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Abstract

Event sequences are common types of data. Several episode mining algo-
rithms have been developed to find episodes (subsequences of events)
that appear frequently in an event sequence, with the aim of discovering
useful knowledge for decision-making and predictions. However, most of
these algorithms can only process simple event sequences (where, at most,
one event occurs at each timestamp). In contrast, in many real-life appli-
cations, multiple events may occur at the same timestamp, resulting in
complex event sequences. Moreover, numerous episode mining algorithms
overestimate the frequency of episodes by counting the same events mul-
tiple times. As a solution, some algorithms have been designed to count
only non-overlapping occurrences. Yet, it can be argued that this defini-
tion is too strict and discards many important events. To address these
limitations, this paper presents an algorithm named EMDO (Episode
Mining under Distinct Occurrences (EMDO) to find frequent episodes
in a complex sequence by counting distinct occurrences. The proposed
concept of distinct occurrences ensures that each event is not counted
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2 Discovering Frequent Parallel Episodes in Complex Event Sequences

more than once but allows distinct occurrences to overlap. A second
algorithm, called EMDO-P, is also presented in this paper to derive
strong episode rules in event sequences from episodes found by EMDO.
To the best of our knowledge, this is the first study on mining frequent
episodes using a frequency definition based on distinct occurrences. The
experimental results confirm that the proposed algorithms are efficient.

Keywords: Complex Event Sequence, Frequent Episode, Episode Rules,
Distinct Occurrence

1 Introduction

Data has become extremely valuable and plays an important role in daily life.
They are captured in various ways such as through the Internet of Things
(IoT) [29] and social networks [30]. They are used by decision makers, data
analysts, and engineers to better understand various phenomena and provide
improved services for real-world applications, such as product recommendation
for e-commerce websites, analyzing energy usage in logistics or urban trans-
portation, and even studying the human behavior in response to some specific
events.

To incorporate the time dimension in data analysis, several temporal data-
mining algorithms have been proposed in recent years. These algorithms can
analyze a variety of temporal data such as time series and event sequences.
An event sequence is a long sequence of events that are associated with time
stamps.

To discover useful patterns in event sequences, Frequent Episode Mining
(FEM) was introduced by Mannila et al. [8]. This framework has been applied
successfully in many real-life applications, including alarm sequence analysis
in telecommunication networks [8], user-behavior analysis from Web logs [26],
and financial event and stock trend analysis [23]. The input data in the FEM
is a single sequence of events, each of which is characterized by a type and
an occurrence timestamp. The patterns discovered by an FEM algorithm are
called frequent episodes, which are either subsequences or sets of events that
occur frequently in an event sequence.

Since the seminal work of Mannila et al. [8], many recent studies have been
conducted to improve the performance of FEM. In general, any FEM algorithm
utilizes a frequency definition to find frequent episodes, which is based on
a specific definition of episode occurrences. Generally, there are two types
of frequency definitions: dependent frequencies that are based on occurrences
which may share some events between them; and independent frequencies that
only count occurrences that do not share any events between them.

In several studies, frequent episodes have also been used to derive a related
pattern type called episode rules [8]. An episode rule is an implication that
reveals a strong temporal relationship between two frequent episodes, and is
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also observed in an event sequence. The interpretation of an episode rule is
that if the left side of the rule occurs in the sequence, it will trigger the occur-
rence of the rule’s right side shortly after with high confidence. Owing to the
practical significance of mining episode rules in finding strong relationships,
many algorithms have been proposed to mine these rules efficiently. Each algo-
rithm uses a specific frequency definition and considers a given sequence type
(either a simple or complex event sequence).

After reviewing the literature, two key limitations were identified. First,
most FEM algorithms can only handle simple event sequences (where there
can be at most one event per timestamp). However, it is not uncommon in
real-world applications to encounter multiple events with the same timestamp,
resulting in complex event sequences. Thus, traditional episode discovery algo-
rithms cannot identify strong patterns with simultaneous events. Second, most
frequency definitions count an event multiple times if there are overlapping
occurrences, which may result in significant overestimation of the frequency
of episodes. This is illustrated by the simple event sequence shown in Fig. 1,
which contains three event types (a, b, c) observed at five timestamps (1,2,
. . . 5).

A traditional episode mining algorithm considers that episode a before c
appears four times at timestamps (1,4), (3,4), (1,5), and (3,5); thus, it has a fre-
quency (support) of 4. However, this can be seen as an overestimation because
each event is counted twice. For instance, event a at timestamp 1 is shared by
occurrences (1,4) and (1,5). To address this problem, FEM algorithms have
been designed to count only non-overlapping occurrences [10, 13, 19]. How-
ever, one could argue that this definition is too strict and may discard many
important events, which may lead to an underestimation of the frequency of
episodes. This is also illustrated by the sequence shown in Fig. 1. According
to the non-overlapped occurrence-based frequency, episode a before c appears
only once because a set of at most one non-overlapping occurrence can be
found in that sequence, such as {(1, 4)} or {(2, 4)}. However, this may seem
unreasonable because there are two a that appear before two c in the sequence.

a

1

b

2

a

3

c

4

c

5

Fig. 1 A simple event sequence with five events and five timestamps

The extraction of distinct occurrences from complex event sequences has
two major goals: first, to handle real-life phenomena with simultaneous events
at a given timestamp. Hence, the resultant sequence will be a complex event
sequence. This makes the analysis of such a sequence a challenging task that
consumes a huge amount of resources. Second, the analysis should reveal hid-
den information without any duplicate occurrences of episodes or duplicate
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combinations of events within the set of interesting patterns, since the pur-
pose is to understand the targeted phenomena as much as possible. To achieve
this, new techniques must be developed that allow simultaneous events to be
taken into consideration in the calculation of the maximum possible number
of episodes. As a consequence, we propose an approach to mining frequent
parallel episodes in complex sequences under distinct occurrences. The pro-
posed approach also enables the discovery of episodes that may occur at one
timestamp since it does not consider any order between the nodes of such an
episode.

To the best of our knowledge, no prior studies have attempted to jointly
solve these two limitations. In this paper, we address them by proposing two
new episode mining algorithms called EMDO (Episode Mining under Distinct
Occurrences) and EMDO-P (EMDO with pruning strategy), based on a novel
frequency definition that is less strict than the non-overlapped occurrence-
based frequency, using a novel concept of distinct occurrences. The main
intuition is to count the frequency of episodes by allowing overlapping occur-
rences, but not allowing the same event to be used twice to reduce the problem
of underestimation. For example, in the sequence illustrated in Fig. 2, the
episode a before c has a set of two distinct occurrences (1,4) and (3,5), since
these occurrences do not reuse the same events, and thus the frequency of that
episode is deemed to be two.

The two key contributions of this study are as follows: First, a novel fre-
quency definition is defined for episodes and episode rules based on distinct
occurrences of complex event sequences. Second, this definition is integrated
into two novel algorithms, EMDO and EMDO-P, to efficiently find episodes
and episode rules with this new definition, respectively. The experiments pre-
sented in this paper on various datasets show that the algorithms are efficient
for different types of data and parameter settings.

The remainder of this paper is organized as follows. Section 2 reviews the
related work. Section 3 presents preliminaries and reviews the key concepts of
frequent episodes and episode rules. Section 4 describes the studied episode
discovery tasks and the novel algorithms in detail. Results from an experimen-
tal evaluation of the designed algorithms and a discussion is then presented in
Section 5. Finally, Section 6 concludes the study and discusses future directions
for research.

2 Related work

FEM is a data science task that has drawn the attention of many researchers,
as evidenced by the increasing number of FEM algorithms. Since the initial
study by Mannila et al. [8], several approaches have been proposed to enhance
the efficiency of the FEM process by extending previous algorithms or mining
new types of episodes or related patterns that reveal interesting relationships
between events in a sequence.
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Mannila et al. [8] introduced the first frequency definition, known as the
window-based frequency. For a given episode, it counts the number of fixed-
width windows in which the episode appeared at least once. Mannila et al.
created an algorithm called WINEPI to mine such episodes. In the same paper,
they also presented another algorithm called MINEPI, where the frequency is
defined as the number of minimal windows that contain an occurrence of a
target episode, and is called the minimal occurrence-based frequency. To over-
come some of the limitations of previous approaches, two additional frequency
definitions, namely, the head frequency [9] and total frequency [9], were also
designed. For instance, Huang et al. [1] proposed two algorithms, EMMA and
MINEPI+, to overcome the limitations of the window-based frequency using
the head frequency [8].

Other studies have proposed other types of frequencies based on indepen-
dent occurrences, such as the non-overlapped occurrences-based frequency [10]
and the distinct occurrences-based frequency [11]. Another recent study pro-
posed a frequency definition based on the earliest transiting occurrences [12],
which provides a unified view of all previous frequency definitions. However the
algorithm in [12] is limited to mining serial episodes with distinct occurrences
using this unified view. This means that simultaneous events are not per-
mitted, although they are common in many applications. An algorithm called
ONCE + was also proposed to mine serial episodes in event streams [28].

Some studies have focused on identifying specific frequent episodes that
met some additional conditions(s). In particular, several episode mining algo-
rithms have been proposed for retrieving concise representations of frequent
episodes. For instance, Xiang et al. [4] presented an algorithm called LA-
FEMH+ that mines maximal episodes. An episode is maximal if and only
if it has no proper frequent super-episode. Algorithms were also devised to
discover closed episodes and generator episodes. A closed episode is a
frequent episode with no proper super-episode and the same support (occur-
rence frequency). Closed episode mining algorithms include FCEMiner [14],
2PEM [15] under minimal and non-overlapping frequency, and Clo-episode [13]
under minimal occurrence-based frequency. Generator episodes are frequent
episodes that have No sub-episodes with the same support. The only algo-
rithm that mines generator episodes is called Extractor [24]. Another area of
research on episode mining is high utility pattern mining. The problem of min-
ing high-utility episodes was defined as locating episodes with high importance,
as measured by a utility function. The motivating application of this task is to
identify episodes that are highly profitable. HUE-Span [17] and UP-Span [16]
are efficient algorithms for mining utility episodes in event sequences.

Another recent variant of episode mining is the discovery of the top-k most
frequent episodes in an event sequence, where k is a user-defined parameter. A
modified version of the EMMA algorithm [1] called TKE was developed to per-
form this task [18]. Two other notable extensions of FEM are weighted episode
mining [22] and fuzzy episode mining [25], which consider event sequences
with varying weights. The former allows for the importance of different event
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types to be weighted, whereas the latter handles events with quantities using
fuzzy sets to deal with imprecise events. These two extensions can be viewed
as forms of high utility pattern mining.

Some algorithms, such as PFSE [3] and D-PFSE [2] have also extended the
FEM to model the data uncertainty of event sequences by using possible worlds
semantics to mine frequent probabilistic episodes in uncertain sequences.

To extract strong relationships between sets of events in a complex event
sequence, FEM was extended to mine episode rules that satisfy a minimum
confidence constraint. Several algorithms have been proposed for this task.
Generally, they discover the set of frequent episodes first and then evaluate the
relationships between pairs of frequent episodes to build episode rules. Only
episode rules with confidence above a user-defined confidence threshold are
considered valid.

Mannila et al. proposed the first procedure for mining episode rules [8].
Further efficient algorithms have been proposed to handle time-sensitive appli-
cations such as program security trading using an algorithm called PPER [20].
These two algorithms use the minimal occurrence-based frequency.

In addition, the discovery of episode rules for event streams has been
studied. For instance, the Extractor algorithm of Zhu et al. [24] finds closed
episodes and their generators to identify nonredundant episode rules in an
event stream under minimal and nonoverlapped occurrence-based frequency.
Another technique, called MESELO, has also been proposed to mine episode
rules in event streams too. The MESELO algorithm processes an event stream
by decomposing it into smaller batches.

Recently, several algorithms have been proposed for mining partially
ordered episode rules in a complex event sequence. For instance, POERM
[6] uses the non-overlapped occurrence-based frequency and POERMH [7] is
based on the head frequency. Furthermore, NONEPI [19] is an algorithm that
performs a depth-first search to mine episode rules in simple event sequences
using the non-overlapped occurrence-based frequency.

The analysis of existing works shows that most studies discover serial
episodes in simple sequences, leaving many areas unexplored, such as other
types of sequences, frequency definitions, and episodes. We focus on complex
event sequences and parallel episodes with the distinct occurrence-based fre-
quency definition, which is a very interesting topic in practice but has not
been studied sufficiently. To the best of our knowledge, there is no algorithm
that can mine parallel episodes and episode rules in a complex event sequence
under a distinct occurrences-based frequency.

3 Preliminaries and problem definition

This section reviews the fundamental concepts used in Frequent Episode Min-
ing (FEM) before giving a clear definition of the problem that we will be
addressing in this paper: mining frequent episodes and valid episode rules in
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a sequence under a frequency definition based on distinct occurrences. The
input of FEM is an event sequence.

Definition 1 (Event) An event is a pair (e, t) where e is an element from a set E (set
of all event types) that represents the event type and t is an integer that indicates
the event’s timestamp.

For instance, in TCP/IP network communication, an event occurring at a
given time may be of type accept, representing the accept operation from a
server receiving connections.

Definition 2 (Simple Event Sequence) Given a set E of event types, a simple
sequence S = 〈(e1, t1), (e2, t2), ..., (en, tn)〉 is an ordered set of events (ei, ti) such
that ei ∈ E is the event type of the ith event and ti is its occurrence time in the
sequence S. The sequence S is ordered, that is, for any integers i, j if i < j then,
ti < tj .

a

1

c

2

a

3

b

4

a

5

e

6

d

7

Fig. 2 A simple event sequence with 7 timestamps

For example, Fig. 2 provides a visual representation of a simple sequence
with 7 events occurring at seven timestamps. The event types in this example
are denoted by lower case letters, i.e. E = {a, b, c, d, e}. The formal defini-
tion of that sequence is S = 〈(a, 1), (c, 2), (a, 3), (b, 4), (a, 5), (e, 6), (d, 7)〉. For
instance, this sequence may represent a list of web pages accessed through a
web browser by a user, or its list of purchases in a web store.

A more general type of event sequence considered in this work is called a
complex sequence and is simply referred to as sequence in the following.

Definition 3 (Complex Event sequence) Given a set E of event types, a complex
sequence S = 〈(ε1, t1), (ε2, t2), ..., (εn, tn)〉 is an ordered set of pairs (εi, ti) such that
εi ⊆ E is a set of event types and ti is the occurrence time of all events in εi in the
sequence S.

a, b

1

c, d

2

a, d, e

3

b, a, c

4

a

5

c, e

6

b, d

7

Fig. 3 A complex event sequence with 7 timestamps
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An example of a complex sequence is shown in Fig. 3. This sequence
contains 7 event sets and the same event types as in the previous example:
E = {a, b, c, d, e}. The sequence starts at time t1 = 1 and ends at time t7 = 7.
The sequence illustrated in the previous figure may represent the logs of a
server in which the events are logged simultaneously. We can observe that the
server logs, for each timestamp, different types of events that represent an
action such as, for example, a request to establish a channel between a client
and a server on a specific port. Here, the same port may be targeted by several
machines. Therefore, the server should log the incoming requests for a given
port at each timestamp, which clearly form a complex event sequence.

The goal of FEM is to discover patterns called episodes. A general definition
is as follows:

Definition 4 (Episode) An episode α is a triple (V,<α, gα) where V is a set of nodes
{v1, v2, ..., vn}, <α is an order on V and gα : V → E is a mapping that associates
an event type to each node.

According to the nature of the order <α, we can distinguish between
different kinds of episodes:

• if the order <α is total, α is a serial episode. In this case, α is denoted by
α = A1 → A2 → ... → An where each Ai is an event type. In this case, the
events must occur in the exact order specified by the episode. (see Figure
4.a for an example)

• If the order is trivial, the episode α is called parallel episode and it is
denoted as α = A1A2...An. In this case, the events may occur in any order.
An example is shown in Figure 4. b.

• Another type of episodes has been studied, called episode with general par-
tial order [5–7]. In this case, event occurrences are partially ordered. Figure
4.c shows an example of such an episode.

In addition, an episode α is said to be injective if it does not contain any
repeated event types, that is, for any 1 ≤ i, j ≤ n, if i 6= j then g(vi) 6= v(vj).

a b c

(a) Serial episode

a

b

c

(b) Parallel episode

a

b

c

(c) Episode with gen-
eral partial order

Fig. 4 The three main episode types
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In this study, we focus on discovering parallel injective episodes. Hence, in
the following sections, we use the term episode to refer to any injective parallel
episode.

For instance, establishing TCP/IP communication in a client/server archi-
tecture forms a serial episode. Here, a TCP connection is a sequence of actions,
such as request(), accept(), send(), and receive(). First, the client sends a
request message requesting a connection to a specific port on the server. Then,
the server must accept the request sent by the client to allow the sending and
receiving of data. Note that there is a strict order between these events (TCP
operations) to establish a link; hence, it is a typical example of a serial episode.
In contrast, user clicks on a website may constitute a parallel episode because
the user’s behavior may not depend on the order between the clicks on the
website.

In the example sequence, shown in Fig. 3, the events a, b and c can form an
episode in that sequence, and this episode is denoted by α = abc. Additional
definitions are introduced to formally define how an episode α occurs in a
sequence.

Definition 5 (Sub-episode) Let α = A1 . . . An and β = B1 . . . Bm be two episodes.
β is said to be a sub-episode of α (denoted as β ⊑ α ) if and only if there exist
m integers i1, i2, . . . , im such that : 1 ≤ i1 < · · · < im ≤ n and B1 = Ai1 , B2 =
Ai2 . . . Bm = Aim .

In other words, β is a subepisode of α if the events of β are a subset of
those of α. Note that if β is a subepisode of α then it is easy to see that every
occurrence of α contains an occurrence of β. [8].

For instance, consider episode α = abc from the sequence of Fig 3. By
definition 5, episode β = ac is a sub-episode of α = abc (β ⊑ α).

The task of FEM consists of identifying all the frequent episodes in an event
sequence. To achieve this, it is first necessary to select a frequency definition
to count the occurrence of an episode. Generally, the number of occurrences
of an episode is called its support, and an episode is frequent if and only if its
support is not less than a user-specified threshold, minsup. The notion of an
episode occurrence is defined as follows:

Definition 6 (Occurrence of episode, Distinct occurrences) Let S be a sequence and
α = A1A2 . . . An be an episode.

• An occurrence of the episode α in the sequence S is a vector of integers
h = [t1t2 . . . tn] such that each ti is the occurrence time (timestamp) of the
ith node (event) of the episode α, i.e., Ai occurs at time ti in S.

• Given two occurrences h = [t1t2 . . . tn], h
′ = [t′1t

′
2 . . . t

′
n], h and h are said to

be distinct if and only if ti 6= t′j for all ti ∈ h and t′j ∈ h′ and 1 ≤ i ≤ ‖α‖
and 1 ≤ j ≤ ‖α‖.
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Then, the maximal (w.r.t. set inclusion) set of distinct occurrences of an
episode is defined as:

Definition 7 (Maximal set of distinct occurrences) Let H be a set of distinct occur-
rences of episode α: H is said to be maximal if and only if for every set H ′ of distinct
occurrences, ‖H‖ ≥ ‖H ′‖. The notation do(α) denotes the maximum set of distinct
occurrences of α.

For instance, consider the example sequence in Fig. 3. The maximal set of
distinct occurrences of episode α = abc in that sequence is do(α) = {[1 1 2],[3 4
4],[5 7 6]}. FEM algorithms have been designed to mine frequent episodes using
various frequency definitions, each capturing a notion of how often an episode
occurs in an input sequence. Under the distinct occurrences-based frequency,
the support of an episode merely corresponds to the maximum number of its
distinct occurrences in the sequence.

Definition 8 (Support of episode, Frequent episode) Let S be a sequence and α be
an episode:

• The support of α under the distinct occurrences-based frequency definition
(denoted by support(α)) is the cardinality of the maximal set of its distinct
occurrences, that is support(α) = ‖do(α)‖.

• An episode α is frequent under distinct occurrence-based frequency if and
only if support(α) ≤ minsup i.e., support(α) = ‖do(α)‖, where minsup is a
user-specified threshold.

Frequent episodes are interesting because they can capture frequent rela-
tionships between events. To find patterns that are more actionable, several
studies have focused on discovering episodes in the form of rules called episode
rules [8, 19]. The concept of the episode rule is similar to that of association
rule used in traditional frequent itemset mining [31]. Generally, an episode rule
is an expression of the form α ⇒ β where α and β are two frequent episodes.
This represents a binary relationship between two frequent episodes according
to a specific frequency definition. To evaluate such a rule, the confidence mea-
sure, which is the probability that the consequent of an episode rule appears
when its antecedent is observed, is commonly used. An episode rule is said to
be valid if and only if its confidence exceeds the confidence threshold, denoted
by minconf . Note that the exact definition of the confidence of an episode
rule may vary depending on the algorithm and type of episode rules that are
extracted.

The approach presented in this paper is called EMDO, which stands for
Episode Mining under Distinct Occurrences. It relies on distinct occurrences-
based frequency to capture how often a rule is frequent. An episode rule is
then formally defined as follows:

10            
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Definition 9 (Episode Rule) An episode rule is an implication of the form α ⇒
β where α and β are two frequent episodes under the distinct occurrence-based
frequency.

As mentioned above, episode rules reveal important relationships between
frequent episodes. The meaning of an episode rule under Definition 9 is that if
an episode α appears in sequence S, it will trigger the occurrence of episode β.
Since we are using parallel episodes, any event of α can trigger the episode β.
To capture the idea that β is a consequence of α we require that the beginning
(resp. the end) of β must be after the beginning (resp. the end) of α. Therefore,
the new form of episode rules studied in this paper covers many other works
as in [6, 7] that mines partially ordered episode rules as well as episode rules
under non overlapped occurrence-based frequency [19].

Definition 10 (Episode Rule Occurrence) Consider an episode rule α ⇒ β and two
occurrences αi and βj of episodes α and β respectively (αi ∈ do(α) and βi ∈ do(β)).
An occurrence of the rule α ⇒ β is a vector h = [tα1

...tαn tβ1
....tβm

]. An occurrence
h is said to be a valid occurrence of the rule if and only if: Ts(α) < Ts(βj)
and Te(α) < Te(βj) where Ts (resp. Te) is a function that takes an occurrence of an
episode as an input and returns its starting (resp. ending) time. The set of all valid
occurrences of an episode rule α ⇒ β is denoted by occER(α ⇒ β).

For example, consider the sequence shown in Figure 3 and the support
threshold minsup = 3. We calculate the set of frequent episodes with respect
to minsup. We start with episodes of size 1. For α = a, the maximal set of
distinct occurrences in sequence S is doα = {[1], [3], [4], [7]}; hence, the support
of α is 4. Next, we determine the maximal set of distinct occurrences of β = b,
γ = c, and so on. Then, by joining the timestamp of each occurrence of any
pair of episodes according to Definition 6, we obtain the occurrences of larger
episodes.

Based on the concept of episode rule occurrence, the support of an episode
rule α⇒ β is defined as the number of all valid occurrences in the sequence.

Definition 11 (Episode Rule Support) The support of an episode rule α ⇒ β,
denoted by supER(α ⇒ β) is defined as follows:

supER(α ⇒ β) = ‖occER(α ⇒ β)‖

The confidence of an episode rule is defined as in a previous work, that is,
as the ratio between the support of that episode rule and the support of its
antecedent.
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12 Discovering Frequent Parallel Episodes in Complex Event Sequences

Table 1 Frequent episodes with minsup = 3

Episode Occurrences Support

a {[1], [3], [4], [5], [7]} 4

b {[1], [4], [7]} 3

c {[2], [4], [6]} 3

d {[2], [3], [7]} 3

ab {[1 1], [3 4], [5 7]} 3

abc {[1 1 2], [3 4 4], [5 7 6]} 3

abcd {[1 1 2 2], [3 4 4 3], [5 7 6 7]} 3

ac {[1 2], [3 4], [5 6]} 3

acd {[1 2 2], [3 3 3], [4 7 7]} 3

ad {[1 2], [3 3], [4 7]} 3

bc {[1 2], [4 4], [7 6]} 3

bcd {[1 2 2], [4 4 3], [7 6 7]} 3

bd {[1 2], [4 3], [7 7]} 3

cd {[2 2], [4 3], [6 7]} 3

Definition 12 (Episode Rule Confidence) The confidence of an episode rule α ⇒ β

is denoted by conf(α ⇒ β) and it is defined as follows:

conf(α ⇒ β) =
‖occER(α ⇒ β)‖

support(α)

In addition to the set of frequent episodes already demonstrated, a set
of episode rules can be derived in a straightforward manner. Consider the
confidence threshold minconf = 50%. For instance, let α = a and β = d be
two frequent episodes, each identified by its distinct occurrence, as shown in
Table 1. According to Definition 10, we can obtain the set of occurrences of
ER = a ⇒ d as occER(a ⇒ d) = {[1 2], [3 7]}; hence, the support of the
rule is suppER(a ⇒ d) = ‖occER(a ⇒ d)‖ = 2. Therefore, the confidence is

straightforwardly calculated by definition 12 as conf(a⇒ d) = ‖occER(a⇒d)‖
support(a) =

2
4 = 0.5 = 50%. Table 2 lists a subset of episode rules derived from sequence 3
with respect to a confidence threshold minconf = 50%.

The problem addressed in this paper is the mining of frequent episodes and
episode rules using the distinct occurrence-based frequency. More precisely,
given a sequence S, a support threshold minsup and a confidence threshold
minconf , the proposed approach consists of two tasks:

12            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      
Springer Nature 2021 LATEX template

Discovering Frequent Parallel Episodes in Complex Event Sequences 13

Table 2 Frequent episodes with minconf = 50%

Episode Rule α ⇒ β Occurrences conf(α ⇒ β)

a ⇒ d {[1 2], [3 7]} 50%

a ⇒ dc {[1 2 2], [3 6 7]} 50%

a ⇒ dcb {[1 3 4 4], [3 7 6 7]} 50%

a ⇒ dcba {[1 3 4 4 3], [3 7 6 7 5]} 50%

a ⇒ c {[1 2], [3 4], [4 6]} 75%

a ⇒ cb {[1 4 4], [3 6 7]} 50%

a ⇒ cba {[1 4 4 3], [3 6 7 5]} 50%

a ⇒ b {[1 4], [3 7]} 50%

a ⇒ ba {[1 4 3], [3 7 5]} 50%

a ⇒ a {[1 3], [3 4], [4 5]} 75%

da ⇒ d {[2 1 3], [3 3 7]} 66.67%

da ⇒ dc {[2 1 3 4], [3 3 7 6]} 66.67%

da ⇒ dcb {[2 1 3 4 4], [3 3 7 6 7]} 66.67%

da ⇒ dcba {[2 1 3 4 4 3], [3 3 7 6 7 5]} 66.67%

• Finding all frequent episodes under distinct occurrences-based frequency,
i.e., having a support which is greater or equal to minsup.

• Finding all valid episode rules of the form α ⇒ β such that α and β are
frequent episodes and conf(α⇒ β) ≥ minconf .

4 Novel efficient algorithms for episode rule
mining in complex sequences

This section presents the proposed approach for mining frequent episodes
and episode rules under distinct occurrences-based frequency. The proposed
approach involves two main phases: the first phase consists of mining frequent
episodes using a procedure to recognize distinct occurrences, whereas the
second phase extracts all valid episode rules in the proposed form, as discussed
in the previous section.

4.1 Frequent episode mining with distinct

occurrences-based frequency

The first step is to mine the set of all frequent episodes according to their dis-
tinct occurrences. Initially, the function Mine frequent episodes, presented

13            
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14 Discovering Frequent Parallel Episodes in Complex Event Sequences

in Algorithm 1, scans the input sequence to extract episodes of size 1 (con-
taining a single event). For each event type e that occurs at a timestamp tk,
tk is added to a variable doe that stores the distinct occurrences of e. Next,
the function retains only frequent event types (line 1-9). Then, the algorithm
mines larger episodes using a depth-first search strategy by repeatedly com-
bining each n-node episode with a single event episode to form larger episodes.
Function Distinct Occurrence Recognition (Algorithm 2) is used to find
the maximal set of distinct occurrences of each produced episode.

To avoid exploring all of the search space, the function for frequent episode
generation under distinct occurrences-based support utilizes the following anti-
monotonicity property.

Proposition 1 Let α and β be two episodes such that α ⊑ β. If the episode β is

frequent then the episode α is also frequent. Equivalently, if the episode α is infrequent

then the episode β is also infrequent.

Proof Since α ⊑ β, it follows that each occurrence of β in S includes an occurrence
of α. Hence, the number of occurrences of episode β is at most equal to the number
of occurrences of episode β, i.e. support(α) ≥ support(β). Therefore, if the episode
β is frequent, i.e., support(β) ≥ minsup and since support(β) ≤ support(α) then
support(α) ≥ minsup, hence, episode α is also frequent. Consequently, the anti-
monotonicity property holds for the distinct occurrences-based support. �

Function Distinct Occurrence Recognition, which finds the maximal
set of distinct occurrences (Algorithm 2), receives two input episodes: an
episode α to be grown using a single event episode beta. The output is the
distinct occurrences of the resulting episode doα⊔β . Several FEM algorithms
perform multiple scans of the input sequence to calculate the occurrences of an
episode. However, these scans generally consume excessive time and memory.
The proposed algorithm avoids this problem by calculating the occurrences of
any new larger episode of size n + 1 starting from the set of occurrences of
episodes of size n and that of a single event episode.

For each occurrence, Oi ∈ doα, the algorithm parses the set of distinct
occurrences of β to obtain an occurrence Oj ∈ doβ and builds an occur-
rence of α ⊔ β whose vector of timestamps contains timestamps of Oi (i.e.,
Oi.timestamps from doα) joined with timestamps of Oj (i.e., Oj .timestamps

from doβ).
Then, the algorithm compares the new occurrence with all the occurrences

in the set doα⊔β ; if that new occurrence overlaps with any other occur-
rence in the current maximal set of distinct occurrences of α ⊔ β (i.e., the
set doα⊔β), the algorithm simply checks which occurrence it is to remove
from the set doα or from doβ ; if the timestamp of the event in β (here,
since ‖β‖ = 1, Oj .timestamps[1] is the occurrence time of the single event
episode β in S) exists in the vector newocc.timestamps, then Oj is removed
from doβ . Otherwise, one timestamp from Oi.timestamps surely exists in
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newocc.timestampsj; in this case, Oi is removed from doα (line 10-16). Here,
the function exists(tk, Oi) returns true if the integer (timestamp) tk exists in
the vector of times Oi.timestamps; otherwise, it returns false.

4.1.1 An illustrative example

Consider the complex sequence of Fig 3 as an example, and let minsup = 3.
In the first step of Algorithm 1, each event type in E is viewed as a single
event episode (i.e., an episode with one event). Next, the algorithm computes,
for each episode, the set of its occurrences in each event set by scanning the
complex event sequence, and the support according to definition 8 (see line 1-
14). Then, the algorithm removes the non-frequent single event episodes based
on the support threshold (see line 15-19). Table 3 shows the set P of frequent
episodes obtained by executing lines 1-19.

Table 3 Frequent episodes of size 1 with minsup = 3

Episode Occurrences Support

a {[1], [3], [4], [7]} 4

b {[1], [4], [7]} 3

c {[2], [4], [6]} 3

d {[2], [3], [7]} 3

To discover larger episodes, the algorithm creates a copy of the frequent
episodes already obtained and then starts the search for larger episodes, fol-
lowing a depth-first strategy. Before deciding whether a new episode α ⊔ β is
frequent, the algorithm computes the episode’s distinct occurrences denoted
by doα⊔β . An example of this process will be given after. Next, the algorithm
checks if the episode’s support meets the requirement. If so, the episode is
added into the set F of frequent episodes and the algorithm continues the
search (line 21-28). To perform the step of distinct occurrences recognition,
the algorithm 1 calls Algorithm 2. Consider two episodes α = a and β = b

where doα = {[1], [3], [4], [7]} and doβ = {[1], [4], [7]}. The first step of each
iteration in Algorithm 2 within the loop is to create a new occurrence and ini-
tialize its timestamps as the union between the timestamps of an occurrence
of α and those of the occurrence of β. As explained before, the first occur-
rences Oα = [1] and Oβ = [1] will result in an occurrence of α ⊔ β such
that newoccα ⊔ β .timestamps = [1 3]. The algorithm continues for the next
occurrences Oα = [3] and Oβ = [4] such that newoccα ⊔ β .timestamps =
[3] ∪ [4] = [3 4] and stores each occurrence in doα ⊔ β . However, there is an
exceptional case where an occurrence of α ⊔ β does not meet the criteria
of definition 6 (line 11). In this case, the process uses another way of select-
ingd which occurrence to overstep. Therefore, if the timestamp of the single
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16 Discovering Frequent Parallel Episodes in Complex Event Sequences

event episode β exists already in any old occurrence of α ⊔ β then, the algo-
rithm loops with the same occurrence of α and selects the next occurrence of
β. Otherwise, the algorithm keeps the occurrence of β and tests the combi-
nation with the next occurrence of α since it absolutely intersects with any
other occurrence of α ⊔ β. For instance, consider two episodes α = a and
β = b. If the algorithm has the occurrence Oα = [3] and Oβ = [4]
then, doα⊔β = [3 4]. However, the next combination between Oα = [4]
and Oβ = [7] will not be valid since the timestamp t = 4 already exists in
[3 4]. Hence, the algorithm simply keeps the occurrence Oβ = [7] and moves
to the next occurrence Oα = [5], which gives a valid occurrence of α ⊔ β

such that: doα ⊔ β = {[1 1], [3 4], [5 7]}. When the algorithm terminates, all
frequent episodes have been found. Table 1 shows the final set of frequent
episodes generated by Algorithm 1 for the sequence of Fig 3.

4.2 Episode Rule Mining

The following paragraphs present an extension of the algorithm proposed in
Section 4.1 to derive all valid episode rules of the form α⇒ β where α and β

are two frequent episodes under the distinct occurrences-based frequency.
The episode rule mining process is given by the function

Extract Episode Rules described in Algorithm 3 which takes as input
a complex event sequence S, support threshold minsup and confidence
threshold minconf where the output is the set R of the valid episode rules.

Initially, the function calculates the set of frequent episodes by calling the
Mine Frequent Episodes function (Algorithm 1), and initializes the set of
rules (lines 1-2). Then, it iterates on the set of frequent episodes to capture
valid rules using Definition 11. Here, the function Episode Rule Support(α,
β) (line 5) calculates the support of the rule according to Definition 11 (See
Algorithm 4)

4.3 Episode Rule mining with pruning

The approach presented in the previous subsection allows finding all episode
rules. However, considering all possible combinations of α and β to form an
episode rule leads to a large search space. To reduce this search space, a pruning
technique is applied as follows: For a given single event episode used as a
consequent of an episode rule, only its super-episodes are candidates to be
consequents of valid episode rules. This is obtained using the anti-monotonicity
property in the rule generation step, as stated by Proposition 2 below.

Proposition 2 Let α and β be two frequent episodes under distinct occurrences-

based frequency. If the rule α ⇒ β is invalid, then every episode rule α ⇒ γ such

that β ⊑ γ is invalid too.
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Algorithm 1 Mine Frequent episodes

Require: minsup - a minimum support threshold
Ensure: F - the set of all frequent parallel episodes
1: P ⇐ {};
2: F ⇐ {};
3: α⇐ ∅;
4: for (each individual event e ∈ E) do
5: doe ⇐ {}
6: end for
7: {% scan the sequence S }
8: for (k ⇐ 1 to n) do
9: {% scan the event set found at time tk %}

10: for (j ⇐ 1 to m) do
11: ej ⇐ the event found at time tk;
12: doej ⇐ doej ∪ {tk};
13: end for
14: end for
15: for (each individual event e ∈ E) do
16: if (‖doe‖ ≥ minsup) then
17: P ⇐ P ∪ {(e)};
18: end if
19: end for
20: F ⇐ P ;
21: for (each individual episode α ∈ F ) do
22: for (each individual episode β ∈ P ) do
23: doα⊔β ⇐ Distinct Occurrence Recognition(α, β);
24: if (‖doα⊔β‖ ≥ minsup) then
25: γ ⇐ α ⊔ β;
26: doγ ⇐ doα⊔β ;
27: F ⇐ F ∪ {γ};
28: α⇐ γ;
29: end if
30: end for
31: end forreturn F ;

Proof Proving the correctness of that proposition simply requires to use the anti-
monotonicity of the distinct occurrences-based support, to show that the confidence
of a rule α ⇒ γ obtained from a single event episode β such that β ⊑ γ, will be invalid.
Let β ⊑ γ be two episodes, and assume that the support of the rule α ⇒ β is invalid.
By the anti-monotonicity property in Proposition 1, support(β) ≥ support(γ). It
follows that :

conf(α ⇒ β) =
‖occER(α, β)‖

support(α)
≥ conf(α ⇒ γ) =

‖occER(α, γ)‖

support(α)

. However, since the rule α ⇒ β is invalid, this means that conf(α ⇒ β) < minconf ,
and therefore, the rule α ⇒ γ is invalid as well. �
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18 Discovering Frequent Parallel Episodes in Complex Event Sequences

Algorithm 2 Distinct Occurrence Recognition

Require: episode α - an episode to grow episode β - a single event episode to
be used to grow α.

Ensure: doα⊔β - the set of distinct occurrences of the new episode α ⊔ β

1: j ⇐ 0
2: i⇐ 0
3: for (each Oi ∈ doα) do
4: found⇐ false

5: for (each Oj ∈ doβ and found = false) do
6: newocc.timestamps⇐ Oi.timestamps ∪Oj .timestamps

7: stop⇐ false
8: k ⇐ 1
9: while (not stop and k ≤ ‖doα⊔β‖) do

10: if (newocc.timestamps ∩Ok.timestamps 6= ∅) then
11: if (exists(Oj .timestamps[1], Ok.timestamps) = true) then
12: remove Oj from doβ
13: else
14: remove Oi from doα;
15: end if
16: stop⇐ true

17: end if
18: Ok ⇐ Ok+1

19: end while
20: if (not stop) then
21: doα⊔β ⇐ doα⊔β ∪ newocc

22: found⇐ true
23: end if
24: end for
25: end for
26: return doα⊔β

Algorithm Extract Episode Rules With Pruning (Algorithm 5) inte-
grates a pruning strategy based on Proposition 2 to generate all valid episode
rules from the input complex-event sequence.

Initially, the algorithm calculates the set of all frequent episodes with
respect to the support threshold minsup, initializes the set R of valid rules to
be calculated, and initializes the set P of frequent single episodes (lines 1-3).
Then, for each frequent episode α as an antecedent of rule α ⇒ β, the algo-
rithm calculates the set of valid consequents with respect to the confidence
threshold minconf by combining larger and larger episodes with single event
episodes. First, the algorithm uses the jth single event as a consequence of
the episode rule. Here, the episode root in line 8 is used to backtrack the pro-
cess if there is no other candidate super-episode of β as a consequence. For
each episode β, the algorithm calculates the episode rule support by calling
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Algorithm 3 Extract Episode rules

Require: S: complex event sequence on E (the set of event types) ,minsup:
support threshold ,minconf : confidence threshold

Ensure: R: complete set of episode rules
1: F ⇐Mine Frequent Episodes(minsup)
2: R⇐ ∅
3: for (each α in F ) do
4: for (each β in F ) do
5: ruleSupport⇐ Episode Rule Support(α, β);
6: if ( ruleSupport

‖doα‖
≥ minconf) then

7: R⇐ R ∪ {α⇒ β}
8: end if
9: end for

10: end for
11: return R

the function Episode Rule Support(α, β) and calculates its confidence: If the
confidence exceeds the confidence threshold, the algorithm adds the episode
α ⇒ β into R and updates the root episode for the later combination of the
consequents (lines 11-19). The algorithm stops if there are no other possible
single-event episode candidates; otherwise, it updates episode β to become
larger with the next jth episode from P (lines 20-23).

4.3.1 An illustrative example

An example is presented to illustrate the process of discovering the set of all
episode rules in the sequence S given in Fig. 3 for minsup = 3 and minconf =
50% by applying Algorithm 5. Initially, the algorithm calculates the set of
frequent episodes as explained before (see Table 1). Then, it creates the set P
of frequent episodes of size 1 (line 3) from the sequence S, i.e., P = {a, b, c, d}.
Next, the algorithm will search for episode rules. Take episode α = a, the
algorithm finds all rules where the antecedent is α = a (α ∈ F ) and then,
it considers β = b (β ∈ P ) as the first consequent and the root of potential
consequents (line 4 -10), where doα = {[1], [3], [4], [5], [7]} doβ = {[1], [4], [7]}.
Then, the algorithm calculates the support of the episode rule ER = α ⇒ β

(line 13) according to definition 10 and 11. Here, the support is calculated
as follows: for each occurrence Oi ∈ doα, Algorithm 4 is applied to find an
occurrence Oj ∈β where doα = {[1], [3], [4], [7]} and doβ = {[1], [4], [5]} such
that start(Oi) < start(Oj) and end(Oi) < end(Oj). Hence, for the episode
rule ER = α ⇒ β, its first occurrence is [1 4] and cannot be [1 1] since the
occurrence Oα = [1] and Oβ = [1] do not meet the previous criteria. Thus, the
algorithm jumps to the second occurrence of β (Oβ = [4]), which produces a
valid occurrence of the episode rule. Then, the algorithm moves to the next
occurrences Oα = [3] and Oβ = [5] of α and β respectively, which make the
vector [3 5] a valid occurrence of the episode rule. The set of occurrences of
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Algorithm 4 Episode Rule Support

Require: Two Episodes α and β

Ensure: ruleSupport: The support of the rule α⇒ β

1: {% Inialization %}
2: ruleSupport⇐ 0;
3: i⇐ 1;
4: j ⇐ 1;
5: while (i ≤ ‖doα‖) do
6: stop⇐ false;
7: while (j ≤ ‖doβ‖ and not stop) do
8: for (each Ok in doβ s.t: j < k ≤ ‖doβ‖) do
9: if (start(Oi) < start(Oj) and end(Oi) < end(Oj)) then

10: i⇐ i+ 1;
11: ruleSupport⇐ ruleSupport+ 1;
12: stop⇐ true;
13: end if
14: end for
15: j ⇐ k;
16: end while
17: end while
18: return ruleSupport ;

the rule α → β is ER − occ(α ⇒ β) = {[1 4], [3 7]} Finally, the support is
calculated as supER(α ⇒ β) = ‖occER(α ⇒ β)‖ = 2. Then, Algorithm 5
continues its process by calculating the confidence on line 14. If the confidence
exceeds the minconf threshold, then, the current rule is considered as valid
and the current consequent β becomes the root of potential consequents such
that it is joined with the next single event episode γ = c from the set P and
the process is repeated. Notice that, if the consequent is not frequent, the root
takes the place of the valid consequent to join. For minconf = 50%, the rule
a⇒ β is valid and β = b is the root for future consequents, hence, it is joined
with episode γ = c. Therefore, the next episode rule to check is a → bc. if
the last rule is not valid with respect to minconf , β = b will be joined with
δ = d and so on according the proposition 2. Table 2 shows the final set of
valid episode rules found by the algorithm.

5 Experimental study

Several experiments were conducted on both synthetic and real datasets to
evaluate the proposed approach for mining frequent episodes and episode
rules. The experiments were performed on an AMD Ryzen 5 PRO 4650G with
Radeon Graphics 3.70 GHz PC with 16 Gb of main memory and 256 Gb of SSD
storage, running the Microsoft Windows 10 operating system. All algorithms
were coded in Java. These experiments only evaluates the designed approach
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Algorithm 5 Extract Episode Rules With Pruning

Require: S: complex event sequence on E (the set of event types) minsup:
support threshold minconf : confidence threshold

Ensure: R: complete set of episode rules
1: F ⇐Mine Frequent Episodes(minsup)
2: R⇐ ∅
3: P ⇐ {γ s.t. γ ∈ F ∧ ‖γ‖ = 1}
4: for (each α ∈ F ) do
5: j ⇐ 0
6: while (j < ‖P‖) do
7: β ⇐ P [j]
8: root ⇐ β

9: k ⇐ j

10: stop⇐ false
11: while (not stop) do
12: if (β ∈ F ) then
13: ruleSupport⇐ Episode Rule Support(α, β)
14: conf ⇐ ruleSupport

‖alpha.occ‖

15: if (conf ≥ minconf) then
16: R⇐ R ∪ {α→ β}
17: root⇐ β

18: else
19: β ⇐ root

20: end if
21: else
22: β ⇐ root

23: end if
24: if (k > ‖P‖) then
25: stop⇐ true
26: else
27: β = β ⊔ P [k]
28: k ⇐ k + 1
29: end if
30: end while
31: j ⇐ j + 1
32: end while
33: end for
34: return R

since there exist no prior work on discovering frequent episodes in complex
event sequences using the distinct occurrences-based frequency definition.
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5.1 Data generation

Several synthetic datasets were used for the experiments, which were randomly
generated using three main parameters:(i) the length of the complex sequence
(the number of events), (2) the number of event types, and (3) the maximal
size of event sets in the complex sequence. To evaluate the proposed approach
under different scenarios, three types of synthetic sequences were considered:
short, medium, and large. Table 4 lists the details of the chosen synthetic
datasets for these experiments. The datasets are available publicly on GitHub
1

Table 4 Synthetic datasets parameters

Type Number of event types
sequence size

(number of event sets)

Small dataset 15 40000
Medium dataset 15 65000
Large dataset 20 70000

Three real datasets were obtained in the form of transaction databases
from the SPMF dataset collection 2. For this purpose, each item is considered
an event, and hence each transaction (itemset) is considered as an event set
in the complex sequence. Furthermore, each event set is associated with an
integer (the transaction number) to represent its timestamp. The first dataset
that was used is called OnlineRetail with 541880 event sets and 2603 event
types, the second dataset is called FruitHut with 181970 event sets and 9390
event types, and the last one is called Mushrooms which contains 8416 event
sets and 119 event types. These three real datasets were chosen owing to their
different characteristics.

5.2 Results and discussion

The experiments described in this section aim to evaluate the performance of
two processes: mining frequent episodes (Section 5.2.1) and generating valid
episode rules (Section 5.2.2).

For frequent episode mining, the performance analysis considers both syn-
thetic and real datasets and the variation according to the support threshold of:
(1) the runtime (in seconds), (2) the number of frequent episodes, (3) the size
of the largest frequent episode, and (4) the memory used during the process.

For episode rule mining, the baseline algorithm (called EMDO) was com-
pared with the algorithm for mining episode rules using the pruning strategy
(called EMDO-P), both proposed in this paper, in terms of (1) runtime and
(2) memory cost for both synthetic and real datasets.

1https://github.com/Oualidinx/EMDO-synthetic-datasets.git
2http://www.philippe-fournier-viger.com/spmf/, last accessed on 2022-12-01
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5.2.1 Frequent episode mining

The first step of the proposed algorithm is to generate a set of frequent episodes
using Algorithm 1. Figure 5 and 6 show how the support threshold influences
the number of frequent episodes and maximum episode size on synthetic and
real datasets, respectively.

The variations in the number of frequent episodes with respect to the sup-
port threshold values clearly show that the anti-monotony property of the
distinct occurrence-based frequency is very effective for pruning the search
space by the proposed approach on both synthetic and real datasets. Moreover,
the size of the largest frequent episode is much smaller when the minimum
support value is increased. The smaller minsup values are, the more frequently
large episodes occur, and the greater the number of frequent episodes is for
synthetic or real datasets.
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Fig. 7 Influence of minsup for frequent episode generation in terms of execution time and
memory usage on synthetic data sets
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Fig. 8 Influence of minsup on execution time and memory usage on real data sets
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Figures 7 and 8 depict the results obtained from the application of the
proposed EMDO algorithm for different minsup threshold values in terms of
runtime (in seconds) and memory usage (in megabytes) for synthetic sequences
(short, medium and large size) and real sequences, respectively.

The number of frequent episodes with respect to the minsup threshold in
figures 7 and 8 decrease when the support increase. Moreover, the memory cost
also decreases rapidly for greater support thresholds. This shows in particular
the efficiency of applying the anti-monotonicity property in the context of dis-
tinct occurrences-based frequency. The property states that the support of an
episode is not greater than that of any of its subepisodes. Consequently, the
greater support threshold values, the less runtime and memory costs. There-
fore, the results show the efficiency of the proposed approach in terms of
runtime, memory usage, frequent episode count, and episode sizes.

5.2.2 Episode rule generation

The second step of EMDO is the generation of valid episode rules from a
derived set of frequent episodes. Because there are no other algorithms that
rely on distinct occurrences-based support to mine frequent parallel episodes
and/or episode rules in complex event sequences, we focus here on the compar-
ison between the baseline version of the proposed EMDO algorithm and the
modified version, (EMDO P) which utilizes the pruning technique described
in Section 4.3. The main objective of this experiment was to evaluate the effi-
ciency of the proposed pruning technique for generating valid episode rules.
Note that the two versions (EMDO and EMDO P) yield the same output, that
is, generate the same valid episode rules. However, they differ in performance,
as explained below. The different minimum support values are presented in
Table 5.

Table 5 The supports value used in the episode rules generation step

Type of dataset Datasets Support threshold value

Synthetic
datasets

Short dataset 1000

Medium dataset 1750

Large dataset 3000

Real datasets
Mushrooms 1050

FruitHut 5000

OnlineRetail 10000

Figures 9 and 10 illustrate the influence of the minconf threshold on run-
time (in seconds) and memory usage (in megabytes) for the naive algorithm
EMDO and the improved algorithm EMDO P on synthetic and real datasets,
respectively.
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Fig. 9 Influence of minconf on execution time and memory usage of episode rules gener-
ation on synthetic datasets
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Fig. 10 Influence of minconf on execution time and memory usage of episode rules gen-
eration on real datasets

Unsurprisingly, the naive algorithm globally uses less memory to generate
valid episode rules for different values of the confidence threshold minconf

than the algorithm using the pruning strategy. This remark is valid both
for synthetic and real datasets. This is not problematic because the increase
in memory cost remains reasonable and does not challenge the modified
algorithm.

However, the modified algorithm EMDO P is clearly better than the naive
EMDO algorithm in terms of runtime for both synthetic and real datasets,
particularly when the confidence threshold is increased. This is because the
pruning strategy enables EMDO P to eliminate many large episodes that
cannot be a consequent of valid rules. This is due to the new episode rule prun-
ing strategy of our algorithm that avoid the combination of many frequent
episodes, when compared to the naive algorithm.

5.3 Discussion of some discovered patterns

Using the EMDO P algorithm, several patterns can be retrieved from datasets
that reveal hidden relationships between events. For instance, we executed the
proposed method on the FruitHut dataset, and the resulting set of episode
rules was significant. As example, Table 6 presents some of the rules extracted
from this dataset.
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These rules represent strong relationships between purchases made by cus-
tomers. It is interesting to note that those rules cannot be generated by
the NONEPI algorithm because this latter only generate rules where the
antecedent is a subepisode (predecessor) of the consequent. However, our
approach can combine all episodes to make rules, rather than only those where
an antecedent is a sub-episode of a consequent. Moreover, the rules generated
by the NONEPI algorithm can be generated using the EMDO P algorithm. For
instance, the rule Field T omatoes → Field T omatoes, Banana Cavendish

was generated by both NONEPI and EMDO P for a confidence threshold of
minconf = 50%. However, NONEPI cannot generate any of the rules shown
in Table 6 except for the rule previously mentioned.

Table 6 Example of discovered patterns from FruitHut dataset

Rule conf(α → β)

Banana Cavendish,Cucumber Lebanese → Lettuce Iceberg 85.63%

Banana Cavendish,Cucumber Lebanese → Lettuce Iceberg, Beans green 68.63%

Lettuce Iceberg → Apples Pink Lady, Zucchini green 86.14%

Beans green, Onion Spring → Water melon seedless 96.44%

Beans green, Onion Spring, Capsicum red → Field Tomatoes 99.98%

Pear Packham → Apples Pink Lady, Zucchini green, Mandarin Imperial 83.44%

Field Tomatoes → Field Tomatoes, Banana Cavendish 57.08%

These episode rules are interesting as they show the temporal relation-
ships between items such that if some items are bought in some order, then
other items on the left side of such a rule will also be bought by such a cus-
tomer, which reveals the customer’s preference or needs. Consequently, these
rules can be used to develop marketing strategies based on promotions or
recommendations.

Table 7 Example of discovered episodes by different algorithms from FruitHut dataset

Episode MINEPI+ EMDO NONEPI MINEPI

Lettuce Iceberg, Banana Cavendish 23736 8972 7138 7582

Field Tomatoes, Banana Cavendish 35890 20220 13323 14862

Cucumber Lebanese, Banana Cavendish 27034 10489 8261 8886

Field Tomatoes, Cucumber Lebanese,
Banana Cavendish 16316 10483 / /
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Table 8 Statistics of different algorithms on the FruitHut dataset

MINEPI+ EMDO NONEPI MINEPI

Number of candidate episodes 26642 9959 1942 3993

Number of frequent episodes 992 3243 35 1244

Largest frequent episode size 8 6 2 13

On the real FruitHut dataset, we further performed a comparison of
patterns found by EMDO and other episode mining algorithms, namely the
MINEPI+, NONEPI and MINEPI algorithms. MINEPI+ uses a frequency def-
inition called the head frequency whereas NONEPI uses the non-overlapped
occurrence-based frequency to calculate the support of episodes and MINEPI
uses the minimal occurrence-based frequency.

Table 7 shows the comparison of support values of frequent episodes discov-
ered by all algorithms. The table indicates that the support calculated by the
proposed algorithm is greater than that calculated by NONEPI and MINEPI
and less than that calculated by MINEPI+. Consequently, we conclude that
EMDO can discover the same frequent episodes but by exploring a smaller
search space than MINEPI+ and may provide a more reasonable view as it
captures more occurrences than NONEPI and MINEPI.

First, the head frequency is greater than any other frequency definitions
owing to the duplicate count of the same events with their timestamps for
many windows of length k. Therefore, for a given episode, the head frequency
increase with the window length. Second, the minimal occurrence of an episode
α is a time interval that contains the occurrence of a given episode such that no
proper sub-window contains an occurrence of α, which means that any pair of
occurrences can be distinct, but they must be minimal; hence, this additional
constraint will eliminate such occurrences that are not minimal. Consequently,
distinct occurrence-based frequency will be absolutely greater than minimal
occurrences-based frequency since there is no constraint of the presence of
occurrences in such time intervals except that they do not share common events
(timestamps). Finally, the non-overlapping occurrence-based frequency is the
smallest frequency for episodes because of the strong elimination due to the
condition that occurrences must not overlap, which eliminates the majority of
occurrences of any episode.

Furthermore, Table 8 shows the comparison of the number of frequent
episodes, the number of candidate episodes and the size of the largest frequent
episodes for each algorithm. It is easy to see that the ratio between the number
of frequent episodes to the number of candidate episodes is larger for EMDO
which shows the efficiency of our new approach relative to other algorithms. In
other words, EMDO has to explore less candidates to find each valid pattern
on average.

On overall, the experiments show that EMDO can reveal significant
episodes in real data. Due to its frequency function, EMDO may provide a
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more accurate view compared to using other algorithms, especially those that
use occurrence definitions that shares common events.

6 Conclusion

Several algorithms have been developed to identify episodes in an event
sequence. Generally, a frequent episode mining algorithm is designed to uti-
lize a frequency function based on a specific definition of episode occurrence.
Although, several algorithms for episode mining have been proposed, most of
them consider serial episodes or simple event sequences with only one event
per timestamp. Furthermore, most algorithms allow for occurrences to over-
lap, which can result in counting the same events multiple times, whereas
algorithms based on non-overlapping occurrences tend to underestimate the
frequency of the episodes.

Based on these observations, this paper studied the problem of episode
rule mining in a complex event sequence using distinct occurrences-based fre-
quency. An efficient depth-first strategy was proposed for discovering frequent
parallel episodes and valid episode rules, which were integrated into two effi-
cient algorithms, named EMDO and EMDO P, respectively. To the best of our
knowledge, this is the first work that identifies parallel episodes with a distinct
occurrences-based frequency in a complex event sequence.

In addition to mining frequent episodes, episode rules represent another
important type of pattern to mine from the temporal sequences. An episode
rule reveals a strong relationship between frequent episodes that may be used
for different practical purposes, such as prediction and diagnosis. In this paper,
we propose an adapted strategy for pattern recognition and use it to propose
two approaches for extracting episode rules from complex sequences. The first
is a naive approach that explores the totality of the search space. The second
approach exploits the anti-monotonicity property of the support under the
distinct occurrences-based frequency to propose a new pruning strategy for
reducing the explored part of the search space. Our pruning strategy is based
on the fact that if an episode rule α → β is not valid with respect to a
confidence threshold, then any episode rule α → β′ with β ⊑ β′ is invalid.
Consequently, as soon as the algorithm recognizes a non-valid episode rule
α→ β, it stops the search process for any rule with the form α→ β′ such that
β′ is a super-episode of β.

To demonstrate the performance of our techniques, we performed multiple
tests on synthetic and real-world datasets. For synthetic datasets, we built a
generator that produces random complex event sequences based on three keys:
(i) the length of the result sequence, (ii) the number of event types, and (iii) the
maximum number of events per timestamp. For real-world sequences, we used
existing real-world transactional databases and added a timestamp to each
transaction to obtain a complex sequence. The obtained results confirm the
efficiency of the proposed algorithm in terms of both the runtime and memory
usage. In particular, they demonstrated the efficiency of the proposed pruning
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strategy based on the anti-monotonicity property in discovering episode rules
under distinct occurrence-based frequency.

Episode mining and related pattern mining have been active research fields
in recent decades. There are still many opportunities for further research in
this area. In the following lines, we provide some opportunities for episode and
episode rule mining:

• Building prediction models that are based on existing techniques including
our approach to be used in production environments .

• Extend our approach to consider uncertain data and/or other kind of impor-
tant episodes like high utility episodes. This undoubtedly leads to the
exploration of new techniques and strategies for pruning search spaces.

• Extending our approach to consider more complex event sequences like event
streams .

Data availability

The real and synthetic datasets used in this paper can be downloaded
from: https://github.com/Oualidinx/EMDO-synthetic-datasets.git and
http://www.philippe-fournier-viger.com/spmf/, respectively.
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Fig. 12 Frequent Episode Generation function flowchart
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Fig. 13 Maxmimal set of Distinct Occurrences Recognition function flowchart
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