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Introduction

• Data Mining: the goal is to discover or extract 
useful knowledge from data.

• Many types of data can be analyzed: graphs, 
relational databases, time series, sequences, 
etc.

• In this presentation, we focus on analyzing a 
common type of data called discrete 
sequences to find interesting patterns in it.
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What is a discrete sequence?
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Computer Monitor Router

A sequence is an ordered list of symbols.

Example 1:  a sequence can be the items that are 

purchased by a customer over time: 



What is a discrete sequence?
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I 

A sequence is an ordered list of symbols.

Example 2: a sequence can be the list of words in a

sentence:

go back home 



What is a discrete sequence?
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A sequence is an ordered list of symbols.

Example 3: a sequence can be the list of locations 

visited by a car in a city

a b f g 

a b c d

e f g h



Sequential Pattern Mining

• It is a popular data mining task, introduced in 1994 
by Agrawal & Srikant.

• The goal is to find all subsequences that appear
frequently in a set of discrete sequences.

• For example: 

– find sequences of items purchased by many customers
over time,

– find sequences of locations frequently visited by 
tourists in a city,

– Find sequences of words that appear frequently in a
text.
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Definition: Items

𝑎 = apple 𝑑 = dattes

𝑏 = bread 𝑒 = eggs

𝑐 = cake
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Let there be a set of items (symbols) called 𝐼.

Example: 𝐼 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}



Definition: Itemset
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An itemset is a set of items that is a subset of 𝐼.

Example: {𝑎, 𝑏, 𝑐} is an itemset containing 3 items

{𝑑, 𝑒} is an itemset containing 2 items

• Note: an itemset cannot contain a same item twice.     

• An itemset having 𝑘 items is called a k-itemset.



Definition: Sequence
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A discrete sequence 𝑆 is a an ordered list of itemsets

𝑆 = 𝑋1, 𝑋2, … , 𝑋𝑛 where 𝑋𝑗 ⊆ 𝐼 for any 𝑗 ∈ {1,2. . 𝑛}

Example 1: ⟨ 𝑎, 𝑏 , 𝑐 ⟩ is a sequence containing two

itemsets.

It means that a customer purchased 𝑎𝑝𝑝𝑙𝑒 and

𝑏𝑟𝑒𝑎𝑑 at the same time and then purchased 𝑐𝑎𝑘𝑒.

Example 2: ⟨ 𝑎 , 𝑎 , {𝑐}⟩



Definition: Subsequence (⊑)
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Let there be two sequences:

𝑆𝐴 = 𝐴1, 𝐴2, … , 𝐴𝑟 and S𝐵 = 𝐵1, 𝐵2, … , 𝐵𝑡 .

The sequence 𝑆𝐴 is a subsequence of S𝐵 if and only

if there exists 𝑟 integers 1 ≤ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑟 ≤ 𝑡
such that 𝐴1 ⊆ 𝐵𝑖1, 𝐴2 ⊆ 𝐵𝑖2, … 𝐴𝑟 ⊆ 𝐵𝑖𝑟 .

This is denoted as SA ⊑ 𝑆𝐵

Examples: ⟨ 𝑎, 𝑐 ⟩ ⊑ ⟨ 𝑎, 𝑏, 𝑐 ⟩
𝑎, 𝑐 ⊑ ⟨ 𝑎}, {𝑐 ⟩

⟨ 𝑎 , 𝑐 ⟩ ⊑ ⟨ 𝑎, 𝑏 , {𝑑}, 𝑏, 𝑐 ⟩
⟨ 𝑎 , 𝑐 ⟩ ⊑ ⟨ 𝑎, 𝑐 , {𝑑}⟩



Definition: Sequence database

A sequence database 𝐷 is a set of discrete
sequences 𝐷 = {𝑆1, 𝑆2, … 𝑆𝑚 } where each
sequence 𝑆𝑗 ∈ 𝐷 has a unique identifier 𝑗. 

Example 1: This is a sequence database with
four sequences 𝐷 = {𝑆1, 𝑆2, 𝑆3, 𝑆4} :
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𝑆1 = ⟨ 𝑎, 𝑏 , 𝑐 , 𝑎 ⟩

𝑆2 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩

𝑆3 = ⟨ 𝑏 , 𝑐 , {𝑑}⟩

𝑆4 = ⟨ 𝑏 , 𝑎, 𝑏 , {𝑐}⟩

Sequence database



Definition: Support of a sequence

The number of sequences in a sequence
database 𝐷 that contain a sequence 𝑆𝐴 is called
the support of 𝑆𝐴. It is defined as:
𝑠𝑢𝑝(𝑆𝐴) = | 𝑆 𝑆 ∈ 𝐷 𝑎𝑛𝑑 𝑆𝐴 ⊑ 𝑆}|

Example 1:
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𝑆1 = ⟨ 𝑎, 𝑏 , 𝑐 , 𝑎 ⟩

𝑆2 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩

𝑆3 = ⟨ 𝑏 , 𝑐 , {𝑑}⟩

𝑆4 = ⟨ 𝑏 , 𝑎, 𝑏 , {𝑐}⟩

Sequence database

𝑠𝑢𝑝(⟨ 𝑎 ⟩) = 3



Definition: Support of a sequence

The number of sequences in a sequence
database 𝐷 that contain a sequence 𝑆𝐴 is called
the support of 𝑆𝐴. It is defined as:
𝑠𝑢𝑝(𝑆𝐴) = | 𝑆 𝑆 ∈ 𝐷 𝑎𝑛𝑑 𝑆𝐴 ⊑ 𝑆}|

Example 2:
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𝑆1 = ⟨ 𝑎, 𝑏 , 𝑐 , 𝑎 ⟩

𝑆2 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩

𝑆3 = ⟨ 𝑏 , 𝑐 , {𝑑}⟩

𝑆4 = ⟨ 𝑏 , 𝑎, 𝑏 , {𝑐}⟩

Sequence database

𝑠𝑢𝑝(⟨ 𝑏 ⟩) = 4



Definition: Support of a sequence

The number of sequences in a sequence
database 𝐷 that contain a sequence 𝑆𝐴 is called
the support of 𝑆𝐴. It is defined as:
𝑠𝑢𝑝(𝑆𝐴) = | 𝑆 𝑆 ∈ 𝐷 𝑎𝑛𝑑 𝑆𝐴 ⊑ 𝑆}|

Example 3:
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𝑆1 = ⟨ 𝑎, 𝑏 , 𝑐 , 𝑎 ⟩

𝑆2 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩

𝑆3 = ⟨ 𝑏 , 𝑐 , {𝑑}⟩

𝑆4 = ⟨ 𝑏 , 𝑎, 𝑏 , {𝑐}⟩

Sequence database

𝑠𝑢𝑝(⟨{𝑎}, {𝑏}⟩ = 1



Definition: Support of a sequence

The number of sequences in a sequence
database 𝐷 that contain a sequence 𝑆𝐴 is called
the support of 𝑆𝐴. It is defined as:
𝑠𝑢𝑝(𝑆𝐴) = | 𝑆 𝑆 ∈ 𝐷 𝑎𝑛𝑑 𝑆𝐴 ⊑ 𝑆}|

Example 4:
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𝑆1 = ⟨ 𝑎, 𝑏 , 𝑐 , 𝑎 ⟩

𝑆2 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩

𝑆3 = ⟨ 𝑏 , 𝑐 , {𝑑}⟩

𝑆4 = ⟨ 𝑏 , 𝑎, 𝑏 , {𝑐}⟩

Sequence database

𝑠𝑢𝑝(⟨ 𝑎, 𝑏 ⟩) = 2



Definition: Sequential pattern mining

• Input: A sequence database 𝐷 and a 

minimum support threshold 𝑚𝑖𝑛𝑠𝑢𝑝 > 0. 

• Output: All sequential patterns.
A sequential pattern is a sequence 𝑆 where 
sup 𝑆 ≥ 𝑚𝑖𝑛𝑠𝑢𝑝.
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Example 1
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𝑆1 = ⟨ 𝑎, 𝑏 , 𝑐 , 𝑎 ⟩

𝑆2 = ⟨ 𝑎, 𝑏 , 𝑏 , 𝑐 ⟩

𝑆3 = ⟨ 𝑏 , 𝑐 , {𝑑}⟩

𝑆4 = ⟨ 𝑏 , 𝑎, 𝑏 , {𝑐}⟩

Sequence database

𝑚𝑖𝑛𝑠𝑢𝑝 = 3

INPUT: OUTPUT:  



Example 1
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𝑆1 = ⟨ 𝑎, 𝑏 , 𝑐 , 𝑎 ⟩

𝑆2 = ⟨ 𝑎, 𝑏 , 𝑏 , 𝑐 ⟩

𝑆3 = ⟨ 𝑏 , 𝑐 , {𝑑}⟩

𝑆4 = ⟨ 𝑏 , 𝑎, 𝑏 , {𝑐}⟩

Sequence database

𝑚𝑖𝑛𝑠𝑢𝑝 = 3

INPUT: OUTPUT:  

all sequential patterns:

𝑎 support = 3

𝑏 support = 4

𝑐 support = 4

𝑎 , {𝑐} support = 3

𝑎, 𝑏 support = 2

𝑏 , {𝑐} support = 4

𝑎, 𝑏 , {𝑐} support = 3

What will happen if we change the threshold? →



Example 2
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𝑆1 = ⟨ 𝑎, 𝑏 , 𝑐 , 𝑎 ⟩

𝑆2 = ⟨ 𝑎, 𝑏 , 𝑏 , 𝑐 ⟩

𝑆3 = ⟨ 𝑏 , 𝑐 , {𝑑}⟩

𝑆4 = ⟨ 𝑏 , 𝑎, 𝑏 , {𝑐}⟩

Sequence database

𝑚𝑖𝑛𝑠𝑢𝑝 = 4

INPUT: OUTPUT:  

Observation:  If we increase the minsup

threshold, less patterns may be found



Example 2
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𝑆1 = ⟨ 𝑎, 𝑏 , 𝑐 , 𝑎 ⟩

𝑆2 = ⟨ 𝑎, 𝑏 , 𝑏 , 𝑐 ⟩

𝑆3 = ⟨ 𝑏 , 𝑐 , {𝑑}⟩

𝑆4 = ⟨ 𝑏 , 𝑎, 𝑏 , {𝑐}⟩

Sequence database

𝑚𝑖𝑛𝑠𝑢𝑝 = 4

INPUT: OUTPUT:  

all sequential patterns:

𝑏 support = 4

𝑐 support = 4

𝑏 , {𝑐} support = 4

Observation:  If we increase the minsup

threshold, less patterns may be found



It is a difficult problem!
• A naïve algorithm would read the database and count the 

support (frequency) of all possible patterns.

• Inefficient because there can be a very large number of
sequential patterns.

• For example:

⟨ 𝑎 ⟩, ⟨ 𝑏 ⟩, ⟨ 𝑐 ⟩ ….

…. 
𝑎, 𝑏 , 𝑎, 𝑐 , 𝑎, 𝑑 …

…  

𝑎 , 𝑎 , 𝑎 , 𝑎 , 𝑎 , 𝑎 , 𝑎 , 𝑎 , 𝑎 … . 𝑎, 𝑏 𝑎 ,…. 
𝑎}, {𝑏 𝑎 ,….

….

• An efficient algorithm must find the frequent sequential 
patterns, without checking all possibilities. 21



Some popular algorithms
• GSP: R. Agrawal, and R. Srikant, Mining sequential patterns, ICDE 1995, pp. 3–14, 

1995.

• SPAM: Ayres, J. Flannick, J. Gehrke, and T. Yiu, Sequential pattern mining using a 
bitmap representation, KDD 2002, pp. 429–435, 2002.

• SPADE: M. J. Zaki, SPADE: An efficient algorithm for mining frequent sequences, 
Machine learning, vol. 42(1-2), pp. 31–60, 2001.

• PrefixSpan: J. Pei, et al. Mining sequential patterns by pattern-growth: The 
prefixspan approach, IEEE Transactions on knowledge and data engineering, vol. 
16(11), pp. 1424–1440, 2004. 

• CM-SPAM and CM-SPADE: P. Fournier-Viger, A. Gomariz, M. Campos, and R. 
Thomas, Fast Vertical Mining of Sequential Patterns Using Co-occurrence 
Information, PAKDD 2014, pp. 40–52, 2014.
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Fast implementations available in the SPMF library

They all have the same input and output.

The difference is performance due to optimizations, search strategies and data structures!

http://www.philippe-fournier-viger.com/spmf/


A performance comparison
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Kosarak

Snake

BMS

Leviathan

Four benchmark datasets are used



The “Apriori” property

Property (anti-monotonicity).

Let be two subsequences X and Y. If X ⊑ 𝐘, then the 
support of Y is less than or equal to the support of X.
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Example

𝑆1 = ⟨ 𝑎, 𝑏 , 𝑐 , 𝑎 ⟩

𝑆2 = ⟨ 𝑎, 𝑏 , 𝑏 , 𝑐 ⟩

𝑆3 = ⟨ 𝑏 , 𝑐 , {𝑑}⟩

𝑆4 = ⟨ 𝑏 , 𝑎, 𝑏 , {𝑐}⟩

Sequence database

The support of 𝑏 is 4

The support of 𝑏 , 𝑐 is 4
The support of 𝑏 , 𝑐 , {𝑑} is 1


