Frequent Itemset Mining and The Apriori algorithm

Philippe Fournier-Viger
http://www.philippe-Fournier-viger.com

Source code and datasets available in the SPMF library
Introduction

- Many retail stores collect data about customers.
- e.g. customer transactions
- Need to analyze this data to understand customer behavior
- Why?
 - for marketing purposes,
 - inventory management,
 - customer relationship management
Introduction

Discovering patterns and associations

- Discovering interesting relationships hidden in large databases.
- e.g. beer and diapers are often sold together
- pattern mining is a fundamental data mining problem with many applications in various fields.
- Introduced by Agrawal (1993).
- Many extensions of this problem to discover patterns in graphs, sequences, and other kinds of data.
FREQUENT ITEMSET MINING
Definitions

Let $I = \{I_1, I_2, \ldots, I_m\}$ be the set of items (products) sold in a retail store.

For example:

$I = \{\text{pasta, lemon, bread, orange, cake}\}$
Definitions

A **transaction database** \mathcal{D} is a set of transactions. $\mathcal{D} = \{T_1, T_2, \ldots, T_r\}$ such that $T_a \subseteq I \ (1 \leq a \leq r)$.

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items appearing in the transaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>{pasta, lemon, bread, orange}</td>
</tr>
<tr>
<td>T2</td>
<td>{pasta, lemon}</td>
</tr>
<tr>
<td>T3</td>
<td>{pasta, orange, cake}</td>
</tr>
<tr>
<td>T4</td>
<td>{pasta, lemon, orange, cake}</td>
</tr>
</tbody>
</table>
Definitions

Each transaction has a unique identifier called its **Transaction ID** (TID).

e.g. the transaction ID of T_4 is 4.

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items appearing in the transaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>{pasta, lemon, bread, orange}</td>
</tr>
<tr>
<td>T_2</td>
<td>{pasta, lemon}</td>
</tr>
<tr>
<td>T_3</td>
<td>{pasta, orange, cake}</td>
</tr>
<tr>
<td>T_4</td>
<td>{pasta, lemon, orange, cake}</td>
</tr>
</tbody>
</table>
Definitions

A transaction is a set of items (an itemset).

E.g. \(T_2 = \{ \text{pasta, lemon} \} \)

An item (a symbol) may not appear or appear once in each transaction. Each transaction is unordered.

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items appearing in the transaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_1)</td>
<td>{pasta, lemon, bread, orange}</td>
</tr>
<tr>
<td>(T_2)</td>
<td>{pasta, lemon}</td>
</tr>
<tr>
<td>(T_3)</td>
<td>{pasta, orange, cake}</td>
</tr>
<tr>
<td>(T_4)</td>
<td>{pasta, lemon, orange, cake}</td>
</tr>
</tbody>
</table>
A transaction database can be viewed as a binary matrix:

<table>
<thead>
<tr>
<th>Transaction</th>
<th>pasta</th>
<th>lemon</th>
<th>bread</th>
<th>orange</th>
<th>cake</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>T2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>T4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

• Asymetrical binary attributes (because 1 is more important than 0)
• There is no information about purchase quantities and prices.
Definitions

Let \(I \) be the set of all items:

\[
I = \{ \text{pasta, lemon, bread, orange, cake} \}
\]

There are \(2^{|I|} - 1 = 2^5 - 1 = 31 \) subsets:

\[
\text{\{pasta\}, \{lemon\}, \{bread\}, \{orange\}, \{cake\}}
\]

\[
\text{\{pasta, lemon\}, \{pasta, bread\} \{pasta, orange\}, \{pasta, cake\}, \{lemon, bread\}, \{lemon orange\}, \{lemon, cake\}, \{bread, orange\}, \{bread cake\}}
\]

\[\ldots\]

\[
\text{\{pasta, lemon, bread, orange, cake\}}
\]
Definitions

An itemset is said to be of size k, if it contains k items.

Itemsets of size 1:
{pasta}, {lemon}, {bread}, {orange}, {cake}

Itemsets of size 2:
{pasta, lemon}, {pasta, bread}, {pasta, orange}, {pasta, cake}, {lemon, bread}, {lemon orange}, …
Definitions

The **support (frequency)** of an itemset X is the number of transactions that contains X.

$$\text{sup}(X) = |\{T \mid X \subseteq T \land T \in D\}|$$

For example: The support of $\{\text{pasta, orange}\}$ is 3.

which is written as: $\text{sup}(\{\text{pasta, orange}\}) = 3$

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items appearing in the transaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>${\text{pasta, lemon, bread, orange}}$</td>
</tr>
<tr>
<td>T_2</td>
<td>${\text{pasta, lemon}}$</td>
</tr>
<tr>
<td>T_3</td>
<td>${\text{pasta, orange, cake}}$</td>
</tr>
<tr>
<td>T_4</td>
<td>${\text{pasta, lemon, orange, cake}}$</td>
</tr>
</tbody>
</table>

support = 支持
Definitions

The support of an itemset X can also be written as a ratio (absolute support).

Example: The support of \{pasta, orange\} is 75% because it appears in 3 out of 4 transactions.

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items appearing in the transaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>{pasta, lemon, bread, orange}</td>
</tr>
<tr>
<td>T2</td>
<td>{pasta, lemon}</td>
</tr>
<tr>
<td>T3</td>
<td>{pasta, orange, cake}</td>
</tr>
<tr>
<td>T4</td>
<td>{pasta, lemon, orange, cake}</td>
</tr>
</tbody>
</table>
The problem of frequent itemset mining

- Let there be a numerical value \minsup, set by the user.
- Frequent itemset mining (FIM) consists of enumerating all frequent itemsets, that is itemsets having a support greater or equal to \minsup.

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items appearing in the transaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>{pasta, lemon, bread, orange}</td>
</tr>
<tr>
<td>T2</td>
<td>{pasta, lemon}</td>
</tr>
<tr>
<td>T3</td>
<td>{pasta, orange, cake}</td>
</tr>
<tr>
<td>T4</td>
<td>{pasta, lemon, orange, cake}</td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items appearing in the transaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>{pasta, lemon, bread, orange}</td>
</tr>
<tr>
<td>T2</td>
<td>{pasta, lemon}</td>
</tr>
<tr>
<td>T3</td>
<td>{pasta, orange, cake}</td>
</tr>
<tr>
<td>T4</td>
<td>{pasta, lemon, orange cake}</td>
</tr>
</tbody>
</table>

For $\minsup = 2$, the frequent itemsets are:

{lemon}, {pasta}, {orange}, {cake}, {lemon, pasta}, {lemon, orange}, {pasta, orange}, {pasta, cake}, {orange, cake}, {lemon, pasta, orange}

For the user, choosing a high \minsup value,
- will reduce the number of frequent itemsets,
- will increase the speed and decrease the memory required for finding the frequent itemsets.
Numerous applications

Frequent itemset mining has numerous applications.

- medical applications,
- chemistry,
- biology,
- e-learning,
- etc.
Several algorithms

- Algorithms:
 - **Apriori**, AprioriTID (1993)
 - Eclat (1997)
 - **FPGrowth** (2000)
 - Hmine (2001)
 - LCM, ...
 - ...

- Moreover, numerous extensions of the FIM problem: uncertain data, fuzzy data, purchase quantities, profit, weight, time, rare itemsets, closed itemsets, etc.
ALGORITHMS
Naïve approach

- If there are n items in a database, there are $2^n - 1$ itemsets may be frequent.
- **Naïve approach**: count the support of all these itemsets.
- To do that, we would need to read each transaction in the database to count the support of each itemset.
- This would be inefficient:
 - need to perform too many comparisons
 - requires too much memory
Search space

This is all the itemsets that can be formed with the items lemon (l), pasta (p), bread (b), orange (o) and cake (c)

\[
\emptyset \\
\{l\} \\
\{p\} \\
\{b\} \\
\{o\} \\
\{c\} \\
\{lp\} \\
\{lb\} \\
\{lo\} \\
\{lc\} \\
\{pb\} \\
\{po\} \\
\{pc\} \\
\{bo\} \\
\{bc\} \\
\{oc\} \\
\{lpb\} \\
\{lpboc\} \\
\{lpo\} \\
\{lpc\} \\
\{lbo\} \\
\{lbc\} \\
\{loc\} \\
\{pbo\} \\
\{pbc\} \\
\{poc\} \\
\{boc\} \\
\{lpbo\} \\
\{lpbc\} \\
\{lpoc\} \\
\{lbcoc\} \\
\{pbo\} \\
\{pbc\} \\
\{poc\} \\
\{boc\} \\
\{lpboc\}
\]

This form a lattice, which can be viewed as a Hasse diagram

l = lemon
p = pasta
b = bread
0 = orange
c = cake
If minsup = 2, the frequent itemsets are (in yellow):

- l = lemon
- p = pasta
- b = bread
- o = orange
- c = cake
\(I = \{ A \} \)

\(I = \{ A, B \} \)

\(I = \{ A, B, C \} \)

\(I = \{ A, B, C, D \} \)

\(I = \{ A, B, C, D, E \} \)

\(I = \{ A, B, C, D, E, F \} \)
How to find the frequent itemsets?

Two challenges:

- How to count the support of itemsets in an efficient way (not spend too much time or memory)?
- How to reduce the search space (we do not want to consider all the possibilities)?
THE APRIORI ALGORITHM (AGRAWAL & SRIKANT, 1993/1994)

Introduction

Apriori is a famous algorithm

- which is not the most efficient algorithm,
- but has inspired many other algorithms!
- has been applied in many fields,
- has been adapted for many other similar problems.

Apriori is based on two important properties
Apriori property: Let there be two itemsets X and Y. If $X \subseteq Y$, the support of Y is less than or equal to the support of X.

Example:
- The support of \{pasta\} is 4
- The support of \{pasta, lemon\} is 3
- The support of \{pasta, lemon, orange\} is 2

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items appearing in the transaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>{pasta, lemon, bread, orange}</td>
</tr>
<tr>
<td>T2</td>
<td>{pasta, lemon}</td>
</tr>
<tr>
<td>T3</td>
<td>{pasta, orange, cake}</td>
</tr>
<tr>
<td>T4</td>
<td>{pasta, lemon, orange, cake}</td>
</tr>
</tbody>
</table>

(support is anti-monotonic)
Illustration

\[\text{mins} \text{sup} = 2 \]

frequent itemsets

infrequent itemsets
This property is useful to reduce the search space.

Example:

\[\text{minsup} = 2 \]
This property is useful to reduce the search space.

Example:

If “bread” is infrequent, all its supersets are infrequent.

\[\text{minsup} = 2 \]
Property 2: Let there be an itemset Y. If there exists an itemset $X \subset Y$ such that X is infrequent, then Y is infrequent.

Example:
- Consider $\{bread, lemon\}$.
- If we know that $\{bread\}$ is infrequent, then we can infer that $\{bread, lemon\}$ is also infrequent.

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items appearing in the transaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>{pasta, lemon, bread, orange}</td>
</tr>
<tr>
<td>T2</td>
<td>{pasta, lemon}</td>
</tr>
<tr>
<td>T3</td>
<td>{pasta, orange, cake}</td>
</tr>
<tr>
<td>T4</td>
<td>{pasta, lemon, orange, cake}</td>
</tr>
</tbody>
</table>
The Apriori algorithm

- I will now explain how the Apriori algorithm works

Input:
- \(\text{minsup} \)
- a transactional database

Output:
- all the frequent itemsets

Consider \(\text{minsup} = 2 \).
The Apriori algorithm

Step 1: scan the database to calculate the support of all itemsets of size 1.

E.g.

- \{pasta\} support = 4
- \{lemon\} support = 3
- \{bread\} support = 1
- \{orange\} support = 3
- \{cake\} support = 2
The Apriori algorithm

Step 2: eliminate infrequent itemsets.

e.g.

- \{pasta\} support = 4
- \{lemon\} support = 3
- \{bread\} support = 1
- \{orange\} support = 3
- \{cake\} support = 2
The Apriori algorithm

Step 2: eliminate infrequent itemsets.

e.g.

- \{pasta\} support = 4
- \{lemon\} support = 3
- \{orange\} support = 3
- \{cake\} support = 2
The Apriori algorithm

Step 3: generate candidates of size 2 by combining pairs of frequent itemsets of size 1.

Frequent items:
- \{pasta\}
- \{lemon\}
- \{orange\}
- \{cake\}

Candidates of size 2:
- \{pasta, lemon\}
- \{pasta, orange\}
- \{pasta, cake\}
- \{lemon, orange\}
- \{lemon, cake\}
- \{orange, cake\}
The Apriori algorithm

Step 4: Eliminate candidates of size 2 that have an infrequent subset (Property 2)

(none!)

Frequent items

- {pasta}
- {lemon}
- {orange}
- {cake}

Candidates of size 2

- {pasta, lemon}
- {pasta, orange}
- {pasta, cake}
- {lemon, orange}
- {lemon, cake}
- {orange, cake}
The Apriori algorithm

Step 5: scan the database to calculate the support of remaining candidate itemsets of size 2.

Candidates of size 2

- \{pasta, lemon\} support: 3
- \{pasta, orange\} support: 3
- \{pasta, cake\} support: 2
- \{lemon, orange\} support: 2
- \{lemon, cake\} support: 1
- \{orange, cake\} support: 2
The Apriori algorithm

Step 6: eliminate infrequent candidates of size 2

Candidates of size 2

\{pasta, lemon\} support: 3
\{pasta, orange\} support: 3
\{pasta, cake\} support: 2
\{lemon, orange\} support: 2
\{lemon, cake\} support: 1
\{orange, cake\} support: 2
The Apriori algorithm

Step 6: eliminate infrequent candidates of size 2

Frequent itemsets of size 2

- \{pasta, lemon\} support: 3
- \{pasta, orange\} support: 3
- \{pasta, cake\} support: 2
- \{lemon, orange\} support: 2
- \{orange, cake\} support: 2
The Apriori algorithm

Step 7: generate candidates of size 3 by combining frequent pairs of itemsets of size 2.

Frequent itemsets of size 2

- \{pasta, lemon\}
- \{pasta, orange\}
- \{pasta, cake\}
- \{lemon, orange\}
- \{orange, cake\}

Candidates of size 3

- \{pasta, lemon, orange\}
- \{pasta, lemon, cake\}
- \{pasta, orange, cake\}
- \{lemon, orange, cake\}
The Apriori algorithm

Step 8: eliminate candidates of size 3 having a subset of size 2 that is infrequent.

Frequent itemsets of size 2

\{pasta, lemon\}
\{pasta, orange\}
\{pasta, cake\}
\{lemon, orange\}
\{orange, cake\}

Candidates of size 3

\{pasta, lemon, orange\}
\{pasta, lemon, cake\}
\{pasta, orange, cake\}
\{lemon, orange, cake\}

Because \{lemon, cake\} is infrequent!
Step 8: eliminate candidates of size 3 having a subset of size 2 that is infrequent.

Frequent itemsets of size 2

\{pasta, lemon\}
\{pasta, orange\}
\{pasta, cake\}
\{lemon, orange\}
\{orange, cake\}

Candidates of size 3

\{pasta, lemon, orange\}
\{pasta, orange, cake\}

Because \{lemon, cake\} is infrequent!
Step 9: scan the database to calculate the support of the remaining candidates of size 3.

Candidates of size 2

\{pasta, lemon, orange\} support: 2
\{pasta, orange, cake\} support: 2
The Apriori algorithm

Step 10: eliminate infrequent candidates (none!)

frequent itemsets of size 3

{pasta, lemon, orange} support: 2
{pasta, orange, cake} support: 2
Step 11: generate candidates of size 4 by combining pairs of frequent itemsets of size 3.

Frequent itemsets of size 3

\{pasta, lemon, orange\}

\{pasta, orange, cake\}

Candidates of size 4

\{pasta, lemon, orange, cake\}
The Apriori algorithm

Step 12: eliminate candidates of size 4 having a subset of size 3 that is infrequent.

Frequent itemsets of size 3

\{pasta, lemon, orange\}

\{pasta, orange, cake\}

Candidates of size 4

\{pasta, lemon, orange, cake\}
The Apriori algorithm

Step 12: Since there is no more candidates, we cannot generate candidates of size 5 and the algorithm stops.

Candidates of size 4

\{\text{pasta, lemon, orange, cake}\}
Final result

{pasta} support = 4
{lemon} support = 3
{orange} support = 3
{cake} support = 2

{pasta, lemon} support: 3
{pasta, orange} support: 3
{pasta, cake} support: 2
{lemon, orange} support: 2
{orange, cake} support: 2

{pasta, lemon, orange} support: 2
{pasta, orange, cake} support: 2
Technical details

Combining different itemsets can generate the same candidate.

Example:

\{A, B\} \text{ and } \{A, E\} \rightarrow \{A, B, E\}

\{B, E\} \text{ and } \{A, E\} \rightarrow \{A, B, E\}

problem: some candidates are generated several times!
Technical details

Combining different itemsets can generate the same candidate.

Example:

\{A, B\} \text{ and } \{A, E\} \rightarrow \{A, B, E\}

\{B, E\} \text{ and } \{A, E\} \rightarrow \{A, B, E\}

Solution:
• Sort items in each itemsets (e.g. by alphabetical order)
• Combine two itemsets only if all items are the same except the last one.
Apriori vs the naïve algorithm

- The Apriori property can considerably reduce the number of itemsets to be considered.

- In the previous example:
 - Naïve approach:
 \[2^5 - 1 = 31\] itemsets are considered
 - By using the Apriori property:
 18 itemsets are considered
PERFORMANCE COMPARISON
How to evaluate this type of algorithms?

- Execution time,
- Memory used,
- Scalability: how the performance is influenced by the number of transactions
- Performance on different types of data:
 - real data,
 - synthetic (fake) data,
 - dense vs sparse data,…
- …
Performance (execution time)

"Chess" dataset

Note: Eclat ran out of memory at 0.8
Performance (execution time)
Performance of Apriori

The performance of Apriori depends on several factors:

- **the minsup parameter**: the more it is set low, the larger the search space and the number of itemsets will be.
- **the number of items**, **the number of transactions**, **The average transaction length**.
Problems of Apriori

- can generate numerous candidates
- requires to scan the database numerous times.
- candidates may not exist in the database.
- …
A FEW OPTIMIZATIONS FOR THE APRIORI ALGORITHM

This is an advanced topic
Optimization 1

In terms of data structure:

- Store all items as integers:
 - e.g. 1 = pasta, 2 = orange, 3 = bread...

- Why?
 - it is faster to compare two integers than to compare two character strings,
 - requires less memory.
Optimization 2

To reduce the time required to calculate the support of itemsets

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items appearing in the transaction</th>
<th>sort transactions by ascending length</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>{pasta, lemon}</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>{pasta, orange, cake}</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>{pasta, lemon, orange, cake}</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>{pasta, lemon, bread, orange}</td>
<td></td>
</tr>
</tbody>
</table>

- To calculate the support of an itemset of size k, only the transactions of size $\geq k$ are used.
Optimization 3

To reduce the time required to calculate the support of itemsets

• Replace all identical transactions by a single transactions with a weight.
Optimization 4

To reduce the time require to calculate the support of itemsets:

- Sort items in transactions according to a total order (e.g. alphabetical order).
- Utilize binary search to quickly check if an item appears in a transaction.
Optimization 5

- Store candidates in a hash tree
- To calculate the support of candidates
 - Calculate a hash value based on a transaction to determine if candidates are contained in the transaction.
Other optimizations

- Sampling and partitioning
AprioriTID: a variation

AprioriTID:

- Annotate each itemset with the ids of transactions that contain it,
- Use the intersection (\cap) to calculate the support of itemsets instead of reading the database.

Example →
<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items appearing in the transaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>{pasta, lemon, bread, orange}</td>
</tr>
<tr>
<td>T2</td>
<td>{pasta, lemon}</td>
</tr>
<tr>
<td>T3</td>
<td>{pasta, orange, cake}</td>
</tr>
<tr>
<td>T4</td>
<td>{pasta, lemon, orange, cake}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>item</th>
<th>transactions containing the item</th>
</tr>
</thead>
<tbody>
<tr>
<td>pasta</td>
<td>T1, T2, T3, T4</td>
</tr>
<tr>
<td>lemon</td>
<td>T1, T2, T3</td>
</tr>
<tr>
<td>bread</td>
<td>T1</td>
</tr>
<tr>
<td>orange</td>
<td>T1, T3, T4</td>
</tr>
<tr>
<td>cake</td>
<td>T3, T4</td>
</tr>
<tr>
<td>item</td>
<td>transactions containing the item</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>pasta</td>
<td>T1, T2, T3, T4</td>
</tr>
<tr>
<td>lemon</td>
<td>T1, T2, T4</td>
</tr>
<tr>
<td>bread</td>
<td>T1</td>
</tr>
<tr>
<td>orange</td>
<td>T1, T3, T4</td>
</tr>
<tr>
<td>cake</td>
<td>T3, T4</td>
</tr>
</tbody>
</table>

Example: calculating the support of \{pasta, lemon\}:

\[
\text{transactions(\{pasta\})} \cap \text{transactions(\{lemon\})} = \{T1, T2, T3, T4\} \cap \{T1, T2, T4\} = \{T1, T2, T4\}
\]

Thus \{pasta, lemon\} has a support of 3
AprioriTID_Bitset

AprioriTID_bitset:

- Same idea, except that bit vectors are used instead of lists of ids.
- This allows to calculate the intersection using the `Logical_AND`, which is often very fast.

Example →
<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items appearing in the transaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>{pasta, lemon, bread, orange}</td>
</tr>
<tr>
<td>T2</td>
<td>{pasta, lemon}</td>
</tr>
<tr>
<td>T3</td>
<td>{pasta, orange, cake}</td>
</tr>
<tr>
<td>T4</td>
<td>{pasta, lemon, orange, cake}</td>
</tr>
</tbody>
</table>

Transaction containing the item:

<table>
<thead>
<tr>
<th>item</th>
<th>transactions containing the item</th>
</tr>
</thead>
<tbody>
<tr>
<td>pasta</td>
<td>1111 (representing T1,T2,T3,T4)</td>
</tr>
<tr>
<td>lemon</td>
<td>1101</td>
</tr>
<tr>
<td>bread</td>
<td>1000</td>
</tr>
<tr>
<td>orange</td>
<td>1011</td>
</tr>
<tr>
<td>cake</td>
<td>0011</td>
</tr>
</tbody>
</table>
Example: Calculate the support of \{pasta, lemon\}:

\[
\text{transactions}\left(\{\text{pasta}\}\right) \land \text{transactions}\left(\{\text{lemon}\}\right) \\
= 1111 \text{ LOGICAL_AND } 1101 \\
= 1101
\]

Thus \{pasta, lemon\} has a support of 3
Conclusion

This video has presented:

- The problem of frequent itemset mining
- The **Apriori** algorithm
- Some optimizations
References

- …