Frequent subgraph mining

Philippe Fournier-Viger
http://www.philippe-Fournier-viger.com

Source code and datasets available in the SPMF library
Frequent subgraph mining

- A graph (图表) is a set of vertices (顶点) and edges (边)
- e.g.

This graph has four vertices (in yellow color). Each vertex has a label (10 or 11) that may not be unique.

This graph has five edges (black lines). Each edge has a label (20, 21, 22, 23) that may not be unique.
Types of graphs

connected graph: by following the edges, it is possible to go from any vertex to any other vertices

disconnected graph: a graph that is not a connected graph

A connected graph

A disconnected graph

- **e.g.** a graph where it is possible to go from any city to any other cities by following the roads.

This graph is disconnected because Vertex A cannot be reached from the other vertices by following the edges.
Types of graphs

undirected graph: edges are bidirectional

directed graph: edges are unidirectional

A real-life example:
- graphs where vertices are cities and edges are road
- some roads are « one-way » while others are bidirectional
Analyzing graphs

- Many data mining tasks on graphs:
 - detecting communities, predicting friendship links, detecting influence between users, etc.
 - what is our goal?

- **Frequent subgraph mining:**
 - discover *interesting subgraph(s)* appearing often in a set of graphs (a graph database)
Frequent subgraph mining

Input:
- a graph database (a set of graphs)
- a minimum support threshold \(\text{minsup} \).

Example:

A graph database

\[
\begin{align*}
\text{Graph 1} & \quad \text{Graph 2} & \quad \text{Graph 3} \\
10 & \quad 20 & \quad 11 \\
11 & \quad 23 & \quad 11 \\
10 & \quad 22 & \quad 11 \\
10 & \quad 21 & \quad 23 & \quad 11 \\
& \quad 20 & \quad & \quad 11 \\
\end{align*}
\]

\(\text{minsup} = 3 \)
Output:
all subgraphs appearing in a least $minsup$ graphs.

A graph database

Graph 1
10 -- 20 -- 11
 | | |
 23 22
10 11

Graph 2
10 -- 20 -- 11

Graph 3
10 -- 21 -- 23 -- 22
| | |
11 11
10 11

Frequent subgraph 1:
10
11

Frequent subgraph 2:
11

Frequent subgraph 3:
10 -- 20 -- 11

$minsup = 3$
Output:
all subgraphs appearing in a least minsup graphs.

$\text{minsup} = 3$

This subgraph has a support of 3
Frequent subgraph mining with a single graph

- A variation of the previous problem.
- We want to find frequent subgraphs in a single large graph.
- The support of a subgraph is the number of times that it appears in the single input graph.
Frequent subgraph mining with a single graph

A single graph

\[\text{minsup} = 2 \]

Frequent subgraph 1

Frequent subgraph 2

Frequent subgraph 3

Frequent subgraph 4

Frequent subgraph 5
Frequent subgraph mining with a single graph

A single graph

Frequent subgraph 1

Frequent subgraph 2

Frequent subgraph 3

Frequent subgraph 4

Frequent subgraph 5

This subgraph has a support of 2

\[\text{minsup} = 2 \]
Algorithms for subgraph mining

- Several algorithms:
 - FFSM, GSPAN, Gaston, etc.

- The same algorithm can usually be applied on a single graph or multiple graphs.

- Other variations:
 - finding frequent paths
 - finding frequent trees
 - finding closed/maximal subgraphs…
 - …
Performance comparison

Authors of data mining papers often do not compare their algorithms with the best ones published until now.

Frequent subgraph mining (before 2014)

Legend: arrow $X \rightarrow Y$ from an algorithm X to an algorithm Y indicates that X was shown to be a better algorithm than Y in terms of execution time by the authors of X in an experiment.