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Abstract. Spatial co-location pattern is a subset of object features that
are geographically close to one another. The majority of existing methods
employ standard proximity measures (e.g. Euclidean distance). However,
depending on the study area, these standard measures do not work well.
The spatial structure has to be considered. This article proposes CSS-
Miner, a co-location pattern mining approach under the spatial structure
constraint. In this case, we use the street network of a city as a constraint.
CSS-Miner has been applied to two datasets from the cities of Paris and
Chicago by selecting different POIs.

Keywords: co-location · pattern mining · spatial data · spatial struc-
ture.

1 Introduction

In the field of data mining, discovering co-location patterns is done to ex-
tract knowledge and insights that integrate the spatial dimension and can help
decision-makers. A co-location (or co-location pattern) is a subset of spatial fea-
tures that are frequently located in the same region. For example, shopping
centers in a city often contain big supermarkets, small restaurants, clothing
stores and a gas station. Hence, if we consider shopping centers around a city
as a co-location pattern, its spatial features can be described by supermarkets,
restaurants, clothing stores and gas stations. A supermarket can be a spatial
feature having values such as small, medium and large as feature instances. A
graph representation of this example is presented in Fig. 1.

A lot of research has been done on mining co-location patterns [15, 19, 27].
Pattern mining methods for co-location discovery were applied in various fields
such as to analyze business density [6], explain anthropic phenomena [1] and
to explain soil erosion [18]. However, despite numerous use cases, most of these
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Fig. 1: Example of a co-location pattern with its spatial features and feature
instances.
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methods rely on standard distance functions to assess the proximity of spatial
objects such as the Euclidean distance. But in some use cases, it is desirable
to choose other functions for measuring distances between spatial objects. For
instance, in the case of behavior analysis via points of interest in a city, the
Euclidean distance does not make sense since a path between two spatial objects
can be significantly different from their Euclidean distance.

Depending on the case study, it can be essential to take into account the
spatial structure, since it influences the distribution of spatial objects in the
area. If standard distance functions are used such as the Euclidean distance in
urban analysis, all information about the city’s spatial structure is lost. To keep
that information, other distance functions must be used. However, depending on
the density of a city, integrating a city’s structure can increase the complexity
of the analysis, not only in terms of data processing but also in terms of input
parameter settings as well.

In this paper, we propose CSS-Miner (CSS stands for Co-location under the
Spatial Structure constraint), a co-location pattern mining approach for iden-
tifying interesting co-locations under the constraint of the spatial structure of
a city’s street network. The approach first constructs a graph under the spatial
structure constraint using a shortest path algorithm. Then, CSS-Miner extracts
maximal cliques to obtain spatial patterns. For evaluation, the proposed ap-
proach was applied on two datasets from the cities of Paris and Chicago, which
allowed discovering relevant patterns.

The article is organized as follows. Section 2 reviews relevant work on spatial
pattern mining, focusing on the event-based approach. Section 3 describes the
proposed CSS-Miner approach to consider the spatial structure constraint. Then,
section 4 presents the data used for evaluation and the discovered patterns.
Finally, a conclusion is drawn and perspectives are discussed.

2 Related work

Huang et al. described two main approaches for spatial pattern mining: the
sequence-based approach and the event-based approach [12].
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The sequence-based approach consists in transforming spatial objects into
sequential data and then applying a standard frequent itemset pattern mining
algorithm. This approach was introduced by Koperski and Han [15].

The event-based approach (also named join-less approach) focuses on the
locations of spatial objects and their proximity. Initially proposed by Shekhar et
al. [19], this approach extracts subsets of objects that are spatially close together,
and are called co-locations. In the same way as for the sequence-based approach,
interestingness measures have been defined to keep only the most interesting
co-location patterns.

In the literature, it is found that the sequence-based approach is more com-
monly used than the join-less approach, and all the above methods rely on the
Euclidean distance to assess spatial relationships. In this paper, we design a
method based on an alternative distance measure to handle a constraint that
we call the spatial structure constraint. The proposed method adopts the event-
based approach to leverage the spatial dimension of objects and their proximity.
To apply the event-based approach under the spatial structure constraint, max-
imal clique mining is used to extract co-location patterns. Therefore, the next
sub-sections 2.1 and 2.2 respectively give an overview of approaches for maximal
clique mining and key studies on co-location pattern mining and their interest-
ingness measures.

2.1 Maximal clique mining

(Complete graph) Let G = (V,E) be a graph with V = {v1, v2, . . . , vn} the
set of vertices and E ⊆ {(vi, vj) ∈ V 2 | ∀i, j ∈ {1, . . . , n} and i ̸= j} the set of
edges. If two vertices vi and vj are linked i.e., (vi, vj) ∈ E, then vi and vj are
adjacent. A graph is complete if each pair of graph vertices is connected by an
edge (adjacent).
(Clique) Let G = (V,E) be a graph and g = (Vg, Eg) be a subgraph such that
Vg ⊆ V and Eg ⊆ {(vg,i, vg,j) ∈ E | vg,i ∈ Vg ∧ vg,j ∈ Vg and i ̸= j}. A clique of
G is a subgraph g ⊆ G such that g is complete.
(Maximal clique) Given G = (V,E) a graph and g ⊂ G a clique, the clique g is
said to be maximal if and only if there exists no clique g′ such that g ⊂ g′ ⊆ G.

With the event-based approach, it is possible to extract co-location patterns
through maximal clique mining. Valiant [24] has shown that enumerating all
maximal cliques is #P-complete. In the same way as standard frequent itemset
pattern mining methods, maximal clique extraction checks every combination of
vertices from a graph to obtain maximal cliques. We can particularly mention
the algorithm proposed by Bron et al. [4] and Tomita et al. [21] for its O(3n/3)
worst-case complexity in an n-vertex graph which is optimal as a function of n
but also Moon et al. [17] and Cazals et al. [5] who consider a recursive call in
the algorithm to improve the maximal clique mining performance.

In the literature, maximal clique mining methods are commonly used to mine
co-location patterns [2, 16, 22, 26]. By defining a graph network where vertices
represent spatial objects and edges represent their neighborhood then by apply-
ing a maximal clique mining method, we can obtain subsets of objects that are
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all neighbors to each other. Therefore, in this paper, we will use the approach
proposed by Bron et al. [4] then adapted by Tomita et al. [21] for its speed given
the size of our datasets detailed in the section 4.1.

2.2 Co-location pattern mining and interestingness measures

The idea of the event-based approach is to project spatialized data with their
coordinates and to define the proximity between each spatial object in order to
extract patterns. In this section, we recall the co-location mining framework pro-
posed in Shekhar and Huang [19], Huang et al. [12] and Yoo and Shekhar [27]. Let
F be a set of features and O = {o1, o2, . . . , on} be a database of spatial objects.
Each object in O consists of a tuple <object_id, location, feature>, where
feature ∈ F . For example, in the Fig. 2b, F = {A,B,C}, O = {A1, B2, . . . , C3}
with A1 =< 1, (x1, y1), A >, B2 =< 2, (x2, y2), B >, etc. A co-location C is a
subset of features F associated to spatial objects O. These co-location patterns
represent pattern frequently located in neighbor objects. The neighborhood rela-
tionship is defined as a binary relation R(o, o′) between two spatial objects o and
o′. Depending on user requirements and use cases, R can be based on a distance
threshold between two objects, or based on their intersection. Several works have
been done in this vein, including Yoo and Shekhar [27], Wang et al. [25] and Kim
et al. [14]. Most of these works are usually based on the Euclidean distance to
evaluate the proximity between spatial objects. But more recently, some works
have been done on co-location pattern mining using a different proximity mea-
sure from the Euclidean distance. Yu [28] proposed in his paper the shortest
path length as proximity measure. However, the author proposed the method
by adding a parameter which is the maximum number of object neighbors. By
setting this parameter, it ensures a fast pattern mining time but it also limits
the size of co-location patterns which can miss out some information that might
turn out to be relevant to users. Then, Yu et al. [29] added a distance-decay
function to find the spatial dependence between spatial objects. It consists of
weighting the contribution of a co-location pattern in the interest measure.

The join-less approach is based on the definition of a neighborhood threshold.
To determine if two objects are spatially close, we set a maximum distance
threshold d. Once the neighborhood is defined, the graph is constructed with
the spatial objects representing the vertices. Two vertices are adjacent if the
associated spatial objects’ distance falls within the threshold d (i.e., the spatial
distance measure between these two vertices is lower than d).

For spatial pattern mining methods, interestingness measures have been de-
veloped in order to quantify interesting patterns. To measure whether a co-
location pattern is interesting or not, the participation index, based on the par-
ticipation ratio is used. The participation index is also called the prevalence. We
then speak about prevalent spatial pattern.
(Participation ratio) Let C be a co-location pattern. For an instance fi ∈ C,
the participation ratio is given by:

Pr(fi, C) =
|{ instances of fi participating in C)}|

|{ instances of fi }|
(1)
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Given the example of the Fig. 2, let C = {A,B} be a co-location candi-
date and IC = {(A1, B1), (A1, B2), (A3, B4)} be the set of row-instances of C.
With A and B, two features having respectively, 3 and 4 instances, we have
Pr(A, {A,B}) = |{A1,A3}|

|{A1,A2,A3}| =
2
3 and Pr(B, {A,B}) = |{B1,B2,B4}|

|{B1,B2,B3,B4}| =
3
4 .

Spatial Features:
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and its features instances

Given a neighborhood
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Fig. 2: Example of co-location patterns based on a set of cliques from a spatial
dataset.

(Participation index) Let C be a co-location candidate, IC = {IC1 , ..., ICk } be
the set of row-instances of C and F = {f1, . . . , fn} be the set of spatial features
from the database O. The participation index is defined by:

Pi(C) = min
fi∈C

Pr(fi, C) (2)

Using the previous example, we have as participation index:

Pi({A,B}) = minfi∈{A,B} Pr(fi, {A,B}) = min( 23 ,
3
4 ) =

2
3

In this paper, the prevalence measure will be used to determine whether
co-location patterns in the section 4 are relevant or not.

The participation index measure has been defined for point data. However,
with increased data collection, we now have different types of data (lines, poly-
gons, ...). In their paper, Akbari et al. [1] proposed a participation index variant
measure for each type of data. To take into account all types of data, authors
proposed to restrict the mining region by applying Voronoi diagram around core
elements. In their case, core elements is the spatial feature to analyze described
by point data. Once the Voronoi diagram applied, each Voronoi’s cell represents
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a co-location row-instance. Then, to consider polygon/line data, they weight
spatial objects by the proportion of the spatial object located inside the Voronoi
region.

In this paper, we aim to integrate a spatial structure constraint to mine co-
location patterns. Applying Voronoi diagram would restrict the mining region
but it would not necessarily restrict the distance measure. Thus, we will not
use the variant measure proposed in [1]. Therefore, we will have to convert our
polygon data into point data by taking the polygon’s center of gravity (mean of
all polygon coordinates).

As mentioned before, join-less approach works mostly used standard distance
functions as proximity measure between spatial objects. Depending on the case
study, by using standard distance measures such as the Euclidean distance, we
may lose the spatial structure. We will, then, use the shortest path length as
proximity measure.

2.3 Shortest path search

Over the last decades, the shortest path search has been a major problem in
graph theory. The speed of search depends entirely on the number of vertices
and the numbers of edges in a graph. One of the first solutions was introduced
by Dijkstra [7]. Then, new algorithms were developed to accelerate the shortest
path search [9, 13,20].

More recently, Varia and Kurasova [23] proposed an accelerated version of
Dijkstra’s algorithm, by adding two components: a bidirectional search and a
parallelized process. To find the shortest path between two vertices vi and vj ,
authors applied Dijkstra’s algorithm to find the shortest path from vi to vj and
from vj to vi. Since Dijkstra’s algorithm is based on a priority queue, the bidi-
rectional component uses two priority queues. Their method is run by executing
one step on each side in a single period. According to authors, the algorithm
stops somewhere between vi and vj . However, the process is not symmetrical, it
depends on the number of edges of all the visited nodes. The problem in the bidi-
rectional component is that two paths are taken with one step at a time. Each
path will be shorter, but they are moving each in turn. That is why authors
proposed to add a second component: parallel computing. With this component,
the two paths can move forward at the same time. By adding these two compo-
nents, according to their results, the improved approach is at least twice as fast
as the standard algorithm, depending on the number of vertices in the graph.

In order to leverage the spatial structure constraint and accelerate our pro-
cess, the bidirectional and parallel Dijkstra’s algorithm will be used.

3 Methods

Let consider a set of spatial objects O with a set of features F . Let GS be a
graph representing the spatial structure as GS = (VS , ES) where VS a set of
vertices representing objects and ES a set of edges.



Co-location pattern mining under the spatial structure constraint 7

3.1 Taking into account the spatial structure constraint

To analyze points of interest in a spatial structure (e.g., an urban area), the
length associated to the shortest path taken between two locations (xi, yi) and
(xj , yj) associated to spatial objects oi and oj respectively, seems the most
adapted. In order to extract co-location patterns, we have sought to include
the spatial structure constraint.

The integration of the constraint is carried out in several steps:

1. For each spatial object oi ∈ O, we associate it in the spatial structure GS

with the closest object noted oS ∈ VS (through the Euclidean distance);
2. We compute the shortest paths according to Dijkstra’s method for each

object from VS to the other objects located within a radius d according to
the Euclidean distance;

3. If the shortest path length between two objects from VS is lower than the
threshold d, then they are considered as neighbors.

To avoid unnecessary shortest path computations, we only apply the shortest
path algorithm between two objects of VS if these two objects are respectively
associated to two objects of O. Even though the Euclidean distance is not used as
proximity measure in our approach, we still use it in order to limit the number
of shortest path computation. Applying a distance radius threshold with the
Euclidean distance will prevent computing irrelevant shortest path. By triangular
inequality, a spatial object located outside a distance radius d from another
spatial object has a shortest path distance greater than or equal to d.

Fig. 3: Three possibilities of distance CSS-Miner can encounter.

Legend:

Distance
possibilities:

Road network

Distance radius from objects

Spatial objects

Shortest path

3.2 Graph construction

To extract our spatial patterns (co-locations) which are the maximal cliques, we
chose to go on a graph construction G = (O, EO) (under the spatial structure
constraint) where EO = {(oi, oj) | ∃(oS,i, oS,j) ∈ ES , Dsp(oS,i, oS,j) ≤ d, ∀(i, j) ∈
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J1, nK2, i ̸= j} with oS,i representing the object from the spatial structure asso-
ciated to the spatial object oi ∈ O and Dsp representing the distance obtained
by Dijkstra’s shortest path algorithm if it exists.

The Fig. 3 shows the three possibilities CSS-Miner can encounter. Here,
Ai and Bi are objects from VS explained in the section 3.1. With d as the
distance radius and the shortest path threshold, we have as Euclidean distance,
d2(A2, B3) > d, so CSS-Miner will not run the shortest path algorithm and will
not consider A2 and B3 as neighbors under the spatial structure constraint. On
the other hand, we have d2(A1, B2) ≤ d, so our algorithm will run the shortest
path algorithm. However, we have Dsp(A1, B2) > d, so we will not consider A1

and B2 as spatially close. Finally, we have in the Fig. 3, the spatial object B1

located within the distance radius d of A2. CSS-Miner will compute the shortest
path, get Dsp(A2, B1) < d and consider these two spatial objects as spatially
close. Therefore, the associated value in the adjacency matrix will be equal to 1.

At the end, in CSS-Miner, we are processing two graphs: The first one rep-
resenting the spatial structure and the second one representing the relationship
of our spatial dataset created with the first graph.

4 Experimental Results

In this paper, we apply our approach on two real datasets (see data description
in Table 1. The first one is created by collecting data from OpenData platforms
of Paris4 and its suburbs5. The second dataset is also created by collecting data
from the OpenData platform of Chicago6.

Table 1: Description of datasets.
City Variable Attributes # Modalities # Spatial Objects

Paris

High Schools Type of High School 7 239
Movie theaters # Seats available (*) 5 85

Bicycle Station capacity (*) 8 996
Parks Type of Park 9 722

Subway Line of the station 16 326

Chicago

High Schools Type of High School 13 142
Bus # Lines on station 12 5,606

Rail Lines # Lines on station 6 124
Fast food chains 1 877

Bicycle Station capacity (*) 8 1,402
Parks Type of Park 13 613

(*): The data have been discretized by quantile.

4 https://opendata.paris.fr/
5 https://data.iledefrance.fr/
6 https://data.cityofchicago.org/
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For each dataset, the entire process was carried out on a computer with a
AMD Ryzen 7 3700X 8-core processor, 64GB of RAM and a NVIDIA GeForce
RTX 2060 SUPER GPU with 8GB of dedicated RAM. It took respectively, about
2 and 5 hours to run the entire process on Paris and Chicago datasets.

This use case aims to analyze and understand the young population behavior
in a big city. This approach is totally generic, since we can apply it to a popula-
tion analysis according to the socio-professional category, for example: What are
the daily habits of a manager compared to a student? Another points of interest
analysis can also be useful to develop a decision support tool to help developing
the tourism of a city. Finally, the points of interest analysis remain a very large
subject to study.

4.1 Data Preprocessing

In order to integrate the spatial structure constraint, it is necessary to get access
to that information. In this case, we used the road network as spatial structure.
We assume that the path is taken on foot. We made this choice because we
wanted to integrate only data from OpenData platforms where the traffic noise
is not always available.

To get access to the road network of Paris and Chicago, we used OSMnx
methods [3]. Authors made OSMnx easy to use, one can retrieve street network
from coordinates or just by providing the city name via its Python package.
Once the street network is retrieved, it can be converted into a graph network
with roads as edges and road intersections as vertices. At the end, the graph
associated to Paris street network has 42,870 vertices and 241,016 edges and the
graph associated to Chicago has 184,476 vertices and 1,217,928 edges.

For the Paris dataset, we collected datasets of Movie theaters, High Schools,
Self-service bicycle stations, Green spaces and Subway stations of Paris. To re-
strict the scope of analysis, we only kept spatial objects of Paris (and not its
regions around). We also chose to only process point data. Therefore, the Green
spaces variable which is initially polygon data is reduced to point data by tak-
ing the centroid (the center of gravity). In addition, since co-location pattern
only works with categorical data, we discretized two variables (Movie theaters
and Self-service bicycle stations) by quantile. At the end, we have 2,968 spatial
objects described by the table 1.

For the Chicago dataset, we collected datasets of Bus stops, Rail lines,
Green spaces, High Schools, Self-service bicycle stations and Fast food chains of
Chicago. The same process as the Paris dataset has been done on this Chicago
dataset. At the end, we have 8,764 spatial objects described by the table 1.

For both datasets, we converted all the coordinates into the projected coordi-
nate system WGS 84 / Pseudo-Mercator (EPSG:3857). This coordinate system
allows us to compute distances in meters.

At the pruning step, we set a radius threshold of 500m (d = 500). Each object
will only be compared to objects within this radius. At the graph construction
and its associated adjacency matrix, to determine if two objects (two vertices)
are contiguous, we thresholded the walking distance to the same radius threshold
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(d = 500). Thus, if the shortest path found between two spatial objects is lower
than 500m, then its associated value in the adjacency matrix is equal to 1.
Otherwise, it is equal to 0. In addition, to avoid any loop in the graph (a vertex
adjacent to itself), we set every value of the diagonal to 0.

4.2 Paris dataset

Following the data processing and the graph construction, we have run the max-
imal cliques mining process. Since this paper is about young population behavior
analysis, the Table 2 only shows co-location patterns containing the High Schools
variable.

Table 2: Extracted Paris co-location pattern prevalence.

Co-location pattern Prevalence
under constraint

Prevalence
without constraint

{Green Spaces, High Schools,
Self-service bicycle} 0.89 0.89

{High Schools, Self-service bicycle} 0.86 0.86
{Green Spaces, High Schools,
Self-service bicycle, Subway station} 0.78 0.89

{High Schools, Movie theaters,
Self-service bicycle} 0.71 0.71

{High Schools, Self-service bicycle,
Subway station} 0.71 0.71

{High Schools, Movie theaters,
Self-service bicycle, Subway station} 0.71 0.71

{Green Spaces, High Schools,
Movie theaters, Self-service bicycle} 0.56 0.44

The Table 2 shows us the possible activities near High Schools in Paris, in
particular parks and movie theaters. We note through these co-location pat-
terns, the ubiquity of High Schools and Self-service bicycle variables, which also
shows us that the city of Paris helps young population to get around the city
autonomously and at the same time, practice a physical activity. It would be in-
teresting to apply CSS-Miner to other french cities offering this service in order
to confirm this trend.

Since CSS-Miner approach integrates the road network as spatial structure
constraint, the idea is to see if there is any difference compared to co-location
patterns without this constraint i.e., using only the Euclidean distance. These
results show us that by taking into account the road network, co-location pat-
terns under constraint not always have a prevalence greater than prevalence with
the Euclidean distance as proximity measure.

We can explain as follow. The extracted co-location patterns without con-
straint used a distance threshold equal to 500 (meters), just as CSS-Miner. By
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triangular inequality, a walking distance between two spatial objects is greater
than or equal to their Euclidean distance. Therefore, without constraint, the co-
location candidates contain more spatial objects, increasing the probability to
have a high number of instances per variable, which can reduce their prevalence.
This also explains why the {Green Spaces, High Schools, Self-service bicycle}
co-location pattern has a decreasing prevalence from 0.89 to 0.56 by adding the
Movie theaters variable. Indeed, by adding a variable into a co-location pattern,
it increases the number of spatial objects contained in the co-location, which can
decrease the prevalence.

Finally, without considering the spatial structure constraint i.e., by using the
Euclidean distance as proximity measure, the algorithm extracted some patterns
CSS-Miner did not extract. These patterns are: {High Schools, Subway station}
and {Green Spaces, High Schools, Movie theaters, Subway station} with a preva-
lence equal to 0.31 and 0.14 respectively without considering the spatial structure
constraint. These two patterns have a prevalence equal to 0 under the constraint.
It shows that even if the spatial features are close to one another using the Eu-
clidean distance, their shortest path length do not verify our proximity criterion,
so they cannot be considered as close. At the end, by taking into account the
spatial structure to define the proximity measure, we can extract more relevant
patterns and filter not so relevant patterns based on the study area.

4.3 Chicago dataset

As the Paris dataset, the Table 3 only shows co-location patterns containing the
High Schools variable from the Chicago dataset.

Table 3: Extracted Chicago co-location pattern prevalence.

Co-location pattern Prevalence
under constraint

Prevalence
without constraint

{Bus, Fast food chains, High Schools,
Self-service bicycle} 0.58 0.5

{Bus, Fast food chains, High Schools,
Rail Lines, Self-service bicycle} 0.38 0.38

{Bus, Fast food chains, High Schools} 0.33 0.17
{Bus, Fast food chains, High Schools,
Rail Lines} 0.3 0.3

{Bus, Fast food chains, High Schools, Parks} 0.17 0.17
{Bus, Fast food chains, High Schools,
Rail Lines, Self-service bicycle, Parks} 0.15 0.15

Prevalences from Table 3 show that most of High Schools in Chicago have a
Fast food chains around it, so young population in Chicago will be more tempted
to go eat in a Fast food at lunch or after school. The ubiquity of High Schools
and Fast Food chains variables can also be a sign of malnutrition in the US, at
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least in the young population of Chicago. To confirm this affirmation, it would
be interesting to apply CSS-Miner in big cities from the USA and verify if we
can extract the same co-location patterns. It would also be interesting to get a
Fast Food dataset in Paris to reveal if Fast Food chains in Paris target young
population the same way as in Chicago. Unfortunately, the Fast Food dataset in
Paris is not available on OpenData platforms. We note from these co-location
patterns that High Schools in Chicago have a mean of public transportation
nearby which shows us that Chicago is well connected. Just as the Paris dataset,
based on prevalence values, we have more relevant co-location patterns under
constraint than without for the same reasons mentioned before.

5 Conclusion and perspectives

In this paper, we introduced CSS-Miner, a co-location pattern mining approach
under the spatial structure constraint. We described how this constraint have
been defined and taken into account, particularly with a road network and a
shortest path search algorithm. To extract co-location patterns, we used the
maximal clique mining approach with a restricted search radius and editable
depending on the use case. At the end, thanks to the OpenData platforms of
Paris and Chicago, we have been able to create two real datasets.

However, during the data processing step, we chose to transform all our
spatial objects into points. The next step of our work will be to keep initial type
data (points, polygons, lines, ...). In addition, during the shortest path search
step, a comparison between spatial objects and the road network is done. In
order to optimize the shortest path search, an additional pruning step of the
road network might be necessary. There are several works done on pruning, for
instance a soft filter pruning for convolutional neural network [11] or an online
graph pruning applied on grid maps [10]. So the next step of our work will be
to prune the graph associated to the road network in order to accelerate our
shortest path search process.

Moreover, CSS-Miner is an explanatory analysis method, so the next step of
our work will be to integrate knowledge from experts [8], such as urban planners
and geographers, in order to verify the relevancy of the extracted spatial patterns.

Finally, in this paper, we assumed that the path taken is on foot. For the next
step, to consider the path taken by a car, we will intend to consider the spatial
structure as a directed graph, since all roads taken by a car are not bidirectional.
Moreover, in order to extract interesting co-location pattern, it is necessary to
integrate the temporal dimension with peak hours impacting the traffic network.
However, adding this temporal dimension requires data unavailable on OpenData
platforms, therefore the next steps will be to integrate edge direction and to use
APIs provided by Google and other traffic management companies.
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