

An Introduction to Sequential Pattern Mining

Philippe Fournier-Viger http://www.philippe-Fournier-viger.com

Fournier-Viger, P., Lin, J. C.-W., Kiran, R. U., Koh, Y. S., Thomas, R. (2017). <u>A</u> <u>Survey of Sequential Pattern Mining</u>. Data Science and Pattern Recognition (DSPR), vol. 1(1), pp. 54-77.

Source code and datasets available in the SPMF library

Introduction

- **Data Mining**: the goal is to discover or extract useful knowledge from data.
- Many types of data can be analyzed: graphs, relational databases, time series, sequences, etc.
- In this presentation, we focus on analyzing a common type of data called **discrete** sequences to find interesting patterns in it.

What is a discrete sequence?

A **sequence** is an ordered list of symbols.

Example 1: a sequence can be the items that are purchased by a customer over time:

What is a discrete sequence?

A **sequence** is an ordered list of symbols.

Example 2: a sequence can be the list of words in a sentence:

What is a discrete sequence?

A **sequence** is an ordered list of symbols.

Example 3: a sequence can be the list of locations visited by a car in a city

Sequential Pattern Mining

- It is a popular data mining task, introduced in 1994 by Agrawal & Srikant.
- The goal is to find all subsequences that appear frequently in a set of discrete sequences.

• For example:

- find sequences of items purchased by many customers over time,
- find sequences of locations frequently visited by tourists in a city,
- Find sequences of words that appear frequently in a text.

Definition: Items

Let there be a **set** of **items** (symbols) called *I*.

Example: $I = \{a, b, c, d, e\}$

Definition: Itemset

An itemset is a set of **items** that is a subset of *I*.

Example: {*a*, *b*, *c*} is an itemset containing 3 items

{d, e} is an itemset containing 2 items

- Note: an itemset cannot contain a same item twice.
- An itemset having *k* items is called a *k-itemset*.

Definition: Sequence

A **discrete sequence** *S* is a an ordered list of itemsets $S = \langle X_1, X_2, ..., X_n \rangle$ where $X_j \subseteq I$ for any $j \in \{1, 2...n\}$

Example 1: $\langle \{a, b\}, \{c\} \rangle$ is a sequence containing two itemsets.

It means that a customer purchased *apple* and *bread* at the same time and then purchased *cake*.

Example 2: $\langle \{a\}, \{a\}, \{c\} \rangle$

Definition: Subsequence (⊑)

Let there be two sequences: $S_A = \langle A_1, A_2, ..., A_r \rangle$ and $S_B = \langle B_1, B_2, ..., B_t \rangle$. The sequence S_A is a subsequence of S_B if and only if there exists r integers $1 \le i1 < i2 < \cdots < ir \le t$ such that $A_1 \subseteq B_{i1}, A_2 \subseteq B_{i2}, ..., A_r \subseteq B_{ir}$.

This is denoted as $S_A \sqsubseteq S_B$

Examples:

 $\langle \{a, c\} \rangle \sqsubseteq \langle \{a, b, c\} \rangle$ $\langle \{a, c\} \rangle \gneqq \langle \{a\}, \{c\} \rangle$ $\langle \{a\}, \{c\} \rangle \sqsubseteq \langle \{a, b\}, \{d\}, \{b, c\} \rangle$ $\langle \{a\}, \{c\} \rangle \maltese \langle \{a, c\}, \{d\} \rangle$

Definition: Sequence database

A sequence database D is a set of discrete sequences $D = \{S_1, S_2, ..., S_m\}$ where each sequence $S_j \in D$ has a unique identifier j.

Example 1: This is a sequence database with four sequences $D = \{S_1, S_2, S_3, S_4\}$:

Sequence ualabase	
$S_1 =$	$\langle \{a, b\}, \{c\}, \{a\} \rangle$
$S_2 =$	$\langle \{a\}, \{b\}, \{c\} \rangle$
$S_3 =$	$\langle \{b\}, \{c\}, \{d\} \rangle$
$S_4 =$	$\langle \{b\}, \{a, b\}, \{c\} \rangle$

Saguanaa databasa

The number of sequences in a **sequence database** D that contain a sequence S_A is called the support of S_A . It is defined as: $sup(S_A) = |\{S \mid S \in D \text{ and } S_A \subseteq S\}|$

Example 1:

Sequence database

$S_1 =$	$\langle \{a, b\}, \{c\}, \{a\} \rangle$
$S_2 =$	$\langle \{a\}, \{b\}, \{c\} \rangle$
$S_3 =$	$\langle \{b\}, \{c\}, \{d\} \rangle$
$S_4 =$	$\langle \{b\}, \{a, b\}, \{c\} \rangle$

 $sup(\langle \{a\} \rangle) = 3$

The number of sequences in a **sequence database** D that contain a sequence S_A is called the support of S_A . It is defined as: $sup(S_A) = |\{S \mid S \in D \text{ and } S_A \sqsubseteq S\}|$

Example 2:

Sequence database

$S_1 =$	$\langle \{a, \mathbf{b}\}, \{c\}, \{a\} \rangle$
$S_2 =$	$\langle \{a\}, \{b\}, \{c\} \rangle$
$S_3 =$	$\langle \{ \boldsymbol{b} \}, \{ \boldsymbol{c} \}, \{ \boldsymbol{d} \} \rangle$
$S_4 =$	$\langle \{\mathbf{b}\}, \{a, \mathbf{b}\}, \{c\} \rangle$

 $sup(\langle \{ b \} \rangle) = 4$

The number of sequences in a **sequence database** D that contain a sequence S_A is called the support of S_A . It is defined as: $sup(S_A) = |\{S \mid S \in D \text{ and } S_A \subseteq S\}|$

Example 3:

Sequence database

$S_1 =$	$\langle \{a, b\}, \{c\}, \{a\} \rangle$
$S_2 =$	$\langle \{a\}, \{b\}, \{c\} \rangle$
$S_3 =$	$\langle \{b\}, \{c\}, \{d\} \rangle$
$S_4 =$	$\langle \{b\}, \{a, b\}, \{c\} \rangle$

 $sup(\langle \{a\}, \{b\} \rangle = 1$

The number of sequences in a **sequence database** D that contain a sequence S_A is called the support of S_A . It is defined as: $sup(S_A) = |\{S \mid S \in D \text{ and } S_A \sqsubseteq S\}|$

Example 4:

Sequence database

$S_1 =$	$\langle \{a,b\}, \{c\}, \{a\} \rangle$
$S_2 =$	$\langle \{a\}, \{b\}, \{c\} \rangle$
$S_3 =$	$\langle \{b\}, \{c\}, \{d\} \rangle$
$S_4 =$	$\langle \{b\}, \{a, b\}, \{c\} \rangle$

 $sup(\langle \{a, b\} \rangle) = 2$

Definition: Sequential pattern mining

- Input: A sequence database *D* and a minimum support threshold minsup > 0.
- **Output**: All sequential patterns. A sequential pattern is a sequence S where $sup(S) \ge minsup$.

INPUT:

OUTPUT:

Sequence database

$S_1 =$	$\langle \{a,b\}, \{c\}, \{a\} \rangle$
$S_2 =$	$\langle \{a,b\}, \{b\}, \{c\} \rangle$
$S_3 =$	$\langle \{b\}, \{c\}, \{d\} \rangle$
$S_4 =$	$\langle \{b\}, \{a, b\}, \{c\} \rangle$

minsup = 3

INPUT:

OUTPUT:

minsup = 3

What will happen if we change the threshold? \rightarrow

INPUT:

OUTPUT:

Sequence database

$S_1 =$	$\langle \{a,b\}, \{c\}, \{a\} \rangle$
$S_2 =$	$\langle \{a,b\}, \{b\}, \{c\} \rangle$
$S_3 =$	$\langle \{b\}, \{c\}, \{d\} \rangle$
$S_4 =$	$\langle \{b\}, \{a, b\}, \{c\} \rangle$

minsup = 4

Observation: If we increase the *minsup* threshold, less patterns may be found

INPUT:

OUTPUT:

minsup = 4

Observation: If we increase the *minsup* threshold, less patterns may be found

It is a difficult problem!

- A naïve algorithm would read the database and count the support (frequency) of all possible patterns.
- Inefficient because there can be a very large number of sequential patterns.
- For example:

. . . .

...

. . . .

```
\langle \{a\} \rangle, \langle \{b\} \rangle, \langle \{c\} \rangle \dots
```

```
\langle \{a, b\} \rangle, \langle \{a, c\} \rangle, \langle \{a, d\} \rangle \dots
```

 $\langle \{a\}, \{a\}\rangle, \langle \{a\}, \{a\}, \{a\}, \{a\}, \{a\}, \{a\}\rangle \rangle \dots \langle \{a, b\}\{a\}\rangle, \dots \langle \{a\}, \{b\}\{a\}\rangle, \dots$

• An efficient algorithm must find the frequent sequential patterns, without checking all possibilities.

21

Some popular algorithms

- **GSP**: R. Agrawal, and R. Srikant, Mining sequential patterns, ICDE 1995, pp. 3–14, 1995.
- **SPAM:** Ayres, J. Flannick, J. Gehrke, and T. Yiu, Sequential pattern mining using a bitmap representation, KDD 2002, pp. 429–435, 2002.
- **SPADE**: M. J. Zaki, SPADE: An efficient algorithm for mining frequent sequences, Machine learning, vol. 42(1-2), pp. 31–60, 2001.
- **PrefixSpan**: J. Pei, et al. Mining sequential patterns by pattern-growth: The prefixspan approach, IEEE Transactions on knowledge and data engineering, vol. 16(11), pp. 1424–1440, 2004.
- **CM-SPAM** and **CM-SPADE**: P. Fournier-Viger, A. Gomariz, M. Campos, and R. Thomas, Fast Vertical Mining of Sequential Patterns Using Co-occurrence Information, PAKDD 2014, pp. 40–52, 2014.

They all have the same input and output.

The difference is performance due to optimizations, search strategies and data structures!

A performance comparison

Four benchmark datasets are used

The "Apriori" property

Property (anti-monotonicity).

Let be two subsequences X and Y. If $X \sqsubseteq Y$, then the support of Y is less than or equal to the support of X.

Example

Sequence database

$S_1 =$	$\langle \{a, b\}, \{c\}, \{a\} \rangle$
$S_2 =$	${\langle \{a,b\}, \{b\}, \{c\} \rangle}$
$S_3 =$	$\langle \{b\}, \{c\}, \{d\} \rangle$
$S_4 =$	$\langle \{b\}, \{a, b\}, \{c\} \rangle$

The support of $\langle \{b\} \rangle$ is 4 The support of $\langle \{b\}, \{c\} \rangle$ is 4 The support of $\langle \{b\}, \{c\}, \{d\} \rangle$ is 1