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Abstract. Mining high-utility itemsets (HUIs) is a key data mining
task. It consists of discovering groups of items that yield a high profit
in transaction databases. A major drawback of traditional high-utility
itemset mining algorithms is that they can return a large number of
HUIs. Analyzing a large result set can be very time-consuming for users.
To address this issue, concise representations of high-utility itemsets have
been proposed such as closed HUIs, maximal HUIs and generators of
HUIs. In this paper, we explore a novel representation called the minimal
high utility itemsets (MinHUIs), defined as the smallest sets of items
that generate a high profit, study its properties, and design an efficient
algorithm named MinFHM to discover it. An extensive experimental
study with real-life datasets shows that mining MinHUIs can be much
faster than mining other concise representations or all HUIs, and that it
can greatly reduce the size of the result set presented to the user.

Keywords: utility mining, high-utility itemsets, minimal itemsets

1 Introduction

High-utility itemset mining (HUIM) is an emerging data mining task, which
consists of discovering sets of items that have a high utility (yield a high profit)
in customer transaction databases [2, 5, 8–13, 15]. HUIM can be viewed as a gen-
eralization of Frequent Itemset Mining (FIM) [1, 3, 4, 17], where weights are as-
signed to each item to represent their importance (e.g. unit profit), and purchase
quantities of items in transactions are not restricted to binary values. HUIM has
applications in many domains such as customer purchase behavior analysis, web-
site click stream analysis, and biomedicine [2, 12, 15]. HUIM is widely considered
as more difficult than FIM because the utility measure used in HUIM is neither
anti-monotonic nor monotonic, unlike the support measure used in FIM [1]. In
other words, the utility of an itemset can be lower, equal or higher than the util-
ity of any of its supersets. Hence, techniques for pruning the search space in FIM



cannot be directly applied in HUIM. Although HUIM has attracted lots of atten-
tion in recent years, an important limitation of traditional high-utility itemset
mining algorithms [2, 5, 8–13, 15] is that they can generate a very large amount
of HUIs. This can make HUI mining algorithms run out of storage space or even
fail to terminate. Moreover, it is very time-consuming for a user to analyze a
very large set of HUIs [6, 16]. To address this issue, it was proposed to mine con-
cise representations of all HUIs rather than the whole set of HUIs. Three main
representations have been proposed in previous work. Maximal HUIs are the
HUIs that are not included in other HUIs. For a retailer, it answers the question
of finding the largest sets of items that yield a high profit. Closed HUIs [16] are
the HUIs that are not included in another HUIs having the same support. For
a retailer, it answers the question of finding the largest groups of items yielding
a high profit, which are common to groups of customers. Finally, Generators of
HUIs [6] answer the question of finding the smallest sets of items common to
groups of customers having bought a same high-utility itemset.

In this paper, we investigate a novel representation of HUIs named the min-
imal high-utility itemsets (MinHUIs), defined as the smallest HUIs (HUIs that
are not included in another HUI). This representation addresses the problem
that HUIM algorithms often find very long HUIs containing many items. But
these HUIs often represent rare cases, as in real-life, few customers exactly buy
the same large set of items. For marketing purpose, a retailer may be more in-
terested in finding the smallest sets of items that generate a high profit, since it
is easier to co-promote a small set of items targeted at many customers rather
than a large set of items targeted at few customers. The proposed representation
is the opposite of maximal HUIs. It aims at discovering the smallest sets of items
that generate a high profit in a database rather than the largest ones. Because
this representation has been unexplored, it remains an important challenge to
explore the properties of this representation and define an efficient algorithm for
mining this representation. In this paper, we address this challenge. We propose
a novel algorithm named MinFHM to discover this representation efficiently.
MinFHM extends FHM, a state-of-the-art algorithm for HUI mining by using a
novel pruning property, and several optimizations to mine MinHUIs efficiently.
We compare the performance of MinFHM with FHM on several real-life datasets.
Results show that mining minimal HUIs is almost two orders of magnitude faster
than mining all HUIs, or other concise representations of HUIs and that it can
greatly reduce the result set presented to the user. The rest of this paper is
organized as follows. Section 2, 3, 4, 5 and 6 respectively present related work,
minimal high-utility itemsets, the MinFHM algorithm, the experimental evalu-
ation and the conclusion.

2 Related Work

The problem of HUIM is defined as follows [5, 12, 13, 15]. Consider a set of items
(symbols) denoted as I. A transaction database is a set of transactions D =
{T0, T1, ..., Tn} such that for each transaction Tc, Tc ⊆ I and Tc has a unique



identifier c called its Tid. Each item i ∈ I is associated with a positive number
p(i), called its external utility, representing its importance (e.g. unit profit).
Moreover, for each transaction Tc such that i ∈ Tc, a positive number q(i, Tc)
is called the internal utility of i, which represents the purchase quantity of i in
transaction Tc. For example, Table 1 shows a transaction database containing five
transactions (T0, T1...T4), which will be used as running example. Transaction
T3 indicates that items a, c, and e appear in this transaction with an internal
utility of respectively 2, 6, and 2. Table 2 indicates that the external utilities of
these items are respectively 5, 1, and 3.

Table 1. A transaction database

TID Transaction

T0 (a, 1), (b, 5), (c, 1), (d, 3), (e, 1)
T1 (b, 4), (c, 3), (d, 3), (e, 1)
T2 (a, 1), (c, 1), (d, 1)
T3 (a, 2), (c, 6), (e, 2)
T4 (b, 2), (c, 2), (e, 1)

Table 2. External utility values

Item a b c d e

Unit profit 5 2 1 2 3

The utility of an item i in a transaction Tc is denoted as u(i, Tc) and defined
as p(i) × q(i, Tc). The utility of an itemset X (a group of items X ⊆ I) in a
transaction Tc is denoted as u(X,Tc) and defined as u(X,Tc) =

∑
i∈X u(i, Tc).

The utility of an itemset X (in all transactions of a transaction database) is
denoted as u(X) and defined as u(X) =

∑
Tc∈g(X) u(X,Tc), where g(X) is the

set of transactions containing X. The problem of high-utility itemset mining is
to discover all high-utility itemsets. An itemset X is a high-utility itemset if its
utility u(X) is no less than a user-specified minimum utility threshold minutil
given by the user. For instance, the utility of the itemset {a, c} is u({a, c}) =
u(a)+u(c) = u(a, T0)+u(a, T2)+u(a, T3)+u(c, T0)+u(c, T2)+u(c, T3) = 5+5+
10 + 1 + 1 + 6 = 28. If minutil = 25, the set of HUIs is {a, c} : 28, {a, c, e} : 31,
{a, b, c, d, e} : 25, {b, c} : 28, {b, c, d} : 34, {b, c, d, e} : 40, {b, c, e} : 37, {b, d} : 30,
{b, d, e} : 36, {b, e} : 31 and {c, e} : 27, where each HUI is annotated with its
utility. A major challenge in HUIM is that the utility measure is not monotonic
or anti-monotonic, and thus that pruning techniques developed in FIM cannot be
directly used in FIM to prune the search space. Many HUIM algorithms such as
Two-Phase [13], IHUP [2], BAHUI [11], PB [8], and UPGrowth+ [15] overcome
this challenge by using a measure called the Transaction-Weighted Utilization
(TWU) measure, which provides an upper-bound on the utility of itemsets and is
anti-monotonic [2, 13, 15]. The aforementioned algorithms first identify candidate
high utility itemsets by calculating their TWUs. Then, in a second phase, they
scan the database to calculate the exact utility of all candidates found in the
first phase to eliminate low utility itemsets. The TWU measure is defined as
follows. The transaction utility (TU ) of a transaction Tc is the sum of the utilities
of all the items in Tc. i.e. TU(Tc) =

∑
x∈Tc

u(x, Tc). The transaction-weighted
utilization (TWU ) of an itemset X is defined as the sum of the transaction



utilities of transactions containing X, i.e. TWU(X) =
∑

Tc∈g(X) TU(Tc). For
instance, the TUs of T0, T1, T2, T3 and T4 are respectively 25, 20, 8, 22 and 9.
The TWU of single items a, b, c, d, e are respectively 55, 54, 84, 53 and 76.
TWU({c, d}) = TU(T0) + TU(T1) + TU(T2) = 25 + 20 + 8 = 53. The TWU has
the following useful property for pruning the search space [13].

Property 1 (Pruning search space using the TWU). Let X be an itemset, if
TWU(X) < minutil, then X and its supersets are low utility. [13]

Recently, algorithms were proposed to mine HUIs directly using a single phase
[5, 9, 12], and were shown to outperform previous algorithms. FHM is to our
knowledge the fastest algorithm for mining HUIs [5]. It performs a depth-first
search to explore the search space of HUIs, and introduces an additional opti-
mization named EUCP [5] to prune the search space using information about
co-occurrences. FHM assign a structure named utility-list [5, 9, 12] to each item-
set. Utility-lists allow calculating the utility of an itemset quickly by making
join operations with utility-lists of shorter patterns. Utility-lists are defined as
follows. Let � be any total order on items from I. The utility-list of an itemset X
in a database D is a set of tuples such that there is a tuple (tid, iutil, rutil) for
each transaction Ttid containing X. The iutil element of a tuple is the util-
ity of X in Ttid. i.e., u(X,Ttid). The rutil element of a tuple is defined as∑

i∈Ttid∧i�x∀x∈X u(i, Ttid). For instance, assume that � is the alphabetical or-
der. The utility-list of {a} is {(T0, 5, 20), (T2, 5, 3), (T3, 10, 12)}. The utility-list
of {d} is {(T0, 6, 3), (T1, 6, 3), (T2, 2, 0)}. The utility-list of {a, d} is {(T0, 11, 3),
(T2, 7, 0)}. To discover HUIs, FHM performs a single database scan to create
utility-lists of patterns containing single items. Then, longer patterns are ob-
tained by performing the join operation of utility-lists of shorter patterns (see
[5, 12] for details). Calculating the utility of an itemset using its utility-list and
pruning the search space is done as follows.

Property 2 (Calculating utility of an itemset using its utility-list). The utility of
an itemset is the sum of iutil values in its utility-list.

Property 3 (Pruning search space using utility-lists). Let X be an itemset. Let
the extensions of X be the itemsets that can be obtained by appending an item
y to X such that y � i, ∀i ∈ X. If the sum of iutil and rutil values in ul(X) is
less than minutil, X and its extensions are low utility.

FHM is very efficient. However, it can generate a huge amount of HUIs. This can
make the algorithm run out of storage space, and fail to terminate. Furthermore,
it is very inconvenient for a user to analyze a large set of HUIs. To discover small
and representative subsets of all HUIs, concise representations of HUIs have been
proposed such as closed HUIs [16], maximal HUIs [14], and generators of HUIs
[6], defined as follows. The support of an itemset X in a database D is denoted as
sup(X) and defined as |g(X)|, the number of transactions containing X. A HUI
X is a closed HUI (CHUI ) [16] iff there exists no HUI Y such that X ⊂ Y and
sup(X) = sup(Y ). A HUI X is a maximal HUI (MaxHUI ) [14] iff there exists
no HUI Y , such that X ⊂ Y . An itemset X is a generator of high-utility itemsets



(GHUI ) iff (1) there exists no itemset Y ⊂ X, such that sup(X) = sup(Y ), and
(2) there exists an itemset Z such that X ⊆ Z and u(Z) ≥ minutil [6].

3 The Minimal High Utility Itemsets

CHUIs, MaxHUIs and GHUIs are designed to provide answers to different ques-
tions that retailers may have about customer transactions, as outlined in the
introduction. A drawback of the representations of CHUIs and MaxHUIs is that
they tend to find very long HUIs, containing many items. A problem with these
representations is thus that these HUIs often represent rare cases, as generally
few customers exactly buy a same large set of items. For marketing purpose, a
retailer may be more interested in finding the smallest sets of items generating
a high profit, since it is easier to co-promote a small set of items targeted at
a many customers rather than a large set of items targeted at few customers.
The representation of GHUIs [6] partially addresses this issue by finding the
smallest itemsets common to groups of customers having bought a set of items
generating a high profit. However, no research has yet considered mining only
the smallest HUIs. To address this research gap, we thereafter propose the novel
concise representation of minimal high-utility itemsets (MinHUIs).

Definition 1 (Minimal HUIs). An itemset X is a minimal high-utility item-
set (MinHUI ) iff u(X) ≥ minutil and there does not exist an itemset Y ⊂ X
such that u(Y ) ≥ minutil.

This proposed representation is the opposite of maximal HUIs, i.e. it consists of
the smallest sets of items that generate a high profit rather than the largest. To
better show the relationship between the proposed MinHUIs, and the previously
proposed CHUIs, MinHUIs and GHUIs, Fig. 1 presents an illustration of these
various types of patterns, for the running example. In this figure, all equivalence
classes containing at least a HUI are represented. An equivalence class is a set of
itemsets supported by the same set of transactions, ordered by the subset rela-
tion. For example, {{a, e}, {a, c, e}} is the equivalence class of itemsets appearing
in transactions T0 and T2. An alternative and equivalent definition of GHUIs and
CHUIs is the following. For each equivalence class containing a HUI, the CHUI is
the largest itemset (the one having no superset in that equivalence class), while
GHUI(s) are the smallest itemsets (those having no subset in that same equiva-
lence class). Note that in the illustration equivalence classes are represented as
Hasse diagrams and that low-utility itemsets that are not GHUIs in each equiv-
alence class are not shown. As it can be seen in this example, MaxHUIs can be
very long and thus offer few useful information to the user. For example, the only
MaxHUI found in the running example is {a, b, c, d, e}, and it represents the very
specific case of a single customer (T0). CHUIs are interesting but they also tend
to contain very large itemsets. For example, CHUIs include {a, b, c, d, e} in the
example. GHUIs find the smallest itemsets common to a set of customers. How-
ever, a drawback of GHUIs is that some of these itemsets are low-utility such as
{e} in the example. To address these issues, the proposed MinHUIs are defined



as the smallest high-utility itemsets. These itemsets are interesting as they tend
to have a high support (represent many customers) as shown in this example,
and are all HUIs. MinHUIs in this example are: {b, c}, {b, d}, {b, e}, {a, c} and
{c, e}. Formally, the relationship between these various sets of HUIs are the fol-
lowing: MinHUIs ⊆ HUIs ⊆ 2I , MaxHUIs ⊆ CHUIs ⊆ HUIs ⊆ 2I , and
GHUIs ⊆ 2I .

Fig. 1. HUIs and their equivalence classes (represented using Hasse diagrams)

A problem with previous representations is that the number of discovered
patterns can still be very large since the number of HUIs, CHUIs, GHUIs and
MaxHUIs increases when the minutil threshold is decreased. It is interesting to
note that this is not necessarily the case for MinHUIs (Property 4).

Property 4 (Influence of minutil on MinHUI count). If minutil is lowered,
the number of MinHUIs may increase, decrease or stay the same. Moreover,
if minutil = 1, the set of MinHUIs is equal to I.

The above property is demonstrated using the running example. For minutil =
20, there is 3 MinHUIs: {a}, {b}, and {c, e}. For minutil = 25, there are 5
MinHUIs: {b, c}, {b, d}, {b, e}, {a, c}, and {c, e}. For minutil = 30, there are 3
MinHUIs: {b, d}, {b, e}, and {a, c, e}. Another interesting property of MinHUIs
is used for pruning the search space in the proposed MinFHM algorithm

Property 5 (pruning property of minimal high-utility itemsets). If an itemset X
is a MinHUI, then supersets of X are not MinHUIs.

4 The MinFHM algorithm

This section presents the proposed MinFHM algorithm. It first describes the
main procedure, which is inspired by the FHM [5] algorithm. This procedure



is designed to mine all HUIs. Then, it explains how that procedure is adapted
to find only MinHUIs. The resulting algorithm is called MinFHM. The main
procedure of MinFHM (Algorithm 1) takes as input a transaction database with
utility values and the minutil threshold. The algorithm first scans the database
to calculate the TWU of each item. Then, the algorithm identifies the set I∗

of all items having a TWU no less than minutil (other items are ignored since
they cannot be part of a high-utility itemsets by Property 3). The TWU values
of items are then used to establish a total order � on items, which is the order
of ascending TWU values (as suggested in [12]). A second database scan is
then performed. During this database scan, items in transactions are reordered
according to the total order �, the utility-list of each item i ∈ I∗ is built and a
structure named EUCS (Estimated Utility Co-Occurrence Structure) is built [5].
This latter structure is defined as a set of triples of the form (a, b, c) ∈ I∗×I∗×R.
A triple (a,b,c) indicates that TWU({a, b}) = c. The EUCS can be implemented
as a triangular matrix or as a hash map of hash maps where only tuples of the
form (a, b, c) such that c 6= 0 are kept. In our implementation, we have used
this latter representation as it is more memory efficient. Building the EUCS is
very fast (it is performed with a single database scan) and occupies a small
amount of memory, bounded by |I∗|× |I∗|, although in practice the size is much
smaller because a limited number of pairs of items co-occurs in transactions (cf.
section 5). After the construction of the EUCS, the depth-first search exploration
of itemsets starts by calling the recursive procedure Search with the empty
itemset ∅, the set of single items I∗, minutil and the EUCS structure. The

Algorithm 1: The MinFHM algorithm

input : D: a transaction database, minutil: a user-specified threshold
output: the set of high-utility itemsets

1 Scan D to calculate the TWU of single items;
2 I∗ ← each item i such that TWU(i) ≥ minutil;
3 Let � be the total order of TWU ascending values on I∗;
4 Scan D to build the utility-list of each item i ∈ I∗ and build the EUCS;
5 Output each item i ∈ I∗ such that SUM({i}.utilitylist.iutils) ≥ minutil;
6 Search (∅, I∗, minutil, EUCS);

Search procedure (Algorithm 2) takes as input (1) an itemset P , (2) extensions
of P having the form Pz meaning that Pz was previously obtained by appending
an item z to P , (3) minutil and (4) the EUCS. The search procedure operates
as follows. For each extension Px of P , if the sum of the iutil values of the
utility-list of Px is no less than minutil, then Px is a high-utility itemset and
it is output (cf. Property 4). Then, if the sum of iutil and rutil values in the
utility-list of Px are no less than minutil, it means that extensions of Px should
be explored. This is performed by merging Px with all extensions Py of P such
that y � x to form extensions of the form Pxy containing |Px| + 1 items. The



utility-list of Pxy is then constructed as in HUI-Miner by calling the Construct
procedure (cf. Algorithm 3) to join the utility-lists of P , Px and Py. This latter
procedure is the same as in HUI-Miner [12] and is thus not detailed here. Then,
a recursive call to the Search procedure with Pxy is done to calculate its utility
and explore its extension(s). Since the Search procedure starts from single items,
it recursively explores the search space of itemsets by appending single items and
it only prunes the search space based on Property 5. It can be easily seen based
on Property 1, 2 and 3 that this procedure is correct and complete to discover
all high-utility itemsets.

Algorithm 2: The Search procedure

input : P : an itemset, ExtensionsOfP: a set of extensions of P , , minutil: a
user-specified threshold, EUCS: the EUCS

output: the set of high-utility itemsets

1 foreach itemset Px ∈ ExtensionsOfP do
2 if SUM(Px.utilitylist.iutils)+SUM(Px.utilitylist.rutils) ≥ minutil then
3 ExtensionsOfPx← ∅;
4 foreach itemset Py ∈ ExtensionsOfP such that y � x do
5 if ∃(x, y, c) ∈ EUCS such that c ≥ minutil) then
6 Pxy ← Px ∪ Py;
7 Pxy.utilitylist← Construct (P, Px, Py);
8 ExtensionsOfPx← ExtensionsOfPx ∪ {Pxy};
9 if SUM(Pxy.utilitylist.iutils) ≥ minutil then output Px;

10 end

11 end
12 Search (Px, ExtensionsOfPx, minutil);

13 end

14 end

We now explain how the search procedure is modified to mine only MinHUIs,
rather than all HUIs. The first modification is to the main MinFHM procedure
(Algorithm 1). During the first database scan, the utility of each single item is
now calculated. Then, each item x that is a high-utility itemset is directly output.
The reason is that each such item x is a MinHUI , since no smaller itemset can
be a HUI. Thereafter, each such item x is removed from the set I (and thus will
not be inserted in I∗). Thus, no superset of x will be explored by the Search
procedure, and item x will be ignored in TWU and remaining utility calculations,
afterward. The reason for removing item x from I is that if x is a HUI, then
all supersets of x are not MinHUIs according to Property 5. By applying the
previous modification, the algorithm will correctly output MinHUIs that are
single items. To find MinHUIs having more than one item, modifications are
made to the Search procedure (Algorithm 2) as follows. A new structure called
the MinHUI-store is introduced. At any time, this structure stores the itemsets,
which are currently considered to be MinHUIs. When a new HUI Pxy is found,



Algorithm 3: The Construct procedure

input : P : an itemset, Px: the extension of P with an item x, Py: the
extension of P with an item y

output: the utility-list of Pxy

1 UtilityListOfPxy ← ∅;
2 foreach tuple ex ∈ Px.utilitylist do
3 if ∃ey ∈ Py.utilitylist and ex.tid = exy.tid then
4 if P.utilitylist 6= ∅ then
5 Search element e ∈ P.utilitylist such that e.tid = ex.tid.;
6 exy ← (ex.tid, ex.iutil + ey.iutil − e.iutil, ey.rutil);

7 end
8 else
9 exy ← (ex.tid, ex.iutil + ey.iutil, ey.rutil);

10 end
11 UtilityListOfPxy ← UtilityListOfPxy ∪ {exy};
12 end

13 end
14 return UtilityListPxy ;

the modified algorithm checks if there exists an itemset Y in the MinHUI-store
such that Y ⊂ Pxy. If there exists such an itemset Y , then Pxy is not a MinHUI.
Thus, Pxy is not output. Moreover, by Property 5, supersets of Pxy are also
not MinHUIs. Thus, Pxy is not added to the set ExtensionsOfPx, to ensure that
extension of Pxy will not be considered by the search procedure. If there does not
exist an itemset Y such that Y ⊂ Pxy, then Pxy is assumed to be a MinHUI.
The itemset Pxy is thus inserted into the MinHUI-store. Then, the modified
algorithm removes each itemset Z in the MinHUI-store such that Pxy ⊂ Z,
because each such itemset Z is no longer a MinHUI, after the discovery of Pxy.
When the algorithm terminates, all MinHUIs in the left-store are output. The
union of these itemsets with the single items that are MinHUIs (which have been
previously output), are the full set of MinHUIs. By the definition and properties
presented in this paper, it can easily be seen that this algorithm is correct and
complete for mining MinHUIs.

To further optimize the MinFHM algorithm, it is important to implement the
MinHUI-store structure efficiently. In our implementation, it is implemented as a
list of lists of itemsets. More specifically, the MinHUI-store structure stores item-
sets having the same size in the same list of itemsets. This allows to efficiently
check if an itemset Pxy has proper supersets (subsets) in the MinHUI-store, by
only comparing Pxy with larger (smaller) itemsets. Furthermore, to be able to
quickly compare two itemsets, items in itemsets are lexicographically ordered.
Another optimization is that it is not necessary to check if a HUI containing two
items has a subset in the MinHUI-Store, since MinHUIs of size 1 are not used to
generate larger itemsets. Thus, HUI of two items found by the search procedure
can be directly assumed to be MinHUIs. Finally, the LA-Prune optimization [9]



is also incorporated. Moreover, for each MinHUI {x, y} of size 2 that is found,
the corresponding tuple in the EUCS can be replaced by (x, y, 0) to help prune
the search space.

5 Experimental Study

We assessed the performance of MinFHM on a computer with a third genera-
tion 64 bit Core i5 processor running Windows 7 and 5 GB of free RAM. We
compared the performance of the proposed MinFHM algorithm with FHM [5],
CHUD [16], and GHUI-Miner [6], which are respectively the state-of-the-art al-
gorithms for mining HUIs, CHUIs and GHUIs. All memory measurements were
done using the Java API. The experiment was carried on four real-life datasets
commonly used in the HUIM literature: mushroom, retail, kosarak and foodmart.
These datasets have varied characteristics and represent the main types of data
typically encountered in real-life scenarios (dense, sparse and long transactions).
Let |I|, |D| and A represents the number of transactions, distinct items and
average transaction length. mushroom is a dense dataset (|I| = 16,470, |D| =
88,162, A = 23). kosarak is a dataset that contains many long transactions (|I|
= 41,270, |D| = 990,000, A = 8.09). retail is a sparse dataset with many different
items (|I| = 16,470, |D| = 88,162, A = 10,30). foodmart is a sparse dataset (|I| =
1,559, |D| = 4,141, A = 4.4). foodmart contains real external and internal utility
values. For the other datasets, external utilities for items are generated between
1 and 1,000 by using a log-normal distribution and quantities of items are gener-
ated randomly between 1 and 5, as the settings of [2, 12, 15]. The source code of
all algorithms and datasets can be downloaded as part of the SPMF open-source
data mining library [7] at http://www.philippe-fournier-viger.com/spmf/.
Algorithms were run on each dataset, while decreasing the minutil threshold
until they became too long to execute, ran out of memory or a clear trend
was observed. Fig. 2 shows the execution times of MinFHM, FHM, CHUD,
and GHUI-Miner. Fig. 3 compares the number of MinHUIs, HUIs, CHUIs and
GHUIs, respectively generated by these algorithms.

It can first be observed that mining MinHUIs using MinFHM is faster than
mining HUIs, CHUIs and GHUIs, using FHM, CHUD and GHUI-Miner. On
mushroom, MinFHM is up to 824, 44, and 71 times, faster than FHM, CHUD
and GHUI-Miner. On foodmart, MinFHM is up to 80, 52, and 75 times faster
than FHM, CHUD and GHUI-Miner. On retail, MinFHM is up to 6, 62, and 63
times faster than FHM, CHUD and GHUI-Miner. On kosarak, MinFHM is up
to 1.8, 15, and 16 times faster than FHM, CHUD and GHUI-Miner. The reason
for the excellent performance of MinFHM is that it prunes a large part of the
search space by not exploring the transitive extensions5 of MinHUIs.

A second observation is that MinFHM scales well when minutil is decreased.
For example, on mushroom, the runtime of MinFHM does not vary much and re-
mains less than 1 second, while the runtime of FHM increases rapidly as minutil

5 Recall that for an itemset X, the extensionsof X are the itemsets that can be ob-
tained by appending an item y to X such that y � i, ∀i ∈ X.
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Fig. 3. Number of patterns found

is decreased, taking more than 10 minutes to terminate. MinFHM shows a sim-
ilar behavior on foodmart dataset, where the runtime of MinFHM is very stable
while the runtimes of other algorithms increase considerably when minutil is
decreased. On the retail, the runtime of MinFHM increases by a lesser amount
compared to the other algorithms when minutil is decreased. Finally, on the



Kosarak, the increase is comparable to the other algorithms. The reason why
the runtime of MinFHM is generally very stable is that when minutil is de-
creased, the number of MinHUIs generally increases less rapidly than the number
of HUIs, CHUIs and GHUIs (see Fig. 3). As mentioned in property 4, MinHUIs
have the nice property that their number may increase or decrease, as minutil
is decreased, while the numbers of HUIs, CHUIs and GHUIs cannot decrease,
and generally increase very quickly.

It is also interesting to observe that the number of MinHUIs never exceeded
1,300 patterns, while other algorithms generated up to millions of patterns. For
example, on the dense mushroom dataset and minutil = 3, 000, 000, 38 MinHUIs,
3,538,181 HUIs, 10,311 CHUIs, and 27,640 GHUIs, are found. The number of
MinHUIs is thus respectively, 931,000, 271, and 727 times less than the number
of HUIs, CHUIs and GHUIs. It can thus be concluded that HUIs, CHUIs and
GHUIs, generally depend on a very small set of MinHUIs, and that finding these
MinHUIs provides a very compact and informative set of results to the user.

6 Conclusion

This paper has studied a novel representation of high-utility itemsets named Min-
imal High-Utility Itemsets (MinHUIs), its properties, and presented an efficient
algorithm named MinFHM to discover MinHUIs. MinFHM includes numerous
optimizations to discover MinHUIs efficiently. An extensive experimental study
on real-life datasets shows that mining minimal HUIs is almost two orders of
magnitude faster than mining HUIs, CHUIs or GHUIs and that it can greatly
reduce the result set presented to the user. The source code of all algorithms
and datasets can be downloaded as part of the SPMF open-source data mining
library [7] at http://www.philippe-fournier-viger.com/spmf/.

For future work, an interesting possibility is to use MinHUIs as a negative
border in HUI stream mining and incremental HUI mining, and also to explore
the properties of MinHUIs for associative classifiers [18], and the discovery of
minimal high-utility sequential patterns [19, 20]. Lastly, another possibility is to
design a faster algorithm for mining MinHUIs based on EFIM [21], a recently-
proposed algorithm that was shown to outperform FHM for the traditional prob-
lem of HUI mining.
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