
Philippe Fournier-Viger
http://www.philippe-Fournier-viger.com

An Introduction to
Episode Mining

1Source code and datasets available in the SPMF library

http://www.philippe-fournier-viger.com/
http://www.philippe-fournier-viger.com/spmf/

Introduction

• Data Mining: the goal is to discover or extract useful
knowledge from data.

• Many types of data can be analyzed:
– graphs,
– relational databases,
– time series, sequences, etc.

• In this presentation, we focus on episode mining, that is
how to find interesting patterns in a single, long sequence
of events.

2

Event types

• We have a set of different event types
� = �1, �2, …, ��

• For example: � = �, �, �, �

buy
apple

buy
bread

buy
cake

buy
dattes

Event set
• An event set � is a set of events that have occurred at the same time.

Formally, � ⊆ �.

• Example 1: {a,b} is an event set indicating that someone has bought
apple and bread at the same time.

• Example 1: {b, c, d} is an event set indicating that someone has bought
bread, cake and dates at the same time.

It is an event set of size 3

It is an event set of size 2

Event sequence

An event sequence is an ordered list of event pairs
S = ⟨(SEt1, t1), (SEt2, t2), . . . , (SEtn, tn)⟩ where for any i,
���� ⊆ � is the set of events observed at time ��.

Example 1:

s = ⟨(�, � , 1), � , 2), (�, � , 3), (� , 6), (�, � , 7),
(� , 8), (� , 9), (� , 11)⟩

Event sequence

6

Event sequences can model various types of data
such as:

– alarm sequences,
– cloud data,
– network data,
– stock data,
– malicious attacks,
– movements, and customer transactions.

The goal of Episode Mining

Given a sequence of events,

we want to discover subsequences of events that appear
frequently (i.e. frequent episodes)

The goal of Episode Mining

For example, we may find that apple is bought many times

The goal of Episode Mining

Or that cake is frequently bought shortly before buying bread

The goal of Episode Mining

Or that cake is frequently bought shortly before buying bread

To give a clearer definition, we need to define:
• what is an episode?
• how do we count the support of an episode

(how many times it appears in an event sequence)?

Episode

11

A (composite) episode ∝ = ⟨X1, X2, . . . ��⟩ is a list of
event sets ordered by time, that is for any integers 1 ≤
 � < � ≤ p, Xi appeared before Xj .

Example: ∝ = ⟨ � , a, b , c ⟩

 Apple was purchased. Then, apple and bread were
bought at the same time, and then cake was
purchased.

(the general case)

Parallel episode

12

(all events appeared at the same time)

A parallel episode ∝ = ⟨X⟩ is an episode that
contains a single event set (� ⊆ �).
Thus all events have appeared simultaneously
It can be written as ∝ = X.

Example: X = {a, b}

 Apple and bread were bought together
 (at the same time)

Serial episode

13

A serial episode ∝ = ⟨X1, X2, . . . ��⟩ is a list of event
sets where each event set contains a single event.

Example: ∝ = ⟨ � , b , c ⟩

 Apple was purchased. Then, bread was bought, and
then cake was purchased.

How to count episodes?
• There are different ways (functions) for counting

the support of episodes:
– windows-based frequency
– head support (head frequency),
– total frequency,
– non interleaved frequency,
– minimal-occurrences based frequency
– ...

• All these ways of counting may give different
results.

 I will explain the head support -->
14

Occurrence of an episode

15

An occurrence of an episode ∝ = ⟨X1, X2, . . . ��⟩
 in a sequence S = ⟨(SEt1, t1), (SEt2, t2), . . . , (SEtn, tn)⟩
is a time interval [ts, te] in which the episode appears.

Formally, it means that there exists integers
 ts = z1 < z2 < . . . < zw = te
such that X1 ⊆ SEz1, X2 ⊆ SEz2, ... , Xp ⊆ SEzw

Occurrence of an episode

16

An occurrence of an episode ∝ = ⟨X1, X2, . . . ��⟩
 in a sequence S = ⟨(SEt1, t1), (SEt2, t2), . . . , (SEtn, tn)⟩
is a time interval [ts, te] in which the episode appears.

Formally, it means that there exists integers
 ts = z1 < z2 < . . . < zw = te
such that X1 ⊆ SEz1, X2 ⊆ SEz2, ... , Xp ⊆ SEzw

Example: The episode ∝ = ⟨ a , a, b ⟩ has an
occurrence in time interval [1,3] of sequence:

Occurrence of an episode

17

An occurrence of an episode ∝ = ⟨X1, X2, . . . ��⟩
 in a sequence S = ⟨(SEt1, t1), (SEt2, t2), . . . , (SEtn, tn)⟩
is a time interval [ts, te] in which the episode appears.

Formally, it means that there exists integers
 ts = z1 < z2 < . . . < zw = te
such that X1 ⊆ SEz1, X2 ⊆ SEz2, ... , Xp ⊆ SEzw

Example: The episode ∝ = ⟨ a , a, b ⟩ has an
occurrence in time interval [1,7] of sequence:

Occurrence of an episode

18

An occurrence of an episode ∝ = ⟨X1, X2, . . . ��⟩
 in a sequence S = ⟨(SEt1, t1), (SEt2, t2), . . . , (SEtn, tn)⟩
is a time interval [ts, te] in which the episode appears.

Formally, it means that there exists integers
 ts = z1 < z2 < . . . < zw = te
such that X1 ⊆ SEz1, X2 ⊆ SEz2, ... , Xp ⊆ SEzw

Example: The episode ∝ = ⟨ a , a, b ⟩ has an
occurrence in time interval [2,3] of sequence:

Occurrence of an episode

19

An occurrence of an episode ∝ = ⟨X1, X2, . . . ��⟩
 in a sequence S = ⟨(SEt1, t1), (SEt2, t2), . . . , (SEtn, tn)⟩
is a time interval [ts, te] in which the episode appears.

Formally, it means that there exists integers
 ts = z1 < z2 < . . . < zw = te
such that X1 ⊆ SEz1, X2 ⊆ SEz2, ... , Xp ⊆ SEzw

Example: The episode ∝ = ⟨ a , a, b ⟩ has an
occurrence in time interval [2,7] of sequence:

Occurrence of an episode

20

An occurrence of an episode ∝ = ⟨X1, X2, . . . ��⟩
 in a sequence S = ⟨(SEt1, t1), (SEt2, t2), . . . , (SEtn, tn)⟩
is a time interval [ts, te] in which the episode appears.

Formally, it means that there exists integers
 ts = z1 < z2 < . . . < zw = te
such that X1 ⊆ SEz1, X2 ⊆ SEz2, ... , Xp ⊆ SEzw

Example: The episode ∝ = ⟨ a , a, b ⟩ has an
occurrence in time interval [3,7] of sequence:

Occurrence of an episode

21

An occurrence of an episode ∝ = ⟨X1, X2, . . . ��⟩
 in a sequence S = ⟨(SEt1, t1), (SEt2, t2), . . . , (SEtn, tn)⟩
is a time interval [ts, te] in which the episode appears.

Formally, it means that there exists integers
 ts = z1 < z2 < . . . < zw = te
such that X1 ⊆ SEz1, X2 ⊆ SEz2, ... , Xp ⊆ SEzw

Example: The episode ∝ = ⟨ a , a, b ⟩ has an
occurrence in time interval [6,7] of sequence:

All occurrences of an episode

The set of all occurrences of an episode ∝ in a
sequence is denoted as occSet(∝).

22

Example: The set of all occurrences of episode
 ∝ = ⟨ a , a, b ⟩ is
 occSet(∝) = [1,3], [1,7], [2,3], [2,7], [3,7], [6,7] .

Head support

23

The (head) support an episode ∝ in a sequence is the
number of distinct start times for its occurrences.
i.e. sup(∝)=| ts|[ts,te]∈ ������(∝) |

.

Thus, sup(∝) = | 1, 2, 3, 6 | = 4

Example: The set of all occurrences of episode
 ∝ = ⟨ a , a, b ⟩ is
 occSet(∝) = [1,3], [1,7], [2,3], [2,7], [3,7], [6,7] .

Head support with window

• To avoid counting occurrences that span a very long period
of times, we can introduce a user-defined parameter
������ > 0.

• Then, we cound only occurrences that have a duration
smaller than ������ time.

Example: Consider the episode ∝ = ⟨ a , �, � ⟩
 If ������ = �, then
 occSet(∝) = [1,3], [1,7], [2,3], [2,7], [3,7], [6,7] .

Thus, sup(∝) = | 1, 2, 3, 6 | = 4
24

Head support with window

• To avoid counting occurrences that span a very long period
of times, we can introduce a user-defined parameter
������ > 0.

• Then, we cound only occurrences that have a duration
smaller than ������ time.

Example: Consider the episode ∝ = ⟨ a , �, � ⟩
 If ������ = �, then

occSet(∝) = [1,3], [1,7], [2,3], [2,7], [3,7], [6,7] .

Thus, sup(∝) = | 2, 6 | = 2

25

Frequent episode mining

26

Two parameters: ������ = 2, ������ = 2

�����: �� ����� ��������

Frequent episode mining

27

Two parameters : ������ = 2, ������ = 2

Episode Support

⟨ �, � ⟩ 2

⟨ � , � ⟩ 2

⟨ � , �, � ⟩ 2

⟨ � , � ⟩ 3

��� ��� �������� �������� (������� ≥ ������)

�����: �� ����� ��������

������:
Episode Support

⟨ � ⟩ 5

⟨ � ⟩ 3

⟨ � ⟩ 2

How to find frequent episodes?

• There is a very large number of possible episodes.
• For only four items (a, b, c, d):
⟨ � ⟩, ⟨ b ⟩, ⟨ c ⟩, ⟨ d ⟩, ⟨ a, � ⟩, ⟨ a, � ⟩, ⟨ �, � ⟩, ...
⟨ �, �, �, � ⟩, . . . ⟨ a , � ⟩, ⟨ a , � ⟩, ⟨ � , � ⟩,
⟨ a , � ⟩, ⟨ � , � , �, � ⟩, ⟨ � , �, � ⟩,⟨ � , �, � ⟩ ,...
⟨ � , �, �, � ⟩ . . .
...
• Generally, if a sequence has n events, there could be up to

�� - 1 distinct episodes.
• Thus, we need efficient algorithms that will not explore

the whole search space to find the solution (the frequent
episodes that we want to discover).

28

Algorithms
• Many algorithms such as:

– WINEPI (1995): breadth-first search, window-based
support

– MINEPI (1995): breadth-first search, minimal
occurrences-based frequency

– EMMA and MINEPI+ (2008): depth-first search, head
support

– TKE (2019): find the top-k most frequent episodes
– AFEM, MaxFEM (2022): improved version of EMMA,

can find the maximal episodes...

• They use different definitions of support, various
data structures and search strategies

Algorithms

• Some algorithms can only analyze simple sequences (a
sequence without simultaneous events).

• Some algorithms can analyze complex sequences (the
general case).

30

⟨ � ⟩, ⟨ b ⟩, ⟨ c ⟩⟩

⟨ a, b, c ⟩, ⟨ b, c ⟩, ⟨ c ⟩⟩

THE EMMA ALGORITHM

31

Kuo-Yu Huang,Chia-Hui Chang (2008). Efficient mining of frequent episodes from complex
sequences.Inf. Syst.33(1):96-114

The EMMA algorithm

• Proposed Huang et al. (2008)
• The first algorithm to use the head support.
• An efficient algorithm
• Performs a depth-first search to find the

frequent episodes.
• Uses a vertical data structure.

• We will look at how it works with an example.

32

Example

33

The parameters: ������ = 2, ������ = 2

�����: �� ����� ��������

Step 1: Scan the sequence fo count the support
of each event

34

Episode Support

⟨ � ⟩ 5

⟨ � ⟩ 3

⟨ � ⟩ 2

⟨ d ⟩ 1

������

Step 2: Keep only the frequent events
(events with a support ≥ minsup = 2)

35

Episode Support

⟨ � ⟩ 5

⟨ � ⟩ 3

⟨ � ⟩ 2

⟨ d ⟩ 1

�������� ������

Step 3: Create the Location List of each
frequent event

36

Create a location list for each frequent event

 Note: for any episode �, we have|�������(�)| = sup (�)

Episode Support location list

⟨ � ⟩ 5 �������(�) = 1, 2, 3, 6, 7

⟨ � ⟩ 3 �������(�) = 3, 7, 9

⟨ � ⟩ 2 �������(�) = 1, 8

37

Create a location list for each frequent event

 Note: for any episode �, we have|�������(�)| = sup (�)

Episode Support location list

⟨ � ⟩ 5 �������(�) = �, �, �, �, �

⟨ � ⟩ 3 �������(�) = 3, 7, 9

⟨ � ⟩ 2 �������(�) = 1, 8

Step 3: Create the Location List of each
frequent event

38

Create a location list for each frequent event

 Note: for any episode �, we have|�������(�)| = sup (�)

Episode Support location list

⟨ � ⟩ 5 �������(�) = 1, 2, 3, 6, 7

⟨ � ⟩ 3 �������(�) = �, �, �

⟨ � ⟩ 2 �������(�) = 1, 8

Step 3: Create the Location List of each
frequent event

39

Create a location list for each frequent event

 Note: for any episode �, we have|�������(�)| = sup (�)

Episode Support location list

⟨ � ⟩ 5 �������(�) = �, �, �, �, �

⟨ � ⟩ 3 �������(�) = 3, 7, 9

⟨ � ⟩ 2 �������(�) = �, �

Step 3: Create the Location List of each
frequent event

Step 4: Find the Frequent Parallel Episodes

40

• Recursively combine frequent events to create
parallel episodes with their locations lists.

• Keep only the parallel episodes that are frequent

�������� ������

Episode location list

⟨ � ⟩ 1, 2, 3, 6, 7

⟨ � ⟩ 3, 7, 9

⟨ � ⟩ 1, 8

Step 4: Find the Frequent Parallel Episodes

41

First, all the frequent events are frequent parallel
episodes.

�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5 1, 2, 3, 6, 7

⟨ � ⟩ 3 3, 7, 9

⟨ � ⟩ 2 1, 8

�������� ������

Episode location list

⟨ � ⟩ 1, 2, 3, 6, 7

⟨ � ⟩ 3, 7, 9

⟨ � ⟩ 1, 8

Step 4: Find the Frequent Parallel Episodes

42

Next, the algorithm combines frequent parallel episodes
with frequent events to create more parallel episodes, and
keep only the frequent episodes.

�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5 1, 2, 3, 6, 7

⟨ � ⟩ 3 3, 7, 9

⟨ � ⟩ 2 1, 8

�������� ������

Episode location list

⟨ � ⟩ 1, 2, 3, 6, 7

⟨ � ⟩ 3, 7, 9

⟨ � ⟩ 1, 8

43

�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5 1, 2, 3, 6, 7

⟨ � ⟩ 3 3, 7, 9

⟨ � ⟩ 2 1, 8

⟨ a, b ⟩

�������� ������

Episode location list

⟨ � ⟩ 1, 2, 3, 6, 7

⟨ � ⟩ �, �, 9

⟨ � ⟩ 1, 8

∩

• ⟨ � ⟩ and ⟨ b ⟩ are combined to get ⟨ a, b ⟩

44

�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5 1, 2, 3, 6, 7

⟨ � ⟩ 3 3, 7, 9

⟨ � ⟩ 2 1, 8

⟨ a, b ⟩ {3,7}

�������� ������

Episode location list

⟨ � ⟩ 1, 2, 3, 6, 7

⟨ � ⟩ �, �, 9

⟨ � ⟩ 1, 8

∩

• The location list of ⟨ a, b ⟩ is the intersection of the
locations lists of ⟨ � ⟩ and ⟨ b ⟩.

45

�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5 1, 2, 3, 6, 7

⟨ � ⟩ 3 3, 7, 9

⟨ � ⟩ 2 1, 8

⟨ a, b ⟩ 2 {3,7}

�������� ������

Episode location list

⟨ � ⟩ 1, 2, 3, 6, 7

⟨ � ⟩ �, �, 9

⟨ � ⟩ 1, 8

∩

• The support of ⟨ a, b ⟩ is the number of elements in its
location list. It is 2.

• Because 2 ≥ ������, ⟨ a, b ⟩ is frequent and it is kept.

46

�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5 1, 2, 3, 6, 7

⟨ � ⟩ 3 3, 7, 9

⟨ � ⟩ 2 1, 8

⟨ a, b ⟩ 2 {3,7}

�������� ������

Episode location list

⟨ � ⟩ 1, 2, 3, 6, 7

⟨ � ⟩ 3, 7, 9

⟨ � ⟩ 1, 8

47

�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5 1, 2, 3, 6, 7

⟨ � ⟩ 3 3, 7, 9

⟨ � ⟩ 2 1, 8

⟨ �, b ⟩ 2 {3,7}
⟨ �, c ⟩

�������� ������

Episode location list

⟨ � ⟩ �, 2, 3, 6, 7

⟨ � ⟩ 3, 7, 9

⟨ � ⟩ �, 8
∩

• The algorithm continue combining frequent events with
frequent parallel episodes to make more parallel
episodes.

• ⟨ � ⟩ and ⟨ c ⟩ are combined to obtain ⟨ a, c ⟩

48

�������� �������� ��������
Episode Support location list

⟨ a ⟩ 5 �, 2, 3, 6, 7

⟨ b ⟩ 3 3, 7, 9

⟨ c ⟩ 2 1, 8

⟨ a, b ⟩ 2 {3,7}
⟨ a, c ⟩ {1}

�������� ������

Episode location list

⟨ � ⟩ 1, 2, 3, 6, 7

⟨ � ⟩ 3, 7, 9

⟨ � ⟩ �, 8
∩

• The location list of ⟨ a, c ⟩ is the intersection of the
locations lists of ⟨ � ⟩ and ⟨ c ⟩.

49

�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5 �, 2, 3, 6, 7

⟨ � ⟩ 3 3, 7, 9

⟨ � ⟩ 2 1, 8

⟨ �, b ⟩ 2 {3,7}
⟨ �, c ⟩ 1 {1}

�������� ������

Episode location list

⟨ � ⟩ 1, 2, 3, 6, 7

⟨ � ⟩ 3, 7, 9

⟨ � ⟩ �, 8
∩

• The support of ⟨ a, c ⟩ is the number of elements in its
location list. It is 1.

50

�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5 �, 2, 3, 6, 7

⟨ � ⟩ 3 3, 7, 9

⟨ � ⟩ 2 1, 8

⟨ �, b ⟩ 2 {3,7}
⟨ �, c ⟩ 1 {1}

�������� ������

Episode location list

⟨ � ⟩ 1, 2, 3, 6, 7

⟨ � ⟩ 3, 7, 9

⟨ � ⟩ �, 8
∩

• The support of ⟨ a, c ⟩ is the number of elements in its
location list. It is 1.

• Because 1 < ������, ⟨ a, c ⟩ is infrequent and it is
discarded.

51

�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5 1, 2, 3, 6, 7

⟨ � ⟩ 3 3, 7, 9

⟨ � ⟩ 2 1, 8

⟨ �, b ⟩ 2 {3,7}

�������� ������

Episode location list

⟨ � ⟩ �, 2, 3, 6, 7

⟨ � ⟩ 3, 7, 9

⟨ � ⟩ �, 8

• This process is repeated until no more parallel
episodes can be generated

52

�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5 1, 2, 3, 6, 7

⟨ � ⟩ 3 3, 7, 9

⟨ � ⟩ 2 1, 8

⟨ �, b ⟩ 2 {3,7}

⟨ b, c ⟩ 0 {}

�������� ������

Episode location list

⟨ � ⟩ �, 2, 3, 6, 7

⟨ � ⟩ 3, 7, 9

⟨ � ⟩ �, 8

• This process is repeated until no more parallel
episodes can be generated

• Next ⟨ b, c ⟩ is created.

∩

53

�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5 1, 2, 3, 6, 7

⟨ � ⟩ 3 3, 7, 9

⟨ � ⟩ 2 1, 8

⟨ �, b ⟩ 2 {3,7}

⟨ b, c ⟩ 0 {}

�������� ������

Episode location list

⟨ � ⟩ �, 2, 3, 6, 7

⟨ � ⟩ 3, 7, 9

⟨ � ⟩ �, 8

• This process is repeated until no more parallel
episodes can be generated

• Next ⟨ b, c ⟩ is created.
• But it is infrequent.

∩

54

�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5 1, 2, 3, 6, 7

⟨ � ⟩ 3 3, 7, 9

⟨ � ⟩ 2 1, 8

⟨ �, b ⟩ 2 {3,7}

�������� ������

Episode location list

⟨ � ⟩ �, 2, 3, 6, 7

⟨ � ⟩ 3, 7, 9

⟨ � ⟩ �, 8

• Next ⟨ a, b, c ⟩ is created.

55

�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5 1, 2, 3, 6, 7

⟨ � ⟩ 3 3, 7, 9

⟨ � ⟩ 2 1, 8

⟨ �, b ⟩ 2 {3,7}

⟨ a, b, c ⟩ 0 {}

�������� ������

Episode location list

⟨ � ⟩ �, 2, 3, 6, 7

⟨ � ⟩ 3, 7, 9

⟨ � ⟩ �, 8

• Next ⟨ a, b, c ⟩ is created.
• But it is infrequent.

∩

56

�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5 1, 2, 3, 6, 7

⟨ � ⟩ 3 3, 7, 9

⟨ � ⟩ 2 1, 8

⟨ �, b ⟩ 2 {3,7}

⟨ a, b, c ⟩ 0 {}

�������� ������

Episode location list

⟨ � ⟩ �, 2, 3, 6, 7

⟨ � ⟩ 3, 7, 9

⟨ � ⟩ �, 8

• This process is repeated until no more parallel
episodes can be generated

• Next ⟨ b, c ⟩ is created.
• But it is infrequent.

∩

57

�������� �������� ��������
Episode Support location list

⟨ � ⟩ 5 1, 2, 3, 6, 7

⟨ � ⟩ 3 3, 7, 9

⟨ � ⟩ 2 1, 8

⟨ �, b ⟩ 2 {3,7}

It is the end of this step!

58

�������� �������� ��������
Episode Support ID

⟨ � ⟩ 5 #1

⟨ � ⟩ 3 #2

⟨ � ⟩ 2 #3

⟨ �, b ⟩ 2 #4

Step 5: A unique identifier is given to each
parallel episode

Then, the input sequence is re-encoded using these
identifiers:

�������� �������� ��������
Episode Support ID

⟨ � ⟩ 5 #1

⟨ � ⟩ 3 #2

⟨ � ⟩ 2 #3

⟨ �, b ⟩ 2 #4

s = ⟨(�, � , 1), � , 2), (�, � , 3), (� , 6), (�, � , 7),
(� , 8), (� , 9), (� , 11)⟩

Then, the input sequence is re-encoded using these
identifiers:

�������� �������� ��������
Episode Support ID

⟨ � ⟩ 5 #1

⟨ � ⟩ 3 #2

⟨ � ⟩ 2 #3

⟨ �, b ⟩ 2 #4

S = ⟨(#1#3 , 1), (#1 , 2), (#1, #2, #4 , 3), (#1 , 6),
(#1, #2, #4 , 7), (#3 , 8), (#2 , 9)⟩

s = ⟨(�, � , 1), � , 2), (�, � , 3), (� , 6), (�, � , 7),
(� , 8), (� , 9), (� , 11)⟩

Then, the input sequence is re-encoded using these
identifiers:

�������� �������� ��������
Episode Support ID

⟨ � ⟩ 5 #1

⟨ � ⟩ 3 #2

⟨ � ⟩ 2 #3

⟨ �, b ⟩ 2 #4

S = ⟨(#1#3 , 1), (#1 , 2), (#1, #2, #4 , 3), (#1 , 6),
(#1, #2, #4 , 7), (#3 , 8), (#2 , 9)⟩

s = ⟨(�, � , 1), � , 2), (�, � , 3), (� , 6), (�, � , 7),
(� , 8), (� , 9), (� , 11)⟩ Note: By this process,

infrequent events are ignored

At the same time, a «bound-list» structure is created for
each parallel episode:

�������� �������� ��������
Episode Support ID Bound-list

⟨ � ⟩ 5 #1 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 #2

⟨ � ⟩ 2 #3

⟨ �, b ⟩ 2 #4

S = ⟨(#1#3 , 1), (#1 , 2), (#1, #2, #4 , 3), (#1 , 6),
(#1, #2, #4 , 7), (#3 , 8), (#2 , 9)⟩

The bound-list of episode ⟨ � ⟩ indicates a list of time
intervals where ⟨ � ⟩ appears in the input sequence

At the same time, a «bound-list» structure is created for
each parallel episode:

�������� �������� ��������
Episode Support ID Bound-list

⟨ � ⟩ 5 #1 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 #2 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 #3 [1,1], [8,8]

⟨ �, b ⟩ 2 #4 [3,3], [7,7]

S = ⟨(#1#3 , 1), (#1 , 2), (#1, #2, #4 , 3), (#1 , 6),
(#1, #2, #4 , 7), (#3 , 8), (#2 , 9)⟩

Step 6: Find Frequent Composite episodes

64

The frequent parallel episodes that we have until now are also
composite episodes:

Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

The algorithm recursively appends a parallel episode to a
composite episode to create larger composite episode.
This process is called serial extension -->

65

Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

66

Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

⟨ � . a ⟩
∩

67

Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

⟨ � . a ⟩ [1,2], [2,3], [6,7]
∩

The bound list of ⟨ � . a ⟩ is created by intersecting that of ⟨ � ⟩ and ⟨ � ⟩.
Note: Because winlen = 2, some intervals are not considered like [1,3] and [1,6]

68

Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

⟨ � . a ⟩ 3 [1,2], [2,3], [6,7]
∩

The size of the bound list of ⟨ � . a ⟩
is 3. Thus, its support is 3 and it is frequent!

69

Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

⟨ a . a ⟩ 3 [1,2], [2,3], [6,7]

70

Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

⟨ a . a ⟩ 3 [1,2], [2,3], [6,7]

⟨ � . b ⟩

∩

71

Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

⟨ a . a ⟩ 3 [1,2], [2,3], [6,7]

⟨ � . b ⟩ 2 [2,3],[6,7]
∩

72

Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

⟨ a . a ⟩ 3 [1,2], [2,3], [6,7]

⟨ � . b ⟩ 2 [2,3],[6,7]

73

Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

⟨ a . a ⟩ 3 [1,2], [2,3], [6,7]

⟨ � . b ⟩ 2 [2,3],[6,7]

⟨ � . c ⟩ 1 [7,8]

∩

74

Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

⟨ a . a ⟩ 3 [1,2], [2,3], [6,7]

⟨ � . b ⟩ 2 [2,3],[6,7]

⟨ � . c ⟩ 1 [7,8]

75

Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

⟨ a . a ⟩ 3 [1,2], [2,3], [6,7]

⟨ � . b ⟩ 2 [2,3],[6,7]

76

Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

⟨ a . a ⟩ 3 [1,2], [2,3], [6,7]

⟨ � . b ⟩ 2 [2,3],[6,7]

⟨ � . a, b ⟩ 2 [2,3],[6,7]

∩

77

Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

⟨ a . a ⟩ 3 [1,2], [2,3], [6,7]

⟨ � . b ⟩ 2 [2,3],[6,7]

⟨ � . a, b ⟩ 2 [2,3],[6,7]

78

Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

Parallel episodes

Composite episodes
Episode Support Bound-list

⟨ � ⟩ 5 [1,1], [2,2], [3,3], [6,6], [7,7]

⟨ � ⟩ 3 [3,3], [7,7], [9,9]

⟨ � ⟩ 2 [1,1], [8,8]

⟨ �, b ⟩ 2 [3,3], [7,7]

⟨ a . a ⟩ 3 [1,2], [2,3], [6,7]

⟨ � . b ⟩ 2 [2,3],[6,7]

⟨ � . a, b ⟩ 2 [2,3],[6,7]

Then, this process
continue recursively
to try:

⟨ � ⟩
⟨ � , a[⟩
⟨ � , b[⟩
⟨ � , c[⟩

 ⟨ � , a, b]⟩
 ⟨ a , a , a ⟩

Final result

79

The result is this set of frequent (composite) episodes:

Episode Support

⟨ � ⟩ 5

⟨ � ⟩ 3

⟨ � ⟩ 2

⟨ �, b ⟩ 2

⟨ �, � ⟩ 2

⟨ � , � ⟩ 2

⟨ � , �, � ⟩ 2

⟨ � , � ⟩ 3

Observations

• EMMA first finds parallel episodes and then
combines them to make composite episodes.

• EMMA reduces the search space by not
extending the infrequent episodes.

• Generally, EMMA is a quite fast algorithm.
• An improved version is called AFEM.

80

DISCOVERING MAXIMAL EPISODES

(THE MAXFEM ALGORITHM)

81

Fournier-Viger, P., Nawaz, M. S., He, Y., Wu, Y., Nouioua, F., Yun, U. (2022). MaxFEM: Mining
Maximal Frequent Episodes in Complex Event Sequences. Proc. of the 15th Multi-disciplinary
International Conference on Artificial Intelligence (MIWAI 2022), pp. 86-98, Springer LNAI.

Limitation of FEM
• FEM algorithms can find millions of episodes!
• For each frequent episode, all the sub-episodes

are often also frequent.
milk  bread  orange,
milk  bread,
milk  orange

 bread  orange
 milk
 bread
 orange

A solution

• Discover only the maximal episodes.
• A frequent episode � is maximal if it is not a

subsequence of another frequent episode �.
• Benefit: much less episodes and most of the

information is preserved.
• How to deal with the more general case of

finding maximal episodes in a complex
sequence?

Example

84

Parameters
������ = 2
������ = 2

Episode Support Maximal?

⟨ �, � ⟩ 2 No

⟨ � , � ⟩ 2 No

⟨ � , �, � ⟩ 2 Yes

⟨ � , � ⟩ 3 No

⟨ � ⟩ 5 No

⟨ � ⟩ 3 No

⟨ � ⟩ 2 Yes

��������
 ��������

����� ��������

The MaxFEM algorithm

• An algorithm: MaxFEM
(Maximal Frequent Episode Mining)
– To find the maximal frequent episodes
– Extends the EMMA algorithm
– Applies techniques to keep only maximal

episodes and some optimizations

85

86

• Step 1: Count the support of each event
• Step 2: Keep only the frequent events
• Step 3: Create the location list of each

frequent event
• Step 4: Find frequent parallel episodes
• Step 5: Re-encode the input sequence and

create bound-lists
• Step 6: Find composite episodes (this step is

modified)

The process is similar to EMMA

Step 6: Find Frequent Composite episodes

• During the search, to find the maximal episodes:
– A set W stores the episodes that are currently

maximal.
– When a new episode � is found:

•Sub-episode checking:
 If � is included in an episode � already in W,
 then � is not added to W.
•Super-episode checking:
 If an episode � from W is included in �,
 then � is removed from W

Step 6: Finding Frequent Composite episodes

Result:

Episode Support

⟨ c ⟩ 2

⟨ a , a, b ⟩ 2

������� �������� ��������

Optimization 1
EFE: Efficient Filtering of Non-maximal episodes

MaxFEM implements W as a List of heaps

W1 W2 W3 … WnW =

The k-th list entry contains episodes of size k

This allows to perform super-episode checking and sub-
episode checking only with smaller and larger patterns

89

W1 W2 W3 … WnW =

• The sum of events in each pattern is calculated.
• Each heap orders patterns by decreasing sum of events.
• For each pattern Sa found and pattern Sb in Zk, if sum(Sa)

< sum(Sa) we don’t need to perform super-episode
checking with Wb and any following patterns in Wk.

• Similar for sub-episode-checking 90

Optimization 1
EFE: Efficient Filtering of Non-maximal episodes

W1 W2 W3 … WnW =

• Support check optimization:
• A pattern cannot be contained in another pattern if its

support is smaller.
• A pattern cannot contain another pattern if its support

is larger.
91

Optimization 1
EFE: Efficient Filtering of Non-maximal episodes

Two more optimizations
• Strategy 2. Skip Extension checking (SEC)

– If a frequent episode ep is extended by serial
extension to form another frequent episode,
then it is unnecessary to do super-episode and
sub-episode checking for ep because it is not
maximal.

• Strategy 3. Temporal pruning (TP).
– When creating a bound-list, if at any point the

number of remaining elements is not enough to
satisfy minsup, the construction of the bound-
list is stopped.

Experiments

• Two benchmark datasets:

• Compared algorithms:
– MaxFEM
– EMMA

• Setup:
– Java, Windows 11, laptop with Core i7-8565U processor, 16GB RAM
– Experiment: Winlen ∈ 5, 10, 15 and minsup is varied
– A 300 second time limit

Two main observations:
• Much less maximal episodes than frequent episodes

 e.g. 694 maximal episodes vs 2,583 episodes on Kosarak for minsup = 20,000
• MaxFEM is about 10% to 40% faster than EMMA (thanks to optimizations)

Conclusion on maximal episodes

• Finding maximal episodes can reduce the
number of episodes presented to the user

• MaxFEM is an algorithm for maximal episode
mining for the general case of a complex
event sequence and with the head frequency
support function

• A version of MaxFEM to find all frequent
episodes is called AFEM.

• There also exists other algorithms to find other
compact representations of episodes such as
closed episodes.

EPISODE RULE MINING

96

Mannila, H., Toivonen, H., Verkamo, A.I.: Discovering frequent episodes in sequences. In: Proc. 1st
Int. Conf. on Knowledge Discovery and Data Mining

Ao, X., Luo, P., Wang, J., Zhuang, F., He, Q.: Mining precise-positioning episode rules from event
sequences. IEEE Transactions on Knowledge and Data Engineer_x0002_ing 30(3), 530–543 (2017)

Fahed, L., Brun, A., Boyer, A.: Deer: Distant and essential episode rules for early
prediction. Expert Systems with Applications 93, 283–298 (2018)

Fournier-Viger, P., Chen, Y., Nouioua, F., Lin, J. C.-W. (2021). Mining Partially-Ordered Episode
Rules in an Event Sequence. Proc. of the 13th Asian Conference on Intelligent Information and
Database Systems (ACIIDS 2021), Springer LNAI, pp 3-15

Ouarem, O., Nouioua, F., Fournier-Viger, P. (2021). Mining Episode Rules From Event Sequences
Under Non-Overlapping Frequency. Proc. 34th Intern. Conf. on Industrial, Engineering and Other
Applications of Applied Intelligent Systems (IEA AIE 2021), Springer LNAI, pp. 73-85

Chen, Y., Fournier-Viger, P., Nouioua, F., Wu, Y.. (2021). Sequence Prediction using Partially-
Ordered Episode Rules. Proc. 4th International Workshop on Utility-Driven Mining (UDML 2021), in
conjunction with the ICDM 2021 conference, IEEE ICDM workshop proceedings
....

Episode Rule Mining

• Applying an algorithm such as EMMA, TKE or
MINEPI will find frequent episodes.

• These patterns may be interesting because
they appear frequently in data.

• However, they may be of limited use to do
prediction.

• A solution: Combine episodes to create rules,
called episode rules.

*

Episode Rule Mining

• Basic idea: Take pairs of frequent episodes ∝
and � and try to combine them to generate a
rule of the form:
 ∝→ �

• For example: ����� → ����, �������
 support = 100 confidence = 75%

This rule means that someone buying bread will
75% of the time buy milk and noodles afterward.

98

DISCOVERING THE TOP-K MOST
FREQUENT EPISODES

99

Fournier-Viger, P., Wang, Y., Yang, P., Lin, J. C.-W., Yun, U. (2020). TKE: Mining Top-K Frequent
Episodes. Proc. 33rd Intern. Conf. on Industrial, Engineering and Other Applications of Applied
Intelligent Systems (IEA AIE 2020), Springer LNCS , pp. 832-845.

Limitation of FEM
• To find frequent episodes, it is necessary to set a

parameter called the minimum support
threshold (minsup).

– This threshold is usually set by trial and error.
• Setting the threshold is unintuitive.

– If the value is too high, no frequent episodes are
found.

– If the value is too low, millions of episodes may be
found, and runtime and memory usage may greatly
increase.

A solution

• The TKE algorithm to discover the top-k most
frequent episodes.

• The user sets a parameter k instead of minsup.
• The algorithm directly returns the top-k

episodes.

The TKE
Algorithm

user

Input: a sequence
k= 3, winlen= 2

Output: The 3 most
frequent episodes

Example

102

Parameters
������ = 2

� = 3
Episode Support

⟨ � , � ⟩ 3

⟨ � ⟩ 5

⟨ � ⟩ 3

Top-k episodes

����� ��������

The TKE algorithm

• TKE (Top-K Episode mining)
– To find the top-k frequent episodes
– Extends the EMMA algorithm
– Key idea: start to search using an internal

minsup value of 1, and then gradually
increase the threshold when k episodes
have been found.

– Several optimizations

103

HIGH-UTILITY EPISODE MINING

104

Wu, C., Lin, Y., Yu, P.S., Tseng, V.S.: Mining high utility episodes in complex event sequences. In:
Proc. 19th ACM SIGKDD Int. Conf. on Knowl. Discovery. pp. 536–544 (2013)

Guo, G., Zhang, L., Liu, Q., Chen, E., Zhu, F., Guan, C.: High utility episode mining made practical
and fast. In: Proc. 10th Int. Conf. on Advanced Data Mining and Applications. pp. 71–84 (2014)

Rathore, S., Dawar, S., Goyal, V., Patel, D.: Top-k high utility episode mining from a complex event
sequence. In: Proc. 21st Int. Conf. on Management of Data. pp. 56–63 (2016)

Fournier-Viger, P., Yang, P., Lin, J. C.-W., Yun, U. (2019). HUE-SPAN: Fast High Utility Episode
Mining. Proc. 14th Intern. Conference on Advanced Data Mining and Applications (ADMA 2019)
Springer LNAI, pp. 169-184.

... etc.

High Utility Episode Mining

�����:

A(1)

C(1)
B(3)

C(1)
A(2)

1
2 3

4

D(1)
B(2)

D(1)

5

Event A B C D

Profit 2 1 3 2

A event sequence A unit profit table

������� : minimum utility threhold
������ : maximum time duration

������:
High utility episodes (with utility ≥ ������� & duration ≤ ������)

Episode Minimal Occurrences Utility

< (BC), (AC), (D) > [3, 5] 15

<(B), (BC), (AC)> [2, 4] 15

<(BD), (BC), (AC)> [2, 4] 17

<(D), (BC), (AC)> [2, 4] 15

If set ������� = 15 and ������ = 3, HUEs are:

CONCLUSION

106

Conclusion

• There are many algorithms for episode mining and
several variations of this task.

• Episode mining and episode rule mining are taks
sfor analyzing a single sequence of events with
timestamps.

• This is different from sequential pattern mining
and sequential rule mining, which focus on
analyzing multiple sequences (and that typically do
not have timestamps).

107

Source code and datasets available in the
SPMF open-source data mining library
http://www.philippe-fournier-viger.com/spmf/

http://www.philippe-fournier-viger.com/spmf/

