HUE-Span: Fast High Utility Episode Mining

Philippe Fournier-Viger¹, Peng Yang¹, Jerry Chun-Wei Lin², Unil Yun³

¹Harbin Institute of Technology (Shenzhen), China ²Western Norway University of Applied Sciences (HVL), Bergen, Norway ³Sejong University, Seoul, Republic of Korea

philfv8@yahoo.com, pengyeung@163.com, jerrylin@ieee.org, yunei@sejong.ac.kr

High Utility Episode Mining (Wu et al, 2013 and recent papers)

Input:

A unit profit table

Event	А	В	С	D
Profit	2	1	3	2

minUtil : minimum utility threhold *maxDur* : maximum time duration

Output:

High utility episodes (with utility $\geq minUtil$ & duration $\leq maxDur$)

If set *minUtil* = 15 and *maxDur* = 3, HUEs are:

Episode	Minimal Occurrences	Utility
< (BC), (AC), (D) >	[3, 5]	15
<(B), (BC), (AC)>	[2, 4]	15
<(BD), (BC), (AC)>	[2, 4]	17
<(D), (BC), (AC)>	[2, 4]	15

What is a Minimal Occurrence?

- **Episode** $<(SE_1), (SE_2), ..., (SE_k)>$:
 - a non-empty totally ordered set of simultaneous events
- **Occurrence** ([*t_s*, *t_e*]):
 - (i) SE_1 occurs at t_s and (ii) SE_k occurs at t_e
 - **e.g.:** occSet(<(B), (C)>) = [2, 3], [2, 4], [3, 4]

What is a Minimal Occurrence?

- **Episode** $<(SE_1), (SE_2), ..., (SE_k)>$:
 - a non-empty totally ordered set of simultaneous events
- **Occurrence** ([*t_s*, *t_e*]):
 - (i) SE_1 occurs at t_s and (ii) SE_k occurs at t_e
 - e.g.: occSet(<(B), (C)>) = [2, 3], [2, 4], [3, 4]

• Minimal Occurrence:

- no alternative occurrence $[t'_s, t'_e]$ is a sub-time interval of $[t_s, t_e]$
- e.g.: moSet(<(B), (C)>) = [2, 3], [3, 4]

How to Calculate the Utility?

Event	А	В	С	D
Profit	2	1	3	2

minUtil = 10 and *maxDur* = 4

The utility of the episode <(B), (C)> is calculated as follows:

$$u(\langle (B), (C) \rangle) = u(\langle (B), (C) \rangle, [2, 3]) + u(\langle (B), (C) \rangle, [3, 4])$$

= $(2*1) + (1*3) + (3*1) + (1*3)$
= $11 > 10$

So, <(B), (C)> is a High Utility Episode (HUE)

A Problem with the Utility Calculation

Event	А	В	С	D
Profit	2	1	3	2

minUtil = 10 and *maxDur* = 4

Consider the utility of <(A), (B), (A)>:

- Previous works would choose the first B:
 - $u(\langle A), (B), (A) \rangle = 1*2 + 2*1 + 2*2 = 8$
 - the episode's utility may be underestimated
- We choose the highest utility:
 - u(<(A), (B), (A)>) = 1*2 + 3*1 + 2*2 = 9

The EWU Upper-Bound on the Utility (Wu et al, 2013 and recent papers)

Let an episode $\alpha = \langle (SE_1), (SE_2), \dots, (SE_k) \rangle$ satisfying *maxDur*, where simultaneous event sets are associated with the time points $t_1, t_2, \dots t_k$.

- EWU of a MO : $\sum_{i=1}^{k-1} u(SE_i, t_i) + \sum_{j=t_{\nu}}^{t_1+maxDur-1} u(tSE_j, j)$
 - *tSE_i* : simultaneous event set at *j*
 - Don't need to keep the order of events
- $EWU(\langle (A), (D) \rangle, [1,2]) = u(A, 1) + u(BD, 2) + u(BC, 3) + u(AC, 4)$

= 19

Event	А	В	С	D
Profit	2	1	3	2

A Tighter Upper-Bound called ERU

Let an episode $\alpha = \langle (SE_1), (SE_2), ..., (SE_k) \rangle$ satisfying *maxDur*, where simultaneous event sets are associated with the time points $t_1, t_2, ..., t_k$.

- ERU of a MO: $\sum_{i=1}^{k} u(SE_i, t_i) + u(rSE_k, t_k) + \sum_{j=t_k+1}^{t_1+maxDur-1} u(tSE_j, j)$
 - rSE_k : the remaining event set of (SE_k) at t_k
 - Need to keep the order of events
- ERU(<(A),(D)>, [1,2]) = u(A, 1) + u(D, 2) + 0 + u(BC, 3) + u(AC,4)

= 17

The Utility Co-occurrence Structures

- *EECUS_{simult}*: stores the action-window utilization of all pairs of events by **i-extension**
- *EEUCS_{serial}* : stores the action-window utilization of all pairs of events by **s-extension**

Event	А	D	В	С
А		0	0	19
D			19	0
В				21
С				

Event	А	D	В	С
А	0	27	12	12
D	17	0	19	19
В	36	15	19	38
С	19	30	0	19

(a) EEUCS_{simult}

(b) EEUCS_{serial}

This figure shows *EEUCS* for *maxDur* = 3

The action-window utilization is the loosest upper-bound on the utility

Action-Window Utilization

• Action-Window:

• Action-Window Utilization of $[t_s, t_e]$: • AWU(α , $[t_s, t_e]$) = $\sum_{t_i=t_s}^{t_e+maxDur-1} u(tSE_i, t_i)$

Pruning Properties

- Pruning an i-extension: The i-extension of an episode *α* with an event *x* is not high utility if there exist an event *i* in *α* such that AWU(<(*i*, *x*)>) in *EECUS_{simult}* less than *minUtil*.
- **Pruning an s-extension**: The s-extension of an episode α with an event x is **not** high utility if there exist an event i in α such that AWU(<(i),(x)>) in **EECUS**_{serial} less than **minUtil**.

Experimental Evaluation

Statistical information about three datasets

Dataset	#Time Point	#Event	Avg. Length
T25I10N1KD10KQ10F5	9,976	929	24.8
Retail	88,162	16,470	10.3
Kosarak	990,002	41,270	8.1

- Retail and Kosarak are real datasets
- T25I10N1KD10KQ10F5 (synthetic, using SPMF generator):
 - average profit is 5
 - quantities between 1 and 10
- Java, Windows10

Execution times

The notation * means that it mines maximal high utility episodes Increasing *minUtil* or decreasing *maxDur* of en increase the runtime.

Number of Candidates

T25I10N1KD10KQ10F5

The number of candidates grows rapidly when *minUtil* is decreased or *maxDur* is increased.

Peak memory usage

HUE-Span with pruning strategies uses less memory than UP-Span since the proposed pruning strategies reduce the number of candidates.

Number of patterns found

Dataset	minUtil	maxDur	$\#HUE^*$	#HUE	$\#HUE^-$
	1%	5	1,556	$1,\!174$	745
	1.5%	5	523	422	196
Retail	2%	5	179	170	98
	2%	6	730	439	296
	2%	7	2,084	1,077	858
	10%	5	105	73	29
	15%	5	27	22	5
Kosarak	20%	5	3	2	0
	20%	6	21	8	1
	20%	7	81	28	16

 HUE^* : high utility episode with maximal utility

- *HUE* : high utility episode
- HUE^- : high utility episode that its utility is not maximal utility

UP-Span finds much less HUEs than the proposed HUE-Span^{*} algorithm UP-Span underestimates the utility of up to 79% of the (maximal) HUEs.

Conclusion

• Contributions:

Redefined utility: highest (maximal) utility

≻A Tighter Upper-Bound on the utility: **ERU**

>A novel pruning strategy based on event co-occurrences

≻An efficient algorithm, named HUE-Span

• Future work:

> Design other optimizations for high utility episode mining

- >consider using high utility episodes to derive high utility episode rules
- Source code and datasets available as part of the SPMF data mining library (GPL 3).

Open source Java data mining software, 178 algorithms <u>http://www.philippe-fournier-viger.com/spmf/</u>

Thank you. Questions?

Open source Java data mining software, 178 algorithms <u>http://www.philippe-fournier-viger.com/spmf/</u>