
Computers in Biology and Medicine Article Number
(Editor needs to add the No.)

Exploiting the Sequential Nature of Genomic Data for
Improved Analysis and Identification

M. Saqib Nawaz1 · M. Zohaib Nawaz1,2 ·
Zhang Junyi1 · Philippe Fournier-Viger1,∗ ·
Jun-Feng Qu3

Date of receiving / date of acceptance

Abstract Genomic data is growing exponentially, posing new challenges for se-
quence analysis and classification, particularly for managing and understanding harm-
ful new viruses that may later cause pandemics. Recent genome sequence classifi-
cation models yield promising performance. However, the majority of them do not
consider the sequential arrangement of nucleotides and amino acids, a critical as-
pect for uncovering their inherent structure and function. To overcome this, we in-
troduce GenoAnaCla, a novel approach for analyzing and classifying genome se-
quences, based on sequential pattern mining (SPM). The proposed approach first
constructs and preprocesses datasets comprising RNA virus genome sequences in
three formats: nucleotide, coding region, and protein. Then, to capture sequential
features for the analysis and classification of viruses, GenoAnaCla extracts frequent
sequential patterns and rules in three forms and in codons. Eight classifiers are uti-
lized, and their effectiveness is assessed by employing a variety of evaluation metrics.
A performance comparison demonstrates that the suggested approach surpasses the
current state-of-the-art genome sequence classification and detection techniques with
a 3.18% performance increase in accuracy on average.

Keywords Genomes · Nucleotide bases · Codons · Amino acids · Frequent
sequential patterns · Classification

1 Introduction

Thanks to advanced sequencing techniques, genomes can now be sequenced quickly
and shared on accessible online databases such as GenBank [1], NGDC [2], and GI-
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SAID [3]. But those huge and complex biological datasets surpass the capabilities
of traditional methods for processing, analyzing, and comparing genome sequences.
The majority of genomic tools utilized to establish taxonomies of living organisms
employ alignment-based methods. For instance, BLAST [4] and FASTA [5], along
with their improved or extended versions are widely recognized and commonly serve
as benchmarks for genomic sequence analysis. Nevertheless, they possess numerous
drawbacks, including high computational costs when aligning big datasets, their in-
adequacy for scenarios with low sequence identity, and the influence of various prior
assumptions and parameters on their outcomes [6,7]. Similarly, genome analysis and
classification methodologies that utilize k-mers or minimizers [6,8] require extensive
regions of high similarity, which can compromise precision and recall. Gene-based
methods depend on the manual design of features, and selecting the most appropriate
features for a specific task can be challenging [9].

The urgent need to manage and analyze massive genomic data arises from the
constant emergence of dangerous viruses globally. The third United Nations Sustain-
able Development Goal1, "Good Health and Well-being," underscores the importance
of research and development in healthcare to combat these emerging diseases and en-
hance health outcomes. To achieve this, it is crucial to overcome the challenges of
managing, storing, and processing genomic data, and to extract meaningful insights
from it. Genome sequence analysis and classification play a pivotal role in under-
standing the genetic foundations of diseases, enabling the development of targeted
therapies, personalized medicine, and early detection strategies. To facilitate early
action, the availability of vast genomic data offers a unique opportunity to develop
efficient prediction models for detecting viral genomes in human DNA [10]. Com-
bining conventional machine learning (ML) and frequent pattern mining techniques
can provide an innovative approach to mining this data, leading to the development
of robust and explainable classification/prediction systems that can significantly con-
tribute to improving global health outcomes.

Recent computational methods based on ML and deep learning (DL) [9,10,11,
12,13,14,15,16,17,18,19,20,21,22,23,24,25] have focused on the classification/de-
tection of genome sequences and metagenomic data. The goal of these studies is to
identify significant features, such as k-mers-based features [10,11,13,19,21], CpG-
based features [14,15,16], representative genomic sequences [20], intrinsic genomic
signatures [25], intrinsic dinucleotide genomic signatures [17], discrete Fourier and
Cosine transforms and moment invariants-based features [22], recoding system-based
features [11], softmax and pooling-based features [9,12,18,20,26] and biomarkers
[23]. Furthermore, one-hot encoding was utilized in [24,26,27], whereas decimal
and integer number encoding were applied in [18] and [12] respectively, three feature
encoding algorithms in [28], Seq2Vec encoding in [9], and bag-of-words encoding in
[10]. Some studies [13,27,28,29,30] have examined a specific gene, such as Spike,
instead of an entire genome sequence for classification purposes.

The aforementioned studies achieved good performance and the proposed genome
sequence classification models showed promising results. However, they ignored the
sequential nature of nucleotides, codons, or amino acids, which is essential to prop-

1 undp.org/sustainable-development-goals/good-health
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erly identify and understand their underlying structure and function. One-hot and
bag-of-words encoding are not suitable for genome sequences as they encode nu-
cleotides, codons, or amino acids independently and disregard their order. Further-
more, the feature extraction methods used in most of the aforementioned studies are
computationally expensive, resulting in long model-learning times, and are difficult
to interpret or comprehend. To our knowledge, the use of frequent sequential patterns
for effective or improved classification/detection of genome sequences in different
forms has not been extensively studied. In the literature, the studies [31] and [32]
utilized frequent sequential patterns found in nucleotide bases and amino acids, re-
spectively, to analyze and classify macromolecule genome sequences and heat shock
protein sequences.

By taking the genome sequences in three forms (nucleotide form (NF ), cod-
ing region form (CRF ) and protein form (PF )), this paper introduces a general
approach, called GenoAnaCla (Genome Analyzer and Classifier), which utilizes se-
quential pattern mining (SPM) [33], to analyze and classify genome sequences. The
main contributions are:

– First, datasets are developed that comprise genome sequences in three formats
associated with various types of RNA viruses. These genome sequences were
sourced from the GenBank database and underwent preprocessing to prepare
them for the application of SPM algorithms.

– Second, based on the nucleotides present in genome sequences in NF and CRF,
codons in NF, and amino acids in PF, an analysis and classification model is de-
signed that leverages the discovered frequent sequential patterns of nucleotides,
codons, and amino acids to classify genome sequences. Eight classification mod-
els are employed and experiments are conducted using various evaluation metrics
to thoroughly investigate the effectiveness and generalizability of the proposed
approach.

An evaluation of the proposed approach on a developed corpus comprising genome
sequences of 15 RNA viruses, in three forms, revealed that employing SPM to iden-
tify frequent nucleotide, codon, and amino acid patterns, and subsequently leveraging
these sequential patterns, resulted in better classification performance compared to
utilizing all the nucleotide bases, codons, and amino acids in the whole genome se-
quences. Furthermore, the performance of GenoAnaCla was also compared with the
most recent approaches for genome detection/classification, and the obtained results
demonstrated that it outperformed these methods.

The next four sections of this paper contain the following content: Section 2 dis-
cusses the relevant literature on the utilization of computational methods for clas-
sifying and detecting genome sequences. Section 3 details the dataset creation and
the proposed GenoAnaCla approach. Section 4 discusses the results, and Section 5
concludes the paper.

2 Related Work

In recent years, computational methods based on DL and ML were used for analyz-
ing, predicting, and classifying genome sequences. For instance, [14,15,16] lever-
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aged CpG-based features to classify genome sequences. Naeem et al. [22] developed
a system that employed a variety of moment invariants and discrete transforms-based
features present in genome sequences for classification. Lopez-Rincon et al. [20]
identified representative genome sequences through a combination of DL (convolu-
tional neural network (CNN)) and explainable artificial intelligence methods. Rand-
hawa et al. [25] found intrinsic signatures within genomes and then employed these,
along with an alignment-free approach, to accurately classify whole genomes. Ahmad
& Jeon [34] classified genomes of various viruses using a range of traditional ML
classifiers. Singh et al. [23] first extracted biomarkers using digital signal processing
(SDP) techniques, which were then fed into ML classifiers to distinguish between
genome sequences of different viruses. El-Dosuky et al. [18] utilized a cockroach
swarm-optimized CNN to classify Influenza and SARS-CoV-2 genomes. The classi-
fication method of [10] utilized k-mers and their occurrence frequencies to predict/-
classify viral genomes in human DNA sequence samples. The SPM4GAC [31] and
FSP4HSP [32] methods were recently introduced, which used sequential frequent
patterns of nucleotides and amino acids, respectively, to classify viruses and heat
shock proteins. VirusPredictor [11] employed XGBoost model on features extracted
from genome sequences through the k-mer and recoding system that comprised three
approaches: (1) fixed mapping, (2) physic-chemical property, and (3) DNA-graph
based long-range correlation.

For virus classification, some studies have narrowed their focus to specific genes
rather than entire genome sequences. For example, Ali et al. [13] utilized k-mers and
kernel approximation to classify S protein sequences that belong to SARS-CoV-2
variants. Similarly, Kuzmin et al. [27] utilized one-hot encoding on S protein se-
quences for the classification of coronaviruses. PSAC-PDB [30] was developed for
the analysis and classification of protein structures in the Protein Data Bank (PDB)
database. It was found that patterns of amino acids can effectively classify protein
structures, eliminating the need for full amino acid sequences. Three algorithms were
used by Qiang et al. [28] to identify important features in S protein sequences, which
were then utilized to train random forest models for classification. SPM algorithms
were employed in studies [35,36] to identify hidden nucleotide and amino acid se-
quential patterns and rules in genome sequences.

DL methods were utilized by Gunasekaran et al. [19] for classifying DNA se-
quences encoded with k-mers and label encoding. An alternative classification method
by Dlamini et al. [17] relied on the frequencies of inherent dinucleotide genomic
signatures in the classification of pathogenic species. A DL-based classifier called
PACIFIC [21] was designed for detecting RNA viruses. This classifier converted nu-
cleotide sequences into numerical tokens using k-mers. Then, these tokens were trans-
formed into dense representations by using a continuous vector space. autoBioSeqpy
[24], a DL-based method for biological sequence classification, employed dictionary-
based and one-hot encoding for nucleotides/amino acids. Dubey et al. [37] introduced
two methodologies for genome analysis. The first one focused on determining nu-
cleotide frequencies, while the second one was employed for mutation analysis. Tan-
dan et al. [38] applied association rule mining techniques to find COVID-19 symptom
patterns and rules in patients. Acer et al. [39] used seven ML classifiers to classify and
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detect pancreatic cancer, specifically PDAC (Pancreatic Ductal AdenoCarcinoma),
using noninvasive urinary biomarkers and carbohydrate antigen 19-9.

The referenced studies have primarily explored the importance of diverse fea-
tures for genome classification and detection, and some studies have only considered
genome sequences comprising the four main nucleotides. Te present study concen-
trates on identifying frequent sequential patterns within genomes for enhancing the
accuracy and reliability of genome classification and detection. Specifically, SPM is
utilized on the processed dataset of genomes in various forms to identify frequent
sequential patterns (subsequences of nucleotides, codons, and amino acids) that are
subsequently used by various classifiers to perform classification.

To provide a clearer understanding of the methodologies employed in the litera-
ture on genome sequence classification/prediction, it is essential to differentiate be-
tween sequence alignment and classification methods. Table 1 provides a comparison
by highlighting the respective purposes, outputs, methodologies, and applications of
sequence alignment and classification.

Table 1: Comparison between sequence alignment and classification

Aspect Sequence Alignment Sequence Classification
Purpose Compares two or more sequences to identify similar-

ities and differences.
Assigns sequences to categories or classes based on
features.

Output Produces an alignment (e.g., a matrix) showing how
sequences match.

Provides a predicted class label for each sequence.

Tools BLAST, Kalign, Clustal Omega Support Vector Machine, Random Forest, Neural
Networks

Applications Identifying homologous sequences, studying evolu-
tionary relationships among organisms.

Classifying sequences (e.g., virus classification,
functional annotation).

Methodology Aligns sequences based on scoring systems (e.g.,
match/mismatch scores, gap penalties).

Uses machine learning or statistical methods to make
predictions based on features.

Data Type Typically works with raw sequence data. Often requires feature extraction from sequences be-
fore classification.

3 The Proposed GenoAnaCla Approach

GenoAnaCla (depicted in Figure 1) is a comprehensive approach for genome de-
tection and classification, which processes genome sequences in three forms. The
pipeline of GenoAnaCla consists of three steps: (1) data collection, processing, and
corpus development, (2) the extraction of sequential patterns and rules from genome
sequences, and (3) training classifier(s) using the patterns and performance evalua-
tion. GenoAnaCla is designed as a generic approach that can be configured with dif-
ferent SPM algorithms and classifier types. The next subsections describe the three
steps of GenoAnaCla.

3.1 Data Collection, preprocessing, and corpus development

The first step consists of collecting the data and preparing it for further processing in
the following steps. More precisely, the sequencing data for fifteen RNA viruses has
been retrieved from GenBank [1]. The genomes are downloaded in the FASTA format
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Fig. 1: The GenoAnaCla approach for the analysis and classification of genome se-
quences in three forms, consists of three steps: (1) data collection, preprocessing,
and corpus development; (2) using SPM to find frequent bases, codons, amino acids,
and their frequent sequential patterns and rules; and (3) using the identified patterns
of nucleotides/codons/amino acids for classification by training various classifiers. C
stands for class or category.

in three forms: (1) Nucleotide form (NF), (2) Coding region form (CRF), and (3) Pro-
tein form (PF). Genome sequences in NF provide the foundational level of genetic
information, essential to understanding the structure of the entire genome, variations,
and the potential regulatory elements. Conversely, within CRF, genome sequences
signify the genetic parts that are translated into proteins, playing an important role
in identifying functional genes, elucidating gene expression patterns, and their direct
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correlation with phenotypic characteristics and disease associations. Furthermore, the
genome sequences in PF are vital to understand the functional aspects of genes. They
enable the examination of protein architecture, functionality, and interactions, offer-
ing valuable insights into post-translational modifications and the functional conse-
quences of genetic mutations.

Only complete genomes with extensive coverage were selected. The FASTA for-
mat for genome sequences starts with a definition line, which contains the identi-
fier and other information pertaining to the genome sequence. A genome sequence
in NF contains a single definition line, whereas in the CRF and PF, a sequence
may have multiple definition lines. We developed a Python script (accessible at:
github.com/keyboardman37/GenoAnaCla) to preprocess the genome se-
quences. In the first form, the script outputs each genome sequence in one line, and
for the other two forms, the script generates each coding region and protein sequence
in individual lines. The total count of genome sequences in NF, CRF, and PF are
listed in Table 2.

Table 2: Viruses genome sequences retrieved from NCBI GenBank in three forms.
Virus RNA Type Sample in NF Samples in CRF Samples in PF

Dengue (+)ssRNA 4,841 4,826 4,882
Dabie Banda (-)ssRNA 2,937 2,937 3,984

Hanta (-)ssRNA 1,154 1,140 1,162
SARS-CoV-2 (+)ssRNA 9,156 135 1,611

Ebola (-)ssRNA 605 605 5,406
MERS (+)ssRNA 657 656 7,129
HIV (-RT)ssRNA 7,068 6,496 54,847

Hepaci (+)ssRNA 1,214 1,190 1,697
Rhino (+)ssRNA 893 893 915

Influenza (-)ssRNA 11,229 11,201 15,056
Noro (+)ssRNA 1,565 1,565 4,776
Rota dsRNA 2,711 2,704 2,831

Measles (-)ssRNA 770 648 4,285
Rabies (-)ssRNA 2,559 2,558 10,792

West Nile (+)ssRNA 1,914 1,906 2,848
Total 49,273 39,460 122,211

NF: Nucleotide Form, CRF: Coding Region Form, PF: Protein Form, RNA: Ribonucleic
acid, (+)ssRNA: Positive-sense single-stranded RNA, (-)ssRNA: Negative-sense single-
stranded RNA, (-RTssRNA): Negative-sense reverse transcription single-stranded RNA,
dsRNA: Double-stranded RNA.

After this initial preprocessing, genome sequences are converted into sequences
of discrete items, leveraging the "bases/codons/amino acids to integers" abstraction
for this transformation. In this scheme, each unique base, codon, or amino acid is
assigned a distinct positive integer. The genome sequences are encoded using this
representation. Moreover, a special code of -1 is added as a separator between bases,
codons, and amino acids, and -2 is put at the end of each sequence to show that it
has ended [40]. The reason for transforming sequences in this integer-based format is
that it is required for applying SPM algorithms, which are generic tools for analyzing
sequences that may or may not be from the biological field. It is to be noted that
the transformation process is lossless and reversible. In other words, it is possible to

github.com/keyboardman37/GenoAnaCla
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transform the data back and forth between the raw sequence format and the integer-
based format.

The following is a comprehensive description of the transformation process, which
will be followed by an example. Let NB = {A,C,G,T ,R,Y ,S,W ,K,M ,B,D,H ,V ,N}
and AA = {A,C,D,E,F ,G,H ,I ,K,L,M ,N ,P ,Q,R,S,T ,V ,W ,Y } be the sets of dis-
tinct nucleotides and amino acids respectively. In genome sequences, nucleotides
other than the four bases (A, C, G and T) can occur, representing different combina-
tions of these four bases. These nucleotides are referred to as redundant nucleotides
(denoted as RN ) due to their infrequent occurrence. Similarly, some amino acids
represent the different combinations of 20 amino acids, and they are called redun-
dant amino acids (RAA). Redundant samples are those that contain RN or RAA.
The percentage of redundant samples in collected genomes is: NF (24.7%), CRF
(6.47%), and PF (4.7%). The transformation process converts each distinct or unique
RN or RAA by assigning a distinct or unique positive integer.

In NF and CRF, a raw genome sequence is represented as a list of nucleotides,
written as GS = ⟨NB1, NB2 , ..., NBn⟩, such that NBi ∈ NB (1 ≤ i ≤ n). In
PF, a raw genome sequence is represented as a list of amino acids, written as GS =
⟨AA1, AA2 , ..., AAn⟩, such that AAi ∈ AA (1 ≤ i ≤ n). We also consider codons,
which are groups of three nucleotides. In NF, a raw genome sequence can be repre-
sented as a list of codons, such as GS = ⟨NB1NB2NB3, ..., NBn−2NBn−1NBn⟩,
where any list of three consecutive nucleotides NBi−2NBi−1NBi ∈ NB (1 ≤ i ≤
n) constitutes a codon.

Let GSC = ⟨GS1, GS2, ..., GSp⟩ denote a corpus of raw genome sequences. The
transformation process involves converting each raw genome sequence from GSC to
the integer-based format (abstraction).

In NF, a raw genome sequence denoted as GS = ⟨NB1, NB2 , ..., NBn⟩ is
converted into GS′ = ⟨f(NB1), -1, f(NB2), -1, ..., f(NBn), -1, -2 ⟩ by applying
a transformation function f , which will be defined after. Similarly, the transforma-
tion of a raw sequence of codons in NF (called CNF) yields a sequence GS′ =
⟨f(NB1NB2NB3), -1, f(NB4NB5NB6), -1, ..., f(NBn−2NBn−1NBn), -1, -
2 ⟩. And in PF, a raw sequence GS = ⟨AA1, AA2 , ..., AAn⟩ is transformed as
GS′ = ⟨f(AA1), −1, f(AA2), −1, ..., f(AAn), −1, −2 ⟩. In the transformation
process, the function f (f :NB → N (or f :AA → N or f :Codon → N)) maps each
nucleotide (or amino acid or codon) to a distinct positive integer. Note that codons can
encode 20 different amino acids, and three codons are stop codons that halt the cell’s
protein synthesis. The collected datasets of genome sequence and their respective
transformation are available at: github.com/keyboardman37/GenoAnaCla.
The transformation process for sample genome sequences in NF , CRF , and PF is
illustrated in Table 3.

For example, consider the first raw sequence ⟨{TATCAGTCG}⟩ in Table 2 (a),
with ID 1. It is transformed into the sequence with ID 1 in Table 2 (b), which is: 4 -1
1 -1 4 -1 2 -1 1 -1 3 -1 4 -1 2 -1 3 -1 -2. The transformation process works as follows
in this example: the base T is replaced by the integer 4, while the bases A, C and G
have been replaced by the integers 1, 2, and 3, respectively. The separator -1 is added
between bases and -2 indicates the end of the sequence.

github.com/keyboardman37/GenoAnaCla
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To validate the integrity of transformation, we compared the frequency distri-
butions of nucleotides, amino acids and codons before and after transformation. The
consistency in these distributions supports the conclusion that the integer-based trans-
formation preserves the original biological characteristics of the genomic data.

Table 3: Three sample genome sequence corpuses (GSC), containing five sequences
in (a) NF /CRF , (c) PF , and (e) codons in NF , respectively. The corresponding
transformed genome sequence corpuses of (b) bases, (d) amino acids, and (f) codons
.

(a) A GSC in NF /CRF

ID Sequence
1 ⟨{TATCAGTCG}⟩
2 ⟨{GTACAGTAA}⟩
3 ⟨{TTGTGGACT}⟩
4 ⟨{CTAATCGCA}⟩
5 ⟨{CCAAGTGTA}⟩

(b) The transformed GSC in NF /CRF

ID Sequence
1 4 -1 1 -1 4 -1 2 -1 1 -1 3 -1 4 -1 2 -1 3 -1 -2
2 3 -1 4 -1 1 -1 2 -1 1 -1 3 -1 4 -1 1 -1 1 -1 -2
3 4 -1 4 -1 3 -1 4 -1 3 -1 3 -1 1 -1 2 -1 4 -1 -2
4 2 -1 4 -1 1 -1 1 -1 4 -1 2 -1 3 -1 2 -1 1 -1 -2
5 2 -1 2 -1 1 -1 1 -1 3 -1 4 -1 3 -1 4 -1 1 -1 -2

(c) A GSC in PF

ID Sequence
1 ⟨{NYYEELGV}⟩
2 ⟨{RDYYEILN}⟩
3 ⟨{DLYSVLGV}⟩
4 ⟨{LGVYRFRE}⟩
5 ⟨{NRDLVNVE}⟩

(d) The transformed GSC in PF

ID Sequence
1 14 -1 25-1 25 -1 5 -1 5 -1 12 -1 7 -1 22 -1 -2
2 18 -1 4 -1 25 -1 25 -1 5 -1 9 -1 12 -1 14 -1 -2
3 4 -1 12 -1 25 -1 19 -1 22 -1 12 -1 7 -1 22 -1 -2
4 12 -1 7 -1 22 -1 25 -1 18 -1 6 -1 18 -1 5 -1 -2
5 14 -1 18 -1 4 -1 12 -1 22 -1 14 -1 22 -1 5 -1 -2

(e) A GSC with codons in NF

ID Sequence
1 ⟨{TAT CAG TCG}⟩
2 ⟨{GTA CAG TAA}⟩
3 ⟨{TTG TGG ACT}⟩
4 ⟨{CTA ATC GCA}⟩
5 ⟨{CCA AGT GTA}⟩

(f) The transformed GSC with codons in NF

ID Sequence
1 52 -1 19 -1 55 -1 -2
2 45 -1 19 -1 49 -1 -2
3 63 -1 59 -1 8 -1 -2
4 29 -1 14 -1 37 -1 -2
5 21 -1 12 -1 45 -1 -2

GSC: Genome Sequence Corpus, NF : Nucleotide Form, CRF : Coding Region Form, PF :
Protein Form

3.2 Using SPM for learning

The second step is the extraction of sequential patterns from each transformed genome
sequence corpus. It is important to mention here that SPM is a special case of frequent
itemset mining (FIM) [41]. The studies [38,42] used the Apriori algorithm [43], a
rule-based algorithm for FPM, to find feature patterns and rules in clinical datasets.
The study [44] proposed a constraint-based algorithm, based on CHARM [45], to find
frequent closed itemsets of symptoms, diagnosis and medication in a clinical dataset.
However, Apriori and CHARM do not take into account the sequential arrangement
of features present in clinical datasets. SPM is used because it considers the sequen-
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tial order of nucleotides, codons, or amino acids. This consideration is crucial to
properly identify and understand their underlying structure and function. The aim is
to identify sequential patterns (subsequences from genome sequences) that could be
used to characterize the genome sequences. These sequential patterns will then be
used in the third step of GenoAnaCla for the classification of genome sequences.

To uncover interesting and hidden patterns, it is necessary to use an appropriate
measure for selecting these patterns. The support measure (occurrence frequency) [33,
41] is the most widely used measure in pattern mining to identify patterns. To explain
it formally, it is first necessary to explain the concept of subsequence.

In NF and CRF, a sequence of nucleotides GSx = ⟨NB′
1, NB′

2 , ..., NB′
m⟩ is

a subsequence of another sequence of nucleotides GS = ⟨NB1, NB2 , ..., NBn⟩,
which is denoted as GSx ⊑ GS, if an only if there exists some integers i1, i2,
. . . im such that 1 ≤ i1 < i2 < . . . < im ≤ n and NB′

1 = NBi1 , NB′
2 =

NBi2 , . . . NB′
m = NBim . For example, the sequence ⟨{CAG}⟩ is a subsequence of

⟨{TATCAGTCG}⟩, that is ⟨{CAG}⟩ ⊑ ⟨{TATCAGTCG}⟩.
In PF, an amino acid sequence GSx = ⟨AA′

1, AA′
2 , ..., AA′

m⟩ is a subsequence
of another amino acid sequence GS = ⟨AA1, AA2 , ..., AAn⟩, which is denoted as
GSx ⊑ GS, if an only if there exists some integers i1, i2, . . . im such that 1 ≤ i1 <
i2 < . . . < im ≤ n and AA′

1 = AAi1 , AA′
2 = AAi2 , . . . AA′

m = AAim . For
instance, the sequence ⟨{NYY}⟩ is a subsequence of ⟨{NYYEELGV}⟩, and hence
⟨{NYY}⟩ ⊑ ⟨{NYYEELGV}⟩.

In the case of NF, a codon sequence GSx = ⟨NB′
1, NB′

2 , ..., NB′
m⟩ is a sub-

sequence of another codon sequence GS = ⟨NB1, NB2 , ..., NBn⟩, which is de-
noted as GSx ⊑ GS, if an only if there exists some integers i1, i2, . . . im

3
such that

1 ≤ i1 < i2 < . . . < im
3
≤ n, NB′

1 = NBi1 , NB′
2 = NBi1+1, NB′

3 = NBi1+2,
NB′

4 = NBi2 , NB′
5 = NBi2+1, NB′

6 = NBi2+2, . . . NB′
m−2 = NBim

3
,

NB′
m−1 = NBi(m

3
+1)

, NB′
m = NBi(m

3
+2)

. For instance, the sequence ⟨{CAG
TCG}⟩ is a subsequence of ⟨{TAT CAG TCG}⟩, and hence ⟨{CAG TCG}⟩ ⊑ ⟨{TAT
CAG TCG}⟩.

Based on the concept of subsequence, the support measure is defined as follows.
Consider a transformed GSC and a subsequence GSx. The support of the subse-
quence GSx, denoted as sup(GSx), is the total number of genome sequences from
GSC that contain GSx. Formally, it is defined as:

sup(GSx) = |{GS|GS ∈ GSC ∧GSx ⊑ GS}| (1)

For this study, this measure is relevant because it allows discovering subsequences
of nucleotides, codons, and amino acids that frequently occur in genomes, thereby
uncovering their similarities. The task of SPM with the support measure is called
frequent SPM. This task involves enumerating all frequent (sub)sequences in a dis-
crete sequence set [33]. For a given GSC and a user-defined minimum sup value
(minsup ∈ [0, 1]), the objective of this task is to identify all subsequences that are
frequent. A genome sub-sequence GSx is frequent if and only if its support is greater
than or equal to minsup, i.e. sup(GSx) ≥ minsup. The minsup threshold can be
viewed as a filter to eliminate patterns that rarely occur, and thus may be less signifi-
cant than frequent ones.
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Frequent SPM has been widely used to analyze various types of data in many
fields, with several algorithms designed for this task. These algorithms generally
have the same input and output but differ in terms of their inner workings, such
as data structures, search strategies, and optimizations, which influence their run-
times. In this work, the CM-SPAM [46] algorithm is used to find frequent sequential
patterns of nucleotides, codons, and amino acids due to its efficiency and availabil-
ity in open-source software. However, it is important to note that GenoAnaCla can
also accommodate other SPM algorithms. CM-SPAM [46] is an improved version of
the SPAM [47] algorithm, with the key improvement being the use of a data struc-
ture called CMAP (Co-occurrence MAP), which stores information about the co-
occurrences of items to speed up the identification of frequent sequential patterns.
Additionally, CM-SPAM offers useful features to set constraints on the minimum
and maximum length of patterns and the maximal gap between consecutive items in
patterns. These constraints can be used to filter patterns that are deemed too short, too
long, or where items are separated by too big gaps. Since the CM-SPAM algorithm
is not a novelty of this work, interested readers are referred to the paper describing
CM-SPAM for more details about its inner workings [46].

Frequent SPM algorithms identify sequential patterns based on the support mea-
sure. However, a potential drawback of using that measure is that it does not assess
the likelihood of some items (bases, amino acids, or codons) following others in a
pattern. To evaluate this aspect, an alternative approach is to extract another type of
patterns called sequential rules, using an additional measure called the confidence.
Sequential rules are used in various fields, especially for tasks requiring prediction,
forecasting, and decision-making [48]. A sequential rule is a relationship between
two sets of items that considers both the confidence (also called conditional probabil-
ity) and support of items. A sequential rule can be denoted as A → B to represent
a sequential relationship between two non-empty and disjoint sets of nucleotides (or
codons or amino acids) A,B. The interpretation of a rule r:A → B is that if A’s items
are present in a sequence, B’s items will appear after (within the same sequence). It
is said that a sequence Sa = ⟨a1, a2, . . . , an⟩ contains A, iff A ⊆

⋃n
x=1{ax}. Be-

sides, a sequence Sa contains r (denoted as r ⊑ Sa) in the case where there exists an
integer k s.t. 1 ≤ k < n, A ⊆

⋃k
x=1{ax}, and B ⊆ ∪n

x=k+1{ax}. For a rule r in a
GSC, its confidence and support are defined as:

confGSC(r) =
|{S|r ⊑ S ∧ S ∈ GSC}|
|{S|A ⊑ S ∧ S ∈ GSC}|

(2)

supGSC(r) =
|{S|r ⊑ S ∧ S ∈ GSC}|

|GSC|
(3)

For instance, the rule E → L has a support of 0.4 in the GSC of Table 2 (c)
because E is followed by L in 2 out of 5 sequences. The confidence of that rule is 2/4
= 0.5 because E appears in 4 sequences and L follows E in 2 sequences. Therefore,
the confidence indicates that the likelihood that L follows E is 50%.

For a GSC, and minsup, minconf ∈ [0, 1] thresholds set by the user, a rule r is
a frequent sequential rule iff supGSC(r) ≥ minsup and r is a valid sequential rule
iff it is frequent and confGSC(r) ≥ minconf . The task of identifying sequential
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rules consists of finding all valid rules. As for SPM, multiple algorithms have been
proposed to identify sequential rules in sequences. In this study, the ERMiner [48]
algorithm is used to find the valid sequential rules among nucleotides, codons, and
amino acids, because it is an efficient algorithm and it is open-source. However, it
should be noted that other algorithms could be used as replacement in GenoAnaCla.
ERMiner is an algorithm that performs a depth-first search to find rules and rely on the
concept of equivalence classes and several optimizations to accelerate the discovery
process. An equivalence class is a group of rules that has either identical antecedents
or consequents. ERMiner gradually uncovers sequential rules using two types of rule
merging operations, called left and right merging. As ERMiner is an existing algo-
rithm, interested readers are referred to the original paper about ERMiner for more
details about its inner workings [48].

In summary, SPM and sequential rule mining are two different tasks that vary in
several aspects, including the types of patterns that are discovered and the measures
used to identify these patterns. Multiple algorithms exist for each task, with the same
input and output but varying in data structures, search strategies and optimizations to
reduce runtimes or offer optional constraints. The proposed GenoAnaCla approach
can be configured to use various algorithms.

3.3 Classification through discovered frequent patterns

The third and final step of GenoAnaCla involves utilizing the frequent sequential
patterns and rules identified in the second step (Section 3.2) for the classification of
genomes. This classification process contains two distinct phases: (1) the training
phase, and (2) the testing phase. The purpose of the training phase is to build clas-
sification models (classifiers) using the training data, while the goal of the testing
phase is to evaluate the models that have been built to see if they also perform well
on unseen data.

The training phase consists of two steps, executed sequentially: (a) frequent nu-
cleotides, codons, or amino acids representation, and (b) classifier training. The first
step prepares the training data, while the second step aims to build the classification
models using the prepared data.

The testing phase consists of three steps: (a) frequent nucleotides, codons, or
amino acids representation, (b) hypothesis prediction, and (c) evaluation. The first
step prepares the testing data, while the second step involves using the built models
to make predictions on unseen data. The third step calculates measures to determine
the overall performance of the models based on the predictions.

An important consideration for classifying genome sequences is how to handle
repetitive occurrences. Genome sequences are generally long, and the majority of
them in NF and CRF consist of repetitive occurrences of the same bases, often tens to
hundreds of times. Similarly, the genome sequences in PF contain repeated instances
of the same amino acids. For better classification, the repetitive sequences of bases or
amino acids can be replaced with their frequent sequential patterns. More specifically,
GenoAnaCla utilizes frequent sequential patterns of nucleotides, codons, and amino
acids to classify various RNA virus families.
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Binary as well as multi-class (MC) classification are conducted in this study. Bi-
nary classification is employed for training a classifier to distinctly classify each type
of virus. In the MC classification method, each genome sequence is assigned a label
corresponding to its respective type name, with 15 distinct viruses listed in Table 2. A
classification model is trained to accurately label genome sequences. For both clas-
sification types, one DL and seven standard ML algorithms are used, which are: (1)
Logistic Regression (LR), (2) Random Forest (RF), (3) k-Nearest Neighbors (kNN),
(4) Gaussian Naive Bayes (GNB), (5) Support Vector Machine (SVM), (6) Multi-
layer Perceptron (MLP), (7) Decision Tree (DT), and (8) Multinomial Naive Bayes
(MNB) . The reason for using conventional classifiers is that they provide a solid
foundation for baseline comparison, making it easier to evaluate the impact of the
frequent sequential patterns discovered in genome sequences as features in the clas-
sification process. The performance of the classifiers is assessed using five metrics:
(1) Accuracy (ACC), (2) Recall (R), (3) Precision (P), (4) F1 score (F1), and (5) Area
under curve (AUC). The five metrics are defined as:

ACC =
TP + TN

TP + TN + FP + FN
(4)

Recall(R) =
TP

TP + FN
(5)

Precision(P ) =
TP

TP + FP
(6)

F −measure = 2×
P ×R

P +R
(7)

AUC =

∫ 1

0
R(dFPR) (8)

where TP = true positive, TN = true negative, FP = false positive, and FN
= false positive. In the context of this work, TP represents the correctly identified
sequential patterns of nucleotides, codons, or amino acids to a specific virus type. TN
represents the correctly classified sequential patterns of nucleotides, codons, or amino
acids as not part of a specific virus type. FP represents the incorrectly identified
sequential patterns of nucleotides, codons, or amino acids to a specific virus type.
FN represents the incorrectly identified sequential patterns of nucleotides, codons, or
amino acids as not part of the specific virus type. In equation 8, dFPR is the derivative
of the false positive rate (FPR), that is equal to FP

FP+TN .
Algorithm 1 provides the overall pseudocode of the proposed GenoAnaCla ap-

proach. The experimental evaluation of GenoAnaCla is presented in the next section.

4 Results

All the experiments were conducted on a computer system equipped with an 11th-
generation Intel Core i5 processor and 8 GB of RAM. The open-source cross-platform
SPMF library [40], developed in Java, was used to analyze and discover patterns in
the transformed datasets of genome sequences. Python was used for the classification
process. Several libraries were used, such as scikit-learn [49] to train and evaluate
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Algorithm 1 GenoAnaCla
Input: Genome sequences (GSs) of RNA viruses in NF , CRF , PF , and CNF
Output: Classification results including ACC, P, R, F1, and AUC

1: procedure GENOANACLA
// Step 1: Convert sequences into the needed abstraction

2: Abstraction← Convert GSs to integer-based representation

// Step 2: Find frequent sequential patterns (FSP s)
3: FSP s← Extract frequent sequential patterns and rules in abstracted GSs

// Step 3: Train classifiers
4: for each classifier in Classifiers do
5: Train classifier with FSP s as features using default hyperparameters
6: end for

// Step 4: Evaluate classifiers
7: for each classifier in Classifiers do
8: Evaluate classifier using 80:20 training:testing ratio
9: Store metrics: ACC, P, R, F1, and AUC

10: end for

// Output classification results
11: Return ACC, P, R, F1, and AUC
12: end procedure

classifiers, Pandas2 for data manipulation, and NumPy3 for numerical calculations.
To ensure reliable model evaluation, the datasets were split into training and test-
ing subsets (80% training and 20% testing) using the “train_test_split" function of
scikit-learn. The default hyperparameters for classifiers were used for both binary
and multi-class classification (Table 4).

Table 4: Hyperparameters and their corresponding values for the eight classifiers.
Classifier Parameters

LR max iterations: 100, solver: lbfgs, C: 1
RF max depth: none, estimators: 100, criterion: gini, min samples leaf: 1, min samples split: 2

kNN weight scheme: uniform, neighbors: 2, algorithm: auto, leaf size: 30
distance metric: euclidean

GNB default (no significant hyperparameters)
SVM gamma: scale, kernel: rbf, C: 1, degree: 3
MLP optimizer: Adam, activation: tanh, α = 0.0001, size of hidden layers 600, learning rate init:

0.001, learning rate: invscaling,
DT criterion: gini, max depth: none, splitter: best, min samples split: 2, min samples leaf: 1

MNB α = 1

LR: Logistic Regression, RF: Random Forest, kNN: k-Nearest Neighbors, GNB: Gaussian Naive Bayes,
SVM: Support Vector Machine, MLP: Multilayer Perceptron, DT: Decision Tree, MNB: Multinomial Naive
Bayes

2 pandas.pydata.org/
3 numpy.org/
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4.1 Frequent Patterns and Rules

To extract patterns in genome sequences, three algorithms were applied. The first
two, CM-SPAM and ERMiner, which were presented in the previous section, are
used to identify sequential patterns and rules of nucleotides, codons, or amino acids
in genome sequences. In addition to these algorithms, the Apriori [43] algorithm was
employed to count the frequency of individual nucleotides, codons, and amino acids
in each dataset.

To give a visual overview of some patterns discovered through this process, a
simple example is offered in Figure 2, where the obtained results with the three
aforementioned algorithms are explained. The top box of the figure displays a raw
genome sequence in NF and CRF, containing nucleotide bases, followed by their
transformation. The middle box shows another raw RNA sequence in PF, contain-
ing amino acids, followed by their transformation. The bottom box contains another
raw RNA sequence in NF, containing codons (three nucleotides together), followed
by their transformation. In the bottom center of each box, bases (top box), amino
acids (middle box), and codons (bottom box) compositions, obtained by Apriori are
listed. In the bottom left of each box, the frequent sequential patterns discovered in
nucleotides (top box), amino acids (middle box), and codons (bottom box) are shown
with their respective colors. It is noticeable that some frequent sequential patterns of
nucleotides (ATT, CCTCAG), amino acids (CP, PQS) and codons (CTCAGT, GCC)
occur more than once at various positions within the sequence. The patterns identi-
fied within sequences can be interpreted as a characterization or description of those
sequence. In the bottom right side of each box, the frequent sequential rules of nu-
cleotides (top), amino acids (middle), and codons (bottom) are listed with varying
numbers of antecedents and consequent.

With regards to the identification of patterns in genomes, we observed that the
process was relatively efficient and quick. Nevertheless, when dealing with virus
types such as SARS-CoV-2 (SC2), MERS, and Ebola, which have lengthy genome
sequences, adjustments to certain algorithm parameters and fine-tuning are necessary
to obtain the desired patterns.

The heatmap of Figure 3 provides a visual representation of codon frequencies,
indicated by a color code, found in 15 virus families. The heatmap offers important
insights into the codon usage patterns among different viruses. For instance, the dark
blue color codons (AAA, AAT, TTT) are highly frequent in certain virus families,
and light yellow color codons (such as ACG, CGA, TCG) are less common in other
viruses. The codon AAA is the most frequent one in Dengue, Ebola, Hanta, HIV, and
Rhino, the second most frequent one in Influenza, and third most frequent in SARS-
CoV-2. Similarly, AAT is the second most frequent one in Rhino and Rota, and the
third in Ebola and Influenza, Interestingly, the one-stop codon (TAA) is also present.
Such analysis helps in the identification of conserved codons across multiple virus
families. Moreover, the ANOVA statistical test [50] was performed, and the obtained
p-value was below the standard significance level of 0.05, indicating that there is a
statistically significant difference in codon frequencies across different viruses.
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ATTTGTCCTGCCCTCAGTCACAGTGTCCTTATTGTTTTACACATTGTGAGCCTACAGAATCTGCCTTTCAGGCACATTATAAAGTGTGCCAGGCAACACACAG

ATTTAGGGATGATTTGAAGAAGACAATAACACCTCAGTCTACAAGCCCTGGGTGTTACCGGACATTAAATCTCTTTAGATATAAAAGTAGGTGTTACATCT

1 -1 4 -1 4 -1 4 -1 3 -1 4 -1 2 -1 2 -1 4 -1 3 -1 2 -1 2 -1 2 -1 4 -1 2 -1 1 -1 3 -1 4 -1 2 -1 1 -1 2 -1 1 -1 3 -1 4 -1 3 -1 4 -1 2 -1 2 -1 4 -1 4 -1 1 -1 4 -1 4 -1 3 -1 4 -1 4
-1 4 -1 4 -1 1 -1 2 -1 1 -1 2 -1 1 -1 4 -1 4 -1 3 -1 4 -1 3 -1 1 -1 3 -1 2 -1 2 -1 4 -1 1 -1 2 -1 1 -1 3 -1 1 -1 1 -1 4 -1 2 -1 4 -1 3 -1 2 -1 2 -1 4 -1 4 -1 4 -1 2 -1 1 -1 3 -1
3 -1 2 -1 1 -1 2 -1 1 -1 4 -1 4 -1 1 -1 4 -1 1 -1 1 -1 1 -1 3 -1 4 -1 3 -1 4 -1 3 -1 2 -1 2 -1 1 -1 3 -1 3 -1 2 -1 1 -1 1 -1 2 -1 1 -1 2 -1 1 -1 2 -1 1 -1 3 -1 1 -1 4 -1 4 -1 4
-1 1 -1 3 -1 3 -1 3 -1 1 -1 4 -1 3 -1 1 -1 4 -1 4 -1 4 -1 3 -1 1 -1 1 -1 3 -1 1 -1 1 -1 3 -1 1 -1 2 -1 1 -1 1 -1 4 -1 1 -1 1 -1 2 -1 1 -1 2 -1 2 -1 4 -1 2 -1 1 -1 3 -1 4 -1 2 -1
4 -1 1 -1 2 -1 1 -1 1 -1 3 -1 2 -1 2 -1 2 -1 4 -1 3 -1 3 -1 3 -1 4 -1 3 -1 4 -1 4 -1 1 -1 2 -1 2 -1 3 -1 3 -1 1 -1 2 -1 1 -1 4 -1 4 -1 1 -1 1 -1 1 -1 4 -1 2 -1 4 -1 2 -1 4 -1 4

-1 4 -1 1 -1 3 -1 1 -1 4 -1 1 -1 4 -1 1 -1 1 -1 1 -1 1 -1 3 -1 4 -1 1 -1 3 -1 3 -1 4 -1 3 -1 4 -1 4 -1 1 -1 2 -1 1 -1 4 -1 2 -1 4 -1 -2

Raw RNA sequence in NF/CRF
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Frequent Sequential R
ules

ATC
ATT
TCT
GTC
GCC

CCTCAG
GGTGTT

A    60
C    44
G   39
T    61

Nucleotides' occurrence counts 

Nucleotides transformation

                                                   LSCPQSQCPYCFTHCEPTESAFQAHYKVCQATHRFRDDLKKTITPQSTSPGCYRTLNLFRYKSRCYI

12 -1 19 -1 3 -1 16 -1 17 -1 19 -1 17 -1 3 -1 16 -1 25 -1 3 -1 6 -1 20 -1 8 -1 3 -1 5 -1 16 -1 20 -1 5 -1 19 -1 1 -1 6 -1 17 -1 1 -1 8 -1 25 -1 11 -1 22 -1 3 -1 17 -1 1 -1
20 -1 8 -1 18 -1 6 -1 18 -1 4 -1 4 -1 12 -1 11 -1 11 -1 20 -1 9 -1 20 -1 16 -1 17 -1 19 -1 20 -1 19 -1 16 -1 7 -1 3 -1 25 -1 18 -1 20 -1 12 -1 14 -1 12 -1 6 -1 18 -1 25

-1 11 -1 19 -1 18 -1 3 -1 25 -1 9 -1 -2

C (A) G (A) ==> A (C) A (G)
G (C) T (A) ==> C (G) A (T)
T (A) T (C) ==> A (T) C (T)

C,G (C,T) ==> A (A)
A,G (C,T) ==> C,T (A,G)
C (G)  ==> A,G,T (A,C,T) 

CP
CY
FR
TH
YK
QA

PQS

A,H           3
 B,F,T         7 
D,E,I           2 
G,N,V         1
K,L             4
P,Q,R,Y      5
S                 6

Raw RNA sequence in PF

Amino acids' occurrence counts

Amino Acids transformation

TTAATTTGTCCTGCCCTCAGTCACAGTGTCCTTATTGTTTTGCACATTGTGAGCCTACAGAATCTGCCTTTCAGGCACATTATAAAGTGTGCCAGGCAACACA
CAGATTTGGGGATGATTTGAAGAAGACAATAACACCTCAGTCACCAAGCCCTGGGTGTTACCGGACATTAAATCTCTTTGGATATAAAAGTAGGTGTTACATCT

61 -1 16 -1 60 -1 24 -1 38 -1 30 -1 12 -1 18 -1 12 -1 46 -1 32 -1 16 -1 48 -1 63 -1 18 -1 16 -1 47 -1 10 -1 29 -1 19 -1 4 -1 31 -1 24 -1 62 -1 11 -1 18 -1 16 -1 13 -1
3 -1 60 -1 38 -1 11 -1 17 -1 18 -1 5 -1 36 -1 63 -1 43 -1 15 -1 16 -1 57 -1 9 -1 9 -1 17 -1 49 -1 18 -1 30 -1 12 -1 18 -1 17 -1 38 -1 31 -1 44 -1 48 -1 6 -1 41 -1 20 -1

49 -1 14 -1 56 -1 63 -1 36 -1 13 -1 1 -1 45 -1 44 -1 48 -1 5 -1 56 -1 -2 

Raw RNA sequence as Codon

CTCAGTCAC
CACATT

ATT
GCC
CAC

CAC                                                                            6
 ATT                                                                            5
GCC,AGT,GTT,TTG,CAA                                           3
TGT,CCT,CTC,CTG,AGG,ATA                                   2
ACA,GAT, AGA,TAA,GCT,TCT                                  2
TTA,GTC,CTT,GTG,AGC,CTA,CAG,AAT,TTC, AAG 1
GGG,ATT,TGA,ACC,GGA,CAT,ATC,AAA,GTA         1

GAT(CAT) ==> AAA(GAT)
ATA,ATC(ATC,CAT) ==> AAA(GAT)
TCT(ATC) ==> GAT,GGT(TCT,TTG)

CTG,TCT(ACC,ATA) ==> ATA,GTT(AAA,GTA)
AAA,ATC,CAT(CAT,TAA,TTG) ==>

GGT,TCT(GGT,TCT)
ACC,GGA,GGT ==> CAT,CGC,GTT

Codons occurrence counts 

Codons transformation

C (A) D (A) ==> A (C) A (D) 
L (K) N (C) ==> K (L) C (N)

A (D,K,P) ==> D,K,P (A)
S,Y ==> R,T 

I,S,Y ==> Q,R,T
N,R,V,Y ==> F,P,Q,T 

Fig. 2: Nucleotides, amino acids, and codons compositions, their frequent sequential
patterns and rules discovered in raw RNA sequences in NF /CRF (top), PF (mid-
dle) and codon (below). The frequent sequential patterns found in genome sequences
in different forms can be interpreted as their descriptors or features. NF and CRF
stand for Nucleotide Form and Coding Region From respectively.

4.2 Classification Results

For classification, the identified patterns undergo more preprocessing to make sure
they contain three to four distinct frequent bases, codons, or amino acids. Table 5
provides the classification (both binary and MC) results for patterns that are iden-
tified using the CM-SPAM algorithm. The results for a classifier’s metrics in each
table are provided in the following format: NF (CRF )

PF (CNF ) . For example, the first entry

of 93.6(92)
93.2(92.9) in Table 5 indicates that MNB achieved an accuracy of 93.6%, 92%,

93.2% and 92.9% on frequent patterns found in Dengue for NF, CRF, PF and CNF
respectively. This format is used for metrics throughout this section to reduce the total
number of tables. It was observed that all classifiers, except GNB, performed better,
on average, in binary classification.

For binary classification, DT, kNN, RF, and SVM achieved an average accuracy
of approximately 94%, whereas MLP, LR, MNB, and GNB achieved an average ac-
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Fig. 3: Heatmap of codon frequency in 15 viruses. Dark blue codons are the most
frequent ones and light yellow codons are the least frequent ones.

curacy of 93.77%, 93.75%, 93.32%, and 55.4% respectively. In terms of computa-
tional time, GNB and MNB performed the best, whereas MLP was slow compared
to the other models. Interestingly, all classification models, except for GNB, exhib-
ited improved performance on the discovered frequent patterns of nucleotides, amino
acids, and codons. On NF , CRF , PF , and CNF , the classifiers, excluding GNB,
achieved an average accuracy of 93.53%, 94.34%, 93.58% and 93.94%, respectively.
SVM achieved the highest accuracy of 99.97% on the frequent sequential patterns of
nucleotides and codons. One of the reasons for the relatively better performance of
DT, kNN, RF and SVM, compared to others could be their ability to properly handle
various patterns as features during the process of classification. The detailed results
for SVM on genome sequences of viruses in three forms and in codons are listed in
Table 6.

For MC classification, SVM performed better on average than other models, fol-
lowed by MLP and kNN. The average accuracy of classification models for MC clas-
sification on frequent patterns found in NF,CRF, PF , and CNF is 31.1% 43.1%,
22%, and 42.1% respectively. The classifiers took more time for MC classification,
and their results were not as encouraging, particularly for NF and PF . We believe
that the main reasons for this are (1) The large number of virus classes (a total of 15),
for MC classification. For fewer classes, the accuracy increased. For example, for 3
virus classes, SVM achieved more than 70% accuracy. (2) The presence of similar
patterns in more than one virus class. As in MC classification, the goal is to assign
a frequent pattern to a single virus class. It is important to point out here that the
GridSearchCV of scikit-learn was also used for classifiers fine-tuning and to find the
best hyperparameters. The obtained results for both types of classification with Grid-
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Table 5: Classifiers accuracy (in %) via frequent patterns of bases, amino acids, and
codons.

Virus MNB GNB DT RF MLP SVM kNN LR
Dengue 93.6(92)

93.2(92.9)
12.4(61.6)
85.1(53.2)

93.6(95)
93.1(93.7)

93.6(95)
93.1(93.7)

93.6(95)
92(92.4)

93.6(95)
93(93.7)

93.4(93.3)
93.8(92.8)

93.6(95)
93(93.7)

Dabie 93(93)
93(92.2)

13(72.3)
86.5(41.1)

92.3(92)
94.4(94.2)

93(92.3)
93.5(93.3)

93(93)
94.7(94.4)

93(93.3)
93(94)

92.8(90)
96(94.4)

93(90.6)
93.4(93.9)

Hanta 92.7(93.3)
92.8(92.6)

13.3(64)
85(41.9)

92.7(92.6)
92.9(92.7)

92.7(93)
92.8(92.6)

91.7(93.3)
92.2(92.8)

92.7(93.3)
92.7(92.6)

92.8(92)
93(92.4)

92.7(93.3)
92.7(92.9)

SC2 97.9(92.6)
93.1(93.2)

97.9(91.6)
65.4(43.8)

97.9(98.3)
93.1(93.9)

97.9(98.6)
93.1(93.3)

95.4(96.6)
92(93.7)

99.9(96.6)
93.1(93.3)

97.7(97.6)
92.5(93.7)

97.9(95.3)
93.1(94)

Ebola 93(92.6)
93.7(92.7)

13.2(88.6)
81.3(43.7)

95.1(96.3)
94.9(93.2)

94.1(96.6)
96(92.3)

94.9(94)
96.2(93)

95.7(92.6)
95.8(92.3)

95.3(97.6)
98.8(93)

95.7(92.6)
93.9(92.9)

MERS 93.1(92)
94.2(92.5)

12.9(66)
71.4(47.7)

93.3(95)
94.2(93.2)

93.1(95)
94.2(93.1)

93.2(94)
94.1(93.3)

93.1(95)
94.2(93.2)

92.7(92.3)
93.6(93.5)

92.8(95)
94.2(93.4)

HIV 93.4(94.3)
93.5(93.8)

12.6(96.6)
69.5(44)

93.4(97.6)
93.5(93.7)

93.5(97.3)
93.5(93.4)

93.5(95.3)
93.5(93.2)

93.4(94.6)
93.5(93.6)

93(99)
93.4(92.5)

93.4(95.3)
93.5(93.8)

Hepaci 92.6(90.6)
92.6(97.1)

13.4(65)
76.5(88.6)

92.6(91.6)
92.7(95.9)

92.6(92.3)
92.7(94.1)

92.6(92.3)
93(96.9)

92.6(95.3)
92.7(97.8)

91.8(93.3)
93.3(97.3)

92.6(91.3)
92.7(97.6)

Rhino 93.2(92.6)
93.2(92.6)

12.8(69.3)
87.7(47.1)

93.2(94)
93.6(92.9)

93.2(94)
93.4(93.1)

93.2(93)
93.8(92.6)

93.2(92.6)
93.2(93.1)

93.3(93.3)
94.8(91.9)

93.2(92.6)
93.2(92.9)

Influenza 93.7(92.3)
93(93.6)

12.3(96.6)
59.8(52.2)

93.7(97.6)
93(93.8)

93.3(97.3)
93(93.8)

93.7(94.3)
93(93.5)

93.7(94.6)
93(93.8)

93.5(99)
92.6(92.6)

93.7(95.3)
93(93.6)

Noro 93(92.3)
92.8(93.1)

13(69.3)
86.9(35.1)

93(92.6)
93.5(94.1)

93(94)
92.8(93.4)

93(93)
94(94.5)

93(93.3)
92.8(93.7)

92.7(92.6)
94.2(93.9)

93(92.6)
92.8(94)

Rota 94.2(92)
94.2(98.6)

11.8(76.3)
73.9(56.8)

94.2(92.3)
94.8(99.9)

94.2(92.3)
94.3(98.4)

92.2(91.6)
93.5(99.9)

94.2(92)
94(99.9)

94.1(91.6)
95.3(99.6)

94.2(92)
94.3(99.9)

Measles 93.4(95)
93.5(94.4)

12.6(87.6)
67.3(30.4)

93.4(99.6)
93.5(94.1)

93.4(99.9)
93.5(93.9)

93.4(96.6)
93.2(94.4)

93.4(97.3)
93.5(93.9)

90.3(99.9)
94.2(94)

93.4(97.6)
93.5(94)

Rabies 93.3(92.6)
93(93.2)

12.7(69.3)
87.7(32.2)

93.3(94)
93.6(93.4)

93.3(94)
93.2(93.5)

93.3(94)
94.3(93.4)

93.3(92.6)
93.1(93.5)

91.5(93.3)
95.7(93.2)

93.3(92.6)
93(93.6)

West Nile 93.5(96.3)
93.7(92.9)

12.6.4(96)
86.8(50.8)

93.5(97)
93.9(94.1)

93.5(99)
93.8(93.7)

93.5(96.3)
94.7(93.5)

93.5(98)
93.6(93.7)

93.3(99.6)
95.1(93.3)

93.5(97.3)
93.6(93.8)

Average 93.5(92.9)
93.3(93.6)

18.4(78)
78(47.2)

93.6(95)
93.6(94.1)

93.62(95.3)
93.52(93.7)

93.3(94.1)
93.6(94.1)

93.8(94.4)
93.41(94.1)

93.2(94.9)
94.4(93.8)

93.7(93.8)
93.3(94.2)

MC 20.1(25)
17.9(49.6)

22.7(40.3)
18.8(31.2)

19.4(36.6)
15.4(24)

23.8(44)
24(39.8)

25.8(48)
26.2(51.5)

26.3(53)
22(51)

22.1(51)
30.7(39.8)

24.7(47.6)
21(50.1)

MNB: Multinomial Naive Bayes, GNB: Gaussian Naive Bayes, DT: Decision Tree, RF: Random For-
est, MLP: Multilayer Perceptron, SVM: Support Vector Machine, kNN: k-Nearest Neighbors, LR:
Logistic Regression, MC: Multi-class

Table 6: Classification results for SVM.
ACC P R F1 AUC

Dengue 93.6(95)
93(93.7)

87.6(90.2)
93.2(87.8)

93.3(95)
93(93.7)

90.5(92.5)
90.3(90.6)

0.50(0.50)
0.51(0.50)

Dabie 93(93.3)
93(94)

86.5(87.1)
93.1(93.6)

93.0(93.3)
93(94)

89.6(95.1)
91.5(92.9)

0.50(0.50)
0.53(0.58)

Hanta 92.7(93.3)
92.7(92.6)

85.5(87.1)
93.5(91.5)

92.3(93.3)
93.1(92.6)

88.9(90.1)
90.1(89.5)

0.50(0.50)
0.53(0.51)

SC2 99.9(96.6)
93.1(93.3)

99.8(96.6)
86.8(92.7)

99.9(96.6)
93.1(93.3)

99.9(96.6)
89.9(91.1)

0.99(0.87)
0.50(0.52)

Ebola 95.7(92.6)
95.8(92.3)

95.3(91.8)
95.9(85.95)

95.7(92.6)
95.8(92.3)

95.2(90.9)
94.8(98.1)

0.75(0.61)
0.66(0.50)

MERS 93.1(95)
94.2(93.2)

86.8(90.2)
88.8(92.1)

93.1(95)
94.2(93.2)

89.9(92.5)
91.5(90.9)

0.50(0.50)
0.50(0.51)

HIV 93.4(94.6)
93.5(93.6)

87.3(96.5)
87.5(93.2)

93.4(94.6)
93.5(93.6)

90.3(94.5)
90.4(91.1)

0.51(0.58)
0.50(0.53)

Hepaci 92.6(95.3)
92.7(97.8)

85.8(86.9)
93.2(97.74)

92.6(95.3)
92.7(97.80)

89.1(90.9)
89.6(97.67)

0.50(0.50)
0.51(0.90)

Rhino 93.2(92.6)
93.2(93.1)

86.9(85.2)
93.9(91.3)

93.2(92.6)
93.2(93.1)

89.9(88.7)
91.7(89.9)

0.50(0.52)
0.54(0.50)

Influenza 93.7(94.6)
93(93.8)

87.9(89.9)
93.5(91.8)

93.7(94.6)
93(93.8)

90.7(92.1)
89.8(91.2)

0.50(0.50)
0.51(0,52)

Noro 93(93.3)
92.8(93.7)

86.6(87.1)
93.1(92.8)

93(93.3)
92.8(93.7)

89.7(90.1)
90.7(92.1)

0.50(0.50)
0.52(0.55)

Rota 94.2(92)
94(99.9)

88.7(84.65)
95.1(99.4)

94.2(92)
94(98.9)

91.3(88.1)
92.9(98.5)

0.50(0.51)
0.58(0.97)

Measles 93.4(97.3)
93.5(93.9)

87.2(97.3)
93.7(92.9)

93.4(97.3)
93.7(93.9)

90.2(97.3)
91.4(91.5)

0.59(0.93)
0.52(0.52)

Rabies 93.3(92.6)
93.1(93.5)

87.1(93)
93.5(91.5)

93.3(92.6)
93.1(93.5)

90.1(90.1)
92.2(91.2)

0.50(0.52)
0.58(0.54)

West Nile 93.5(98)
93.6(93.7)

87.4(98)
93.5(91.7)

93.5(98)
93.6(93.7)

90.3(97.9)
92.4(91.5)

0.50(0.82)
0.530(0.53)

MC 26.3(53)
26.2(51)

28.9(49.2)
41.3(53.1)

26.3(45.3)
35(52.4)

23.4(44.4)
36.6(52.3)

0.15(0.21)
0.17(0.31)

ACC: Accuracy, P: Precision, R: Recall, F1: F-measure, AUC: Area Under Curve, MC: Multi-class

SearchCV were similar, with a negligible difference, to the one where classifiers were
used with hyperparameters mentioned at the start of this section.

t-SNE [51] was utilized to visualize the frequent sequential patterns discovered
in the genome sequences of five different viruses. Figure 4 illustrates the distribu-
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tion of frequent sequential patterns across the coding regions of the selected viruses.
Notably, while the visualization shows distinct clusters for each virus, it also high-
lights areas of overlap between certain viruses, such as SC2 and Ebola, as well as
Hanta and MERS. These overlaps suggest that some frequent sequential patterns are
shared among these viruses, which could indicate evolutionary relationships or com-
mon functional motifs within specific genomic regions. Investigating and understand-
ing these overlaps is important as they offer insights into the genetic similarities and
differences that might not be immediately apparent through traditional classification
methods.

Fig. 4: Visualization of the frequent sequential pattern distribution discovered in the
coding region form of five viruses. The five clusters are separable from each other
with a minor amount of similarity among a few viruses. SC2 stands for SARS-CoV-
2.

From the perspective of classification, the discovery of overlapping patterns may
have several implications. Firstly, the existence of shared patterns can enhance classi-
fier robustness by acting as redundant yet informative features. However, it is crucial
that these features possess the discriminatory power to effectively distinguish closely
related viruses. Secondly, the presence of overlaps underscores the need for classi-
fiers that are highly sensitive to minute differences in genomic sequences, potentially
necessitating the development of more intricate models that incorporate not only the
existence of shared patterns but also their contextual occurrences. Thirdly, the over-
lapping patterns may influence the curation of the training data. By recognizing which
patterns are shared among viruses, one can focus on enhancing the diversity of train-
ing samples, ensuring that classifiers are exposed to a wide range of genomic vari-
ations. In summary, the overlaps observed do not diminish the effectiveness of the
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GenoAnaCla approach but rather enrich our understanding of viral relationships and
highlight the need to further investigate the importance of similar patterns discovered
in different viruses in the classification process and using advanced classification
techniques that can navigate the complexities of genomic data.

GenoAnaCla has many practical and clinical relevances. For example, it can fa-
cilitate the early detection of harmful viruses, which is critical for infectious disease
management and for public health preparedness and response in infectious disease
management. Furthermore, the ability to analyze viral genomes more effectively can
enhance epidemiological studies, aiding researchers in tracking virus mutations and
spread patterns.

4.3 Comparison

Table 7 compares the performance of GenoAnaCla with some of the state-of-the-
art approaches (SOTA) for the classification/detection of genomic data. The studies
[14,15,16,18,19,20,23,34], [9,10,11,12,26] and [13,27,28,29,30] evaluated their
respective approaches using datasets comprising genome sequences, metagenomic
sequences and S protein sequences, respectively. The SVM classifier in the proposed
GenoAnaCla performed similarly to kNN [14] (99.8% ACC) and performed better
than XGBoost [11](97.8%), CNN [18] (99% ACC), SVM [34] (97% ACC), kNN [10]
(98.6% ACC), RF [15] (93% ACC), kNN [16] (98.4%), CNN [19] (93.16% ACC),
CNN [20] (98.73% ACC), CNN [26] (92% ACC) and RF [23] (97.47% ACC). The
studies [22,25] obtained 100% accuracy; however, because their dataset comprised
less genome sequences, their results are not included in Table 7. The highest SVM re-
sults obtained in GenoAnaCla are included in Table 7 as it demonstrated better overall
performance in both types of classification when compared to other models. Note that
the average results of XGBoost [11] in Table 7 is for the three-class (infectious virus,
endogenous retrovirus (ERV) and non-ERV human) prediction.

GenoAnaCla (SVM) also performed better than the classifiers used in [13,27,28,
29,30]. Their results are omitted from Table 7 as they considered only the S protein.
Compared to the majority of the previous approaches presented in Table 7, the feature
extraction process in the proposed approach is much simpler and does not require
very high computational power. GenoAnaCla (SVM) achieved an average accuracy
improvement (AAI) of 3.18%. AAI is defined as:

AAI =

∑n
i=1

NA−OAi
OAi

n
(9)

where NA, and OA represent the new and old accuracy, respectively, and n is the
total number of previous works. According to the data presented in Table 7, a total of
11 studies have provided accuracy results, therefore, n = 11.

The proposed approach is not specific to a particular viral family and can be used
to classify/predict DNA viruses and metagenomic contigs. Previous approaches used
various training:testing ratios or k-fold cross-validation and the ratios that produced
the best results for the classifiers were selected. Similarly, we listed the best results
of the classifiers that we obtained using a training:testing ratio of 80:20.
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Table 7: Comparison of the GenoAnaCla with SOTA approaches.
Reference Model Features Results

ACC P R F1 AUC
[9] Attn.-based

LSTM
Seq2Vec+max pooling – 91.14% 92.6% 91.86% –

[10] kNN k-mer+bag of words 98.6% 98.5% 98.6% – –
[11] XGBoost k-mer+recoding system 97.8% 96.7% 96.8% 96.7% –
[12] LSTM based

RNN-VirSeeker
softmax – 92.11% 86.40% 89.16% 0.917

[14] kNN CpG+Similarity 99.8% 99.7% 99.9% R 99.8% 0.997
[15] RF CpG based 93% 93% 93% 93% –
[16] kNN CpG+kNN with L1 type dis-

tance metric
98.4% 98.4% 99.2% 98.8% –

[18] CNN max pooling 99% – 99% – –
[19] CNN k-mer 93.16% 90% 98% 94% –
[20] CNN max pooling 98.73% – – – –
[23] RF biomarkers, obtained with three-

base periodicity property
97.47% – 96.29% – –

[26] CNN max and average pooling 92% – 32% – 0.923
[34] SVM nucleotides 97% 96% 77% 96% –
GenoAnaCla SVM Frequent sequential patterns of

nucleotides/codons/amino acids
99.9% 99.4% 98.9% 98.5% 0.97

LSTM: Long Short-Term Memory, kNN: k-nearest neighbors, XGBoost: Extreme Gradient Boosting,
RNN: Recurrent Neural Network, RF: Random Forest, CNN: Convolutional Neural Network, SVM:
Support Vector Machine, ACC: Accuracy, P: Precision, R: Recall, F1: F-measure, AUC: Area Under
Curve.

5 Conclusion

A generic approach was proposed for the analysis and classification of genome se-
quences from diverse RNA viruses downloaded from NCBI’s GenBank in three forms:
NF, CRF, and PF. Genome sequences were initially transformed into a suitable for-
mat, and subsequently, algorithms for SPM were applied to discover frequent bases,
codons, and amino acids, their frequent sequential patterns, and rules. Obtained fre-
quent patterns of nucleotides, codons, and amino acids were then used for classifica-
tion. Eight classifiers (LR, RF, kNN, GNB, SVM, MLP, DT, MNB) were employed,
and their performance was assessed using five evaluation metrics, including accuracy,
precision, recall, F1-score and AUC. The obtained findings suggest that SVM outper-
formed the other seven classifiers in binary classification. Moreover, it achieved better
results than existing genome sequence classification approaches, achieving an aver-
age accuracy improvement of more than 3%. Compared to binary classification, clas-
sifiers performance was low for multi-class classification. The key insight from the
findings is that utilizing limited frequent nucleotide, codon, and amino acid patterns
can lead to improved prediction and classification, instead of providing the complete
nucleotides, codons, or amino acids present in the sequences. The proposed approach
is not limited to RNA viruses and can be used on DNA viruses, metagenomic data,
and even human DNA.

Some future research directions are: (1) Exploring more advanced or specialized
classifiers to investigate if they can leverage the sequential data and the shared fre-
quent patterns among many viruses more effectively than conventional classifiers.
(2) Extending the proposed approach to extract frequent sequential k-mers and using
them as features in the classification process. (3) Using emerging, contrast pattern
mining [52] or negative pattern mining [53,54] on the genome sequences to find
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contrasting or negative frequent patterns of bases, codons, and amino acids and em-
ploying them as features in the classification process. (4) Examining the potential for
discriminative frequent patterns to be utilized more effectively, compared to similar
frequent patterns, in the classification process, particularly in MC classification. (5)
Using optimization and meta-heuristic algorithms [55] for the selection of optimal
hyperparameters of classifiers.
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