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Abstract—The exponential growth of genomic data has posed
significant challenges for lossless compression of genome se-
quences. While recent reference-free genome compressors have
shown promising results, they often fail to fully leverage the inher-
ent sequential structure of genome sequences, require substantial
computational resources and lack (or have limited) interpretabil-
ity. This paper presents a novel genome compression method
that employs the Minimum Description Length (MDL) principle,
which is based on the idea that the best model for a given
dataset is the one that provides the shortest description of that
dataset. The proposed compressor, called GMG (Genetic algo-
rithm for MDL-based Genome compression), integrates a genetic
algorithm to identify optimal k-mers (patterns) in a model to best
compress the genome data. Experimental results across various
datasets demonstrate that GMG outperforms state-of-the-art
genome compressors in terms of bits-per-base compression and
computational efficiency. Furthermore, it is demonstrated that
the optimal patterns identified by GMG for compression can also
be utilized for genome classification, offering a multifunctional
advantage over previous compressors. GMG is freely available
at github.com/MuhammadzohaibNawaz/GMG

Index Terms—Genome sequences, MDL, GA, Crossover, Mu-
tation

I. INTRODUCTION

Genomes, composed of four chemical compounds known
as nucleotide bases (adenine (A), cytosine (C), thymine (T),
and guanine (G)), represent the complete genetic material
of an organism and are generally stored in the FASTA
format. They can now be sequenced rapidly and at a low
cost, thanks to advanced sequencing technologies, and can
be shared on public repositories such as NCBI, NMDC,
GISAID, DDBJ and EBI. But this deluge of genomics data
[1], [2] presents significant challenges, particularly in terms of
efficient compression for storage, management, transmission
and processing. Genomes can be compressed with general-
purpose compressors designed particularly for text, such as
gzip (gzip.org), bzip2 (sourceware.org/bzip2), or LZMA (7-
zip.org). However, specialized compressors achieve higher
compression than general-purpose ones, as they employ var-
ious models that account for the small alphabet size, diverse
biological characteristics such as repeats, and high level of
substitutions [3], [4].

The development of specialized compression techniques
for genomic data started with Biocompress [S]. Since then,
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numerous methods have been developed for lossless com-
pression of genomic data, which can be categorized into
two main types [6]: (1) vertical (or reference-based) meth-
ods that focus on finding intra-sequence similarities among
sequences. Notable examples include RBFQC [7], LMSRGC
[8], ERGC [9], FRESCO [10] and RSS [11]. (2) horizontal (or
reference-free) methods that focus on finding inter-sequence
similarities among sequences. Examples of these include LEC-
Codec [12], GenCoder [13], JARVIS2 [4], GeCo3 [3], NUHT
[14], DeepDNA [15], and XM [16]. Reference-based methods
generally achieve better compression ratios, especially for
genome sequences derived from the same species and with
long read lengths. However, they are not self-contained and
their success depends on the availability of a good reference
genome sequence, which is also required during decompres-
sion. Moreover, if the reference genome is not representative of
the sequences being analyzed, it can introduce bias and lead
to inaccurate results. An important advantage of reference-
free genome compression is that some methods can not only
reduce data storage but also facilitate genome and metage-
nomic analysis and classification. For example, the studies
[17]-[19] utilized a compression-based feature (Normalized
Compression (NC)) and some other features for taxonomic
classification.

The introduction and widespread use of the FASTA format
have standardized the representation of genomic data (in a
visible horizontal range) alongside annotations (headers) [4],
with nucleotide or amino acid sequences generally covering
the bulk of this data. Various tools, such as MBGC [20], NAF
[21], MFCompress [22] and Deliminate [23] utilize specialized
compression algorithms in combination with simple header
coding. These algorithms predominantly model the presence
of exact or approximate repeated and inverted repeated regions
through techniques such as bit encoding, context model-
ing, dictionary approaches and statistical models, including
Markov models, run-length encoding and Huffman coding.
Recently, there has been a trend toward developing learning-
based genome compression methods utilizing neural networks
[31, [4], [12], [13], [24], [25]. While these methods achieved
better results, they also present several limitations, including
high computational complexity, extended running times, lim-
ited generalization, lack of interpretability, overfitting issues,
and sensitivity to hyperparameters.
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In this paper, we take a different approach and propose
a genome compressor based on the Minimum Description
Length (MDL) principle [26]. The MDL principle is founded
on the idea that ‘the best model compresses the data (in this
case, genome sequences) most effectively’. In other words, the
optimal model for a given dataset is the one that minimizes the
total length of the description of both the model and the data
when encoded using that model. The optimal model utilizes a
structure called the Code Table (CT), which not only stores all
the k-mers (also referred to as patterns) that best represent the
data but also defines the encoding scheme for these patterns
in the original dataset. However, the optimal patterns of bases
in genome sequences are distributed throughout a huge search
space, making exhaustive exploration of this space infeasible.
The presence of numerous redundant patterns also complicates
the process of identifying the truly optimal patterns. To address
this challenge, a heuristic approach is proposed, leveraging a
Genetic Algorithm [27] for pattern selection, to effectively
guide the search for optimal patterns while pruning less
promising ones, thereby achieving better compression.

The proposed method, called GMG (GA for MDL-based
Genome compression), directs the search toward promising
patterns that contribute to improved compression ratios with-
out the need to exhaustively evaluate all possible combinations
of patterns. Moreover, the method is not reliant on various
costly functions used in the traditional MDL-based approach.
Instead, it provides an adaptive and efficient framework for
identifying a set of frequent k-mers that offers a superior
lossless compression of the database. The results on various
datasets demonstrate an improved performance of GMG over
state-of-the-art reference-free genome compressors in terms
of bits-per-base compression and computational efficiency.
Moreover, it is shown that the optimal k-mers found by GMG
can be used for genome classification.

The next sections of this paper are organized as follows:
Section 2 describes how the MDL principle can be applied
for genome sequence compression. Section 3 describes the
proposed GMG compressor for genomes. Then, Section 4
presents the experimental evaluation of GMG against state-
of-the-art genome sequence compressors. Finally, Section 5
provides the conclusion.

II. ADAPTING THE MDL PRINCIPLE FOR GENOME
SEQUENCE COMPRESSION

The MDL principle is a general method for model selection
that aims to find the model that best describes some data.
This section explains its adaptation to genome compression
and then discusses the potential of using a GA as a heuristic
to obtain better compression.

Let M represent a model that is used to describe a database
D. Let L(D|M) represent the compression size, in bits, of D
when encoded with the model M and L(M) represent M’s
description size in bits. The MDL [26] is defined as follows:

For a set of models M, the best model M € M is the one
that minimizes the compression size, given by:

L(D, M) = L(D|M) + L(M) (1)

To utilize the MDL principle for genome compression, it
is necessary to define the structure of a model M € M,
its application to describe a database, as well as the model’s
encoding in bits.

Let N B represent the set of nucleotide bases (A, C, G, T).
A database D in this context is a list of genome sequences
over items in NB. A sequence s € P (NB) is an ordered
arrangement of bases, referred to as a baseset. A baseset is
equivalent to a k-mer (denoted as kM), which is a contiguous
sequence of k bases from N B.

A model is a set of k-mers M = {sy, $2, ..., S } used for
compressing a database D, and is represented by a structure
called a code table, denoted as C'T'. This latter is a two-column
dictionary where the left column contains k-mers and the right
column provides a code for each k-mer. The CT comprises
non-zero usage k-mers, ordered first by descending length,
then by decreasing support (the number of sequences in D
that contain a k-mer), and finally in ascending lexicographical
order. This defines a total order on k-mers called the Standard
Cover Order. The lengths of the codes in the right column
are important to assign shorter codes to frequent k-mers to
achieve greater compression.

A code table CT C {(kM,code(kM)) | kM € CS},
represents a compressing model, where a code code(kM) is
assigned to each k-mer kM € CS. The coding set (CS5)
is the set of all k-mers from the model. A cover function,
denoted as cover(s), is defined to encode each sequence s
from D over N B with a C'T'. The function cover(s) identifies
the set of patterns from CS that, when applied, encode a
sequence s. For a k-mer kM € CT, its usage(kM) is the
count of sequences s € D having kM in their cover [28].
To determine the optimal C'T" using the MDL principle, it is
necessary to consider both the compressed size of D and C'T'.
To achieve the optimal compression of D, codes in C'T" that
are more frequent should be assigned shorter lengths. This
can be achieved by using the Shannon-entropy to calculate
the optimal code length for kM.

L(kM|D) = —logs(P(kM]|D) @
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The length of the encoding of s is the summation of the
code lengths of the k-mers in its cover.
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Now, the size of the encoded D is the sum of the sizes of
the encoded sequences.

L(D|CT) =Y L(s|CT) (5)
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For the size of the C'T, only those k-mers are considered
that have a non-zero usage. The encoded size of the C'T is:

>
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L(CT|D) = L(kM|CT) (6)

L(kM|CT) is the summation of all the different code
lengths. The optimal set of k-mers are the one whose associ-
ated C'T table minimizes the total encoded size:

L(D,CT) = L(CT|D) + L(D|CT) (7

To compress genome sequences from a database D, our
goal is to find the sets of k-mers that best describe D. Using
L(D,CT), we formalize this goal using the MDL as:

Minimal Ordered k-mer Set Problem: Let N B be a set
of bases, D be a database over N B, cover be a cover function
and kM a collection of candidate k-mers (kM € P(N B)). The
problem is to determine the smallest set of patterns P € kM in
a way that the overall compressed size, L(CT, D), is minimal
for the corresponding code table C'T. Note that the set of k-
mers in a CT, i.e. {kM € CT} represents the C'S.

Using MDL for compression thus requires finding an op-
timal set of k-mers with their codes to build a CT, but the
search space of possible models is too large to be searched
exhaustively. Hence, GA is utilized as heuristic in GMG to
select some initial k-mers and then iteratively evolve them
by using two operations: crossover and mutation. The fitness
function is L(CT|D). More details are presented in the next
section

III. THE GMG COMPRESSOR

This section introduces the proposed GMG algorithm to
discover a representative set of k-mers to effectively compress
genome sequences.

The flowchart of GMG, highlighting its main steps, is
shown in Fig. 1. The algorithm begins by generating an
initial population of k-mers, representing potential solutions
for compressing the dataset D. The generated k-mers are then
evolved through an iterative GA process that involves the
following steps:

1) Selection: k-mers or sequences from the population,
referred to as parents, are randomly selected (generated)
to undergo crossover and mutation operations.

2) Crossover: The selected sequences (called parents) un-
dergo crossover, wherein sub-sequences in the parents
are combined to produce new sequences (called chil-
dren), mimicking genetic recombination to explore new
areas of the solution space.

3) Mutation: Random changes are introduced in the child
sequence, obtained after crossover operation. This mod-
ification enhances diversity within the population.

4) Evaluation: The fitness of the k-mers resulting from
crossover and mutation is assessed by measuring their
occurrence frequency in the dataset. Higher occurrence

frequency sub-sequences are assigned lower codes, lead-
ing to improved compression of the dataset.

5) Stopping Criteria: GMG terminates when a predefined
condition is met, that is adding k-mers in the CT till
achieving a satisfactory compression ratio.

Algorithm III presents the pseudo-code for GMG. The
algorithm operates with two inputs: a genome sequence dataset
D and a threshold, called maxCTSize, which defines the max-
imum size of the C'T’, which acts as a termination condition
ensuring that the algorithm stops once the CT reaches the
specified size. This provides a practical limit to the search
space and reduces computation time. The maxCTSize also
offers flexibility to users, enabling them to restrict the number
of output k-mers.

The output of GMG is a CT containing representative k-
mers that efficiently compress the dataset. Additionally, GMG
can be configured to run without the maxCTSize parame-
ter, making it fully parameter-free. In this configuration, the
algorithm terminates when the compression ratio stabilizes,
specifically, if the ratio does not improve over a set number
of generations.

[Hl GMG [1] Genome sequence dataset D,
maxCTSize CT that best compresses the dataset
population <+ {A,C,T,G} CT <+ 0 len(CT) #
maxCTSize P,,P, <+ Two random unique Kk-mers
(Iength [2,6])Poccy < CountOccurrences(P;, D) Poccy <—
CountOccurrences(P,, D) Cy,Cs < Crossover(Py, Py) C1 +
Mutation(C'y, population) Co < Mutation(Csy, population)
Random() > 0.5 Coce; <+ CountOccurrences(Cy, D)
Coccy > Poceg Py < Cp Pocey < Cocecy Cocey <+
CountOccurrences(Cy, D) Cocca > Poccy Py <+
Poccy < Coccy (max. number of generations is attained)
CT + CTU{Py, P,} Replace P;, P; in D with codes

Return CT

GMG starts by initializing a population with four nu-
cleotides (line 1). The CT is initialized as empty (line 2), and
a while loop runs until the size of CT reaches the specified
maxCT Size threshold. In each iteration, two random k-mers
P, and P, with k lengths between 2 and 6 are created (line
4), and their occurrences in the dataset are counted (lines 5,
6). Crossover (line 8) and mutation (lines 9, 10) operators
are applied to evolve these k-mers. The occurrences of the
resulting k-mers (C; or C3) are then recalculated (lines 11-23)
and compared to the original ones. If the evolved k-mers have
more occurrences, they replace the parent k-mers (lines 14,
20). This process continues over multiple generations, refining
the result, and at the end of the generations, the evolved
parents are added to the CT (line 25). The k-mers in the CT'
are assigned (based on occurrences) codes that are used for
encoding in the dataset D (line 26). The final output of GMG
is the C'T'—a set of sequences that optimally compresses the
dataset.

The process of calculating the occurrences for both C; and
Cs can be time-consuming, particularly with large datasets. To
address this, we introduced a probabilistic approach to improve
efficiency (line 11). Instead of counting occurrences for both
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Fig. 1. Flowchart of the GMG genome sequence compressor.

sequences, we assigned a 50% chance for either C; or Cy
to be selected, ensuring only one sequence is evaluated per
iteration. This significantly reduces the computational cost.
Our experiments showed that this approach accelerates the
algorithm without compromising compression quality.

A key feature of GMG is its ability to maintain or improve
solution quality over iterations. As outlined in Algorithm
I (lines 13-16, 19-22), the compression ratio—our main
optimization metric—either improves or stays constant, never
worsening. GMG achieves this through a selective update
mechanism: if a child k-mer offers a better compression ratio
than its parent, the parent is replaced by the child. If not, the
parent remains unchanged. This ensures that solution quality
does not degrade over time. This phenomenon is discussed
further in detail in the result section (see convergence results
in section IV-C3).

['ht] Crossover [1]  PkM;, PkMs: Two parent k-mers
CkM;, CkMs: Two child k-mers

procedure SPC(PkMy, PkMs) s < min(len(PkM),
len(PkMs))  cp < randomlInt(1, s) 1<cp<s

CkM; <« PkMi[1l,cp] || PkMzlcp + 1, len(PkM>)]

CkMy < PkMs[1,cp] || PkM[cp + 1, len(PkM;)]

Return CkM; and CkM; end procedure

Algorithm III, and III provide the pseudo-code for
the crossover and mutation operators, respectively. In the
crossover operator [29], a random crossover point (cp) is
selected, and the sequences to the left (or right) of cp are
exchanged between the two parent k-mers to produce two new
child k-mers. The symbol || represents the concatenation of
sub k-mer. A simple example is provided next to explain the
single-point crossover operators. Let PkM; and PkMs; be two
k-mers:

PEM, = AGTCGT
PkMs = TGCGA

Let n represent the length of the largest k-mer. A random
cp ((1 < ¢p < n) is randomly selected. For cp = 3, the single
point crossover generates the two child k-mers as:

CkM, = AGTGA
CkM, = TGCCGT

The mutation operation [30] follows the crossover operation
and is applied independently to k-mers. The mutation is
applied probabilistically, selecting either C'k M7 or C'kMs with

a 50/50 probability, as described in Algorithm III. It introduces
randomness into the search process, helping to avoid prema-
ture convergence to local optima. During mutation, a selected
N B in the k-mer is modified by replacing it with a randomly
chosen N B from the population. For example, a mutation of
CkM; and CkMs can be:

CkM]| = ACTGA
CkM)} = TGCTGT

['ht] Standard Mutation [1] kM: A k-mer and population:
set of all items A mutated k-mer procedure SM(kM) ¢ <+
randomInt(1, len(kM)) alter < randomSelect(population,
1) /l 1-mer  kM]Ji] + alter /I kMTi] # alter

Return kM end procedure

The GMG algorithm terminates when the stopping condition
of the GA is met, specifically when the number of sequences
in the C'T" equals the user-defined maxCTSize threshold. This
threshold can be adjusted by the user based on their desired
output size.

IV. EXPERIMENTAL EVALUATION

In this section, the performance of GMG is benchmarked
against two state-of-the-art reference-free compression meth-
ods: GeCo3 [3], and JARVIS2 [4]. GeCo3 integrates neural
networks with specific DNA compression models, using a
mixture of multiple context and substitution-tolerant context
models to achieve improved compression ratios across various
datasets. Similarly, JARVIS2 employs a mixture of multiple
finite-context models (FCMs) and weighted local stochastic
repeat models (WLSRMs), enhanced by a neural network and
arithmetic encoding to optimize compression efficiency while
minimizing RAM usage.

Next, we provide the overview of the system configuration
utilized for the experiments, followed by a comprehensive
description of the datasets and benchmarking results.

A. System Configuration

The experiments were conducted on a desktop computer
featuring a 12th Gen Intel® Core™ i7-12700 processor (2.10
GHz), running Windows 11 for Education in performance
mode. The machine was equipped with 16 GB of RAM and
1 TB of disk storage, an adequate configuration for handling
the large datasets involved in the experiments.



B. Datasets

The benchmarking of GMG against GeCo3 and JARVIS2

includes 2 datasets.

o Dataset 1 (DS1): A comprehensive balanced dataset
[31] composed of 15 genomic sequences from a wide
array of species, including (1) chromosome 2 of Gallus
gallus (GaGa), (2) chromosome 3 of Danio rerio (DaRe),
(3) chromosome 1 of Oryza sativa Japonica (OrSa),
(4) chromosome 2 of Drosophila miranda (DrMe), (5)
chromosome 4 of the reference human genome (HoSA),
(6) genome of Entamoeba invadens (Enln), (7) genome of
Schizosaccharomyces pombe (ScPo), (8) genome of Plas-
modium falciparum (PlFa), (9) genome of Escherichia
coli (EsCo), (10) genome of Haloarcula hispanica
(HaHi), (11) genome of Aeropyrum camini (AeCa), (12)
genome of Helicobacter pylori (HePy), (13) genome
of Yellowstone Lake mimivirus (YeMi), (14) genome of
Aggregatibacter phage S1249 (AgPh), and (15) genome
of Bundibugyo ebolavirus (BuEb). This diverse dataset
ensures a robust evaluation across various organisms,
representing a range of genomic characteristics.

o Dataset 2 (DS2): The human genome T2T se-
quence (Chml3 version 2.0) [32], which consists of
3,117,292,120 bases. This dataset, representing the con-
catenated sequence of the whole human chromosomes,
serves as a substantial benchmark to assess compression
efficiency on large, real-world data. Assuming a uni-
form distribution of symbols, the baseline representation
of this sequence without compression is approximately
779,323,030 bytes.

C. Benchmarking Results

First, the results for the compression ratio are discussed,
followed by the results for compression time (in seconds).
The convergence behavior of GMG is then analyzed to ob-
serve how it systematically refines the compression ratio over
successive iterations for optimal k-mer selection. Finally, the
quality of the optimal k-mers in the CT is evaluated by
utilizing them as features for classification. The details are
as follows:

1) Compression Ratio (BPB): The benchmark results for
BPB on both datasets are presented in Table 1. In nearly
every case, GMG outperforms GeCo3 and JARVIS2 in terms
of compression ratio.

For DSI1, across the various genomic sequences, GMG
consistently achieves a lower BPB value (indicating better
compression) compared to the other two compressors. For
instance, on GaGa, GMG achieves a BPB of 1.56, outper-
forming GeCo3’s 1.85 and JARVIS2’s 1.79. Similarly, for
EsCo, GMG achieves a BPB of 1.73, which is lower than
GeCo3’s 1.93 and JARVIS2’s 1.88. Overall, on average,
GMG achieves a compression ratio of 1.59 BPB, compared
to GeCo3’s 1.83 BPB and JARVIS2’s 1.77 BPB in DSI.
This translates to GMG providing 15.1% better compression
than GeCo3 and 11.3% better than JARVIS2. Importantly, all
these compression results are achieved using only 4 k-mers

TABLE I

BENCHMARK RESULTS FOR COMPRESSION (IN BPB)
Dataset], Method— GeCo3 | JARVIS2 | GMG
15*DS1 HoSa 1.69 1.58 1.58
GaGa 1.85 1.79 1.56
DaRe 1.65 1.50 1.48
OrSa 1.70 1.52 1.66
DrMe 1.88 1.82 1.58
Enln 1.73 1.52 1.55
ScPo 1.90 1.88 1.57
PIFa 1.74 1.89 1.61
EsCo 1.93 1.88 1.73
HaHi 1.839 1.83 1.56
AcCa 1.94 1.90 1.59
HePy 1.85 1.78 1.69
YeMi 1.84 1.83 1.55
AgPh 1.96 1.96 1.53
BuEb 1.98 1.98 1.65
1*DS2 Human Genome 1.42 1.39 1.40
Average of DS1 1.83 1.77 1.59
Overall average 1.80 1.75 1.57

in the CT, which is one of the inputs to GMG, specifically
maxCTSize. These results clearly demonstrate GMG’s superior
compression effectiveness.

For DS2 (the human genome), GMG compresses the 3.1
billion DNA symbols to a BPB of 1.40, while GeCo3 and
JARVIS2 achieve BPBs of 1.42 and 1.39, respectively. This
compression is comparable to JARVIS2 but slightly less ef-
fective than Geco3. Notably, for this dataset, the number of k-
mers in the CT is 8, as opposed to 4 for DS1. This increase is
necessary due to the dataset’s large size, requiring more k-mers
to achieve a compression ratio comparable to the other two
methods. However, the overall average compression results in
Table 1 (for both datasets) demonstrates that GMG maintains
a strong performance, achieving an average compression ratio
of 1.57 BPB. This represents an improvement of 14.6% over
GeCo3 (1.80 BPB) and 11.4% over JARVIS2 (1.75 BPB).

2) Compression Time: In addition to superior compression
ratios, GMG is significantly faster in terms of compression
time. For example for sequence GaGa in DS1, GMG com-
presses the data in 58 seconds, whereas GeCo3 takes 74.01
seconds and JARVIS2 takes 354 seconds. Similarly, for EsCo,
GMG completes the compression in 1.50 seconds, compared
to GeCo3’s 2.10 seconds and JARVIS2’s 9.01 seconds. Addi-
tionally, GMG achieves an average compression time of 16.45
seconds, while GeCo3 takes 26.29 seconds and JARVIS2 takes
111.85 seconds on DS1. This means GMG is 1.5 times faster
than GeCo3 and more than 6.7 times faster than JARVIS2 on

average for DSI. ) )
For the human genome (DS2), the compression time ad-

vantage of GMG becomes even more pronounced. GMG
compresses the entire dataset in approximately 1,200 seconds,
while GeCo3 takes 30,000 seconds and JARVIS2 takes 25,800
seconds. This means GMG is 25 times faster than GeCo3
and 21.5 times faster than JARVIS2 for the human genome
sequence. When looking at the overall average compression
times in Table 2 (for both datasets)), GMG continues to
outperform with an average time of 90.42 seconds, compared



TABLE 11
BENCHMARKS RESULTS FOR COMPRESSION TIME (IN SECONDS)

Dataset], Method— GeCo3 JARVIS2 | GMG
15*DS1 HoSa 102.10 540 76.20
GaGa 74.01 354 58.00

DaRe 110.87 460.01 55.64

OrSa 32.74 130.78 17.46

DrMe 25.92 67.68 13.17

Enln 21.01 59.25 11.33

ScPo 10.42 23.75 4.48

PIFa 7.94 18.55 4.13

EsCo 2.10 9.01 1.50

HaHi 2.51 7.80 2.10

AeCa 2.57 3.64 1.38

HePy 1.90 2.51 1.15

YeMi 0.18 0.65 0.15

AgPh 0.17 0.15 0.10

BuEb 0.03 0.08 0.03

1*DS2 Human Genome 30,000 25,800 1,200
Average of DS1 26.29 111.85 16.45
Overall average 1,899.65 1,717.36 90.42

to 1,899.65 seconds for GeCo3 and 1,717.36 seconds for
JARVIS2. This demonstrates that GMG is over 21 times faster
than GeCo3 and 18.9 times faster than JARVIS2 on average
on both datasets.

3) Convergence: Another experiment was conducted on the
two datasets to observe the convergence behavior of GMG,
specifically how it systematically refines the compression
ratio over successive iterations to improve k-mer selection
for optimal compression. The convergence of the compression
ratio was evaluated based on two factors: the number of k-mers
added to the C'T" and the number of generations used to evolve
a set of k-mers before they are incorporated into the C7T.

The results are shown in Fig. 2. The bottom x-axis rep-
resents the number of k-mers that have been added to the
CT, while the top x-axis indicates the number of generations
that GMG utilizes to evolve each set of k-mers. The y-axis
reflects the compression ratio, which quantifies the algorithm’s
efficiency in compressing the data. For clarity, the number of
sequences and generations are observed in the range of [1,4]
and [1,10], respectively.

In the figure, the compression ratios of several genome
sequences in two datasets exhibit a common pattern: an initial
high compression ratio that declines as more k-mers are added.
This suggests that the first k-mer added to the C'T" contributes
significantly to improving compression, while subsequent k-
mers lead to more modest gains. For example, the AeCa and
HePy in DS1 show a gradual reduction in the compression
ratio as k-mers and generations increase, stabilizing around
the 10th generation. Similarly, the sequences DaRe and OrSa
follow similar trends, but with a steeper decline at the end,
indicating that these datasets benefit from the later optimal k-
mers, which enhance compression efficiency more effectively.
The EsCo dataset demonstrates more stable behavior, with
only slight declines throughout the compression process, high-

lighting that their compression does not change significantly
with more generations. It is important to note that the Human
Genome in DS2 utilized more k-mers than the other sequences
in DS1, employing 8 k-mers compared to the 4 k-mers used
for the rest. This means that this sequence required more k-
mers compared to other sequences for better representation
and compression.

4) Classification: We evaluate the quality of optimal k-
mers in the C'T by utilizing them as features for training
classification. The classification is performed using Weka [33],
where six well-known classifiers were trained using the k-
mers as features: Naive Bayes (NB), Logistic Regression (LR),
Support Vector Machine (SVM), k-nearest Neighbor (kNN),
Decision Tree (DT) and Random Forest (RF). Note that the
classifiers were evaluated using their default hyperparameters,
along with 10-fold cross-validation. The performance of clas-
sifiers was evaluated using the accuracy metric. In our case,
accuracy is defined as the percentage of correctly classified
instances based on the optimal k-mers derived from GMG. The
resulting accuracies achieved by the classifiers are presented
in Table III.

TABLE III
CLASSIFIERS ACCURACY (IN %) ON OPTIMAL K-MERS

Dataset], Classifier— NB LR SVM | kNN DT RF
15*DS1 HoSa 85.29 | 89.70 | 94.11 | 88.23 | 94.11 | 92.64
GaGa 60.29 | 94.11 | 94.11 | 8529 | 94.11 | 92.64

DaRe 92.64 | 95.58 | 94.11 | 91.17 | 94.11 | 95.58

OrSa 50 92.64 | 92.71 | 86.76 | 94.85 | 89.70

DrMe 89.70 | 88.23 | 94.11 | 89.70 | 92.03 | 91.17

Enln 83.82 | 88.23 | 93.42 | 88.23 | 92.64 | 93.75

ScPo 89.70 | 92.64 | 92.82 | 85.29 | 90.36 | 89.62

PIFa 77.94 | 89.70 | 94.88 | 88.23 | 92.61 | 89.70

EsCo 92.64 | 89.70 | 90.78 | 89.70 | 94.73 | 94.11

HaHi 79.41 | 91.17 | 92.17 | 89.70 | 91.26 | 92.85

AeCa 89.70 | 92.64 | 92.75 | 86.76 | 92.42 | 92.64

HePy 91.17 | 94.11 | 93.63 | 85.29 | 90.97 | 93.46

YeMi 88.23 | 92.64 | 94.11 | 88.23 | 93.75 | 93.97

AgPh 70.58 | 88.23 | 94.11 | 80.88 | 94.11 | 88.23

BuEb 92.64 | 9558 | 94.11 | 91.17 | 94.11 | 95.58

1*DS2 | Human Genome | 82.35 | 83.82 | 88.23 | 76.47 | 88.23 | 83.82
Overall average 82.25 | 91.17 | 93.13 | 86.94 | 92.77 | 91.84

SVM achieved 93.13% accuracy on average, followed by
DT (92.77%), RF (91.84%) and LR (91.17%). By com-
parison, the studies [17]-[19] used compression measures
(such as NC) with some other features for the taxonomic
classification of viruses, Archaea and metagenomic sequences,
respectively. The XGBoost classifier performed best on the
provided features and achieved an average accuracy of 82.15%
[17], 92.10% [18] and 95% [19]. Here in this paper, the
optimal k-mers in the C'T" enhance the interpretability of
GMG by revealing the distribution and frequency of k-mers
that contribute significantly to the compression of genome
sequences. Moreover, optimal k-mers can not only be used
as features in the classification process, but they also offer the
opportunity to develop a specialized classifier based on the
CTs.
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Fig. 2. Comparison of compression with respect to number of k-mers and generations

In summary, our benchmark results clearly demonstrate
that GMG significantly outperforms state-of-the-art reference-
free compression tools, GeCo3 and JARVIS2, both in terms
of compression efficiency (BPB) and speed. Moreover, the
efficiency of GMG as a descriptor of data (genome sequences)
is evident in the initial classification results. These findings
establish GMG as an optimal solution for handling genomic
data, offering advantages not only in terms of data storage
and processing speed but also facilitate genome classification,
making it suitable for a wide range of applications in genomic
research and bioinformatics workflows.

V. CONCLUSION

In this paper, we have introduced GMG, a novel method that
combines a GA with the MDL principle for efficient reference-
free lossless compression of genomic data. By leveraging
GA to identify optimal k-mers, GMG constructs a model
that effectively captures the sequential structure of genome
sequences for better compression performance. GMG is bench-
marked against the state-of-the-art reference-free compression
methods, GeCo3 and JARVIS2, across two genomic datasets.
The results demonstrated that GMG achieved superior perfor-
mance, as evident by lower BPB values, significantly reduced
compression times and provided high accuracy results when
optimal k-mers, derived by GMG, were used for classification.
The MDL principle ensures that GMG maintains an optimal
balance, neither being overly complex nor simplistic, by
aligning its complexity with its ability to accurately describe
or (represent) the genome data. GMG has the potential to
play an important role in the ever-expanding field of genomic
data analysis, offering more cost-effective storage solutions

and enabling faster, more streamlined workflows in research
and clinical environments.

While GMG demonstrated superior performance, future
enhancements in parallel processing, multithreading, or GPU
acceleration could make it even faster, particularly when
dealing with large-scale datasets. Another future direction is
to evaluate the scalability of the developed method using
additional genomic and metagenomic datasets. There is also
potential to further improve compression ratio by allowing
‘gaps’ in between nucleotide bases. Lastly, another direction
is the development of a specialized classifier based on CT's
that stores optimal k-mers.
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