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Abstract. Finding frequent patterns in discrete sequences of symbols
or events can be useful to understand data, support decision-making and
make predictions. However, many studies on analyzing event sequence do
not consider the duration of events, and thus the complex time relation-
ships between them (e.g. an event may start at the same time as another
event but end before). To find frequent sequential patterns in data where
events have a start and end time, an emerging topic is time-interval re-
lated pattern (TIRP) mining. Several algorithms have been proposed for
this task but efficiency remains a major issue due to the very large search
space. To provide a more efficient algorithm for TIRP mining, this pa-
per presents a novel algorithm called FastTIRP. It utilizes a novel Pair
Support Pruning (PSP) optimization to reduce the search space. Exper-
iments show that FastTIRP outperforms the state-of-the-art VertTIRP
algorithm in terms of runtime on four benchmark datasets.

Keywords: Time-intervals · Event sequences· Efficiency · Pair Support
Pruning · Discrete sequences.

1 Introduction

A popular data representation is sequences. A sequence is a list of symbols or
events, and can encode various information such as a list of moves in a chess
game, and a list of events that occur in a computer network. To identify useful
knowledge that may be hidden in sequence data, several pattern mining algo-
rithms have been designed. The aim is to detect patterns that appear frequently
in one or more sequences and satisfy some user-defined constraints. Some of the
most popular types of patterns are sequential patterns [1, 7, 15] and episodes [4,
6, 10, 11, 16], which are respectively patterns found in a set of sequences, or in a
very long sequence.

Several algorithms have been proposed to find patterns in sequences, to help
users to understand the data and make prediction. However, most studies assume
a simple time representation, where each event is represented by a single times-
tamp. An example of sequence using this representation is shown in Fig. 1(a).
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That sequence indicates that a person attended a meeting at 9:00 AM, made a
phone call at 10:00 AM and then another phone call at 11:00 AM. A major prob-
lem with this time representation is that the duration of events is not taken into
account (e.g. there is no information about the duration of the meeting or that
of the phone calls). As a result, most algorithms can only find patterns involving
two types of relationships between events: two events are either simultaneous
or one appear before the other. For instance, a traditional sequential pattern
mining algorithm could find a pattern indicating that a meeting is followed by
a phone call.

a)
Meeting

9:00 AM

Phone call

10:00 AM

Phone call

11:00 AM

b)

9:00 AM 10:00 AM 11:00 AM 12:00 PM
Meeting

Phone call Phone call

Fig. 1: A (a) simple event sequence and (b) a time-interval sequence

Recently, a richer time representation has been studied, called time-interval
sequence, where events are represented as time-intervals with a start and end
time. An example of time-interval sequence is shown in Fig. 1(b). It indicates
that a person attended a meeting from 9:00 AM till 11:00 AM, and made a phone
call during that meeting from 10:00 AM to 10:30 AM, and then made another
phone call from 11:00 AM to 12:00 PM. It is easy to see that this representation
shown in Fig. 1(b) carries more information than the one shown in Fig. 1(a).
For instance, we can observe that the first phone call did not occur after the
meeting (as it seemed in Fig. 1(a)), but during the meeting.

A popular task to find frequent patterns in such data is time-interval related
pattern (TIRP) mining [9, 12, 13]. The goal is to find a form of sequential pat-
terns called TIRP where events may be connected by various complex temporal
relationships (i.e. an event overlaps with another event, an event starts at the
same time as another event but end before, etc.). TIRP mining is a harder prob-
lem than traditional sequential pattern mining (SPM) [3] because each pair of
events may be connected by multiple relationship types. TIRP mining has been
used in several applications such as to analyze medical treatments [8], discover
patterns in stock prices [14], and analyzing skating data [5].

Many algorithms have been proposed for TIRP mining such as ZMiner [9],
VertTIRP [12], KarmaLego and DarmaLego [13]. However efficiency remains a
major issue as the number of possible patterns is very large. To the best of our
knowledge, the state-of-the-art algorithm is VertTIRP. It performs a depth-first
search and relies on a vertical data structure to encode data about patterns.
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The main drawback of VertTIRP is that it explores the search space by com-
bining pairs of patterns and perform a costly join operation using vertical data
structures to calculate their support.

In this paper, we aim to address the efficiency problem of TIRP mining
by proposing a novel algorithm called FastTIRP. It is an enhanced version of
VertTIRP where a novel technique called Pair Support Pruning (PSP) is applied.
This technique consists of pre-calculating the frequency information about pairs
of events to avoid performing join operations. Experiments on several benchmark
datasets show that FastTIRP outperforms VertTIRP in terms of runtime as
it performs less join operations, and also has good performance compared to
KarmaLego.

The remaining sections of this paper are structured as follows. The problem
definition of TIRP mining is explained in Section 2. The proposed FastTIRP
algorithm is presented in Section 3. Section 4 provides the experiments results,
followed by a conclusion in Section 5.

2 Problem Definition

The problem of discovering TIRPs is defined based on the following definitions,
here presented using a similar notation as in the VertTIRP paper [12, 13].

Definition 1 (Event type). Let there be a set of event types E = {e1, e2, . . . en}.
Furthermore, assume that there exists a total order on these events denoted as
< which is the lexicographical order.

Example 1. Consider a set of events E = {A,B,C} containing three event types,
and the lexicographical order defined as A < B < C.

Definition 2 (Symbolic time interval). A symbolic time interval I is a triple
of the form I = (start, end, e) where start and end are numbers respectively
indicating the start time and end time of an event of type e ∈ E. The notation
I.start, I.end and I.e will be used in the following to refer to the elements start,
end and e of a symbolic time interval I.

To compare the timestamps of events, it is useful to use an approximate
comparison of events so as to handle noise. This is done using two relationships,
defined based on a user-defined epsilon (ϵ ≥ 0) value [13].

Definition 3 (Temporal relations between timestamps). Let there be two
timestamps ti and tj and a user-defined number ϵ. It is said that ti and tj are
quasi-equal if |ti − tj | ≤ ϵ, which is denoted as ti =ϵ tj. Moreover, it is said that
ti precedes tj if tj − ti > ϵ, which is denoted as ti <ϵ tj or tj >ϵ ti.

Definition 4 (Time-interval sequence). A time-interval sequence (TIS) S
is an ordered list of symbolic time intervals S = ⟨I1, I2, . . . Iq⟩. Symbolic time
intervals within a TIS S are sorted according to a total order ≺ such that Ii ≺ Ij
for any Ii and Ij if (Ii.start <ϵ Ij .start) ∨ (Ii.start =ϵ Ij .start ∧ Ii.end <ϵ

Ij .end) ∨ (Ii.start =ϵ Ij .start ∧ Ii.end =ϵ Ij .end ∧ Ii.e < Ij .e).
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Definition 5 (Time-interval sequence database). A time-interval sequence
database (TISD) D is a list of time-interval sequences D = ⟨S1, S2, . . . Sm⟩. The
sequence identifier of a sequence Si ∈ D(1 ≤ i ≤ m) is said to be i.

Example 2. To illustrate these definitions, consider the TISD D = {S1 : ⟨
(8, 11, C), (8, 12, A), (10, 12, B)⟩ S2 : ⟨(8, 12, C), (10, 16, A), (15, 18, B)⟩ S3 : ⟨(10,
16, C), (14, 16, B), (14, 19, B), (15, 19, A)⟩}, which is represented visually in
Fig. 2 [12]. This TISD contains three time-interval sequences called S1, S2 and
S3. The first sequence indicates that an event C started at time 8 and ended at
11, an event A started at time 8 and ended at time 12, and an event B started
at time 10 and ended at time 12. The two other time-interval sequences can be
interpreted in a similar way.

Time

8 9 10 11 12 13 14 15 16 17 18 19

S1: Sequence 1

C

A

B

S2: Sequence 2

C

A

B

S3: Sequence 3

C

B

B

A

Fig. 2: An example time-interval sequence database

To be able to compare events, it is important to have a set of temporal rela-
tions. In this paper, the set of temporal relations from VertTIRP [12] is used. It
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is based on the 13 temporal relations introduced by Allen, with some modifica-
tions to handle epsilon [13] and resolve some ambiguities in the definitions used
in prior work.

Definition 6 (Temporal relations between time intervals). Let r(Ii, Ij)
be a function that determines the temporal relation between any pair of symbolic
time intervals Ii and Ij. There are eight temporal relationships ω = {b,m, o, l,
c, f, e, s}, called before, meets, overlaps, left contains, contains, is finished by,
equal, and starts, respectively. Assume also that two optional constraints called
mingap ≥ 0 and maxgap ≥ 0 are defined by the user. The function r(Ii, Ij)
returns
r(Ii, Ij) = b if (Ij .start−Ii.end) > ϵ∧(Ij .start−Ii.end) < maxgap∧(Ij .start−
Ii.end) > mingap.
r(Ii, Ij) = m if |Ij .start−Ii.end| ≤ ϵ∧(Ij .start−Ii.start > ϵ∧(Ij .end−Ii.end) >
ϵ
r(Ii, Ij) = o if (Ij .start−Ii.start) > ϵ∧(Ii.end−Ij .start > ϵ∧(Ij .end−Ii.end) >
ϵ
r(Ii, Ij) = l if ϵ > 0 ∧ |Ij .start− Ii.start| ≤ ϵ ∧ (Ii.end− Ij .end) > ϵ
r(Ii, Ij) = c if (Ij .start− Ii.start) > ϵ ∧ (Ii.end− Ij .end) > ϵ
r(Ii, Ij) = f if (Ij .start− Ii.start) > ϵ ∧ |Ij .end− Ii.end| ≤ ϵ
r(Ii, Ij) = e if |Ij .start− Ii.start| ≤ ϵ ∧ |Ij .end− Ii.end| ≤ ϵ
r(Ii, Ij) = s if |Ij .start− Ii.start| ≤ ϵ ∧ (Ij .end− Ii.end) > ϵ.

The problem of finding frequent time-interval related patterns (TIRPs) aims
at finding TIRPs in a time-interval sequence database. A TIRP is defined as
follows.

Definition 7 (Time-interval related pattern). A time-interval related pat-
tern (TIRP) X is a pair of the form X = (ev, rel) where rel is an ordered list
of temporal relations from ω and ev is an ordered list of events from E. Assume
that ev contains k events. Then, the list rel indicates the temporal relations as
follows: relations = ⟨r(I1, I2), . . . r(I1, Ik), r(I2, I3), . . . r(Ik−1, Ik)⟩. In the fol-
lowing, the notation ri,j refers to r(ei, ej) where ei and ej are the i-th and j-th
events in ev.

Example 3. Continuing the running example, the TIRP (CB,o) occurs in se-
quence 1 and sequence 3 in the symbolic time intervals ⟨(8, 11, C), (10, 12, B)⟩
and ⟨(10, 16, C), (14, 19, B)⟩, respectively. The TIRP (CAB, sof) appears in se-
quence 1 at ⟨(8, 11, C), (8, 12, A), (10, 12, B)⟩.

An important observation is that multiple TIRPs may have the same events
but only differs by their temporal relations. This gives rise to the definition of
Symbol-TIRP [12].

Definition 8 (Symbol-TIRP). Let the notation ev denotes the set of all TIRPs
having the same list of events ev. ev is said to be a Symbol-TIRP.

Example 4. BC = {(BC,o), (BC, f)} is the Symbol-TIRP containing the TIRPS
having the list of events ev = ⟨BC⟩.
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To find TIRPs in a database, it is necessary to rely on the concept of match
between a TIRP and a time-interval sequence.

Definition 9 (TIRP matching). Let there be a time-interval sequence S =
⟨I1, I2, . . . , Iq⟩ and a TIRP X = (ev, rel). Then, X is said to match S if ∀ei, ej ∈
ev, ∃Iα, Iβ ∈ S such that ei = Iα.e and ej = Iβ .e and r(Iα, Iβ) = ri,j.

Example 5. Consider the time-interval sequence from the running example, S =
⟨(8, 11, C), (8, 12, A), (10, 12, B)⟩. For the TIRPX = (CAB, sof), we have I1.e =
C, I2.e = A, I3.e = B, r(I1, I2) = s, r(I1, I3) = o and r(I2, I3) = f . Hence, X is
said to match S.

To find interesting TIRPs in a sequence, various interestingness function can
be used. The two main functions are the horizontal support and vertical support
[12].

Definition 10 (Horizontal support). Let there be a TIRP X and a time-
interval sequence S. The horizontal support of X in S is defined as h(X) = |SX |,
where |SX | is the total number of symbolic time intervals that match with X.

Definition 11 (Vertical support of a TIRP). Let there be a TIRP X and a
time-interval sequence database D. The vertical support of X in D is defined as
v(X) = |DX |, where |DX | is the total number of sequences that match with X.

Example 6. Continuing the running example, consider that X = (CB,o). It can
be found that X is matching with ⟨(8, 11, C), (10, 12, B)⟩ in sequence 1, and
it also matches with ⟨(10, 16, C), (15, 19, B)⟩ in sequence 3. Thus, the vertical
support of X is v(X) = 2.

Definition 12 (Vertical support of an S-TIRP). Let there be a S-TIRP
X = {X1, X2, . . . , Xz} and a time-interval sequence database D. The vertical
support of X in D is defined as v(X) = |

⋃z
i=1 DXi

|.

Example 7. Continuing the running example, consider that X = {(CB,o), (CB,
b), (CB, f)}. It can be found that the TIRP (CB,o) matches with sequences
1 and 3, that the TIRP (CB,b) matches with sequences 2, and that the TIRP
(CB, f) matches with sequences 3. Hence, the S-TIRPX matches with sequences
1, 2 and 3, and its vertical support is v(X) = 3.

Definition 13 (Problem of discovering all frequent TIRPS). Let there be
a time-interval sequence database D, a user-defined minimum support threshold
minsup > 0 and some optional constraints: mingap ≥ 0, maxgap ≥ 0, ϵ ≥ 0.
The problem of discovering all frequent S-TIRPS is to enumerate all frequent
S-TIRPs, that is each S-TIRP s such that v(s) ≥ minsup under the constraints
[12].

Example 8. Back to the running example, if minsup is set to 2, the frequent
Symbol-TIRPs are A, AB, B, C, CA, CAB, and CB with a support of 3, 2, 3,
3, 3, 2, 3, respectively.

Note that it is possible to add some additional constraints such as the mini-
mum and maximum duration of a TIRP (see [12]).
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3 The FastTIRP Algorithm

This section presents the proposed FastTIRP algorithm. The motivation for de-
veloping this algorithm is that the state-of-art VertTIRP algorithm can have
very long runtimes. After doing some preliminary analysis of the performance
of VertTIRP, we found that its most costly operation is the join operation. This
operation is used to calculate the support of a new pattern obtained by combin-
ing two existing patterns. To reduce the number of join operations, FastTIRP
integrates a novel optimization called Pair Support Pruning (PSP) in VertTIRP.
This optimization is based on a structure called Pattern Support Matrix (PSM).

The next subsections first explains briefly the search process and then de-
scribes the proposed PSP technique in details.

3.1 The search process

The pseudocode of the proposed FastTIRP algorithm is shown in Algorithm 1.
The input is a time-interval sequence database D, a minimum support threshold
minsup and some optional parameters ϵ,mingap andmaxgap. The output is the
set of all frequent S-TIRPs. The algorithm first configures the function r(Ii, Ij)
(to evaluate temporal relations between time-intervals) based on ϵ, mingap and
maxgap, and also configures the temporal relation <ϵ (to evaluate temporal re-
lations between timestamps) based on ϵ. Then, a function FindFrequentEvents
is called, which scans the input database to identify the set FrequentEvents of
all the TIRPs that are frequent and contain a single event. At the same time,
the algorithm builds a vertical structure for each of these TIRPs. This struc-
ture is the same as in the VertTIRP algorithm [12] and is used to compute the
support of each TIRP. After this, the algorithm scans the database to build the
proposed PSM data structure, which will be presented in the next subsection.
Then, the algorithm initializes a variable Patterns to store all frequent TIRPs.
Then a loop is done to try to extend each pattern p that is in FrequentEvents.
This is done by calling a procedure called Search with p, the list of frequent
events FrequentEvents that could be appended to p to form larger patterns,
the minimum support threshold, and the PSM structure. The Search function
performs a depth-first search and returns all patterns that are frequent and ob-
tained by appending events at the end of p. These patterns are then added to
the set Patterns. Finally, the algorithm returns the set Patterns containing all
frequent TIRPs.

The search procedure is shown in Algorithm 2. The input is a Symbol-TIRP
p, a set FrequentEvents containing Symbol-TIRPs each having a single event
that could be appended to p to form larger TIRPs, the minsup threshold, and
the PSM structure. The procedure first initializes a set NewPatterns and put
the pattern p inside. Then, a variable LocalFrequentEvents is initialized to
the empty set, and will be used to store single events that are locally fre-
quent. After that a loop is done on each frequent Symbol-TIRP q from the
set FrequentEvents to try to form a larger pattern by appending q at the end
of p to create a larger Symbol-TIRP New. But before doing this step, the new
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Algorithm 1: FastTIRP

input : D: a time-interval sequence database,
minsup: the required minimum support,
ϵ,mingap, and maxgap: optional parameters

output: all frequent S-TIRPs

1 Configure the temporal relations based on ϵ, mingap and maxgap;
2 FrequentEvents = FindFrequentEvents(D,minsup);
3 PSM = BuildPSM(D);
4 Patterns = ∅;
5 foreach p ∈ FrequentEvents do
6 NewPatterns = Search(p, FrequentEvents,minsup);
7 Patterns = Patterns ∪NewPatterns;

8 end
9 Return Patterns;

pruning strategy PSP is checked, which will be presented in the next section. If
that strategy determines that p and q cannot be combined, then this combina-
tion is skipped. Otherwise, the algorithm applies a join operation on the vertical
structures of p and q to create the vertical structure of the resulting pattern
New. If the support of the resulting pattern New is no less than minsup, then
it is added to the set of frequent TIRPs NewPatterns and q is added to the
set of locally frequent events LocalFrequentEvents. After that that loop ends,
another loop is done to recursively try to extend each frequent pattern New
in NewPatterns. This is done by calling the Search procedure with New, the
locally frequent events LocalFrequentEvents, minsup and the PSM. Finally,
all the patterns that have been found are returned by the search procedure.

The above description did not explain all the details of the algorithm such
as how to create and join the vertical data structures of TIRPs. This is because
these operations are the same as in the VertTIRP algorithm. Interested reader
can refer to the paper describing VertTIRP for detailed explanations [12]. The
difference between FastTIRP and VertTIRP is the addition of Line 3 in Al-
gorithm 1 to build the PSM structure, and Line 5 in Algorithm 2 to use the
PSM structure to avoid performing joins. The next subsection explains these
differences in details.

3.2 The Pair Support Pruning technique

The key difference between the proposed FastTIRP algorithm and VertTIRP is
a novel data structure called Pattern Support Matrix (PSM) which is used to
reduce the number of join operations that are performed. The PSM is built by
reading the input database once and storing the co-occurrence frequency of each
pair of events. Formally, the PSM can be defined as follows:

Definition 14 (Pair Support Matrix). The Pair Support Matrix of a time-
interval sequence database D is denoted as PSM . For each pair of event types
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Algorithm 2: Search

input : p: a Symbol-TIRP,
FrequentEvents: a set of Symbol-TIRPs having a single event,
minsup: the minimum support threshold

output: p and all frequent S-TIRPs that extend p

1 NewPatterns = {p};
2 LocalFrequentEvents = ∅;
3 foreach q ∈ FrequentEvents do
4 // Check the PSP pruning condition

5 if CheckPSP(p, q,minsup) then

6 New = Join(p, q);

7 if v(New) ≥ minsup then

8 NewPatterns = NewPatterns ∪ {New};
9 LocalFrequentEvents = LocalFrequentEvents ∪ {q};

10 end

11 end

12 end

13 foreach New ∈ NewPatterns do

14 Extensions = Search(New, LocalFrequentEvents, minsup, PSM);
15 NewPatterns = NewPatterns ∪ Extensions;

16 end
17 return NewPatterns;

e1, e2 ∈ E, the PSM stores a triple of the form (e1, e2, h(e1, e2)) where h(e1, e2)
is the number of symbolic time intervals containing e1 <ϵ e2. In case the user
utilizes the maximum gap constraint maxgap, then h(e1, e2) is defined as the
number of symbolic time intervals containing e1 <ϵ e2 within a time maxgap.

There are several ways of implementing the PSM structure. The most simple
way is to define it as a two dimensional matrix where there is a row and column
for each event. Then, for a given column and row representing some events e1
and e2, the content of the cell is the number of symbolic time intervals containing
e1 <ϵ e2. As example, Table 1 shows the PSM structure built for the running
example implemented as a two dimensional matrix. The PSM structure contains
several values indicating for instance that event type B appears in one time-
interval before A, but A appears in 2 symbolic time-intervals before B.

Table 1: The PSM structure as a full matrix
A B C

A 0 1 3

B 2 1 3

C 0 0 0
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To reduce memory, the PSM can be also implemented as a triangular matrix
as shown in Table 2. In this case, for any two events e1, e2 ∈ E, the two cells (e1,
e2, h(e1, e2)) and (e2, e1, h(e2, e1)) are merged as: (e1, e2, h(e1, e2) + h(e2, e1)).
This is the implementation used in the experiments of this paper.

But note that the full matrix or triangular matrix can still contain many
zeros. In this case, the PSM could also be implemented as a sparse matrix (e.g.
using a hash map of hash maps) to avoid storing cells containing zeros. This
could be beneficial for datasets with a very large number of event types. It is
also possible to redefine the PSM to store the vertical support instead of the
horizontal support.

Table 2: The PSM structure as a triangular matrix
A B C

A 0 3 3

B 1 3

C 0

The PSM structure is used to reduce the number of join operations done by
FastTIRP as follows. Before joining an event q with a Symbol-TIRP p in Line 6
of Algorithm 2, FastTIRP checks the support of the last event of p with event q
in the PSM. If that value is no greater than minsup, it is unnecessary to append
q to p to form a larger pattern, as the result will be an infrequent TIRP. Thus,
the join operation is not performed.

For example, consider that minsup = 3, p = CB, which matches with
⟨(10, 16, C), (14, 16, B)⟩ and that q = B, which matches with (14, 19, B). By
looking at the PSM, we can find that the support of B with B is 1 and thus that
p should not be combined with q to obtain a Symbol-TIRP CBB.

The PSM technique can be used to effectively reduce the number of join
operations as it will be demonstrated in the experiments. The design of PSP is
inspired by a similar structure called CMAP used in sequential pattern mining
[1].

4 Experimental Evaluation

This section presents the experimental evaluation of the proposed FastTIRP
algorithm and obtained results are discussed. In experiments, the FastTIRP was
compared with two algorithms for TIRP mining, which are: VertTIRP [12] and
KarmaLego [13]. A prior study [12] compared VertTIRP with KarmaLego and
obtained results show that VertTIRP was on overall faster than KarmaLego.
However, in the experiment, the two algorithms were implemented in different
programming languages (Python and C#, respectively), which may make the
results unreliable. To avoid this issue, in this work, the three algorithms are
implemented in C#. The C# implementations of VertTIRP and KarmaLego
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were obtained from: http://github.com/TIRPClo. The FastTIRP algorithm
was implemented by modifying the C# code of VertTIRP.

All experiments were run on a laptop running Windows 11, with 16 GB of
RAM and an 11th generation Core i7-11800H processor. Four datasets, namely
Diabetes, Hepatitis, Smarthome and ASL, having various characteristics were
used to evaluate the performance of the three algorithms. The first two datasets
contain medical data, while the third and fourth datasets contain smarthome
events and sign language utterances transcribed from video recordings, respec-
tively. The main characteristics of the four datasets are listed in Table 3. Diabetes
(Hepatitis) and Smarthome (ASL) contain 2,038 (498) and 89 (65) entities (se-
quences), 80,538 (48,029) and 23,213 (2,037) symbolic time intervals, and 35 (63)
and 95 (146) event (symbol) types respectively. These datasets were downloaded
from http://github.com/TIRPClo. For all experiments, epsilon was set to zero,
mingap to 0 and maxgap to 30.

Table 3: Characteristics of the datasets
Dataset Sequences Time intervals Event types

Diabetes 2,038 80,538 35
Hepatitis 498 48,029 63

Smarthome 89 23,213 95
ASL 65 2,037 146

4.1 Influence of minsup on runtime, number of joins and patterns

In this section, experiments were carried out to first evaluate the efficiency of
the algorithms in terms of runtime and number of joins operations that are
performed. Both runtime and number of joins were measured while varying the
minsup parameter for each dataset. Fig. 3 shows the execution time (left side)
of the three algorithms and the number of joins operations (right side) for two
algorithms (FastTIRP, VertTIRP) on four datasets.

For runtime, it is observed that FastTIRP was faster, overall, than VertTIRP
on all datasets. For lowerminsup values, the difference in runtime is higher. How-
ever, the runtime difference between FastTIRP and VertTIRP tend to decrease
as minsup is increased. Interestingly, on all datasets, FastTIRP was about 20%
faster than VertTIRP. On the other hand, KarmaLego performed better than
FastTIRP on two datasets: Hepatitis and ASL. KarmaLego was indeed faster
than FastTIRP for lower minsup values. For the Diabetes and ASL datasets,
the average execution times for KarmaLego was high. That is why they are not
added in the figure. KarmaLego took more than half hour (the time limit we set
for runtime execution).

The number of joins performed by FastTIRP and VertTIRP is also observed
to assess the ability of the PSM technique at reducing the number of joins.
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FastTIRP performed less number of joins than VertTIRP on all datasets (Fig.
3). This shows that the PSM technique in FastTIRP was able to reduce the
number of joins in the Diabetes, Hepatitis, Smarthome and ASL datasets by up
to 24 %, 61 %, 94%, and 91%, respectively.

Next, we investigate the number of S-TIRPs discovered by the FastTIRP
algorithm on four datasets for the smallest and largest minsup values used in the
experiments. The results are listed in Table 4. More S-TIRPs were found in the
Diabetes dataset, followed by Hepatitis, Smarthome and ASL. The main reason
for this is that Diabetes contain more sequences and time intervals, followed by
Hepatitis, Smarthome and ASL respectively. Moreover, more (less) S-TIRPs can
be discovered by decreasing (increasing) the minsup value.

Table 4: Number of frequent S-TIRPs found in each dataset
Dataset minsup range Number of S-TIRPs

Diabetes [40, 90] [69692, 30094]

Hepatitis [40, 90] [44148, 25802]

Smarthome [40, 90] [19944, 4684]

ASL [10, 90] [1807, 72]

4.2 Influence of minsup on the overall memory usage

This section analyzes the memory used by algorithms during execution. The
results for the three algorithms are listed in Table 5.

FastTIRP used less memory compared to VertTIRP on the Diabetes dataset
that contain more sequences and time intervals. On the Smarthome and ASL
datasets, that contain less sequences, the memory usage of FastTIRP and Vert-
TIRP is almost similar. Interestingly, the memory usage of FastTIRP and Vert-
TIRP on the Smarthome dataset was higher than on the Hepatisis dataset.
However, the Smarthome dataset has less sequences and time intervals than
the Hepatitis dataset. KarmaLego performed better than FastTIRP and Vert-
TIRP on the Diabetes and ASL datasets. KarmaLego’s results for Hepatitis and
Smarthome are not added in the Table 5 as it was unable to terminate for various
minsup values within the time limit of half hour that we set for termination.

We can further analyze the memory usage of FastTIRP by calculating the
size of the proposed PSM data structure. Let |E| be the number of event types.
If the PSM is implemented as a full matrix, then the size can be calculated as
SizeFullMatrix = |E|2 × SizeOfV alue, that is the number of events to the
power of two, multiplied by the number of bytes required to store a support
value. In the C# implementation of FastTIRP, support values are stored using
integers of four bytes. Thus, the size of the PSM as a full matrix for each dataset
is as follows: Diabetes: 352 × 4 bytes= 4, 900 bytes, Hepatitis: 632 × 4 bytes=
15, 876 bytes, Smarthome: 952 × 4 bytes= 36, 100 bytes, and ASL: 1462 × 4
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Fig. 3: Comparison of runtime and number of joins for different minsup values
on four detests

bytes= 85, 264 bytes. In all cases, the size is quite small (less than a megabyte),
which is acceptable.
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Table 5: Comparison of the memory usage on the four datasets
Dataset Algorithm Avg. memory usage (MB) Max. memory usage (MB)

Diabetes
FastTIRP 559 687
VertTIRP 538 663
KarmaLego 280 284

Hepatitis
FastTIRP 283 368
VertTIRP 280 364

Smarthome
FastTIRP 437 634
VertTIRP 437 630

ASL
FastTIRP 213 216
VertTIRP 212 215
KarmaLego 29 35

For datasets with a very large number of event types, it may be worthwhile to
implement the PSM as a triangular matrix or sparse matrix to save some mem-
ory. As a triangular matrix, the size of the PSM is SizeTriangularMatrix =
|E|×(|E|−1)

2 ×SizeOfV alue, and the PSM requires the following amount of mem-
ory for each dataset: Diabetes: 35×34

2 ×4 bytes= 2380 bytes, Hepatitis: 63×62
2 ×4

bytes= 7, 812 bytes, Smarthome: 95×94
2 × 4 bytes= 17, 860 bytes, and ASL:

146×145
2 × 4 bytes= 42, 340 bytes. This is the implementation used in experi-

ments.

5 Conclusion

This paper has presented a novel algorithm for mining TIRPs in a time-interval
sequence database, called FastTIRP. It utilizes the same basic search procedure
as VertTIRP but applies a Pair Support Pruning (PSP) technique to reduce the
number of join operations. Experiments show that FastTIRP outperforms the
state-of-the-art VertTIRP algorithm in terms of runtime on several benchmark
datasets and that the number of join operations can be greatly reduced.

In future work, we will consider designing other optimizations and algorithms
for this problem, as well as a distributed version of FastTIRP to run on a big
data framework.

Java source code of VertTIRP and FastTIRP will be released in the next ver-
sion of the SPMF data mining library at http://www.philippe-fournier-viger.
com/spmf/ [2].
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