An Introduction to Sequential Pattern Mining

Philippe Fournier-Viger
http://www.philippe-Fournier-viger.com

Fournier-Viger, P., Lin, J. C.-W., Kiran, R. U., Koh, Y. S., Thomas, R. (2017). A Survey of Sequential Pattern Mining. Data Science and Pattern Recognition (DSPR), vol. 1(1), pp. 54-77.

Source code and datasets available in the SPMF library

Introduction

- Data Mining: the goal is to discover or extract useful knowledge from data.
- Many types of data can be analyzed: graphs, relational databases, time series, sequences, etc.
- In this presentation, we focus on analyzing a common type of data called discrete sequences to find interesting patterns in it.

What is a discrete sequence?

A sequence is an ordered list of symbols.
Example 1: a sequence can be the items that are purchased by a customer over time:

What is a discrete sequence?

A sequence is an ordered list of symbols.
Example 2: a sequence can be the list of words in a sentence:

What is a discrete sequence?

A sequence is an ordered list of symbols.
Example 3: a sequence can be the list of locations visited by a car in a city

Sequential Pattern Mining

- It is a popular data mining task, introduced in 1994 by Agrawal \& Srikant.
- The goal is to find all subsequences that appear frequently in a set of discrete sequences.
- For example:
- find sequences of items purchased by many customers over time,
- find sequences of locations frequently visited by tourists in a city,
- Find sequences of words that appear frequently in a text.

Definition: Items

Let there be a set of items (symbols) called I.

Example: $I=\{a, b, c, d, e\}$
$a=$ apple
$d=$ dattes

$b=$ bread

$e=\mathrm{eggs}$

$c=$ cake

Definition: Itemset

An itemset is a set of items that is a subset of I.
Example: $\{a, b, c\}$ is an itemset containing 3 items

$\{d, e\}$ is an itemset containing 2 items

- Note: an itemset cannot contain a same item twice.
- An itemset having k items is called a k-itemset.

Definition: Sequence

A discrete sequence S is a an ordered list of itemsets $S=\left\langle X_{1}, X_{2}, \ldots, X_{n}\right\rangle$ where $X_{j} \subseteq I$ for any $j \in\{1,2 . . n\}$

Example 1: $\langle\{a, b\},\{c\}\rangle$ is a sequence containing two itemsets.

It means that a customer purchased apple and bread at the same time and then purchased cake.

Example 2: $\langle\{a\},\{a\},\{c\}\rangle$

Definition: Subsequence (ㄷ)

Let there be two sequences:
$S_{A}=\left\langle A_{1}, A_{2}, \ldots, A_{r}\right\rangle$ and $\mathrm{S}_{B}=\left\langle B_{1}, B_{2}, \ldots, B_{t}\right\rangle$.
The sequence S_{A} is a subsequence of S_{B} if and only if there exists r integers $1 \leq i 1<i 2<\cdots<i r \leq t$ such that $A_{1} \subseteq B_{i 1}, A_{2} \subseteq B_{i 2}, \ldots A_{r} \subseteq B_{i r}$.

This is denoted as $\mathrm{S}_{\mathrm{A}} \sqsubseteq S_{B}$
Examples:

$$
\begin{aligned}
& \langle\{a, c\}\rangle \sqsubseteq\langle\{a, b, c\}\rangle \\
& \langle\{a, c\}\rangle \neq\langle\{a\},\{c\}\rangle \\
& \langle\{a\},\{c\}\rangle \sqsubseteq\langle\{a, b\},\{d\},\{b, c\}\rangle \\
& \langle\{a\},\{c\}\rangle \text { 平 }\langle\{a, c\},\{d\}\rangle
\end{aligned}
$$

Definition: Sequence database

A sequence database D is a set of discrete sequences $D=\left\{S_{1}, S_{2}, \ldots S_{m}\right\}$ where each sequence $S_{j} \in D$ has a unique identifier j.

Example 1: This is a sequence database with four sequences $D=\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$:

Sequence database

$$
\begin{array}{ll}
S_{1}= & \langle\{a, b\},\{c\},\{a\}\rangle \\
S_{2}= & \langle\{a\},\{b\},\{c\}\rangle \\
S_{3}= & \langle\{b\},\{c\},\{d\}\rangle \\
S_{4}= & \langle\{b\},\{a, b\},\{c\}\rangle
\end{array}
$$

Definition: Support of a sequence

The number of sequences in a sequence database D that contain a sequence S_{A} is called the support of S_{A}. It is defined as:
$\sup \left(S_{A}\right)=\mid\left\{S \mid S \in D\right.$ and $\left.S_{A} \sqsubseteq S\right\} \mid$

Example 1:
Sequence database

$$
\begin{array}{ll}
S_{1}= & \langle\{a, b\},\{c\},\{a\}\rangle \\
S_{2}= & \langle\{a\},\{b\},\{c\}\rangle \\
S_{3}= & \langle\{b\},\{c\},\{d\}\rangle \\
S_{4}= & \langle\{b\},\{a, b\},\{c\}\rangle
\end{array}
$$

Definition: Support of a sequence

The number of sequences in a sequence database D that contain a sequence S_{A} is called the support of S_{A}. It is defined as:
$\sup \left(S_{A}\right)=\mid\left\{S \mid S \in D\right.$ and $\left.S_{A} \sqsubseteq S\right\} \mid$

Example 2:

Sequence database

$$
\begin{array}{lll}
S_{1}= & \langle\{a, b\},\{c\},\{a\}\rangle & \sup (\langle\{b\}\rangle)=4 \\
S_{2} & =\langle\{a\},\{b\},\{c\}\rangle & \\
S_{3}= & \langle\{b\},\{c\},\{d\}\rangle & \\
S_{4}= & \langle\{b\},\{a, b\},\{c\}\rangle &
\end{array}
$$

Definition: Support of a sequence

The number of sequences in a sequence database D that contain a sequence S_{A} is called the support of S_{A}. It is defined as:
$\sup \left(S_{A}\right)=\mid\left\{S \mid S \in D\right.$ and $\left.S_{A} \sqsubseteq S\right\} \mid$

Example 3:
Sequence database

$$
\begin{array}{ll}
S_{1}= & \langle\{a, b\},\{c\},\{a\}\rangle \\
S_{2}= & \langle\{a\},\{b\},\{c\}\rangle \\
S_{3}= & \langle\{b\},\{c\},\{d\}\rangle \\
S_{4}= & \langle\{b\},\{a, b\},\{c\}\rangle
\end{array}
$$

$$
\sup (\langle\{a\},\{b\}\rangle=1
$$

Definition: Support of a sequence

The number of sequences in a sequence database D that contain a sequence S_{A} is called the support of S_{A}. It is defined as:
$\sup \left(S_{A}\right)=\mid\left\{S \mid S \in D\right.$ and $\left.S_{A} \sqsubseteq S\right\} \mid$

Example 4:
Sequence database

$$
\begin{array}{lll}
S_{1}= & \langle\{a, b\},\{c\},\{a\}\rangle & \sup (\langle\{a, b\}\rangle)=2 \\
S_{2}= & \langle\{a\},\{b\},\{c\}\rangle & \\
S_{3}= & \langle\{b\},\{c\},\{d\}\rangle & \\
S_{4}=\langle\{b\},\{a, b\},\{c\}\rangle &
\end{array}
$$

Definition: Sequential pattern mining

- Input: A sequence database D and a minimum support threshold minsup >0.
- Output: All sequential patterns. A sequential pattern is a sequence S where $\sup (S) \geq$ minsup.

Example 1

INPUT:

OUTPUT:

Sequence database

$$
\begin{aligned}
S_{1} & =\langle\{a, b\},\{c\},\{a\}\rangle \\
S_{2} & =\langle\{a, b\},\{b\},\{c\}\rangle \\
S_{3} & =\langle\{b\},\{c\},\{d\}\rangle \\
S_{4} & =\langle\{b\},\{a, b\},\{c\}\rangle \\
& \text { minsup }=3
\end{aligned}
$$

Example 1

INPUT:

Sequence database

$$
\begin{array}{ll}
S_{1}= & \langle\{a, b\},\{c\},\{a\}\rangle \\
S_{2}= & \langle\{a, b\},\{b\},\{c\}\rangle \\
S_{3}= & \langle\{b\},\{c\},\{d\}\rangle \\
S_{4}= & \langle\{b\},\{a, b\},\{c\}\rangle
\end{array}
$$

OUTPUT:

all sequential patterns:
$\langle\{a\}\rangle$ support $=3$
$\langle\{b\}\rangle \quad$ support $=4$
$\langle\{c\}\rangle$ support $=4$ $\langle\{a\},\{c\}\rangle$ support $=3$ $\langle\{a, b\}\rangle \quad$ support $=2$ $\langle\{b\},\{c\}\rangle$ support $=4$ $\langle\{a, b\},\{c\}\rangle$ support $=3$

What will happen if we change the threshold? \rightarrow

Example 2

INPUT:

OUTPUT:

Sequence database

$$
\begin{aligned}
S_{1} & =\langle\{a, b\},\{c\},\{a\}\rangle \\
S_{2} & =\langle\{a, b\},\{b\},\{c\}\rangle \\
S_{3} & =\langle\{b\},\{c\},\{d\}\rangle \\
S_{4} & =\langle\{b\},\{a, b\},\{c\}\rangle \\
& \text { minsup }=4
\end{aligned}
$$

Example 2

INPUT:

Sequence database

$$
\begin{array}{ll}
S_{1}= & \langle\{a, b\},\{c\},\{a\}\rangle \\
S_{2}= & \langle\{a, b\},\{b\},\{c\}\rangle \\
S_{3}= & \langle\{b\},\{c\},\{d\}\rangle \\
S_{4}= & \langle\{b\},\{a, b\},\{c\}\rangle
\end{array}
$$

OUTPUT:

all sequential patterns:

$\langle\{b\}\rangle \quad$ support $=4$
$\langle\{c\}\rangle \quad$ support $=4$
$\langle\{b\},\{c\}\rangle$ support $=4$

$$
\operatorname{minsup}=4
$$

Observation: If we increase the minsup threshold, less patterns may be found

It is a difficult problem!

- A naïve algorithm would read the database and count the support (frequency) of all possible patterns.
- Inefficient because there can be a very large number of sequential patterns.
- For example:

```
\langle{a}\rangle, \{b}\rangle, {{c}\rangle....
```

$\langle\{a, b\}\rangle,\langle\{a, c\}\rangle,\langle\{a, d\}\rangle \ldots$
$\langle\{a\},\{a\}\rangle,\langle\{a\},\{a\},\{a\},\langle\{a\},\{a\},\{a\},\{a\}\rangle\rangle \ldots .\langle\{a, b\}\{a\}\rangle, \ldots$
$\langle\{a\},\{b\}\{a\}\rangle, \ldots$.

- An efficient algorithm must find the frequent sequential patterns, without checking all possibilities.

Some popular algorithms

- GSP: R. Agrawal, and R. Srikant, Mining sequential patterns, ICDE 1995, pp. 3-14, 1995.
- SPAM: Ayres, J. Flannick, J. Gehrke, and T. Yiu, Sequential pattern mining using a bitmap representation, KDD 2002, pp. 429-435, 2002.
- SPADE: M. J. Zaki, SPADE: An efficient algorithm for mining frequent sequences, Machine learning, vol. 42(1-2), pp. 31-60, 2001.
- PrefixSpan: J. Pei, et al. Mining sequential patterns by pattern-growth: The prefixspan approach, IEEE Transactions on knowledge and data engineering, vol. 16(11), pp. 1424-1440, 2004.
- CM-SPAM and CM-SPADE: P. Fournier-Viger, A. Gomariz, M. Campos, and R. Thomas, Fast Vertical Mining of Sequential Patterns Using Co-occurrence Information, PAKDD 2014, pp. 40-52, 2014.

They all have the same input and output.
The difference is performance due to optimizations, search strategies and data structures!

Fast implementations available in the SPMF library

A performance comparison

Four benchmark datasets are used

The "Apriori" property

Property (anti-monotonicity).

Let be two subsequences X and Y. If $X \sqsubseteq Y$, then the support of Y is less than or equal to the support of X.

Example

Sequence database

$$
\begin{array}{ll}
S_{1}= & \langle\{a, b\},\{c\},\{a\}\rangle \\
S_{2} & =\langle\{a, b\},\{b\},\{c\}\rangle \\
S_{3} & =\langle\{b\},\{c\},\{d\}\rangle \\
S_{4} & =\langle\{b\},\{a, b\},\{c\}\rangle
\end{array}
$$

The support of $\langle\{b\},\{c\}\rangle$ is 4
The support of $\langle\{b\},\{c\},\{d\}\rangle$ is 1

