this case as nucleotides in genome
sequences are always totally ordered.

For the purpose of speeding up the discovery of sequential patterns and to avoid
finding duplicate sequences, SPM algorithms require to define a total order relation≺
on items. Any total order can be used and it does not affect the final result produced
by SPM algorithms. In the context of this paper, the order ≺ is thus simply defined
on nucleotide bases from NB as the lexicographical order, that is A ≺ C ≺ T ≺ G.

SPM algorithms either employ a breadth-first search or a depth-first search. A
breadth-first search algorithm first scans the dataset to find the frequent sequential
patterns that contain a single item (1-sequences). Then, the algorithm produces 2-
sequences by performing s-extensions and i-extensions of 1-sequences. Similarly, 3-
sequences are produced by using 2-sequences and so on. This pattern generation
process continues until no sequences can be generated. Whereas depth-first search
algorithms discover patterns with a different approach. A depth-first search algo-
rithm starts from sequences containing single items and then recursively performs
i-extensions and s-extensions with one of these sequences to create larger sequences.
When a pattern is no longer extendable, the algorithm backtracks to extend other
patterns.

To avoid exploring the whole search space, SPM algorithms utilize a search space
reduction property called the Apriori property or anti-monotonicity property. It states
that for any two sequence sα and sβ , if sα is a subsequence of sβ , then sβ must have
a support that is equal or less than that of sα. For instance, if a sequence 〈A〉 has a
support of 2, the sequence 〈AC〉 cannot have a support greater than 2. The Apriori
property is helpful to reduce the search space since if a sequence occurs infrequently,
then all the extensions of such sequences are also infrequent and therefore are not
sequential patterns. For example, if minsup = 3, it is unnecessary to consider any
extensions of 〈A〉 as they are all infrequent.

The main difference between SPM algorithms are in the following aspects:

1. Whether a breadth-first or depth-first search is used,
2. The type of database representation (vertical or horizontal) and internal data struc-

tures,
3. How the support of patterns is counted to find those satisfying the minsup con-

straint set by the user.

Some representative and efficient SPM algorithms are SPAM [59], TKS [60] and
CM-SPAM [61]. SPAM is a depth-first search algorithm that relies on a vertical
database representation to find all sequential patterns. Using a vertical representation
allows to efficiently calculate the support of patterns without performing many costly
database scans. The CM-SPAM [61] algorithm is an improved version of SPAM that
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utilizes a data structure named CMAP (Co-occurrence MAP) to reduce the search
space and efficiently discover sequential patterns. This structure stores information
about item co-occurrences. However, setting the minsup threshold to apply SPAM
or CM-SPAM on a new dataset is not intuitive. Setting the minsup too high may
result in finding no patterns, while setting it too low may result in finding millions
of patterns. To address this limitation, an extension of CM-SPAM called TKS (Top-k
Sequential) was proposed that directly let the user set the number of patterns k to
be found. Then, TKS outputs the top-k most frequent sequential patterns in the input
dataset. TKS applies various strategies to reduce the search space. Developing SPM
algorithms is an active research area. An overview of SPM algorithms can be found
in a recent survey [8].

Besides SPM, it is sometimes also interesting to find sets of nucleotides that fre-
quently appear in genome sequences without considering the sequential ordering. For
this purpose, the task of frequent itemset mining (FIM) is considered [49], which can
be viewed as a special case of SPM. In the context of this paper, FIM is defined as
follows.

Definition 7 (Frequent itemset mining) Let there be a genome sequence corpus
CGSC and a user-defined minimum support thresholdminsup such thatminsup >
0. LetNBS represents a nucleotide bases set, such thatNBS ⊆ NB. The support of
NBS in a corpus CGSC is the total number of sequences that contain nucleotides
from NBS. It is denoted as sup(NBS) and defined as: sup(NBS) = |{S|∃x ∈
S ∀x ∈ NBS}|. The task of frequent itemset mining in CGSC is to enumerate
all frequent nucleotide bases sets. A NBS is said to be frequent if sup(NBS) ≥
minsup.

For example, in Table 1, the nucleotide bases set {A,C,G, T} is frequent as they
appear in all four genome sequences.

The first and most famous algorithm for FIM is Apriori [62]. It is designed to
find frequent itemsets in large databases. It proceeds by discovering common items
that can be extended to larger itemsets that appear sufficiently often. Itemsets (NBS
in this work) extracted by Apriori can also be used to identify association rules (re-
lationships) between items. Over the years, several fast and memory efficient FIM
algorithms have been proposed [49].

Another type of patterns that is considered in this study to analyze a corpus of
genome sequences is sequential rules. The motivation to search for these patterns
is the following. Although frequent sequential patterns can reveal frequent subse-
quences of nucleotide bases, some patterns may be spurious since sequential patterns
are found without assessing the confidence or probability that some nucleotide bases
follow others. Thus, in some cases, sequential patterns may be misleading. Algo-
rithms for sequential rule mining discover patterns by considering not only their sup-
port but also their confidence [63]. For genome sequences, the sequential rule mining
task is defined as follows.

Definition 8 (Sequential rule) A sequential rule X → Y is a relationship between
two NBs X,Y ⊆ NB, such that X ∩ Y = ∅ and X,Y 6= ∅. A rule r : X → Y
means that if items of X occur in a sequence, items of Y will occur afterward in the
same sequence.
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Definition 9 (Support and confidence of a sequential rule) An X is contained in
Sα (written as X v Sα) iff X ⊆

⋃n
i=1{αi}. A rule r : X → Y is contained in Sα

(r v Sα) iff there exists an integer k such that 1 ≤ k < n, X ⊆
⋃k
i=1{αi} and

Y ⊆ ∪ni=k+1{αi}. The confidence and support of a rule r in a corpus CGSC are
defined as:

confCGSC(r) =
|{S|r v S ∧ S ∈ CGSC}|
|{S|X v S ∧ S ∈ CGSC}|

supCGSC(r) =
|{S|r v S ∧ S ∈ CGSC}|

|CGSC|

Definition 10 (Sequential rule mining) Let there be a genome sequence corpus
CGSC and user-defined minimum support and minimum confidence thresholdminsup
> 0 and minconf ∈ [0, 1]. A rule r is a frequent sequential rule iff supCGSC(r) ≥
minsup and r is a valid sequential rule iff it is frequent and confCGSC(r) ≥
minconf . Mining sequential rules in a corpus is to find all the valid sequential rules.

A representative sequential rule mining algorithm is ERMiner (Equivalence class
based sequential Rule Miner) [63]. It relies on a concept of equivalence classes of
rules having the same antecedent and consequent and a vertical database representa-
tion to explore the search space of rules. ERMiner employs two operations (left and
right merges) to generate larger rules from smaller rules and reduces the search space
using a Sparse Count Matrix (SCM) technique. It was shown that ERMiner is more
efficient than several previous sequential rule mining algorithms [63].

3.2.2 Sequence Prediction Techniques

Another learning task performed in this study is to build sequence prediction models
using the COVID-19 genome sequences to see if the arrangement of nucleotide bases
is predictable. Several popular models are applied to determine which one performs
best. The applied models include CPT+ [51], CPT [50], DG [52], AKOM [53], Mark1
[64], TDAG [54] and LZ78 [55]. DG [52] is a Markov based lightweight model that
takes as input a set of training sequences and calculates the probabilities that each
symbol is followed by each symbol. A limitation of DG is that only the last symbol
is considered to predict the next one. The AKOM [53] model addresses this issue by
taking the last k symbols into account for prediction (where k is user-defined). Mark1,
a first-order Markov prediction model, predicts the next symbol or item on the basis
of current symbol of item. The LZ78 [55] and TDAG [54] use data compression
approaches for sequence prediction.

The Compact Prediction Tree (CPT) and its improved version CPT+ are complex
models. They not only takes more than one symbol into account but also consider
different orderings and apply noise removal strategies. However, a drawback is that
the CPT and CPT+ models typically requires a large amount of memory. CPT+ takes
a set of training sequences as input and generates three data structures: a prediction
tree, a lookup table and an inverted index. These three structures are built incre-
mentally by considering each sequence one by one during training. For a genome
sequence Sα of n elements, the suffix of Sα of size y where 1 ≤ y ≤ n is defined
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as Py(Sα) = 〈αn−y+1, αn−y+2, ..., αn〉. Predicting the next nucleotides base(s) of
Sα is done by finding those sequences that are similar to Py(Sα) in any order. For
prediction, CPT+ uses the consequent of each sequence that is similar to Sα. Let Sβ
be another genome sequence similar to Sα. The consequent of Sβ with respect to Sα
is the longest subsequence 〈βv, βv+1, ..., βm〉 of Sβ such that

⋃v−1
k=1{βk} ⊆ Py(Sα)

and 1 ≤ v ≤ m. Each nucleotides base(s) discovered in the consequent of a similar
genome sequence of Sα is stored in the count table (CT) data structure. Finally, CPT+
returns as prediction the most supported nucleotides base(s) in the CT.

4 Experiments and Results

This section presents results obtained by applying the techniques presented in the
previous section on the COVID-19 genome sequences obtained from the NCBI Gen-
Bank. All the experiments were performed on an HP laptop with a fifth generation
Core i5 processor and 8 GB RAM. Statistics about the collected genome sequences
are presented in Table 2, where ID is the accession number of the genome sequence.
The NCBI GenBank offers to download each sequence in the form of nucleotide,
coding region or protein. We downloaded the genome sequences in nucleotide form.

Table 2: Characteristics of COVID-19 genome taken from NCBI

ID Release Date Length Location Collection Date
MT745584 2020-07-13 29860 Bahrain 2020-06-22
MT750057 2020-07-13 29782 USA:Illinois 2020-06-17
MT750058 2020-07-13 29782 USA: Wisconsin 2020-06-09
MT291827 2020-04-06 29858 China: Wuhan 2019-12-30
MT291828 2020-04-06 29858 China: Wuhan 2019-12-30

The SPMF data mining library [58], developed in JAVA, is used to analyze the
genome sequences. SPMF is an open-source and cross-platform framework that is
specialized in pattern mining tasks. It offers implementations of more than 180 data
mining algorithms. Results obtained by applying algorithms on the corpus are pre-
sented in the following subsections.

4.1 Frequent Nucleotide sets

The Apriori algorithm for FIM was first applied on the corpus to find the frequently
occurring nucleotide base sets. Apriori takes a corpus and a minsup threshold as
input and outputs the frequent nucleotide base sets. A post-processing step was then
performed to keep only frequent itemsets containing a single nucleotides or having a
multiple of three nucleotides (the length of a codon). The sets extracted by Apriori
from the MT745584 genome sequence for various minsup values are listed in Table
3. For minsup values in the range of 40% to 100%, Apriori generated only four
frequent patterns. By decreasing minsup to 1%, Apriori generated 15 patterns.
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Table 3: Frequent nucleotide base sets discovered by Apriori

Pattern(s) Support Min. Support Pattern(s) Support Min. Support
A 8915 100% AGT 52 10%
C 5487 100% ACT 48 5%
G 5859 100% CGT 32 5%
T 9599 100% ACG 12 1%

The first four patterns show that all the nucleotides appeared in all the lines of the
sequence, which was expected. A and T make up for 62% of the genome sequence
(approximately 30% for A and 32% for T). The four frequent nucleotide sets discov-
ered by Apriori can be considered as uninteresting for biologists due to two reasons.
First, the frequent nucleotide sets are unordered. This means that they do not follow
any specific order. For example, AGT can represents eight (33 − 1) different codons
such as TGA, GAT, and GTA, that have a total support of 52. Second, Apriori does
not ensure that nucleotides from a nucleotide set appear contiguously in a genome se-
quence. In other words, a nucleotide set can be considered as appearing in a sequence
if all its nucleotides appears in it, although the nucleotides may be separated from
each other by some other subpatterns (called gaps here). For example, the nucleotide
set CGT is considered as appearing both in ACAAGT and TAACCGGT. In those ex-
amples, Apriori ignores the subpatterns of nucleotides between C, G, and T. Hence,
Apriori increments the support value of CGT by one for each of such sequence where
the nucleotides do not occur consecutively. The next subsections present results from
the application of SPM algorithms that overcome the above two drawbacks of Apri-
ori, and thus reveal more meaningful patterns.

The support (occurrence frequency) of nucleotides in four other COVID-19 genome
sequences is listed in Table 4. The number of two nucleotides (A and G) in two strains
(MT291827 and MT291828) are different. MT291828 has one less A and one extra
G as compared to MT291827. The mutation analysis of these two strains in Section
5 also identifies that an A in MT291827 is replaced by G in MT291828.

Table 4: Nucleotides percentage in COVID-19 genomes

ID A (%) C (%) G (%) T (%)
MT750057 8891 (29.853) 5470 (18.311) 5849 (19.639) 9572 (32.140)
MT750058 8891 (29.853) 5470 (18.311) 5849 (19.639) 9572 (32.140)
MT291827 8932 (29.914) 5482 (18.360) 5859 (19.622) 9585 (32.101)
MT291828 8931 (29.911) 5482 (18.360) 5860 (19.626) 9585 (32.101)

4.2 Frequent Sequential Patterns

Then, SPM algorithms were applied to find hidden sequential relationships between
nucleotides. The CM-SPAM algorithm was executed, which requires to set aminsup
threshold. CM-SPAM was configured to find only contiguous sequential patterns
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since patterns that skip nucleotides would be hard to interpret, and patterns that are
not a multiple of three nucleotides (the size of a codon) were filtered out. Table 5
lists some of the frequent patterns discovered in MT745584 by CM-SPAM. The ten
patterns on the left side appear for a minsup of at least 33% of the lines in the se-
quence. For instance, the frequent pattern AATAAC, with a support of 511 appeared
in approximately 164 lines of the sequence, represents two codons that encodes the
Asparagine amino acid. Similarly, the eight patterns on the right side appeared in at
least 25% of lines and the remaining two patterns appeared in at least 15% of lines
in the sequence. For example, the pattern ATTATCATA shows three frequent codons
that encode the amino acid Isoleucine having a support of 416 and which appeared
in 124 lines of the sequence. Similarly GTTGTGGTAGTG shows three codons where
one codon (GTG) appears twice.

Table 5: Frequent nucleotides extracted by CM-SPAM

Pattern Support Min. Sup Pattern Support Min. Sup
AATAAC 511 33% AATAAC 511 25%
AAAAAG 530 33% ATTATCATA 416 25%
ACTATG 510 33% AGTAGCTAC 369 25%
CAAAAG 510 33% CAAAAG 510 25%
CTTTGT 523 33% CAATGTCTA 392 25%
GTATTA 508 33% GACTATGTT 392 25%
GTATGA 503 33% GTTGTGGTAGTG 227 15%
CAACAA 499 33% TACTAGAAT 403 25%
TTAACG 499 33% ACCTTAAACTAA 243 15%
TCAGTG 502 33% TCAGTG 502 25%

In terms of performance, the pattern mining process was quite fast. Table 6 in-
dicates the performance of CM-SPAM for different minsup threshold values. It is
observed that by decreasing minsup, more frequent patterns can be discovered by
CM-SPAM, while the runtime and the memory usage increases.

Table 6: Performance of CM-SPAM with varying minsup

Min. Sup % Time (Sec) Patterns Memory (Mb) Min. Sup.
33% 2 3549 45.839 493
25% 42 194361 49.256 374
20% 231 1372868 48 299

The TKS algorithm for top-k sequential pattern mining was also applied. It takes a
corpus and a user specified parameter k as input and returns the top-k most frequent
sequential patterns as output. The parameter k is used in place of minusp due to
following reasons:

1. Selection of a proper minsup value to discover the desired amount of useful
patterns has an effect on the performance of SPM algorithms.

2. The process of minimum support fine-tuning is hard and time consuming.
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To overcome these drawbacks, the parameter k puts a bound on the total number
of patterns discovered by the algorithm. Some top frequent nucleotides patterns dis-
covered in MT745584 by the TKS algorithm of different lengths are shown in Table
7. Note that patterns discovered by CM-SPAM algorithm are almost similar to the
results obtained with the TKS algorithm.

Table 7: Frequent nucleotides sequential patterns extracted by TKS

Pattern Length Support Pattern Length Support
ACG 3 594 GTATTA 6 508
AGT 3 611 AAATTT 6 537
CGT 3 594 ATTATCATA 9 416
CTA 3 597 CTAGGTAAA 9 396
TAC 3 604 GATAAAGCT 9 396
GTC 3 589 TACTAGAAT 9 403

CAAAAG 6 510 CAATGTACG 9 372
TCAGTG 6 502 AATAAC 6 510

4.3 Sequential Rules

Then, the ERMiner algorithm was applied to find sequential rules. Figure 4 shows
some rules found by ERMiner in MT745584, indicating strong relationships between
nucleotides. The confidence (minconf ) threshold was set to 80%, which means that
rules having a confidence of at least 80% were found (a ruleX → Y has a confidence
of 80% if the set of nucleotides inX is followed by the set of nucleotides in Y at least
80% of the times when X appears in a genome sequence). The minimum support
threshold was also set to 80% and ERMiner generated 43 sequential rules in total. In
that figure, the value above an arrow is the support, while the value below indicates
the confidence (probability). For example, the first rule in Figure 4 indicates that
93.5% of the time, the A nucleotide is followed by the C nucleotide. Using ERminer,
some interesting relationships were discovered between nucleotides and codons. For
example, nucleotides CG is followed by A 89.6% of the time to form the codon
CGA that encodes the Arginine amino acid. Similarly, the codon CGT follows and is
followed by the nucleotide A 86.3% and 89% of the time respectively.

Some sequential rules indicate the particular order of occurrence between specific
nucleotides and codons and vice versa. For examples, the rules CGT → A and
A → CGT and the rules ACT → G and G → ACT . It was also observed so far
that the total number of nucleotides in a sequence (abstraction simplicity) directly
influences the efficiency of SPM algorithms.

4.4 Sequence Prediction

Predicting the next nucleotides in a genome sequence was done to see how pre-
dictable a sequence is. Several models were compared for predicting the next nu-
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Fig. 4: Sequential rules discovered in a genome sequence by ERMiner

cleotides and their patterns. Each model is first trained on nucleotides and their pat-
terns in sequences. Then, a prediction model is used to predict the next nucleotides
and their patterns in a sequence. Prediction of the next nucleotides and their patterns is
based on the scores calculated by the model for each nucleotide. For example, CPT+
predicted {T} for the sequence {A,C}, and ACT is a frequent codon that encodes
the Threonine amino acid.

We compared the performance of CPT+ with other popular prediction models
such as Dependency Graph (DG), Transition Directed Acyclic Graph (TDAG), CPT
(the predecessor of CPT+), Mark1, AKOM (All-K-Order-Markov) and LZ78. Each
model is trained and tested with 10-fold cross-validation. The cross-validation tech-
nique characterizes the performance of each model by evaluating the generalization
of independent set over statistical results provided by the model. In k-fold cross-
validation, the dataset is randomly partitioned into k sub-datasets. One sub-dataset is
then selected as validation set for model testing and the remaining k− 1 sub-datasets
are used for model training. This process is applied k times and each sub-dataset is
used exactly once as the validation set. Single estimation of the result is obtained
by taking the average of k results. The main reason to use 10-fold cross-validation
is to achieve low variance in each run. Details about the dataset that only contains
MT745584 are shown in Table 8.

Table 8: Corpus statistics for sequence prediction

parameter Value
Number of Sequences 1492

Number of distinct items 5
Itemsets item ID 4

Distinct item per sequence 20.42
Occurrence for each item 4.66

Corpus size in MB 5968
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To evaluate prediction models, three measures are used. The result of a prediction
can be:

– a success if the model predicts accurately,
– a failure if the model predicts inaccurately and
– no match if the model cannot perform a prediction.

The success, failure, no match are expressed as percentage for all predictions. The
table also include information about the training time and testing time for each model,
in seconds. On overall, the accuracy is the most important measure to compare the
models as it represents the ability to make good predictions.

Table 9: Accuracy of prediction models

Models DG TDAG CPT+ CPT Mark1 AKOM LZ78 Random
Success 20.643 18.901 18.035 18.298 20.174 20.71 19.722 16.1
Failure 79.357 81.099 81.965 81.702 79.826 79.29 80.228 83.9

No Match 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Train Time 0.011 0.081 0.039 0.002 0.005 0.057 0.021 –
Test Time 00.001 00.000 0.305 0.469 0.001 00.000 0.002 –

Results are shown in Table 9 for each compared model on MT745584. To put
the results into perspective, Table 9 also include results for a baseline, which is a
sequence prediction model that randomly predicts the next nucleotide of a sequence.
This baseline model is called Random. Several observations are made from the re-
sults. First, it is found that No Match is always zero, meaning that predictions could
always be performed using all models. Second, the testing and training times of mod-
els were quite similar for most models, and remained very low (lest than 1 second in
all cases). Third, AKOM, where k = 3, provided the highest accuracy (20.71%) as
compared to other prediction models, followed by DG. CPT+ had the highest number
of failures, while CPT+, CPT and TDAG had similar performance. CPT, the prede-
cessor of CPT+ performed slightly better than CPT+. A reason why CPT and CPT+
do not perform particularly well is because they consider that the ordering of previous
nucleotides is not important to predict the next one. The most accurate models (DG,
Mark1 and AKOM) consider a strict ordering of nucleotide(s) to perform predictions.

Overall, the accuracy of models for nucleotide base(s) prediction in genome se-
quences was low. This may be due to the fact that sequences only contain four distinct
items (nucleotides) and their distribution in the genome sequence is not uniform (A
and T generally make 60-64% of the total genome sequence). Despite having low
accuracy, all models achieved better performance than the Random prediction model,
which had an accuracy of 16.1%.

A limitations of these prediction models is that they can predict only one item
(nucleotide in this work) for a sequence of items. The genetic code that maps codons
to amino acids follows the redundancy (or degeneracy) property [65]. This means that
two different codons can encode the same amino acid. The redundancy is generally
found in the third nucleotide in codons. One practical consequence of redundancy is
that a single nucleotide substitution (called synonymous substitution) or an error at
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the third position usually leads to no alteration in amino acids in the encoded protein.
Due to the redundant nature of genetic code, one may argue that predicting only one
nucleotide in a codon is not that significant and useful.

However, codons can be organized into 9 families and 13 pairs on the basis of
frequent patterns of redundancy. In 9 codon families, the first two nucleotides are
enough to encode a unique amino acid. Adding any third nucleotide (say X) will
generate the same amino acid. For example the two codon families (patterns) CGX
and GCX encode two amino acids Arginine and Alanine respectively. Whereas in 13
codon pairs, the first two nucleotides are enough to encode two different amino acids.
Adding a third purine (that contains either A or G) nucleotide (say Y) generates one
amino acid, and adding a third pyrimidine (containing either the C or T) nucleotide
(say Z) generates another different amino acid. For example, the Leucine amino acid
is encoded by a codon family (CTX) and a codon pair (TTY). Thus, an interesting
research possibility is to take advantage of redundant frequent patterns found by SPM
algorithms to predict codon families and pairs. Another interesting direction would
be to integrate domain knowledge in prediction models to further guide prediction.

5 COVID-19 Genomes Mutation Analysis

This section presents the proposed approach for the third sub-goal of this paper, which
is to identify mutations in the COVID-19 genome sequences.

At this moment, it is still quite unclear how COVID-19 causes a variety of dis-
eases that can range from asymptomatic to fatal respiratory failure. As many other
organisms that divide and spread, the SARS-CoV-2 virus is constantly evolving by
changing a few letters (nucleotides) at a time, to better adapt to new environments.
The evolution process is not completely known as it changes slowly [66] compared to
other viruses, thus, giving less mutations to study. On average, the coronavirus accu-
mulates about two changes per month in its genome [67]. Most of the changes in the
COVID-19 genome structure may not affect how the virus behaves, but a few may
influence the disease’s transmissibility or severity. For example, Korber et al. [46]
claimed that a mutation (D614G) appears to be more transmissible between people
than the previous one (D614). However, that study received criticism because the
scientists had not proved that the mutation itself was responsible for its domination;
it could have benefited from other factors or from chance. Nevertheless, it is very
important to understand the pattern in the virus mutates as well as its mutation rate.

The mutation rate of any virus is a critical parameter to understand viral evolu-
tion [68]. It is also the most important factor to assess the risk of emergent infectious
disease and its accurate estimation is of great significance [69]. Additionally, for de-
veloping proper drugs/vaccines against COVID-19, genomic sequence and mutation
analysis are crucial [70] and accurate information on the mutation rate can play a vi-
tal role in the assessment of possible drugs/vaccination strategies. In this regard, we
propose an algorithm that can be used to analyze genome sequences for variations
and also to study the mutation rate. The focus in this work is on substitution muta-
tion, also known as point mutation. Algorithm 1 presents the pseudocode for point
mutation analysis in genome sequences.
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Algorithm 1 Point Mutation Analysis

Input: Genome sequences (GN1, GN2)
Output: Locations in the sequences with changed nucleotides, mutation rate

1: Vec← ∅;
2: TL← total lines in GN1, GN2; . len(GN1) = len(GN2)
3: x, y ← 0
4: for k ← 1 to TL do
5: for i← 1 to length(TL) do
6: if GN1(i) 6= GN2(i) then
7: V ec← k, i, GN1(i), GN2(i);
8: x← x+ 1
9: end if

10: y ← y + 1
11: end for
12: y ← y + 1
13: end for
14: MR← x

y
× 100

15: return V ec,MR

Algorithm 1 takes two COVID-19 genome sequences (GN1 and GN2) and com-
pares the nucleotides in the two sequences line by line. The locations and lines num-
ber where nucleotides are different are stored in a set called V ec. Moreover, the
changed nucleotides values are also stored in V ec. Mutation rate (MR) is calculated
by the following formula:

MR =
TM

TNB
× 100 (1)

where TM is the total mutation taking place in the two sequences and TNB is the
total number of nucleotides.

We have developed this algorithm in Python and the code along with genome se-
quences can be found at [71]. We have run the algorithms on two genome sequences
(MT750057 and MT750058) from Table 2. The algorithm returns the lines number
and locations where the nucleotides in genome sequence have changed (shown in
Table 10). Moreover, the fourth and eight columns in Table 10 provide information
about replacement of nucleotide bases. For example, the first entry in the fourth col-
umn shows that G (in MT750057) was replaced by T (in MT750058).

It is interesting to observe that the occurrence frequency of each nucleotide base
(A, C, G and T) is the same in the two strains MT750057 and MT750058 (as observed
in Table 4), despite that mutations occurred. The designed algorithm found that the
MT750058 strain has eight more changes (listed in Table10) than MT750057. The
reason why the occurrence frequency of nucleotides remains the same despite these
mutations is that for each mutation that changed a nucleotide by another, there was
another mutation that changed another nucleotide by the former. More precisely, mu-
tations have removed one A, two C, two G and three T, but have added the same
number of each nucleotide. Hence, the total occurrence frequency of each nucleotide
is the same in both strains.
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Table 10: Point mutation analysis results

Line Location Position Change Line Location Position Change
3 29 149 G→ T 130 42 7,782 C→ A

70 31 4,171 T→ C 139 55 8,335 A→ G
94 37 5,617 T→ C 328 2 19,662 T→ G
115 11 6,851 C→ T 415 31 24,871 G→ T
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Fig. 5: COVID-19 genome mutation in whole sequences

The matplotlib library was used to generate the plots for two genome sequences
and the mutated sequence (Figure 5). If there is any mutation in the two genome
sequences (Figure 5(a,b)), then the mutated sequence (Figure 5c) will have bright
spots. If there is no mutation, then the Figure 5(c) will be dark with no bright spots.
Both sequences were 497 lines long and each line contains 60 nucleotide except for
the last line, that contain 22 nucleotide. The X-axis represents the location in the line
where nucleotide bases are changed and Y-axis represents the line number where two
sequences are changed.

Figure 5 does not provide a very clear picture for the mutation. Some spots can be
seen in Figure 5(c) that show the place of mutations. To make the results clearer, we
plot the mutation analysis for only those lines where the mutation take place instead
of displaying the plots for all the lines in the sequences. Obtained results are shown
in Figure 6, that contain only 8 lines from two sequences where mutations took place.
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Fig. 6: COVID-19 genome mutation

The mutation rate comes out to be 0.0268% for the MT750057 and MT750058
genome sequences. Similarly the mutation rate for other two genome sequences (MT-
291827, MT291828) comes out to be 0.0003% (one nucleotide base changed (A
(in MT291827) → G (in MT291828)) at line 405, location 48, position 24,288).
Table 4 that lists the total occurrence frequency of four nucleotides in MT291827
and MT291828 also indicated that MT291828 has one less A and one more G than
MT291827. It is important to point out there that China genome sequences were re-
ported earlier than USA genome sequences. Moreover, the genome sequences are
from the same city. Whereas, the genome sequences for USA are from different
cities. This shows that COVID-19 genome sequences mutation rate is different and in-
creased with the passage of time. Moreover, genome sequences for different locations
(cities) in the same country have high mutation rate. With this developed procedure,
one can analyze:

– The point mutation and mutation rate in different genome sequences.
– How COVID-19 genome sequences are evolving as it spread in different loca-

tions.

With such information, one can investigate how the mutations vary from place to
place and from country to country. Moreover, COVID-19 strains from different loca-
tions can be analyzed to investigate whether they coexist with each other or not. In
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this regard, one study [72] finds that European, North American and Asian COVID-
19 strains might coexist.

This preliminary technique has some limitations. First, a requirement is that both
genome sequences should have equal length. If length is not equal then some nu-
cleotides in the longest genome sequence will not be considered in the analysis. For
example, let the length of the shorter genome sequence (say X) be 85 and the length
of longer genome sequence (say Y) be 95. Then, nucleotides in Y from position 86
to 95 will be ignored as the maximum length of X is 85. One possible solution is to
add dummy values in X. However, this solution suffers from the problem of how to
compare dummy values with nucleotides. Another solution is to make the length of X
equal to that of Y by appending those nucleotides at the tail of X that are taken from
Y. However, this will make the two sequences the same at appended locations and
mutation analysis at these points will be useless. It is important to point out here that
SPM-based learning approach in Section 3 does not suffer from genome sequence
length issue and works well for genome sequences of any length.

The second limitation is that the procedure for mutation analysis considers the
whole genome sequence without ORFs and proteins information. The technique can
be improved in this regard by comparing nucleotides in the genome sequences ORFs
wise. This will help in finding the mutation in particular ORFs and plotting the mu-
tation analysis results for each ORF [73]. We believe that this technique still needs
some improvements and in the future, we plan to work on the aforementioned limita-
tions. The goal is to develop a generic technique that can find mutation and mutation
rate ORFs wise and can work on genome sequences of different lengths without los-
ing important information.

6 Conclusion

This paper proposed two approaches to investigate and analyze COVID-19 genome
sequences. In the first approach, pattern mining techniques are used to find frequent
nucleotide bases in the sequences, their frequent patterns and the sequential rela-
tionship between such patterns. Moreover, various sequence prediction models were
evaluated on genome sequences, where DG (Dependency Graph) performed better
than other state-of-the-art algorithms. In the second approach, an algorithm was pro-
posed to analyze mutations in COVID-19 genome sequences. The algorithm finds
the location(s) in COVID-19 strains where the nucleotide bases are changed to cal-
culate the mutation rate. The approaches presented in this paper are not limited to the
SARS-CoV-2 virus. They could be used for the analysis of other human viruses too.
The proposed approaches lead to several directions for future work, some of which
are:

– To use of emerging patterns mining or contrast set mining techniques [74] on
the COVID-19 genome sequences to discover emerging (or contrasting) trends in
genome sequences that shows a clear and useful difference (or contrast) between
two classes or disjoint features.

– To investigate the applicability of pattern mining and deep learning techniques
[75] for the prediction of codon families and codon pairs in genome sequences.
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– To find specific codons that are followed by specific codons. This will allow us
to find codon signatures that indicate stickiness/preference between codons of
amino acids.

– To take advantage of redundant frequent patterns in COVID-19 genomes discov-
ered by SPM algorithms to predict codon families and pairs.

– To improve the mutation analysis approach to make it more general. For example,
to propose some strategies that can be used to overcome the sequence length lim-
itation and considering genes information in the genome sequences. Moreover,
performing the indels (insertion or deletion of nucleotides bases) [76] mutation
analysis along with point (substitution) mutation.

– The point mutation technique can be extended to compare a new genome se-
quence with a dataset of COVID-19 genomic sequences. The ultimate goal is to
develop a technique that can work well on genome sequences of various length,
perform indels and point mutation with gene information.
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