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Abstract—Accurate analysis and classification of clinical
datasets are crucial for understanding disease patterns, iden-
tifying risk factors and devising targeted interventions that
ultimately contribute towards effective healthcare systems and
improved patient outcomes. However, existing analysis and clas-
sification methods often fall short of effectively capturing complex
sequential relationships within patient data and have limited
interpretability. To overcome these challenges, we introduce
SeqClin, a novel approach that utilizes frequent pattern mining
to obtain valuable sequential information from clinical datasets.
SeqClin first transforms clinical datasets into an appropriate
format. Then, it employs sequential pattern mining algorithms
to find frequent sequential patterns as well as rules of patient
features in the datasets. These identified feature patterns and
their respective values are then used for classification/detection.
The performance of SeqClin is evaluated on four clinical datasets,
where six classification models and evaluation metrics are em-
ployed for a comprehensive assessment. The obtained results
show that the proposed approach surpassed previous approaches,
with the extracted patterns and rules providing valuable insights
into the key patient features and their values in clinical datasets.

Index Terms—Clinical data analysis, Frequent pattern mining,
Sequential pattern discovery, Classification, Healthcare.

I. INTRODUCTION

Clinical narratives and datasets play a crucial role in mod-
ern healthcare as they contain vast amounts of information,
including patient medical histories, demographics, laboratory
and biochemical results, imaging data, and treatment records
[1]. Therefore, they offer not only useful insights into patients’
health but also provide a rich context for clinical decision
support systems (CDSS). These latter facilitate more informed
and effective medical decision-making. By analyzing clinical
datasets, healthcare professionals can make well-informed
decisions and tailored treatments for individual patients. They
can also discern patterns as well as trends and risk factors, all
of which ultimately contribute to improving the overall quality
of patient care [2].

The traditional method for clinical data analysis involves
rule-based approaches [3], [4]. However, the development
of such approaches is time-consuming and resource-intensive
as they require a certain level of direct interaction with
clinical experts to transform their often implicit knowledge
into a comprehensive set of explicit rules. On the other hand,
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natural language processing (NLP), a subfield of artificial
intelligence, has consistently proven its efficacy in extracting
information from unstructured text. The rapid advancement of
text analytics beyond foundational NLP capabilities has been
significantly accelerated by the increased adoption of machine
learning (ML) and deep learning (DL) methodologies. Over
the past decade, they have been integrated into text analytics,
enabling their application in diverse clinical care settings [5]–
[8] to allow medical experts and clinicians to take proactive
measures by predicting the diverse factors and reasons associ-
ated with a disease. In recent years, numerous studies [9]–[21]
have focused on the development of computational approaches
for the effective analysis and classification of diseases based
on their clinical text data.

Some studies [9]–[13] focused on disease predictive mod-
eling using ML and DL classifiers. The studies [14]–[21]
identified significant features in the datasets such as fea-
tures selected based on chaotic multi-verse optimization [14],
genetic algorithm (GA)-based feature and instance selection
[15], improved teacher-learner based optimization (ITLBO)
[16], biogeography-based optimization [17], fruit fly optimiza-
tion [18], boruta-based, ridge regression-based and random
Fourier-based features [19], binning-based features [20], and
manual feature-selection [21]. The feature extraction methods
based on optimization techniques are computationally expen-
sive, often resulting in long times for model learning. More-
over, most of the developed methods encounter challenges re-
lated to accuracy and interoperability, and their generalizability
and scalability remain open questions, as their performance
evaluation is done on a small number of datasets (typically
only one). For clinical data, sophisticated yet simple and
intuitive techniques that are based on frequent pattern mining
(FPM) [22] are highly desirable because the clinical data
depend on various factors/causes, and often exhibit atypical
characteristics or properties.

FPM deals with finding interesting and important patterns
within datasets. These patterns, which can manifest in diverse
forms including rules, are interpretable due to their direct
correlation and reference to attribute values present in the data.
Two studies [23], [24] used the Apriori algorithm [?], a rule-
based algorithm for FPM, to find feature patterns and rules in
clinical datasets. Another study [25] proposed a constraint-
based algorithm, based on CHARM [26], to find frequent
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closed itemsets of symptoms, diagnosis and medication in a
clinical dataset. However, Apriori and CHARM do not take
into account the sequential arrangement of features. Sequential
pattern mining (SPM) [27], on the other hand, offers efficient
algorithms to analyze sequential data on the basis of frequent
sequential rules and patterns. For instance, SPM has been used
for the analysis and classification of biological data in genomic
form [28]–[32]. As far as we know, there is a notable absence
in the literature of any study that has incorporated the frequent
sequential patterns of diverse patient features identified in
clinical datasets into the classification/detection process.

In this paper, we introduce an SPM-based approach, called
SeqClin (Sequential Clinical) for analyzing and classifying
clinical datasets. SeqClin presents an integrated pipeline that
starts with data transformation, transitioning clinical datasets
into a proper format. Subsequently, the transformed datasets
are processed via the algorithms for SPM to find recurrent
feature sets and their corresponding values, along with the
sequential relationships that exist among them. These rela-
tionships are represented in the form of sequential rules and
patterns, providing valuable insights for the data. The frequent
patterns found in the datasets are then utilized as features in
the classification process. In total, six classifiers are used, and
their overall performance is rigorously evaluated using a range
of metrics.

The experimental findings demonstrate that utilizing Seq-
Clin to identify frequent sequential patterns within clinical
patient data and subsequently leveraging these discovered
patterns results in enhanced classification performance. No-
tably, the random forest (RF) in SeqClin performed better
than the other five classifiers and outperformed recent ap-
proaches for classifying clinical datasets. It was observed that
frequent patterns and rules discovered in clinical datasets offer
a deep understanding of the shared attributes and inherent
characteristics of clinical text data. Thus, such patterns hold
the potential to aid in the development of accurate, fast,
and interpretable CDSS, thereby improving the accuracy and
efficiency of clinical decision-making processes. Additionally,
this research can also empower healthcare sectors to perform
automated and insightful analyses, facilitating the extraction of
essential information (key patient features) from clinical data
where the order or sequencing of information is critical. This
can facilitate the construction of vital knowledge bases, which
can potentially lead to improvements in patient outcomes and
enhance healthcare management.

The rest of this paper contains three sections: Section II pro-
vides the details about the SeqClin approach and the four clin-
ical datasets. Section III presents and discusses experimental
results and the comparison of SeqClin with recent approaches.
Section IV concludes the paper with some remarks.

II. METHODOLOGY

The proposed SeqClin approach to analyze and clas-
sify/identify disease in clinical data (illustrated in Fig. 1)
contains five parts: (1) Clinical datasets collection, (2) Datasets
preprocessing, where features and their values are transformed

into an appropriate format, (3) Feature extraction, in the forms
of patterns and rules, using SPM algorithms, (4) Employing
the extracted frequent sequential features and their values in
the classification process, and (5) Benchmark evaluation to
investigate the performance of the proposed approach. The
next subsections provide the details for the first four parts.

A. Clinical Datasets

The performance and effectiveness of SeqClin are evaluated
on four publicly accessible clinical datasets about various dis-
eases. The first dataset is the Chronic Kidney Disease dataset1,
called CKD, which comprises 491 samples (or records) and
25 patient features. This dataset provides a set of information
related to patients who are diagnosed with CKD, such as
biochemical, clinical and demographic information. In this
dataset, 435 and 56 patients are categorized as non-CKD and
CKD (indicating their positive diagnosis of CKD) respectively.
One feature, StudyID, was excluded from the analysis, as it
contains the sequential IDs of patients and does not provide
any important information. For this study, the CKD dataset
contains 24 features, with 10 of these being numerical and the
remaining 14 being categorical.

TABLE I
STATISTICAL INFORMATION ABOUT FOUR CLINICAL DATASETS

Dataset Samples Features (N/C) Dependent Feature
CKD 491 24 (10/14) EventCKD35 (56 Yes/435 No)
DSPP 349 10 (1/9) Outcome(186 Positive/163 Negative)
CSD 95,984 17 (0/17) CurrentStatus (87,951 LCP/8,033 PC)
HFP 918 12 (4/8) HeartDisease (508 Yes/410 No)

N: Numerical, C: Categorical

The second dataset is the Disease Symptoms and Patient
Profile (DSPP) dataset2. It contains 10 features, of which
9 are categorical and 1 is numerical. 186 patients in DSPP
were identified as positive and 163 patients were identified
as negative, after the diagnosis/assessment for the specific
disease. DSPP comprises symptoms, demographics, and health
indicators of patients.

The third dataset is the COVID-19 Surveillance dataset3,
referred to as CSD, available at the Center for Disease Con-
trol and Prevention CDC, USA4. It contains 95,984 samples
after preprocessing, of which 87,951 belongs to laboratory-
confirmed patients (LCP) and the remaining 8,033 belong to
patients with probable case (PC). The CSD dataset originally
had 19 categorical features. Two features, namely the state
of residence (res state) and county of residence (res county),
are not considered as two other features (state fips code and
county fips code) provide the Federal Information Processing
Standards (FIPS) code for states and counties. Thus, in this
work, CSD includes 17 categorical features.

The fourth dataset is the Heart Failure Prediction (HFP)
dataset5, which comprises 918 records, from which 508

1figshare.com/articles/dataset/6711155?file=12242270
2kaggle.com/datasets/uom190346a/disease-symptoms-and-patient-profile-

dataset/data
3https:github.com/sarwanpasha/COVID 19 Clinical Data Analytics
4data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Public-Use-

Data-with-Ge/n8mc-b4w4/data
5kaggle.com/datasets/fedesoriano/heart-failure-prediction



Fig. 1. The SeqClin approach for the analysis and classification of clinical datasets consists of five stages: (1) Datasets collection, (2) Dataset proprocessing and
abstraction of features, (3) Discovery of (a) frequent sequential patient feature patterns and (b) rules among them in the datasets, (4) Performing classification
by utilizing the identified frequent sequential patterns of patient features and their respective values to train various classifiers, and (5) Approach evaluation
using various metrics.

records are patients diagnosed with heart disease and the
remaining 410 without heart disease. This dataset contains 12
features, including 8 categorical and 4 numerical variables.

TABLE II
FEATURES IN THE CONSIDERED CLINICAL DATASETS

Dataset 1 (CKD)
(1) Gender, (2), Age, (3) AgeCategories, (4) HistoryDiabetes, (5)

HistoryCHD, (6) HistoryVascular, (7) HistorySmoking, (8) HistoryHTN,
(9) HistoryDLD, (10) HistoryObesity, (11) DLDmeds, (12) DMmeds,
(13) HTNmeds, (14) ACEIARB, (15) Cholesterol, (16) Triglycerides,

(17) HgbA1C, (18) Creatnine, (19) eGFR, (20)
sBP, (21) dBP, (22) BMI, (23) TimeToEventMonths, (24) EventCKD35

Dataset 2 (DSPP)
(1) Disease, (2) Fever, (3) Cough, (4) Fatigue, (5) DifficultyBreathing,

(6) Age, (7) Gender, (8) BloodPressure, (9) CholesterolLevel,
(10) OutcomeVariable

Dataset 3 (CSD)
(1) CaseMonth, (2) StateFIPSCode, (3) CountyFIPSCode, (4) AgeGroup,

(5) Sex, (6) Race, (7) Ethnicity, (8) CasePositiveSpecimenInterval, (9)
CaseOnsetInterval, (10) Process, (11) Exposure, (12) CurrentStatus, (13)

SymptomStatus, (14) Hosp, (15) ICU, (16) Death, (17) UnderlyingConditions
Dataset 4 (HFP)

(1) Age, (2) Sex, (3) ChestPainType, (4) RestingBP (5)
Cholesterol, (6) FastingBS, (7) RestinECG, (8) MaxHR, (9)

ExerciseAngina, (10) OldPeak, (11) STSlope, (12) HeartDisease

In the considered datasets, only CKD contains missing
values for one feature in 21 samples. The other 3 datasets
contain no missing values for features. Table I provides a
statistical overview of the clinical datasets considered. Table II
offers detailed feature information in sequential order within
the dataset, with the dependent feature underlined.

B. Encoding

In the stage of data pre-processing, features within each
dataset are transformed into a standardized integer-based for-
mat [33]. It was observed that various features across the clin-
ical datasets share the same values. To eliminate any potential
ambiguity, unique values of distinct features are encoded into
distinct positive integers, which are henceforth referred to as
feature values. In other words, within the transformed dataset,
values that were originally identical for two distinct features
in the original dataset are now represented by unique integers
to facilitate differentiation.

Let FV = {FV1, FV2, ..., FVm} represent the list or set
of patient features and their respective values in a dataset.
Any subset, denoted as FV S (FV S ⊆ FV ), is referred to as

a feature values list or set. To efficiently explore the patterns
search space in a dataset, a relation, denoted as ≺, is applied to
the FV . This relation establishes a specific ordering on feature
values, which ensures that SPM algorithms do not discover
duplicate patterns [27].

A feature sequence FS = ⟨FV S1, FV S2, ..., FV Sn⟩ is a
sequentially ordered list for which FV Si ⊆ FV and 1 ≤ i ≤
n. A list containing more than one feature sequence makes a
dataset that is referred to as a feature values dataset (FV D).
For example, FV D = ⟨FS1, FS2, ..., FSx⟩ is a feature values
dataset containing x sequences with unique IDs ranging from
1 to x. A sample of the original HFP dataset is shown in Fig.
2(a), while its transformed version is shown in Fig. 2(b).

C. Discovering Frequent Sequential Patterns and Rules

The TKS [34] and ERMiner algorithms [35] are used to
find frequent sequential patterns and rules associated with
FV (patient features and their corresponding values). Both
algorithms use certain measures to identify patterns such as
the support (sup) and confidence (conf ).

In a FV D, the number of sequences (Seq) that contain a
particular Seqp is referred to as the support of Seqp, denoted
by the symbol sup(Seqp):

sup(Seqp) = |{Seq|Seqp ⊑ Seq ∧ Seq ∈ FV D}| (1)

where Seqp ⊑ Seq represents that Seqp is present in
Seq or in other words, Seq contains Seqp. Formally, let
there be two sequences Seqp and Seqq , defined as follows:
Seqp = ⟨p1, p2, ..., px⟩ and Seqq = ⟨q1, q2, ..., qy⟩. Then,
Seqp is considered a subsequence of Seqq , if there exist an
integers set 1 ≤ n1 < n2 < ... < nx ≤ y, such that
p1 ⊆ qn1, p2 ⊆ qn2, ..., px ⊆ qny .

In a FV D, SPM algorithms do the complete enumeration
of all the frequent subsequences. Formally, a sequence Seq is
a sequential pattern (also known as a frequent sequence) if its
support (sup) is greater than or equal to the minimum support
(ms) threshold, that is set by the user (sup(Seq) ≥ ms).

The main advantage of using TKS is that it offers a param-
eter k that users can specify to obtain a desired number of
sequential patterns. On the other hand, traditional algorithms



for SPM necessitate the specification of a parameter ms. Using
the parameter k of TKS offers the advantage of knowing the
exact number of patterns that will be output prior to execution,
thereby eliminating the need for multiple algorithm runs to
achieve a specific number of patterns in a dataset. The process
for generating candidates (subsequences) in TKS incorporates
building a vertical database representation along with a depth-
first search. These allow TKS to compute and count candidates
efficiently without the necessity of a comprehensive scan of
the dataset, thereby enhancing its performance when dealing
with lengthy candidates or dense databases. Furthermore, TKS
employs a range of advanced strategies to minimize the search
space, such as the utilization of the PMAP (Precedence Map)
data structure and an optimized join operation on a bit vector
representation. For a comprehensive understanding of TKS,
interested readers can find more details in [34]. A sample
of frequent sequential patterns of patient features in both
transformed and original formats is shown in Fig. 2(c) and
Fig. 2(e), respectively.

On the contrary, sequential rules signify a correlation among
two distinct items (patient features and their values here) sets,
by considering not only an item’s support (sup) but also
its confidence (conf ), also called the conditional probability.
Thus, such rules provide a comprehensive understanding of
how items are associated in data. Let r represents a sequential
rule in FV D, having the form r : M → N , that is an
implication between two feature value sets M,N ⊆ FV
that are non-empty and disjoint. The sup and conf of r are
calculated as:

confFV D(r) =
|{Seq|r ⊑ Seq ∧ Seq ∈ FV D}|
|{Seq|M ⊑ Seq ∧ Seq ∈ FV D}| (2)

supFV D(r) =
|{Seq|r ⊑ Seq ∧ Seq ∈ FV D}|

|FV D| (3)

A sequence Sp = ⟨p1, p2, . .., px⟩ contains M (shown as
M ⊑ Sp) if M ⊆

⋃n
i=1 pi. Similarly, r is present in Sp (shown

as r ⊑ Sp) if a q (an integer) exists such that 1 ≤ q < n,
M ⊆

⋃q
i=1 pi and N ⊆ ∪n

i=q+1pi. A rule r has meaning that
items of M are typically followed by items of N .

Sequential rule mining within a dataset is the process of
enumerating all the valid sequential rules present within the
data. Formally, r is considered a frequent sequential rule if
its support value is greater than or equal to a preset value
ms (supFV CD(r) ≥ ms) and r is a valid sequential rule if
it occurs frequently and its confidence value is greater than
or equal to a user-defined minimum confidence threshold mc
(confFV CD(r) ≥ mc). Note that both ms and mc ∈ [0, 1].

The ERMiner algorithm [35], which stands for Equiva-
lence class-based sequential Rule Miner, leverages a vertical
database representation and exploits equivalence classes of
rules sharing identical antecedents and consequents to compre-
hensively explore the rule search space. For further exploration
of the search space, ERMiner searches for rules using two
procedures named right and left merges. Additionally, a SDM
(sparse data matrix) technique is utilized to prune the search
space, enhancing ERMiner’s efficiency compared to previous

sequential rule mining algorithms. Unlike TKS, users need
to specify two parameters ms and mc to obtain the desired
number of rules. More details about ERMiner can be found in
[35]. Fig. 2(d) and Fig. 2(f) show a sample of sequential rules
of patient features in both transformed and original formats,
respectively.

D. Classification
In this stage, the frequently occurring sequential patterns of

patient features, with their respective values, are employed for
the classification of diseases. The clinical datasets generally
contain patient sequences (records) of various lengths. After
carefully examining the clinical datasets, multiple consecutive
occurrences of the features were observed.

From the perspective of patient-related data, such occur-
rences can be considered redundant as they do not provide
significant insight or information for classification purposes.
Therefore, during classification, repetitive patient features are
treated individually. Moreover, many studies [14]–[20] used
different feature selection methods to reduce the number of
total features that are used in disease classification. High accu-
racy is achieved with reduced features as compared to using all
the features in the datasets. Inspired by these observations, the
proposed approach leverages the discovered frequent sequen-
tial patient patterns for the purpose of classification/detection
in clinical datasets.

Six standard ML models are used for classification, in-
cluding (1) Naive Bayes (NB), (2) Logistic Regression (LR),
(3) Support Vector Machine (SVM), (4) k-nearest Neighbors
(kNN), (5) Decision Tree (DT) and (6) Random Forest (RF).
Their performance is evaluated by employing six metrics,
including (1) Accuracy (ACC), which measures the overall
correctness of predictions; (2) Recall (R), indicating the capa-
bility of a classifier to find all relevant instances; (3) Precision
(P), reflecting the proportion of relevant instances among the
retrieved ones; (4) F1 score (F1), indicates the harmonic mean
of P and R; (5) Matthews Correlation Coefficient (MCC), a
balanced metric that considers both true and false positives,
as well as true and false negatives; and (6) Area Under
the Curve (AUC), representing the classifier performance as
its discrimination threshold is varied. The main reason for
utilizing these metrics, which are defined next, is that they
provide a comprehensive assessment of the performance of
classifiers.

ACC =
TP + TN

TP + TN + FP + FN
(4)

Recall(R) =
TP

TP + FN
(5)

Precision(P ) =
TP

TP + FP
(6)

F −measure = 2× P ×R

P +R
(7)

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(8)



Fig. 2. The process of patient records transformation in a dataset and discovering frequent patterns as well as rules of patient features and their corresponding
values. Some samples of the original dataset (a) are transformed into an abstracted dataset (b). Discovered patterns that occur frequently (c) and frequent
rules (d) in the abstracted format. Discovered frequent sequential patterns (e) and rules (f) are presented in the original format. The dependent variable is
underlined, green-colored features and their values in (f) represent antecedents, and red-colored features and their values represent consequent(s).

AUC =

∫ 1

0

R(dFPR) (9)

where the terms TP , FP , TN , and FN stand for true
positive, false positive, true negative and false negative, re-
spectively. In equation 9, dFPR is for the derivative of FPR =

FP
FP+TN . In this study, three validation strategies ((1) 5-fold
cross-validation, (2) 10-fold cross-validation, and (3) 80:20
train-test split) are employed for robust evaluation of the clas-
sifiers’ performance and for a comprehensive assessment of
their generalizability and reliability. The next section discusses
the fifth stage of the proposed methodology (evaluation).

III. RESULTS AND DISCUSSION

A computing system with 16 GB of RAM and an Intel
Core i5-11320H 3.20 GHz processor was utilized to conduct
experiments. The SPMF library [36], developed in Java, was
employed for pattern extraction within the abstracted clinical
datasets. It offers many algorithms for the analysis and dis-
covery of patterns, including TKS and ERMiner. Additionally,
the open-source WEKA [37] software was utilized for the
classifiers’ training and testing.

A. Discovered Patterns and Rules

Table III presents several frequent sequential patterns of
features that have been identified using TKS in the four
clinical datasets, each characterized by varying lengths. These
frequent sequential patterns offer invaluable insights into the
prevalence and frequency of specific patient features and their
corresponding values, providing a deeper understanding of
patient characteristics and potential trends. For example, the
first pattern indicates that approximately 84% of the patients

with a history of hypertension, who used medications for
this condition, have been diagnosed with CKD. Similarly,
the patients with the following pattern HistoryVascular: No,
HistoryHTN: Yes, HistoryDLD: Yes, DLDmeds: No, HTN-
meds: Yes, ACEIARB: Yes have more than 60% chances of
having CKD. HTN, DLD, CHD, D, and Meds stands for
hypertension, dyslipidemia, coronary heart disease, diabetes,
and medications respectively.

Table IV lists some of the discovered sequential rules
by ERMiner in four datasets. These discovered rules reveal
the intricate relationships among frequently occurring patient
features and their respective values, offering a clearer picture
of the underlying patterns and trends. Similar to frequent
sequential patterns, discovered rules offer very useful informa-
tion related to the interconnections between features and their
values. Getting the desired number of rules in different datasets
requires fine-tuning of the ms and mc parameters, along with
two optional parameters for the maximum antecedent and
consequent size.

The first rule in DSPP indicates that the patient features
Fatigue: Yes and DifficultyBreathing: No are followed by
OutcomeVariable: Positive. Similarly, the fourth rule in CSD
suggests that a patient with Race: White, Ethnicity: Non-
Hespanic and CaseOnsetInterval: 0 was not submitted to ICU
(ICU: No) and was a laboratory-confirmed case (CurrentSta-
tus: LCP). With an occurrence frequency of 67.38%, this
rule was prominently observed in the CSD. Moreover, the
confidence level of 0.94 underscores the high correlation that
exists between these patient features, indicating a high degree
of certainty in the observed relationship. This suggests a 94%
probability of a patient with the status of LCP when these
specified conditions are met.



TABLE III
SEQUENTIAL PATTERNS DISCOVERED IN FOUR CLINICAL DATASETS

CKD: Yes %
HistoryHTN: Yes, HTNmeds: Yes 83.92
HistoryHTN: Yes, HTNmeds: Yes, ACEIARB: Yes 76.78
HistoryHTN: Yes, HistoryDLD: Yes, HTNmeds: Yes, ACEIARB: Yes 69.64
HistoryHTN: Yes, HistoryDLD: Yes, DLDmeds: No, HTNmeds: Yes, ACEIARB: Yes 67.85
HistoryVascular: No, HistoryHTN: Yes, HistoryDLD: Yes, DLDmeds: No, HTNmeds: Yes,
ACEIARB: Yes

60.71

CKD: No %
HistoryCHD: No, HistoryVascular: No 89.19
HistoryCHD: No, HistoryVascular: No, HistoryDLD: No 77
HistoryDiabetes: No, HistoryCHD: No, HistoryVascular: No, DMmeds: No 57.24
HistoryDLD: No, HistoryHTN: Yes, HistoryDLD: Yes, DLDmeds: No, HTNmeds: Yes 34.71
HistoryCHD: No, HistoryDLD: No, HistoryHTN: Yes, HistoryDLD: Yes, DLDmeds: No,
HTNmeds: Yes

30.34

DSPP: Positive %
Fatigue: Yes, DifficultyBreathing: No 52.68
Fatigue: Yes, DifficultyBreathing: No, CholesterolLevel: Yes 36.02
Cough: No, Fatigue: Yes, DifficultyBreathing: No, Gender: Male 26.34
Fever: No, Cough: No, Fatigue: Yes, DifficultyBreathing: No, Gender: Male 20.43
Cough: No, Fatigue: Yes, DifficultyBreathing: No, Gender: Male, BloodPressure: Yes,
CholesterolLevel: Yes

13.44

DSPP: Negative %
Fever: No, DifficultyBreathing: No 48.46
Fever: No, Fatigue: Yes, DifficultyBreathing: No 32.51
Fatigue: Yes, DifficultyBreathing: No, Gender: Male, CholesterolLevel: No 20.42
Fever: No, Cough: No, Fatigue: Yes, DifficultyBreathing: No, Gender: Male 19.63
Cough: No, Fatigue: Yes, DifficultyBreathing: No, Gender: Male, BloodPressure: No,
CholesterolLevel: No

11.04

CSD: LCP %
CaseOnsetInterval: 0, SymptomStatus: Symptomatic 98
CaseOnsetInterval: 0, SymptomStatus: Symptomatic, Death: No 90.81
SymptomStatus: Symptomatic, Hospital: No, ICU: No, Death: No 79.32
Race: Multiple/Other, CaseOnsetInterval: 0, Exposure: Yes, SymptomStatus: Symptomatic,
ICU: No

64.32

Exposure: Yes, SymptomStatus: Symptomatic, Hospital: No, ICU: No, Death: No, Under-
lyingConditions: Yes

57.79

CSD: PC %
SymptomStatus: Symptomatic, Death: No 98.84
CaseOnsetInterval: 0, Hospital: No, Death: No 93.67
Ethnicity: Non-Hespanic, SymptomStatus: Symptomatic, Hospital: No, Death: No 88.41
StateFIPSCode: 39, CaseOnsetInterval: 0, SymptomStatus: Symptomatic, Hospital: No,
Death: No

80.51

Race: Multiple/Other, Ethnicity: Non-Hespanic, CaseOnsetInterval: 0, SymptomStatus:
Symptomatic, Hospital: No, Death: No

77.92

HFP: Yes %
Sex: Male, ChestPainType: ASY 69.48
ChestPainType: ASY, ExerciseAngina: Yes, STSlope: Flat 39.76
Sex: Male, ChestPainType: ASY, ExerciseAngina: Yes, STSlope: Flat 35.62
Sex: Male, ChestPainType: ASY, FastingBS: 1, ExerciseAngina: Yes, STSlope: Flat 25.78
ChestPainType: ASY, FastingBS: 1, RestingECG: Normal, ExerciseAngina: No, OldPeak:
0, STSlope: Flat

4.52

HFP: No %
FastingBS: 1, ExerciseAngina: No 77.56
ExerciseAngina: No, OldPeak: 0, STSlope: Up 53.18
FastingBS: 1, ExerciseAngina: No, OldPeak: 0, STSlope: Up 49.26
Sex: Male, FastingBS: 1, RestingECG: Normal, ExerciseAngina: No, STSlope: Up 30.73
ChestPainType: ATA, FastingBS: 1, RestingECG: Normal, ExerciseAngina: No, OldPeak:
0, STSlope: Up

18.78

TKS and ERMiner algorithms enable the identification of
not only frequently occurring features and their interrelation-
ships but also the significance of specific feature values that
could potentially impact patient analysis in clinical datasets.
Note that the frequent sequential patterns and rules found
in clinical datasets can be interpreted or considered as their
descriptors or features. Such features and rules can be used in
the classification process instead of providing all the available
patient features within a dataset. As demonstrated in III-B,
adopting this strategy can not only streamline the classification
procedure but potentially enhance its accuracy and efficiency.

B. Classification Results

Prior to classification, the identified frequent sequential
patterns within four datasets are subjected to preprocessing
to guarantee that each pattern’s length meets a minimum
threshold of four. The standard (default) hyperparameters of
classifiers in WEKA are utilized to streamline the model
training process and establish a benchmark for performance
comparison. The classification results for the six models,

TABLE IV
SEQUENTIAL RULES DISCOVERED IN FOUR CLINICAL DATASETS

CKD
Antecedents Consequents % Conf.
HistoryVascular: No, HistoryHTN: Yes EventCKD35: Yes 44.64 1
HistoryDLD: Yes, DLDMeds: Yes, HTN-
Meds: Yes

EventCKD35: Yes 33.92 1

HistoryHTN: Yes, HistoryDLD: Yes DLDMeds: Yes, HTNMeds: Yes,
EventCKD35: Yes

33.92 0.95

HistoryVascular: No, HistoryHTN: Yes, HT-
NMeds: Yes, ACEIARB: Yes

EventCKD35: Yes 37.5 1

HistoryDiabetes: Yes, HistoryVascular: No,
HistorySmoking: No

HistoryHTN: Yes, HTNMeds: Yes,
ACEIARB: Yes, EventCKD35: Yes

28.57 0.84

HistoryCHD: No, HistoryVascular: No EventCKD35: No 41.49 1
HistoryVascular: No, HistorySmoking: No,
DMMeds: No

EventCKD35: No 32.18 1

HistoryDiabetes: No, HistoryCHD: No HistoryVascular: No, HistoryHTN: Yes,
EventCKD35: No

17.93 0.61

Gender: Female, HistoryCHD: No, History-
Vascular: No, HistorySmoking: No

EventCKD35: No 29.66 1

HistoryCHD: No, HistoryVascular: No, His-
torySmoking: No

HistoryDLD: Yes, DLDMeds: Yes,
EventCKD35: No

23.44 0.62

DSPP
Antecedents Consequents % Conf.
Fatigue: Yes, DifficultyBreathing: No OutcomeVariable: Positive 52.68 1
Fatigue: Yes, BloodPressure: Low, Choles-
terolLevel: 1

OutcomeVariable: Positive 36 1

Cough: No, Fatigue: Yes DifficultyBreathing: No, Gender: Male, Out-
comeVariable: Positive

26.34 0.60

Cough: Yes, DifficultyBreathing: No, Blood-
Pressure: Low, CholesterolLevel: 1

OutcomeVariable: Positive 11.29 1

Fever: No, Cough: No, Fatigue: Yes, Difficul-
tyBreathing: No, Gender: Male

OutcomeVariable: Positive 20.43 1

DifficultyBreathing: No, CholesterolLevel: 0 OutcomeVariable: Negative 44.17 1
Fever: No, Fatigue: Yes, DifficultyBreathing:
No

OutcomeVariable: Negative 32.51 1

Cough: No, Fatigue: Yes DifficultyBreathing: No, Gender: Male, Out-
comeVariable: Negative

22.69 0.62

Fatigue: Yes, DifficultyBreathing: No, Gen-
der: Male, CholesterolLevel: 0

OutcomeVariable: Negative 20.24 1

Fever: No, Cough: No, Fatigue: Yes, Blood-
Pressure: Normal, CholesterolLevel: 0

OutcomeVariable: Negative 10.42 1

CSD
Antecedents Consequents % Conf.
Race: White, CaseOnsetInterval: 0 CurrentStatus: LCP 85.67 1
Race: White, Ethnicity: Non-Hespanic,
CaseOnsetInterval: 0

CurrentStatus: LCP 71.03 1

CaseOnsetInterval: 0, Exposure: Yes ICU: No, CurrentStatus: LCP 72.71 0.94
Race: White, Ethnicity: Non-Hespanic,
CaseOnsetInterval: 0

ICU: No, CurrentStatus: LCP 67.38 0.94

Sex: Female, Ethnicity: Non-Hespanic,
CaseOnsetInterval: 0, Exposure: Yes

CurrentStatus: LCP 40.66 1

Ethnicity: Non-Hespanic, CaseOnsetInterval:
0

CurrentStatus: PC 90.094 1

Ethnicity: Non-Hespanic, CaseOnsetInterval:
0, Exposure: Yes

CurrentStatus: PC 71.24 1

StateFIPSCode: 39, Race: White, Ethnicity:
Non-Hespanic

CaseOnsetInterval: 0, CurrentStatus: PC 70.14 0.99

Race: White, Ethnicity: Non-Hespanic,
CaseOnsetInterval: 0

Exposure: Yes, CurrentStatus: PC 64.33 0.78

StateFIPSCode: 39, Race: White, Ethnicity:
Non-Hespanic, CaseOnsetInterval: 0

CurrentStatus: PC 70.14 1

HFD
Antecedents Consequents % Conf.
Sex: Male, ChestPainType: ASY HeartDisease: Yes 69.48 1
Sex: Male, ChestPainType: ASY, STSlope:
Flat

HeartDisease: Yes 50.98 1

FastingBS: 0, ExerciseAngina: Yes STSlope: Flat, HeartDisease: Yes 35.43 0.8
Sex: Male, ChestPainType: ASY,
RestingECG: Normal, STSlope: Flat

HeartDisease: Yes 30.51 1

ChestPainType: ASY, FastingBS: 0,
RestingECG: Normal, ExerciseAngina:
Yes, STSlope: Flat

HeartDisease: Yes 18.11 1

ExerciseAngina: No, STSlope: Up HeartDisease: No 70.97 1
FastingBS: 0, ExerciseAngina: No, STSlope:
Up

HeartDisease: No 64.14 1

Sex: Male, FastingBS: 0 ExerciseAngina: No, HeartDisease: No 48.53 0.85
RestingECG: Normal, ExerciseAngina: No,
OldPeak: 0, STSlope: Up

HeartDisease: No 38.53 1

Sex: Male, RestingECG: Normal, Exer-
ciseAngina: No, STSlope: Up

HeartDisease: No 33.41 1

when trained and tested using three validation strategies, are
presented in Table V.

Two classifiers (DT and RF) outperformed the other four
classifiers (NB, LR, SVN and kNN) across all four datasets
when evaluated using the three validation strategies. The
paired t-test further validated that RF and DT significantly
outperformed the other four classifiers. RF exhibited slightly
better performance when using an 80:20 splitting strategy
compared to 5-fold and 10-fold cross-validation. Conversely,
DT performed better on 10-fold cross-validation. NB achieved
better results on datasets when using 10-fold cross-validation.
Meanwhile, LR, SVM and kNN demonstrated similar per-
formance across all four datasets, with negligible differences



TABLE V
OBTAINED ACCURACY OF SIX CLASSIFIERS ON FOUR CLINICAL DATASETS

Validation Dataset NB LR SVM kNN DT RF
5-

fo
ld

CKD 0.549 0.606 0.599 0.566 0.996 1
DSPP 0.495 0.51 0.502 0.571 0.995 0.997
CSD 0.652 0.655 0.657 0.77 0.994 0.998
HFP 0.53 0.615 0.606 0.581 0.998 0.997

Average 0.556 0.596 0.591 0.622 0.995 0.998
Validation Dataset NB LR SVM kNN DT RF

10
-fo

ld

CKD 0.554 0.596 0.596 0.566 0.998 1
DSPP 0.998 0.509 0.518 0.578 0.994 0.999
CSD 0.967 0.65 0.657 0.793 0.994 0.998
HFP 0.531 0.614 0.611 0.553 0.998 0.996

Average 0.762 0.592 0.595 0.622 0.996 0.998
Validation Dataset NB LR SVM kNN DT RF

80
:2

0

CKD 0.61 0.63 0.59 0.605 1 1
DSPP 0.45 0.505 0.50 0.53 0.995 1
CSD 0.725 0.73 0.73 0.77 0.99 1
HFP 0.56 0.605 0.58 0.585 0.99 0.99

Average 0.586 0.617 0.6 0.622 0.993 0.999

Fig. 3. RF results on four clinical datasets

observed between the three validation strategies. All of the
classifiers performed efficiently and completed their execution
within seconds. Based on the average accuracy across all four
datasets and three validation strategies, the classifiers have
been ranked as (1) RF (99.8%), (2) DT (99.4%), (3) NB
(63.4%), (4) kNN (62.2%), (5) LR (60.1%), (6) SVM (59.5%).

The comprehensive results of the RF classifier, utilizing an
80:20 splitting ratio, across four clinical datasets are presented
in Fig. 3. The main finding of this work is that instead
of using all the patient features, frequent sequential patterns
discovered in clinical datasets can be effectively employed in
the identification/detection process. The TKS patterns used in
the classification process consist of no more than 9 features.

The proposed approach is compared in Table VI with recent
methods published in 2020-2024. While most of the methods
[10]–[13], [16]–[18], [20], [21] utilized a single dataset for
evaluation, other [9], [15], [19] utilized multiple datasets. The
study [15] employed the largest number of seven clinical
datasets. DNN, XGB, CL and CDD stand for Deep Neural
Network, XGBoost, CNN+LSTM and Cardiovascular Disease

Dataset, respectively. A Multi-Kernel SVM (MKSVM) was
used in [18]. Among the three feature selection methods
considered, [19] achieved better performance when RF was
applied to Boruta-based features.

TABLE VI
COMPARISON OF SEQCLIN WITH RECENT APPROACHES

Model Dataset ACC P R F1 MCC AUC
DNN [9] HFP 0.981 0.973 0.986 0.98 0.96 –
RF [10] HFP 0.88 0.84 0.97 0.90 – –

XGB [11] CKD 0.932 – 0.918 0.931 – 0.968
CL [12] CSD 0.923 0.923 0.936 0.93 – 0.90
RF [13] HFP 0.956 0.552 0.976 – – –
RF [15] HFP 0.968 0.944 1 0.933 – –

CNN [16] CKD 0.952 – 0.968 0.96 – –
XGB [17] CKD 0.983 1 0.973 0.986 – –
SVM [18] CKD 0.985 1 0.976 – – –
RF [19] CSD 0.95 0.94 0.95 0.94 – 0.72

MLP [20] CDD 0.872 0.887 0.848 0.867 – 0.95
XGB [21] CSD 0.96 0.93 1 0.97 – 0.974

SeqClin(RF)
CKD 1 1 1 1 1 1
CSD 1 1 1 1 1 1
HFP 0.99 1 0.987 0.989 0.98 1

Notably, the proposed approach outperformed recent meth-
ods across all six evaluation metrics. On HFP and CKD
datasets, the RF in the proposed approach achieved an im-
provement of approximately 1% over DNN [9] and 1.73% on
XGB [17]. respectively. On the CSD dataset, RF achieved an
improvement of approximately 5% over RF [19]. DNN [9]
results for Stalog HFP and RF [19] results for CSD in Table
VI is for 5-fold cross-validation. The study [17] first divided
the CKD dataset into four subsets based on missing values
and feature selection method. XGB achieved a higher accuracy
of 98.33% on ‘Set 4’ (containing 13 features out of 24) for
70:30 split when BBO was used for feature selection. Note
that XGB [17] achieved the highest accuracy of 99.16% on
‘Set 2’ when all the features were used in classification. Note
that the study [21] used a private CSD dataset and the CSD
in [12] is different from the one we used in this work.

In summary, the use of SPM effectively captures complex
sequential relationships in clinical data. SeqClin is compu-
tationally efficient and scalable, completing execution within
minutes. The integer-based data transformation simplifies pro-
cessing while maintaining semantic information. However, Se-
qClin requires parameter tuning for desired pattern extraction
and its computational complexity increases with the number of
patterns. In its current form, Seqclin does not explicitly address
class imbalance or missing value issues in clinical datasets.

IV. CONCLUSION

This paper proposed a novel approach (called SeqClin)
based on pattern mining for analyzing and classifying clinical
datasets. The proposed approach was evaluated on four diverse
datasets that were initially transformed into integer-based
format. After that, algorithms for SPM were employed on
the transformed datasets to identify frequent patient features
and their corresponding values in the form of patterns and
rules. Lastly, the discovered frequent sequential patterns were
subsequently utilized in the classification task. The perfor-
mance of the six classifiers for the classification tasks was
investigated by using six evaluation metrics. The obtained



results indicated that RF outperformed the other five in
the classification. Additionally, the proposed approach out-
performed recent methods. This study acknowledges several
limitations: (1) The retrospective and static nature of the
clinical datasets posed challenges in ensuring standardization
of features, as the majority of features vary across datasets
without a specified value range. (2) The online origin of the
datasets may lead to potential information collection bias. (3)
The discovered frequent sequential patterns and rules require
further validation, verification, and confirmation by medical
experts and clinicians.

For future work, one key area is employing SeqClin on more
clinical datasets, particularly dynamic datasets, to identify
which discovered frequent patterns significantly contribute to
the classification process. Additionally, incorporating over-
sampling and imputation techniques could improve data bal-
ancing and address missing values. Another direction is the
development of classifiers based on the discovered sequential
rules. Lastly, exploring contrasting frequent patterns [38] and
employing them in the classification process could provide
additional insights and improvements.
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