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Introduction

• Data Mining: the goal is to discover or extract useful 
knowledge from data.

• Many types of data can be analyzed: 
– graphs, 
– relational databases,
–  time series, sequences, etc.

• In this presentation, we focus on episode mining, that is 
how to find interesting patterns in a single, long sequence 
of events. 
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Event types

• We have a set of different event types   
�  =  �1, �2,  …,  �� 

•  For example:  �  =  �, �, �, � 

buy 
apple

buy
bread

buy 
cake

buy   
dattes



Event set
• An event set � is a set of events that have occurred at the same time.

Formally, � ⊆ �. 

• Example 1: {a,b} is an event set indicating that someone has bought 
apple and bread at the same time.

• Example 1: {b, c, d} is an event set indicating that someone has bought 
bread, cake and dates at the same time.

It is an event set of size 3

It is an event set of size 2



Event sequence

An event sequence is an ordered list of event pairs
S  =  ⟨(SEt1, t1), (SEt2, t2), . . . , (SEtn, tn)⟩ where for any i, 
���� ⊆ � is the set of events observed at time ��.

Example 1: 

s  =   ⟨( �, � , 1),   � , 2), ( �, � , 3), ( � , 6), ( �, � , 7),
( � , 8), ( � , 9), ( � , 11)⟩ 



Event sequence
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Event sequences can model various types of data 
such as:

–  alarm sequences, 
– cloud data,
– network data, 
– stock data, 
– malicious attacks, 
– movements, and customer transactions.



The goal of Episode Mining

Given a sequence of events,

we want to discover subsequences of events that appear 
frequently (i.e. frequent episodes)



The goal of Episode Mining

For example, we may find that apple is bought many times



The goal of Episode Mining

Or that cake is frequently bought shortly before buying bread



The goal of Episode Mining

Or that cake is frequently bought shortly before buying bread

To give a clearer definition, we need to define: 
• what is an episode?
• how do we count the support of an episode 

(how many times it appears in an event sequence)?



Episode
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A (composite) episode ∝   =  ⟨X1, X2, . . . ��⟩ is a list of 
event sets ordered by time, that is for any integers 1 ≤
 �  <   �  ≤  p,    Xi appeared before Xj .

Example:    ∝ =  ⟨ � ,        a, b ,      c ⟩

                    

 Apple was purchased. Then, apple and bread were 
bought at the same time, and then cake was 
purchased.

(the general case)



Parallel episode
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(all events appeared at the same time)

A parallel episode ∝   =  ⟨X⟩  is an episode that 
contains a single event set  (� ⊆ �). 
Thus all events have appeared simultaneously
It can be written as ∝   =  X.

Example:    X =  {a, b}

                     Apple and bread were bought together
                        (at the same time)



Serial episode
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A serial episode ∝   =  ⟨X1, X2, . . . ��⟩ is a list of event 
sets where each event set contains a single event.

Example:     ∝ =  ⟨ � , b ,  c ⟩

                 

 Apple was purchased. Then, bread was bought, and 
then cake was purchased.



How to count episodes?
• There are different ways (functions) for counting 

the support of episodes:
– windows-based frequency
– head support (head frequency),
– total frequency,
– non interleaved frequency,
– minimal-occurrences based frequency
– ...

• All these ways of counting may give different 
results.

                               I will explain the head support -->
14



Occurrence of an episode
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An occurrence of an episode ∝ =  ⟨X1, X2, . . . ��⟩
 in a sequence S  = ⟨(SEt1, t1), (SEt2, t2), . . . , (SEtn, tn)⟩ 
is a time interval [ts, te] in which the episode appears.

Formally, it means that there exists integers 
            ts = z1  < z2  <  . . .  <  zw = te   
such that   X1 ⊆  SEz1,  X2 ⊆  SEz2,  ... , Xp ⊆  SEzw  



Occurrence of an episode
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An occurrence of an episode ∝ =  ⟨X1, X2, . . . ��⟩
 in a sequence S  = ⟨(SEt1, t1), (SEt2, t2), . . . , (SEtn, tn)⟩ 
is a time interval [ts, te] in which the episode appears.

Formally, it means that there exists integers 
            ts = z1  < z2  <  . . .  <  zw = te   
such that   X1 ⊆  SEz1,  X2 ⊆  SEz2,  ... , Xp ⊆  SEzw  

Example: The episode ∝ =  ⟨ a ,  a, b ⟩ has an 
occurrence in time interval [1,3] of sequence:



Occurrence of an episode
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An occurrence of an episode ∝ =  ⟨X1, X2, . . . ��⟩
 in a sequence S  = ⟨(SEt1, t1), (SEt2, t2), . . . , (SEtn, tn)⟩ 
is a time interval [ts, te] in which the episode appears.

Formally, it means that there exists integers 
            ts = z1  < z2  <  . . .  <  zw = te   
such that   X1 ⊆  SEz1,  X2 ⊆  SEz2,  ... , Xp ⊆  SEzw  

Example: The episode ∝ =  ⟨ a ,  a, b ⟩ has an 
occurrence in time interval [1,7] of sequence:



Occurrence of an episode
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An occurrence of an episode ∝ =  ⟨X1, X2, . . . ��⟩
 in a sequence S  = ⟨(SEt1, t1), (SEt2, t2), . . . , (SEtn, tn)⟩ 
is a time interval [ts, te] in which the episode appears.

Formally, it means that there exists integers 
            ts = z1  < z2  <  . . .  <  zw = te   
such that   X1 ⊆  SEz1,  X2 ⊆  SEz2,  ... , Xp ⊆  SEzw  

Example: The episode ∝ =  ⟨ a ,  a, b ⟩ has an 
occurrence in time interval [2,3] of sequence:



Occurrence of an episode
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An occurrence of an episode ∝ =  ⟨X1, X2, . . . ��⟩
 in a sequence S  = ⟨(SEt1, t1), (SEt2, t2), . . . , (SEtn, tn)⟩ 
is a time interval [ts, te] in which the episode appears.

Formally, it means that there exists integers 
            ts = z1  < z2  <  . . .  <  zw = te   
such that   X1 ⊆  SEz1,  X2 ⊆  SEz2,  ... , Xp ⊆  SEzw  

Example: The episode ∝ =  ⟨ a ,  a, b ⟩ has an 
occurrence in time interval [2,7] of sequence:



Occurrence of an episode
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An occurrence of an episode ∝ =  ⟨X1, X2, . . . ��⟩
 in a sequence S  = ⟨(SEt1, t1), (SEt2, t2), . . . , (SEtn, tn)⟩ 
is a time interval [ts, te] in which the episode appears.

Formally, it means that there exists integers 
            ts = z1  < z2  <  . . .  <  zw = te   
such that   X1 ⊆  SEz1,  X2 ⊆  SEz2,  ... , Xp ⊆  SEzw  

Example: The episode ∝ =  ⟨ a ,  a, b ⟩ has an 
occurrence in time interval [3,7] of sequence:



Occurrence of an episode
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An occurrence of an episode ∝ =  ⟨X1, X2, . . . ��⟩
 in a sequence S  = ⟨(SEt1, t1), (SEt2, t2), . . . , (SEtn, tn)⟩ 
is a time interval [ts, te] in which the episode appears.

Formally, it means that there exists integers 
            ts = z1  < z2  <  . . .  <  zw = te   
such that   X1 ⊆  SEz1,  X2 ⊆  SEz2,  ... , Xp ⊆  SEzw  

Example: The episode ∝ =  ⟨ a ,  a, b ⟩ has an 
occurrence in time interval [6,7] of sequence:



All occurrences of an episode

The set of all occurrences of an episode ∝ in a 
sequence is denoted as occSet(∝).
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Example: The set of all occurrences of episode
 ∝ =  ⟨ a ,  a, b ⟩ is
 occSet(∝) =   [1,3], [1,7], [2,3], [2,7], [3,7], [6,7] .



Head support
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The (head) support an episode ∝ in a sequence is the 
number of distinct start times for its occurrences.
i.e.  sup(∝)=| ts|[ts,te]∈ ������(∝) |

.

Thus, sup(∝) = | 1, 2, 3, 6  | = 4

Example: The set of all occurrences of episode
 ∝ =  ⟨ a ,  a, b ⟩ is
 occSet(∝) =   [1,3], [1,7], [2,3], [2,7], [3,7], [6,7] .



Head support with window

• To avoid counting occurrences that span a very long period 
of times, we can introduce a user-defined parameter 
������ > 0.

• Then, we cound only occurrences that have a duration 
smaller than ������ time.

Example:  Consider the episode ∝ =  ⟨ a ,  �, � ⟩ 
   If ������  =  �, then
  occSet(∝)  =   [1,3], [1,7], [2,3], [2,7], [3,7], [6,7] .

Thus, sup(∝) = | 1, 2, 3, 6  | = 4
24



Head support with window

• To avoid counting occurrences that span a very long period 
of times, we can introduce a user-defined parameter 
������ > 0.

• Then, we cound only occurrences that have a duration 
smaller than ������ time.

Example:  Consider the episode ∝ =  ⟨ a ,  �, � ⟩ 
   If ������  =  �, then

occSet(∝)  =   [1,3], [1,7], [2,3], [2,7], [3,7], [6,7] .

Thus, sup(∝) = | 2, 6  | = 2
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Frequent episode mining
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Two parameters:  ������ = 2,  ������ = 2

�����:    �� ����� ��������



Frequent episode mining
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Two parameters :  ������ = 2,  ������ = 2

Episode Support

⟨ �, � ⟩ 2

⟨ � ,  � ⟩ 2

⟨ � ,  �, � ⟩ 2

⟨ � ,  � ⟩ 3

��� ��� �������� ��������  (�������  ≥  ������)  

�����:    �� ����� ��������

������:    
Episode Support

⟨ � ⟩ 5

⟨ � ⟩ 3

⟨ �  ⟩ 2



How to find frequent episodes?

• There is a very large number of possible episodes.
• For only four items (a, b, c, d):
⟨ � ⟩, ⟨ b ⟩, ⟨ c ⟩, ⟨ d ⟩, ⟨ a, � ⟩, ⟨ a, � ⟩,  ⟨ �, � ⟩, ... 
⟨ �, �, �, � ⟩, . . .  ⟨ a ,  � ⟩,  ⟨ a ,  � ⟩,  ⟨ � ,  � ⟩, 
⟨ a ,  � ⟩, ⟨ � ,  � ,  �, � ⟩, ⟨ � ,  �, � ⟩,⟨ � ,  �, � ⟩ ,... 
⟨ � ,  �, �, � ⟩ . . .
...
• Generally, if a sequence has n events, there could be up to 

�� - 1 distinct episodes.
• Thus, we need efficient algorithms that will not explore 

the whole search space to find the solution (the frequent 
episodes that we want to discover).

28



Algorithms
• Many algorithms such as:

– WINEPI (1995):   breadth-first search, window-based 
support

– MINEPI (1995):  breadth-first search, minimal 
occurrences-based frequency

– EMMA and MINEPI+ (2008):  depth-first search, head 
support

– TKE (2019): find the top-k most frequent episodes
– AFEM, MaxFEM (2022): improved version of EMMA, 

can find the maximal episodes...

• They use different definitions of support, various 
data structures and search strategies



Algorithms

• Some algorithms can only analyze simple sequences (a 
sequence without simultaneous events).

• Some algorithms can analyze complex sequences (the 
general case).

30

⟨ � ⟩,      ⟨ b ⟩,       ⟨ c ⟩⟩

⟨ a, b, c ⟩,        ⟨ b, c ⟩,           ⟨ c ⟩⟩



THE EMMA ALGORITHM
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Kuo-Yu Huang,Chia-Hui Chang (2008). Efficient mining of frequent episodes from complex 
sequences.Inf. Syst.33(1):96-114    



The EMMA algorithm

• Proposed Huang et al. (2008)
• The first algorithm to use the head support.
• An efficient algorithm
• Performs a depth-first search to find the 

frequent episodes.
• Uses a vertical data structure.

• We will look at how it works with an example.

32



Example
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The parameters:  ������ = 2,  ������ = 2

�����:    �� ����� ��������



Step 1: Scan the sequence fo count the support 
of each event

34

Episode Support

⟨ � ⟩ 5

⟨ � ⟩ 3

⟨ �  ⟩ 2

⟨ d  ⟩ 1

������



Step 2: Keep only the frequent events
(events with a support ≥  minsup = 2)

35

Episode Support

⟨ � ⟩ 5

⟨ � ⟩ 3

⟨ �  ⟩ 2

⟨ d  ⟩ 1

�������� ������



Step 3: Create the Location List of each 
frequent event
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Create a location list for each frequent event

                   Note: for any episode �, we have|�������(�)| = sup (�)

Episode Support location list

⟨ � ⟩ 5  �������(�) =  1,  2,  3,  6,  7 

⟨ � ⟩ 3 �������(�) =  3,  7,  9   

⟨ �  ⟩ 2 �������(�) =  1,  8  
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Create a location list for each frequent event

                   Note: for any episode �, we have|�������(�)| = sup (�)

Episode Support location list

⟨ � ⟩ 5  �������(�) =  �,  �,  �,  �,  � 

⟨ � ⟩ 3 �������(�) =  3,  7,  9   

⟨ �  ⟩ 2 �������(�) =  1,  8  

Step 3: Create the Location List of each 
frequent event
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Create a location list for each frequent event

                   Note: for any episode �, we have|�������(�)| = sup (�)

Episode Support location list

⟨ � ⟩ 5  �������(�) =  1,  2,  3,  6,  7 

⟨ � ⟩ 3 �������(�) =  �,  �,  �   

⟨ �  ⟩ 2 �������(�) =  1,  8  

Step 3: Create the Location List of each 
frequent event
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Create a location list for each frequent event

                   Note: for any episode �, we have|�������(�)| = sup (�)

Episode Support location list

⟨ � ⟩ 5  �������(�) =  �,  �,  �,  �,  � 

⟨ � ⟩ 3 �������(�) =  3,  7,  9   

⟨ �  ⟩ 2 �������(�) =  �,  �  

Step 3: Create the Location List of each 
frequent event



Step 4: Find the Frequent Parallel Episodes
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• Recursively combine frequent events to create 
parallel episodes with their locations lists.

• Keep only the parallel episodes that are frequent

�������� ������

Episode location list

⟨ � ⟩  1,  2,  3,  6,  7   

⟨ � ⟩  3,  7,  9   

⟨ �  ⟩  1,  8  



Step 4: Find the Frequent Parallel Episodes

41

First, all the frequent events are frequent parallel 
episodes.

�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5  1,  2,  3,  6,  7  

⟨ � ⟩ 3  3,  7,  9   

⟨ �  ⟩ 2  1,  8  

�������� ������

Episode location list

⟨ � ⟩  1,  2,  3,  6,  7   

⟨ � ⟩  3,  7,  9   

⟨ �  ⟩  1,  8  



Step 4: Find the Frequent Parallel Episodes

42

Next, the algorithm combines frequent parallel episodes 
with frequent events to create more parallel episodes, and 
keep only the frequent episodes.

�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5  1,  2,  3,  6,  7  

⟨ � ⟩ 3  3,  7,  9   

⟨ �  ⟩ 2  1,  8  

�������� ������

Episode location list

⟨ � ⟩  1,  2,  3,  6,  7   

⟨ � ⟩  3,  7,  9   

⟨ �  ⟩  1,  8  



43

�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5  1,  2,  3,  6,  7  

⟨ � ⟩ 3  3,  7,  9   

⟨ �  ⟩ 2  1,  8  

⟨ a, b ⟩

�������� ������

Episode location list

⟨ � ⟩  1,  2,  3,  6,  7   

⟨ � ⟩  �,  �,  9   

⟨ �  ⟩  1,  8  

∩

• ⟨ � ⟩ and ⟨ b ⟩ are combined to get ⟨ a, b ⟩  
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�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5  1,  2,  3,  6,  7  

⟨ � ⟩ 3  3,  7,  9   

⟨ �  ⟩ 2  1,  8  

⟨ a, b ⟩ {3,7}

�������� ������

Episode location list

⟨ � ⟩  1,  2,  3,  6,  7   

⟨ � ⟩  �,  �,  9   

⟨ �  ⟩  1,  8  

∩

• The location list of ⟨ a, b ⟩  is  the intersection of the 
locations lists of ⟨ � ⟩ and ⟨ b ⟩. 
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�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5  1,  2,  3,  6,  7  

⟨ � ⟩ 3  3,  7,  9   

⟨ �  ⟩ 2  1,  8  

⟨ a, b ⟩ 2 {3,7}

�������� ������

Episode location list

⟨ � ⟩  1,  2,  3,  6,  7   

⟨ � ⟩  �,  �,  9   

⟨ �  ⟩  1,  8  

∩

• The support of ⟨ a, b ⟩  is  the number of elements in its 
location list. It is 2.

• Because 2 ≥  ������,  ⟨ a, b ⟩ is frequent and it is kept.
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�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5  1,  2,  3,  6,  7  

⟨ � ⟩ 3  3,  7,  9   

⟨ �  ⟩ 2  1,  8  

⟨ a, b ⟩ 2 {3,7}

�������� ������

Episode location list

⟨ � ⟩  1,  2,  3,  6,  7   

⟨ � ⟩  3,  7,  9   

⟨ �  ⟩  1,  8  
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�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5  1,  2,  3,  6,  7  

⟨ � ⟩ 3  3,  7,  9   

⟨ �  ⟩ 2  1,  8  

⟨ �, b ⟩ 2 {3,7}
⟨ �, c ⟩

�������� ������

Episode location list

⟨ � ⟩  �,  2,  3,  6,  7   

⟨ � ⟩  3,  7,  9   

⟨ �  ⟩  �,  8  
∩

• The algorithm continue combining frequent events with 
frequent parallel episodes to make more parallel 
episodes.

• ⟨ � ⟩ and ⟨ c ⟩ are combined to obtain ⟨ a, c ⟩  
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�������� �������� ��������
Episode Support location list

⟨ a ⟩ 5  �,  2,  3,  6,  7  

⟨ b ⟩ 3  3,  7,  9   

⟨ c  ⟩ 2  1,  8  

⟨ a, b ⟩ 2 {3,7}
⟨ a, c ⟩ {1}

�������� ������

Episode location list

⟨ � ⟩  1,  2,  3,  6,  7   

⟨ � ⟩  3,  7,  9   

⟨ �  ⟩  �,  8  
∩

• The location list of ⟨ a, c ⟩  is  the intersection of the 
locations lists of ⟨ � ⟩ and ⟨ c ⟩. 
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�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5  �,  2,  3,  6,  7  

⟨ � ⟩ 3  3,  7,  9   

⟨ �  ⟩ 2  1,  8  

⟨ �, b ⟩ 2 {3,7}
⟨ �, c ⟩ 1 {1}

�������� ������

Episode location list

⟨ � ⟩  1,  2,  3,  6,  7   

⟨ � ⟩  3,  7,  9   

⟨ �  ⟩  �,  8  
∩

• The support of ⟨ a, c ⟩  is  the number of elements in its 
location list. It is 1.
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�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5  �,  2,  3,  6,  7  

⟨ � ⟩ 3  3,  7,  9   

⟨ �  ⟩ 2  1,  8  

⟨ �, b ⟩ 2 {3,7}
⟨ �, c ⟩ 1 {1}

�������� ������

Episode location list

⟨ � ⟩  1,  2,  3,  6,  7   

⟨ � ⟩  3,  7,  9   

⟨ �  ⟩  �,  8  
∩

• The support of ⟨ a, c ⟩  is  the number of elements in its 
location list. It is 1.

• Because 1 <  ������,  ⟨ a, c ⟩ is infrequent and it is 
discarded.
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�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5  1,  2,  3,  6,  7  

⟨ � ⟩ 3  3,  7,  9   

⟨ �  ⟩ 2  1,  8  

⟨ �, b ⟩ 2 {3,7}

�������� ������

Episode location list

⟨ � ⟩  �,  2,  3,  6,  7   

⟨ � ⟩  3,  7,  9   

⟨ �  ⟩  �,  8  

• This process is repeated until no more parallel 
episodes can be generated 
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�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5  1,  2,  3,  6,  7  

⟨ � ⟩ 3  3,  7,  9   

⟨ �  ⟩ 2  1,  8  

⟨ �, b ⟩ 2 {3,7}

⟨ b, c  ⟩ 0 {}

�������� ������

Episode location list

⟨ � ⟩  �,  2,  3,  6,  7   

⟨ � ⟩  3,  7,  9   

⟨ �  ⟩  �,  8  

• This process is repeated until no more parallel 
episodes can be generated 

• Next ⟨ b, c ⟩ is created.
                                        

∩
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�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5  1,  2,  3,  6,  7  

⟨ � ⟩ 3  3,  7,  9   

⟨ �  ⟩ 2  1,  8  

⟨ �, b ⟩ 2 {3,7}

⟨ b, c  ⟩ 0 {}

�������� ������

Episode location list

⟨ � ⟩  �,  2,  3,  6,  7   

⟨ � ⟩  3,  7,  9   

⟨ �  ⟩  �,  8  

• This process is repeated until no more parallel 
episodes can be generated 

• Next ⟨ b, c ⟩ is created.
• But it is infrequent.
                                        

∩
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�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5  1,  2,  3,  6,  7  

⟨ � ⟩ 3  3,  7,  9   

⟨ �  ⟩ 2  1,  8  

⟨ �, b ⟩ 2 {3,7}

�������� ������

Episode location list

⟨ � ⟩  �,  2,  3,  6,  7   

⟨ � ⟩  3,  7,  9   

⟨ �  ⟩  �,  8  

• Next ⟨ a, b, c ⟩ is created.
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�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5  1,  2,  3,  6,  7  

⟨ � ⟩ 3  3,  7,  9   

⟨ �  ⟩ 2  1,  8  

⟨ �, b ⟩ 2 {3,7}

⟨ a, b, c  ⟩ 0 {}

�������� ������

Episode location list

⟨ � ⟩  �,  2,  3,  6,  7   

⟨ � ⟩  3,  7,  9   

⟨ �  ⟩  �,  8  

• Next ⟨ a, b, c ⟩ is created.
• But it is infrequent.
                                        

∩
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�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5  1,  2,  3,  6,  7  

⟨ � ⟩ 3  3,  7,  9   

⟨ �  ⟩ 2  1,  8  

⟨ �, b ⟩ 2 {3,7}

⟨ a, b, c  ⟩ 0 {}

�������� ������

Episode location list

⟨ � ⟩  �,  2,  3,  6,  7   

⟨ � ⟩  3,  7,  9   

⟨ �  ⟩  �,  8  

• This process is repeated until no more parallel 
episodes can be generated 

• Next ⟨ b, c ⟩ is created.
• But it is infrequent.
                                        

∩
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�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5  1,  2,  3,  6,  7  

⟨ � ⟩ 3  3,  7,  9   

⟨ �  ⟩ 2  1,  8  

⟨ �, b ⟩ 2 {3,7}

It is the end of this step!
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�������� �������� ��������
Episode Support ID

⟨ � ⟩ 5 #1 

⟨ � ⟩ 3 #2 

⟨ �  ⟩ 2 #3 

⟨ �, b ⟩ 2 #4

Step 5: A unique identifier is given to each 
parallel episode



Then, the input sequence is re-encoded using these 
identifiers:

�������� �������� ��������
Episode Support ID

⟨ � ⟩ 5 #1 

⟨ � ⟩ 3 #2 

⟨ �  ⟩ 2 #3 

⟨ �, b ⟩ 2 #4

s  =   ⟨( �, � , 1),   � , 2), ( �, � , 3), ( � , 6), ( �, � , 7),
( � , 8), ( � , 9), ( � , 11)⟩ 



Then, the input sequence is re-encoded using these 
identifiers:

�������� �������� ��������
Episode Support ID

⟨ � ⟩ 5 #1 

⟨ � ⟩ 3 #2 

⟨ �  ⟩ 2 #3 

⟨ �, b ⟩ 2 #4

S  =  ⟨( #1#3 , 1), ( #1 , 2), ( #1, #2, #4 , 3), ( #1 , 6), 
( #1, #2, #4 , 7), ( #3 , 8), ( #2 , 9)⟩

s  =   ⟨( �, � , 1),   � , 2), ( �, � , 3), ( � , 6), ( �, � , 7),
( � , 8), ( � , 9), ( � , 11)⟩ 



Then, the input sequence is re-encoded using these 
identifiers:

�������� �������� ��������
Episode Support ID

⟨ � ⟩ 5 #1 

⟨ � ⟩ 3 #2 

⟨ �  ⟩ 2 #3 

⟨ �, b ⟩ 2 #4

S  =  ⟨( #1#3 , 1), ( #1 , 2), ( #1, #2, #4 , 3), ( #1 , 6), 
( #1, #2, #4 , 7), ( #3 , 8), ( #2 , 9)⟩

s  =   ⟨( �, � , 1),   � , 2), ( �, � , 3), ( � , 6), ( �, � , 7),
( � , 8), ( � , 9), ( � , 11)⟩ Note: By this process, 

infrequent events are ignored



At the same time, a «bound-list» structure is created for 
each parallel episode:

�������� �������� ��������
Episode Support ID Bound-list

⟨ � ⟩ 5 #1  [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 #2 

⟨ �  ⟩ 2 #3 

⟨ �, b ⟩ 2 #4

S  =  ⟨( #1#3 , 1), ( #1 , 2), ( #1, #2, #4 , 3), ( #1 , 6), 
( #1, #2, #4 , 7), ( #3 , 8), ( #2 , 9)⟩

The bound-list of episode ⟨ � ⟩ indicates a list of time 
intervals where ⟨ � ⟩ appears in the input sequence



At the same time, a «bound-list» structure is created for 
each parallel episode:

�������� �������� ��������
Episode Support ID Bound-list

⟨ � ⟩ 5 #1  [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 #2 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 #3 [1,1], [8,8]

⟨ �, b ⟩ 2 #4 [3,3], [7,7]

S  =  ⟨( #1#3 , 1), ( #1 , 2), ( #1, #2, #4 , 3), ( #1 , 6), 
( #1, #2, #4 , 7), ( #3 , 8), ( #2 , 9)⟩



Step 6: Find Frequent Composite episodes

64

The frequent parallel episodes that we have until now are also 
composite episodes:

Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

The algorithm recursively appends a parallel episode to a 
composite episode to create larger composite episode.
This process is called serial extension --> 
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Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]
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Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

⟨ � .  a ⟩
∩
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Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

⟨ � .  a ⟩ [1,2], [2,3], [6,7]
∩

The bound list of ⟨ � .  a ⟩ is created by intersecting that of  ⟨ � ⟩ and ⟨ � ⟩.  
Note: Because winlen = 2, some intervals are not considered like [1,3] and [1,6]
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Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

⟨ � .  a ⟩ 3 [1,2], [2,3], [6,7]
∩

The size of the bound list of ⟨ � .  a ⟩
is 3. Thus, its support is 3 and it is frequent! 
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Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

⟨ a .  a ⟩ 3 [1,2], [2,3], [6,7]



70

Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

⟨ a .  a ⟩ 3 [1,2], [2,3], [6,7]

⟨ � .  b ⟩

∩
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Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

⟨ a .  a ⟩ 3 [1,2], [2,3], [6,7]

⟨ � .  b ⟩ 2 [2,3],[6,7]
∩
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Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

⟨ a .  a ⟩ 3 [1,2], [2,3], [6,7]

⟨ � .  b ⟩ 2 [2,3],[6,7]
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Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

⟨ a .  a ⟩ 3 [1,2], [2,3], [6,7]

⟨ � .  b ⟩ 2 [2,3],[6,7]

⟨ � .  c ⟩ 1 [7,8]

∩
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Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

⟨ a .  a ⟩ 3 [1,2], [2,3], [6,7]

⟨ � .  b ⟩ 2 [2,3],[6,7]

⟨ � .  c ⟩ 1 [7,8]
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Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

⟨ a .  a ⟩ 3 [1,2], [2,3], [6,7]

⟨ � .  b ⟩ 2 [2,3],[6,7]
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Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

⟨ a .  a ⟩ 3 [1,2], [2,3], [6,7]

⟨ � .  b ⟩ 2 [2,3],[6,7]

⟨ � .  a, b ⟩ 2 [2,3],[6,7]

∩
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Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

⟨ a .  a ⟩ 3 [1,2], [2,3], [6,7]

⟨ � .  b ⟩ 2 [2,3],[6,7]

⟨ � .  a, b ⟩ 2 [2,3],[6,7]
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Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ �  ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

⟨ a .  a ⟩ 3 [1,2], [2,3], [6,7]

⟨ � .  b ⟩ 2 [2,3],[6,7]

⟨ � .  a, b ⟩ 2 [2,3],[6,7]

Then, this process 
continue recursively 
to try:

⟨ � ⟩
⟨ � ,  a[⟩
⟨ � ,  b[⟩
⟨ � ,  c[⟩

             ⟨ � ,  a, b]⟩
              ⟨ a ,  a ,  a ⟩
              ....



Final result
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The result is this set of frequent (composite) episodes:

Episode Support

⟨ � ⟩ 5

⟨ � ⟩ 3

⟨ �  ⟩ 2

⟨ �, b ⟩ 2

⟨ �, � ⟩ 2

⟨ � ,  � ⟩ 2

⟨ � ,  �, � ⟩ 2

⟨ � ,  � ⟩ 3



Observations

• EMMA first finds parallel episodes and then 
combines them to make composite episodes.

• EMMA reduces the search space by not 
extending the infrequent episodes.

• Generally, EMMA is a quite fast algorithm.
• An improved version is called AFEM.

80



DISCOVERING MAXIMAL EPISODES

(THE MAXFEM ALGORITHM)

81

Fournier-Viger, P., Nawaz, M. S., He, Y., Wu, Y., Nouioua, F., Yun, U. (2022). MaxFEM: Mining 
Maximal Frequent Episodes in Complex Event Sequences. Proc. of the 15th Multi-disciplinary 
International Conference on Artificial Intelligence (MIWAI 2022), pp. 86-98, Springer LNAI.



Limitation of FEM
• FEM algorithms can find millions of episodes!
• For each frequent episode, all the sub-episodes 

are often also frequent.
milk   bread  orange,
milk   bread,
milk                   orange

   bread  orange  
 milk
                          bread
                                             orange



A solution

• Discover only the maximal episodes.
• A frequent episode � is maximal if it is not a 

subsequence of another frequent episode �.
• Benefit: much less episodes and most of the 

information is preserved.
• How to deal with the more general case of 

finding maximal episodes in a complex 
sequence?



Example
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Parameters
������ = 2
������ = 2

Episode Support Maximal?

⟨ �, � ⟩ 2 No

⟨ � ,  � ⟩ 2 No

⟨ � ,  �, � ⟩ 2 Yes

⟨ � ,  � ⟩ 3 No

⟨ � ⟩ 5 No

⟨ � ⟩ 3 No

⟨ �  ⟩ 2 Yes

��������
 ��������

����� ��������



The MaxFEM algorithm

• An algorithm: MaxFEM 
(Maximal Frequent Episode Mining)
– To find the maximal frequent episodes
– Extends the EMMA algorithm
– Applies techniques to keep only maximal 

episodes and some optimizations
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• Step 1: Count the support of each event
• Step 2: Keep only the frequent events
• Step 3: Create the location list of each 

frequent event
• Step 4: Find frequent parallel episodes
• Step 5: Re-encode the input sequence and 

create bound-lists
• Step 6:  Find composite episodes (this step is 

modified)

The process is similar to EMMA



Step 6: Find Frequent Composite episodes

• During the search, to find the maximal episodes:
– A set W stores the episodes that are currently 

maximal.
– When a new episode � is found:

•Sub-episode checking:
       If � is included in an episode � already in W, 
       then � is not added to W.
•Super-episode checking:
        If an episode � from W is included in �, 
        then � is removed from W



Step 6: Finding Frequent Composite episodes

Result: 

Episode Support

⟨ c  ⟩ 2

⟨ a ,  a, b  ⟩ 2

������� �������� ��������



Optimization 1
EFE: Efficient Filtering of Non-maximal episodes

MaxFEM implements W  as a List of heaps

W1 W2 W3 … WnW = 

The k-th list entry contains episodes of size k

This allows to perform super-episode checking and sub-
episode checking only with smaller and larger patterns
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W1 W2 W3 … WnW = 

• The sum of events in each pattern is calculated.
• Each heap orders patterns by decreasing sum of events.
• For each pattern Sa found and pattern Sb in Zk,  if sum(Sa) 

< sum(Sa) we don’t need to perform super-episode 
checking with Wb and any following patterns in Wk.

• Similar for sub-episode-checking 90

Optimization 1
EFE: Efficient Filtering of Non-maximal episodes



W1 W2 W3 … WnW = 

• Support check optimization:
• A pattern cannot be contained in another pattern if its 

support is smaller.
• A pattern cannot contain another pattern if its support 

is larger.
91

Optimization 1
EFE: Efficient Filtering of Non-maximal episodes



Two more optimizations
• Strategy 2. Skip Extension checking (SEC)

– If a frequent episode ep is extended by serial 
extension to form another frequent episode, 
then it is unnecessary to do super-episode and 
sub-episode checking for ep because it is not 
maximal.

• Strategy 3. Temporal pruning (TP).
– When creating a bound-list, if at any point the 

number of remaining elements is not enough to 
satisfy minsup, the construction of the bound-
list is stopped.



Experiments

• Two benchmark datasets:  

• Compared algorithms:
– MaxFEM
– EMMA

• Setup:
– Java,  Windows 11, laptop with Core i7-8565U processor, 16GB RAM
– Experiment: Winlen ∈  5,  10,  15    and minsup is varied 
– A 300 second time limit



Two main observations:
• Much less maximal episodes than frequent episodes

   e.g.  694 maximal episodes vs 2,583  episodes  on Kosarak for minsup = 20,000
• MaxFEM is about 10% to 40% faster than EMMA (thanks to optimizations)



Conclusion on maximal episodes

• Finding maximal episodes can reduce the 
number of episodes presented to the user

• MaxFEM is an algorithm for maximal episode 
mining for the general case of a complex 
event sequence and with the head frequency 
support function

• A version of MaxFEM to find all frequent 
episodes is called AFEM.

• There also exists other algorithms to find other 
compact representations of episodes such as 
closed episodes.



EPISODE RULE MINING
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Episode Rule Mining

• Applying an algorithm such as EMMA, TKE or 
MINEPI will find frequent episodes.

• These patterns may be interesting because 
they appear frequently in data.

• However, they may be of limited use to do 
prediction.

• A solution:  Combine episodes to create rules, 
called episode rules.

*



Episode Rule Mining

• Basic idea: Take pairs of frequent episodes ∝ 
and �  and try to combine them to generate a 
rule of the form:
      ∝→ �

• For example: ����� → ����, �������
         support = 100   confidence = 75%
 

This rule means that someone buying bread will 
75% of the time buy milk and noodles afterward.
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DISCOVERING THE TOP-K MOST 
FREQUENT EPISODES
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Limitation of FEM
• To find frequent episodes, it is necessary to set a 

parameter called the minimum support 
threshold (minsup).

– This threshold is usually set by trial and error.
• Setting the threshold is unintuitive.

– If the value is too high, no frequent episodes are 
found.

– If the value is too low, millions of episodes may be 
found, and runtime and memory usage may greatly 
increase.



A solution

• The TKE algorithm to discover the top-k most 
frequent episodes.

• The user sets a parameter k instead of minsup.
• The algorithm directly returns the top-k 

episodes.

The TKE 
Algorithm

user

Input: a sequence
k= 3, winlen= 2

Output: The 3 most 
frequent episodes



Example
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Parameters
������ = 2

� = 3
Episode Support

⟨ � ,  � ⟩ 3

⟨ � ⟩ 5

⟨ � ⟩ 3

Top-k  episodes

����� ��������



The TKE algorithm

• TKE (Top-K Episode mining)
– To find the top-k frequent episodes
– Extends the EMMA algorithm
– Key idea: start to search using an internal 

minsup value of 1, and then gradually 
increase the threshold when k episodes 
have been found.

– Several optimizations
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HIGH-UTILITY EPISODE MINING
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High Utility Episode Mining 

�����: 

A(1)

C(1)
B(3)

C(1)
A(2)

1
2 3

4

D(1)
B(2)

D(1)

5

Event A B C D

Profit 2 1 3 2

A event sequence A unit profit table

�������  : minimum utility threhold
������ : maximum time duration 

������: 
High utility episodes (with utility ≥ ������� & duration ≤ ������)

Episode Minimal Occurrences Utility

< (BC), (AC), (D) > [3, 5] 15

<(B), (BC), (AC)> [2, 4] 15

<(BD), (BC), (AC)> [2, 4] 17

<(D), (BC), (AC)> [2, 4] 15

If set ������� = 15 and ������ = 3, HUEs are:  



CONCLUSION
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Conclusion

• There are many algorithms for episode mining and 
several variations of this task.

• Episode mining and episode rule mining are taks 
sfor analyzing a single sequence of events with 
timestamps.

• This is different from sequential pattern mining 
and sequential rule mining, which focus on 
analyzing multiple sequences (and that typically do 
not have timestamps).
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Source code and datasets available in the 
SPMF open-source data mining library
http://www.philippe-fournier-viger.com/spmf/ 

http://www.philippe-fournier-viger.com/spmf/

