

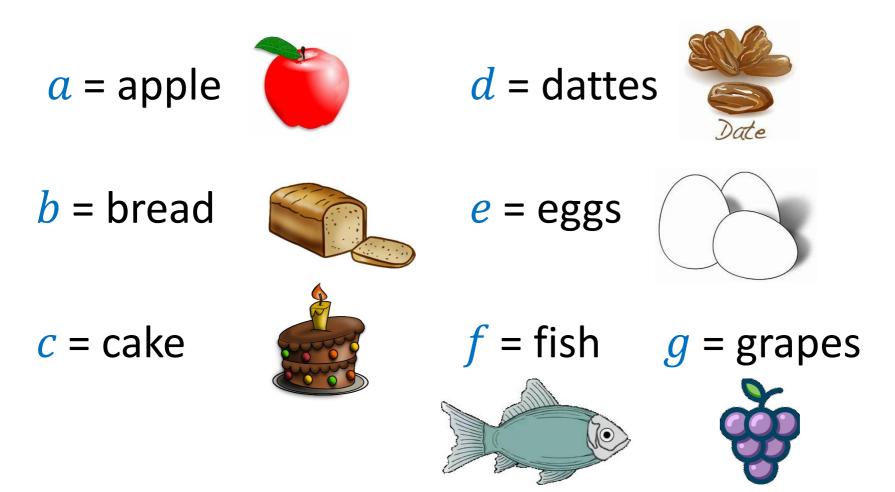
The EFIM algoritm

Philippe Fournier-Viger http://www.philippe-Fournier-viger.com

Zida, S., Fournier-Viger, P., Lin, J. C.-W., Wu, C.-W., Tseng, V.-S. (2017). **EFIM: A Fast and Memory Efficient Algorithm for High-Utility Itemset Mining**. Knowledge and Information Systems (KAIS), Springer, 51(2), 595-625

Source code and datasets available in the SPMF library

Introduction

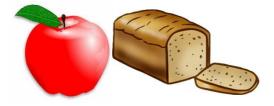

- High utility itemset mining
 - a data mining task
 - the goal is to find sets of values that appear together and have a high importance
 - (e.g. sets of products that yield a high profit)
- The EFIM algorithm (2016)
 - One of the fastest
 - Perhaps the most memory-efficient

PROBLEM DEFINITION

Definition: Items

Let there be a **set** of **items** (symbols) called *I*.

Example: $I = \{a, b, c, d, e, f, g\}$

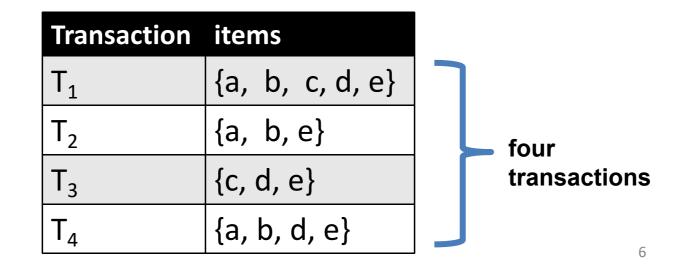


4

Definition: Itemset

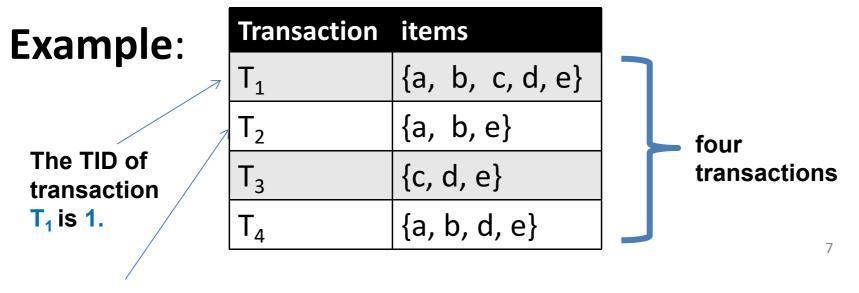
An **itemset** X is a finite set of items such that $X \subseteq I$.

Example: {*a*, *b*} means buying apple and bread together.


It is an itemset of size 2 (it contains 2 items)

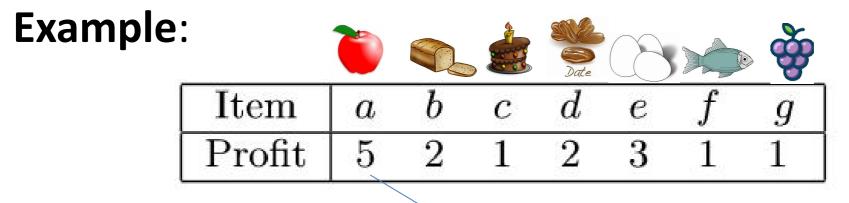
Definition: Transaction database

A transaction database is a set of transactions $D = \{T_1, T_2, ..., T_n\}$


A transaction T is a set of items purchased by a customer (T \subseteq I).

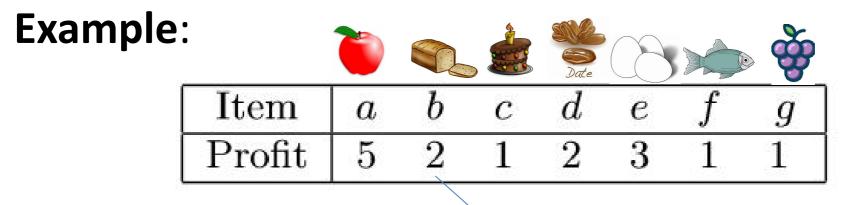
Example:

Definition: Transaction ID (TID)


In a transaction database, each transaction has an ID. $D = \{T_1, T_2, \dots, T_n\}$

The TID of transaction T₂ is 2.

Definition: External Utility (unit profit)


- Each item i ∈ I is associated with a positive number p(i), called its external utility, or unit profit.
- It represents the relative importance of the item to the user.

Selling 1 apple yields a 5\$ profit

Definition: External Utility (unit profit)

- Each item i ∈ I is associated with a positive number p(i), called its external utility, or unit profit.
- It represents the relative importance of the item to the user.

Selling 1 bread yields a 2\$ profit

Definition: Internal Utility (quantity)

Every item i appearing in a transaction T_c is associated with a positive number $q(i, T_c)$, called its internal utility, or quantity.

Example:	TID	Transaction
	$egin{array}{c} T_1 \ T_2 \ T_3 \ T_4 \ T_5 \end{array}$	$\begin{array}{l}(a,1)(c,1)(d,1)\\(a,2)(c,6)(e,2)(g,5)\\(a,1)(b,2)(c,1)(d,6)(e,1)(f,5)\\(b,4)(c,3)(d,3)(e,1)\\(b,2)(c,2)(e,1)(g,2)\end{array}$

Definition: Internal Utility (quantity)

Every item i appearing in a transaction T_c is associated with a positive number $q(i, T_c)$, called its internal utility, or quantity.

Example:	TID	Transaction
	T_1	(a,1)(c,1)(d,1)
	T_2	(a,2)(c,6)(e,2)(g,5)
	T_3	(a,1)(b,2)(c,1)(d,6)(e,1)(f,5)
	T_4	(b,4)(c,3)(d,3)(e,1)
	T_5	(b,2)(c,2)(e,1)(g,2)

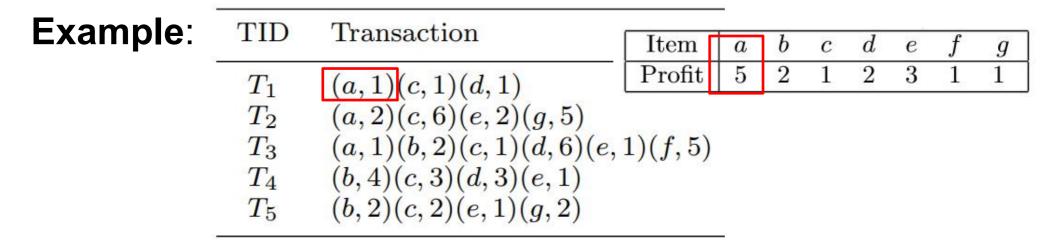
 $q(a, T_1) = 1$ one apple was bought in transaction T_1

Definition: Internal Utility (quantity)

Every item i appearing in a transaction T_c is associated with a positive number $q(i, T_c)$, called its internal utility, or quantity.

Example:	TID	Transaction
	T_1	(a,1)(c,1)(d,1)
	T_2	(a,2)(c,6)(e,2)(g,5)
	T_3	(a,1)(b,2)(c,1)(d,6)(e,1)(f,5)
	T_4	(b,4)(c,3)(d,3)(e,1)
	T_5	(b,2)(c,2)(e,1)(g,2)

 $q(b, T_1) = 2$ two apples were bought in transaction T_2


Definition: Utility of an item in a transaction

- The utility of an item i in a transaction T_c is defined as u(i, Tc) = p(i) × q(i, Tc).
- It represents the profit obtained by the sale of item i in that transaction

Example:	TID	Transaction	Item	a	b	c	d	e	f	\overline{g}
	T_1	(a,1)(c,1)(d,1)	Profit	5	2	1	2	3	1	1
	T_2	(a,2)(c,6)(e,2)(g,5)								
	T_3	(a, 1)(b, 2)(c, 1)(d, 6)(e,	1)(f, 5)							
	T_4	(b,4)(c,3)(d,3)(e,1)								
	T_5	(b,2)(c,2)(e,1)(g,2)		_						

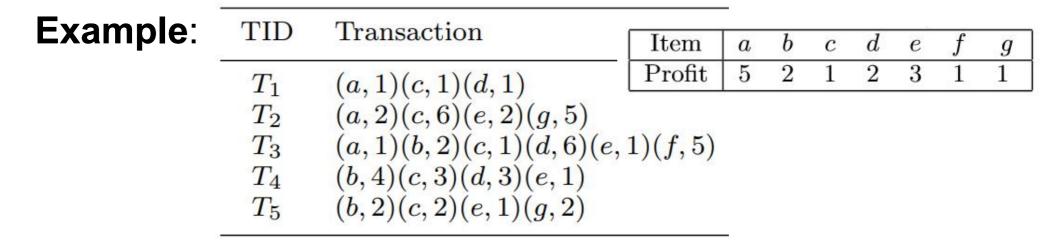
Definition: Utility of an item in a transaction

- The utility of an item i in a transaction T_c is defined as u(i, Tc) = p(i) × q(i, Tc).
- It represents the profit obtained by the sale of item i in that transaction

The utility of item a in transaction T_1 is $u(a, T_1) = 1 \times 5$ = 5 \$

Definition: Utility of an item in a transaction

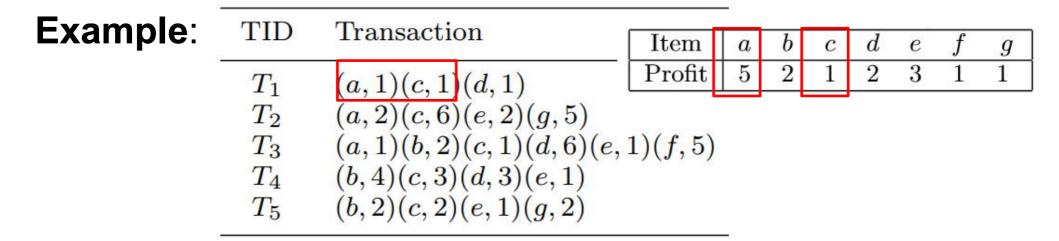
- The utility of an item i in a transaction T_c is defined as u(i, Tc) = p(i) × q(i, Tc).
- It represents the profit obtained by the sale of item i in that transaction


Example:	TID	Transaction	Item	a	b	c	d	e	f	g
	T_1	(a,1)(c,1)(d,1)	Profit	5	2	1	2	3	1	1
	T_2	(a,2)(c,6)(e,2)(g,5)								
	T_3	(a, 1)(b, 2)(c, 1)(d, 6)(e,	(1)(f, 5)							
	T_4	(b,4)(c,3)(d,3)(e,1)								
	T_5	(b,2)(c,2)(e,1)(g,2)								

The utility of item a in transaction T_2 is $u(a, T_2) = 2 \times 5$ = 10 \$

Definition: Utility of an itemset in a transaction

The **utility of an itemset** X in a **transaction** T_c is:


$$u(X, T_c) = \sum_{i \in X} u(i, T_c)$$

Definition: Utility of an itemset in a transaction

The **utility of an itemset** X in a **transaction** T_c is:

$$u(X, T_c) = \sum_{i \in X} u(i, T_c)$$

The utility of itemset {a, c} in transaction
$$T_1$$
 is
 $u(\{a, c\}, T_1) = u(a, T_1) = 1 \times 5\$ = 5\$$
 $+ u(c, T_1) = 1 \times 1\$ = 1\$$
 $= 6\$$

Definition:

Utility of an itemset in a database

The **utility of an itemset** X in a database is defined as

$$u(X) = \sum_{T_c \in g(X)} u(X, T_c)$$

where g(x) is the set of transactions containing X

Example :						C	onta	ainin	gХ		
	TID	Transaction	Item	a	b	c	d	e	f	g	6
	T_1	(a,1)(c,1)(d,1)	Profit	5	2	1	2	3	1	1	
	T_2	(a,2)(c,6)(e,2)(g,5)									
	T_3	(a,1)(b,2)(c,1)(d,6)(e	(f, 5)								
	T_4	(b,4)(c,3)(d,3)(e,1)									
	T_5	(b,2)(c,2)(e,1)(g,2)									

The utility of the itemset $\{a, c\}$ is

Definition:

Utility of an itemset in a database

The **utility of an itemset** X in a database is defined as

$$u(X) = \sum_{T_c \in g(X)} u(X, T_c)$$

where g(x) is the set of transactions containing X

Example:

					-				
TID	Transaction	Item	a	b	c	d	e	f	\overline{g}
T_1	(a,1)(c,1)(d,1)	Profit	5	2	1	2	3	1	1
$T_2 \\ T_3$	(a,2)(c,6)(e,2)(g,5)	(1)(f 5)		•		-			
T_4	(a,1)(b,2)(c,1)(d,6)(e,1)(b,4)(c,3)(d,3)(e,1)	(j, 5)							
T_5	(b,2)(c,2)(e,1)(g,2)								

The utility of the itemset $\{a, c\}$ is

$$u(\{a,c\}) = u(\{a,c\},T_1) + u(\{a,c\},T_2) + u(\{a,c\},T_3)$$

= $u(a,T_1) + u(c,T_1) + u(a,T_2) + u(c,T_2) + u(a,T_3) + u(c,T_3)$
= $5 + 1 + 10 + 6 + 5 + 1$
= 28.

Definition: High utility itemset

An itemset X is a high utility itemset if its utility is no less than a threshold *minutil*, chosen by the user. (i.e., $u(X) \ge minutil$)

Example:

If minutil = 20 then $\{a, c\}$ is a high utility itemset because $u(\{a, c\}) = 28 \ge minutil$

High utility itemset mining

Input

a transaction database

a unit profit table

TID	Transaction
$T_1 \\ T_2$	(a,1)(c,1)(d,1) (a,2)(c,6)(e,2)(g,5)
$\bar{T_3}$	(a,1)(b,2)(c,1)(d,6)(e,1)(f,5)
$T_4 \\ T_5$	$egin{aligned} (b,4)(c,3)(d,3)(e,1)\ (b,2)(c,2)(e,1)(g,2) \end{aligned}$

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

minutil: a minimum utility threshold set by the user (a positive integer)

High utility itemset mining

Input

a transaction database

a unit prof	it table
-------------	----------

TID	Transaction
T_1	(a,1)(c,1)(d,1)
T_2	(a,2)(c,6)(e,2)(g,5)
T_3	(a,1)(b,2)(c,1)(d,6)(e,1)(f,5)
T_4	(b,4)(c,3)(d,3)(e,1)
T_5	(b,2)(c,2)(e,1)(g,2)

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

minutil: a minimum utility threshold set by the user (a positive integer)

Output

All high-utility itemsets.	Itemset	Utility
For example, if <i>minutil = 30\$</i> , the high-utility itemsets are:	$\{b,d\}$	30
	$\{a, c, e\}$	31
	$\{b, c, d\}$	34
	$\{b, c, e\}$	31
	$\{b, d, e\}$	36
	$\{b, c, d, e\}$	40
	$\{a, b, c, d, e, f\}$	30
	$\{a, b, c, d, e, f\}$	30

A challenging task!

- The search space is huge:

 {a}, {b}, {c} ... {a,b}, {a,c}, {a,d}, ... {b,c}, {b,d}... {a,b,c}... {a,b,c,de}
- The **utility** is not anti-monotonic or monotonic.
 - The utility of an itemset may be equal, more or less than the utility of its supersets.
 - Utility of $\{b,d\} = 30$ \$
 - Utility of $\{b,c,d\} = 34$ \$
 - Utility of $\{b,c,d,e\} = 40$ \$

How to solve this problem?

- Several algorithms:
 - Two-Phase (PAKDD 2005),
 - IHUP (TKDE, 2010),
 - UP-Growth (KDD 2011),
 - HUI-Miner (CIKM 2012),
 - FHM (ISMIS 2014), EFIM (2016), ULB-Miner (2017), REX (2020), HAMM (2023)
- Key idea: calculate an upper-bound (e.g. TWU) on the utility of itemsets that is antimonotonic, to be able to reduce the search space.

THE EFIM ALGORITHM

Zida, S., Fournier-Viger, P., Lin, J. C.-W., Wu, C.-W., Tseng, V.-S. (2017). **EFIM: A Fast and Memory Efficient Algorithm for High-Utility Itemset Mining**. Knowledge and Information Systems (KAIS), Springer, 51(2), 595-625

The EFIM algorithm

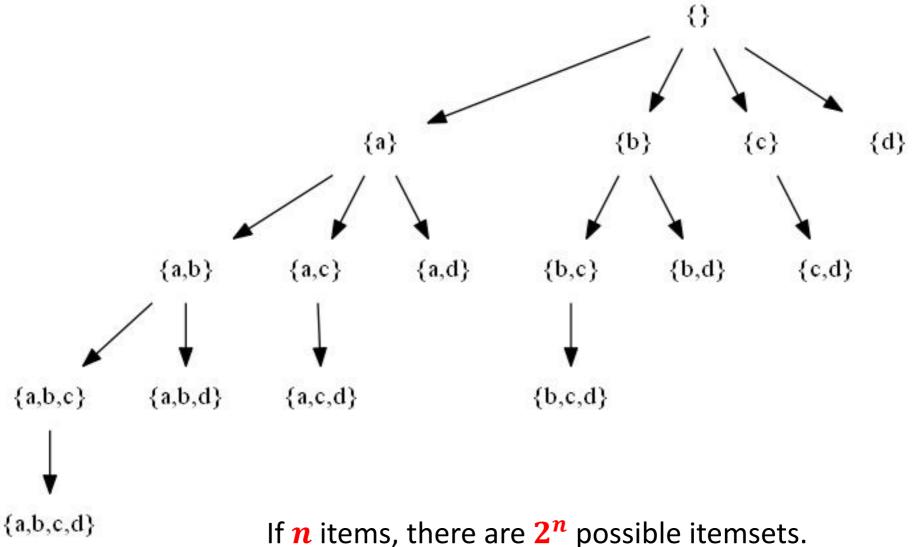
• EFIM

- performs a depth-first search
- read the database to calculate the utility of each itemset and upper-bounds
- uses a «pattern-growth approach» to only consider patterns that exist in the database
- Three main ideas to be more efficient:
 - HDP: High-utility Database Projection
 - HTM: High-utility Transaction Merging
 - Utility-Bin Array to calculate utility and upper-bounds

EXPLORING THE SEARCH SPACE

The search space

How to search for itemsets?


We will assume that there exists a **processing** order > of items.

For example, the lexicographical order: e > d > c > b > a

Note: in practice, EFIM uses the TWU ascending order. More on that later...

The search space

The **search space of all itemsets** can be visualized as a *set-enumeration tree (Rymon et al., 1992)*.

Exploring the search space

- EFIM starts to search from the itemset $\alpha = \emptyset$.
- EFIM recursively **extends** the current itemset α by appending an item *i* to obtain a larger itemset $Z = \alpha \cup \{i\}$.

Example

ø can be extended with a to obtain {a}.
Then, {a} can be extended with b to obtain {a, b}.
Then, {a, b} can be extended with c to obtain {a, b, c}.

Exploring the search space

To avoid exploring the same itemset twice, EFIM extends an itemset X with an item only if it follows the < order.

Examples

{a} can be extended with b
{a, b} can be extended with c
 {b, c} can be extended with d
{b} cannot be extended with a because a < b
 {c, d} cannot be extended with b because b < c</pre>

More formally...

The set of items that can be used to extend an itemset X is defined as:

$$E(\alpha) = \{ z | z \in I \land z \succ x, \forall x \in \alpha \}$$

Example:

 $E(\{\}) = \{a, b, c, d, e, f, g\}$ $E(\{a\}) = \{b, c, d, e, f, g\}$ $E(\{a, c\}) = \{d, e, f, g\}$

Definitions: Extensions

 An itemset obtained by adding some item(s) to an itemset X while respecting the < order is called an extension of X.

{a, b, c} is an extension of {a}

• A single item extension is an itemset obtained by extending an itemset with only one item.

{a, b} is a single extension of {a}

{a, b, c} is not a single extension of {a}

HIGH-UTILITY DATABASE PROJECTION (HDP)

Reading the database

- To find high utility itemsets, EFIM reads the database several times to calculate the utility of itemsets in the search space.
- But reading the database can be costly in time!
- How to reduce the cost?
 - EFIM assumes that items in transactions are sorted according to the order <
 - EFIM performs an operation called high utility database projection to reduce the size of the database.

Definition: Projected database

The **projection of a database by an itemset** α is obtained by keeping only transactions containing α and removing all items not in $E(\alpha)$.

Example 1

A database D

TID	Transaction
$T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5$	$\begin{array}{c} (a,1)(c,1)(d,1)\\ (a,2)(c,6)(e,2)(g,5)\\ (a,1)(b,2)(c,1)(d,6)(e,1)(f,5)\\ (b,4)(c,3)(d,3)(e,1)\\ (b,2)(c,2)(e,1)(g,2) \end{array}$

The **projection of a database by an itemset** α is obtained by keeping only transactions containing α and removing all items not in $E(\alpha)$.

Example 1 A database D			= {a}, rojection {a}– <i>D</i> is:
TID	Transaction	TID	Transaction
$T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5$	$\begin{array}{l}(a,1)(c,1)(d,1)\\(a,2)(c,6)(e,2)(g,5)\\(a,1)(b,2)(c,1)(d,6)(e,1)(f,5)\\(b,4)(c,3)(d,3)(e,1)\\(b,2)(c,2)(e,1)(g,2)\end{array}$	$T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5$	$\begin{array}{l} (a,1)(c,1)(d,1)\\ (a,2)(c,6)(e,2)(g,5)\\ (a,1)(b,2)(c,1)(d,6)(e,1)(f,5)\\ (b,4)(c,3)(d,3)(e,1)\\ (b,2)(c,2)(e,1)(g,2) \end{array}$

The **projection of a database by an itemset** α is obtained by keeping only transactions containing α and removing all items not in $E(\alpha)$.

Example 1

If $\alpha = \{a\},\$ the projection $\{a\}-D$ is: TID Transaction $T_1 (c,1)(d,1)$ $T_2 (c,6)(e,2)(g,5)$ $T_3 (b,2)(c,1)(d,6)(e,1)(f,5)$

The **projection of a database by an itemset** α is obtained by keeping only transactions containing α and removing all items not in $E(\alpha)$.

Example 1

If $\alpha = \{a\},\$ the projection $\{a\}-D$ is: TID Transaction $T_1 (c,1)(d,1)$ $T_2 (c,6)(e,2)(g,5)$ $T_3 (b,2)(c,1)(d,6)(e,1)(f,5)$

- Why doing this?
 Because, in the projected database of {a}, EFIM has all the information required to search for extensions of {a}.
- And the projected database is smaller than D, so it can be read more quickly.

The **projection of a database by an itemset** α is obtained by keeping only transactions containing α and removing all items not in $E(\alpha)$.

Example 2

The database {a}-D

TID	Transaction
$T_1 \\ T_2 \\ T_3$	$egin{aligned} &(c,1)(d,1)\ &(c,6)(e,2)(g,5)\ &(b,2)(c,1)(d,6)(e,1)(f,5) \end{aligned}$

The **projection of a database by an itemset** α is obtained by keeping only transactions containing α and removing all items not in $E(\alpha)$.

Example 2

The database <mark>{a}-D</mark>		The database <mark>{a,d}-D</mark>				
TID	Transaction	TID	Transaction			
$T_1 \\ T_2$	$(c,1)(d,1) \ (c,6)(e,2)(g,5)$	T_1 T_2	(c,1)(d,1) (c,6)(c,2)(g,5)			
T_3	(b,2)(c,1)(d,6)(e,1)(f,5)	T_3	(b,2)(c,1)(d,6)(e,1)(f,5)			

The **projection of a database by an itemset** α is obtained by keeping only transactions containing α and removing all items not in $E(\alpha)$.

Example 2

The database {a}-D		The database <mark>{a,d}-D</mark>				
TID	Transaction	TID	Transaction			
$T_1 \\ T_2 \\ T_3$	(c,1)(d,1) (c,6)(e,2)(g,5) (b,2)(c,1)(d,6)(e,1)(f,5)	T_3		(e, 1)(f, 5)		

The **projection of a database by an itemset** α is obtained by keeping only transactions containing α and removing all items not in $E(\alpha)$.

Example 2

The database {a,d}-D

TID	Transaction	
$T_1 \\ T_2 \\ T_3$		(e,1)(f,5)

Benefits of database projections

- As EFIM explores larger and larger itemsets, the **database** becomes **smaller** and **smaller**.
- This reduce the time required to read the database.
- But making multiple copies of the database in memory uses too much memory?

Solution -->

Pseudo-projection

Instead of making a copy of a database:

A database D

The projection {a}-*D* is:

TID	Transaction	TID	Transaction
$T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5$	$\begin{array}{l}(a,1)(c,1)(d,1)\\(a,2)(c,6)(e,2)(g,5)\\(a,1)(b,2)(c,1)(d,6)(e,1)(f,5)\\(b,4)(c,3)(d,3)(e,1)\\(b,2)(c,2)(e,1)(g,2)\end{array}$	$T_1 \\ T_2 \\ T_3$	$egin{aligned} (c,1)(d,1)\ (c,6)(e,2)(g,5)\ (b,2)(c,1)(d,6)(e,1)(f,5) \end{aligned}$

Pseudo-projection

Instead of making a copy of a database:

A database D

The projection {a}-*D* is:

TID	Transaction	TID	Transaction
$T_1 \ T_2 \ T_3 \ T_4 \ T_5$	$\begin{array}{l}(a,1)(c,1)(d,1)\\(a,2)(c,6)(e,2)(g,5)\\(a,1)(b,2)(c,1)(d,6)(e,1)(f,5)\\(b,4)(c,3)(d,3)(e,1)\\(b,2)(c,2)(e,1)(g,2)\end{array}$	$T_1 \\ T_2 \\ T_3$	$egin{aligned} &(c,1)(d,1)\ &(c,6)(e,2)(g,5)\ &(b,2)(c,1)(d,6)(e,1)(f,5) \end{aligned}$

EFIM uses pointers on the original database:

TID Transaction

$$T_{1} = (a, 1)(c, 1)(d, 1)$$

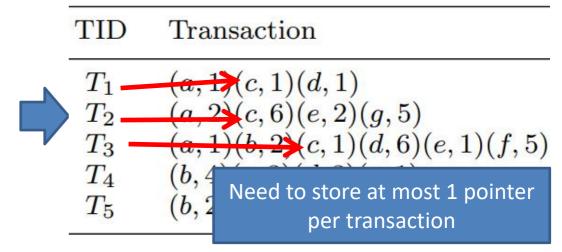
$$T_{2} = (a, 2)(c, 6)(e, 2)(g, 5)$$

$$T_{3} = (a, 1)(b, 2)(c, 1)(d, 6)(e, 1)(f, 5)$$

$$T_{4} = (b, 4)(c, 3)(d, 3)(e, 1)$$

$$T_{5} = (b, 2)(c, 2)(e, 1)(g, 2)$$

Pseudo-projection


Instead of making a copy of a database:

A database D

The projection {a}-*D* is:

TID	Transaction	TID	Transaction
$T_1 \ T_2 \ T_3 \ T_4 \ T_5$	$\begin{array}{c}(a,1)(c,1)(d,1)\\(a,2)(c,6)(e,2)(g,5)\\(a,1)(b,2)(c,1)(d,6)(e,1)(f,5)\\(b,4)(c,3)(d,3)(e,1)\\(b,2)(c,2)(e,1)(g,2)\end{array}$	$T_1 \\ T_2 \\ T_3$	$egin{aligned} &(c,1)(d,1)\ &(c,6)(e,2)(g,5)\ &(b,2)(c,1)(d,6)(e,1)(f,5) \end{aligned}$

EFIM uses pointers on the original database:

HIGH-UTILITY TRANSACTION MERGING (HTM)

To further reduce memory

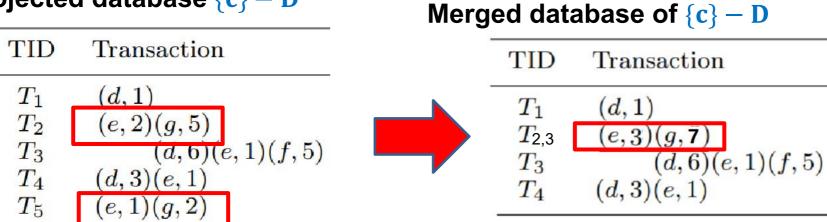
- EFIM introduces a technique named High-utilty Transaction Merging (HTM).
- Two observations:
 - (*Projected*) databases often contain identical transactions.
 - We can identify these transaction and merge them to reduce memory and also the time to scan the database.

Transaction merging

Original database

TID	Transaction
T_1	(a,1)(c,1)(d,1)
T_2	(a,2)(c,6)(e,2)(g,5)
T_3	(a, 1)(b, 2)(c, 1)(d, 6)(e, 1)(f, 5)
T_4	(b,4)(c,3)(d,3)(e,1)
T_5	(b,2)(c,2)(e,1)(g,2)

Projected database {c} - D


TID	Transaction
T_1	(d,1)
T_2	(e,2)(g,5)
T_3	(d, b)(e, 1)(f, 5)
$T_4 T_5$	(d,3)(e,1) (e,1)(g,2)
-0	(0, -)(9, -)

Transaction merging

Original database

$\begin{array}{l} c,1)(d,1)\\ c,6)(e,2)(g,5)\\ b,2)(c,1)(d,6)(e,1)(f,5)\\ c,3)(d,3)(e,1)\\ c,2)(e,1)(g,2) \end{array}$

Projected database {c} - D

How to implement merging?

• Challenge:

- How to find identical transactions efficiently in a database to merge them?
- Naive solution (exponential time):
 - Compare each transaction with all other transactions.

• EFIM's solution:

- Sort transactions by the order < but backward (see EFIM's paper)
- Then, EFIM can find identical transactions in linear time!

HOW EFIM REDUCES THE SEARCH SPACE?

Reducing the search space

EFIM reduces the search space using two upper bounds on the utility that are anti-monotonic:

- the local utility (lu)

- the sub-tree utility (su)

I will explain them with examples: -->

Definition (Remaining utility). The remaining utility of an itemset X in a transaction T_c is defined as $re(X, T_c) = \sum_{i \in T_c \land i \succ x \forall x \in X} u(i, T_c)$

Example

$$\alpha = \{a\}$$

Transaction	·							
	Item	a	b	c	d	e	f	g
(a,1)(c,1)(d,1)	Profit	5	2	1	2	3	1	1
(a,2)(c,6)(e,2)(g,5)			23335	1000	100456			1000
(a,1)(b,2)(c,1)(d,6)	(e, 1)(f,	5)						
(b,2)(c,2)(e,1)(g,2)								
	$egin{aligned} &(a,1)(c,1)(d,1)\ &(a,2)(c,6)(e,2)(g,5)\ &(a,1)(b,2)(c,1)(d,6)\ &(b,4)(c,3)(d,3)(e,1) \end{aligned}$	$ \begin{array}{c c} (a,1)(c,1)(d,1) & \mbox{Item} \\ (a,2)(c,6)(e,2)(g,5) \\ (a,1)(b,2)(c,1)(d,6)(e,1)(f, \\ (b,4)(c,3)(d,3)(e,1) \end{array} \end{array} $	$ \begin{array}{c c} (a,1)(c,1)(d,1) & \mbox{Item} & a \\ \hline (a,2)(c,6)(e,2)(g,5) & \mbox{Profit} & 5 \\ (a,1)(b,2)(c,1)(d,6)(e,1)(f,5) & \mbox{(b,4)}(c,3)(d,3)(e,1) & \end{array} $	$ \begin{array}{c cccc} (a,1)(c,1)(d,1) & \mbox{Item} & a & b \\ \hline (a,2)(c,6)(e,2)(g,5) & \\ (a,1)(b,2)(c,1)(d,6)(e,1)(f,5) & \\ (b,4)(c,3)(d,3)(e,1) & \end{array} $	$ \begin{array}{c ccccc} \hline (a,1)(c,1)(d,1) & \mbox{Item} & a & b & c \\ \hline (a,2)(c,6)(e,2)(g,5) & \mbox{Profit} & 5 & 2 & 1 \\ \hline (a,1)(b,2)(c,1)(d,6)(e,1)(f,5) & \mbox{(b,4)}(c,3)(d,3)(e,1) & \mbox{(b,b)} \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Definition (Remaining utility). The remaining utility of an itemset X in a transaction T_c is defined as $re(X, T_c) = \sum_{i \in T_c \land i \succ x \forall x \in X} u(i, T_c)$.

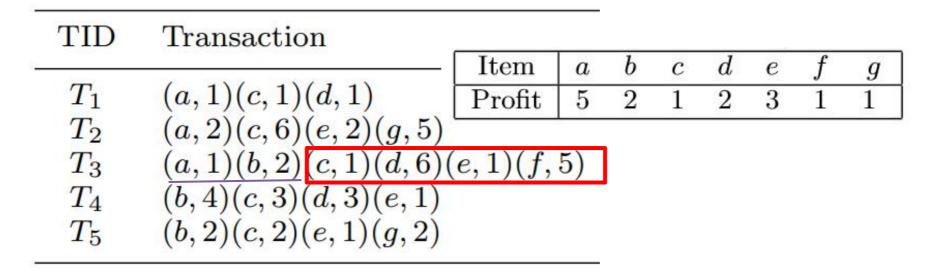
Example

 $\boldsymbol{\alpha} = \{a\}$

We can obtain $re(\alpha) = ... = 3 + 17 + 25 = 45$

Definition (Remaining utility). The remaining utility of an itemset X in a transaction T_c is defined as $re(X, T_c) = \sum_{i \in T_c \land i \succ x \forall x \in X} u(i, T_c)$

Example $\alpha =$


 $\boldsymbol{\alpha} = \{a, b\}$

Transaction	70.000 - 100							
	Item	a	b	c	d	e	f	g
(a,1)(c,1)(d,1)	Profit	5	2	1	2	3	1	1
(a,2)(c,6)(e,2)(g,5)			22335		0.0000			2001
(a, 1)(b, 2)(c, 1)(d, 6)	(e, 1)(f,	5)						
(b,4)(c,3)(d,3)(e,1)								
(b,2)(c,2)(e,1)(g,2)								
	$egin{aligned} &(a,1)(c,1)(d,1)\ &(a,2)(c,6)(e,2)(g,5)\ &(a,1)(b,2)(c,1)(d,6)\ &(b,4)(c,3)(d,3)(e,1) \end{aligned}$	$ \begin{array}{c c} (a,1)(c,1)(d,1) & \mbox{Item} \\ (a,2)(c,6)(e,2)(g,5) \\ (a,1)(b,2)(c,1)(d,6)(e,1)(f, \\ (b,4)(c,3)(d,3)(e,1) \end{array} \end{array} $	$ \begin{array}{c c} (a,1)(c,1)(d,1) & \mbox{Item} & a \\ \hline (a,2)(c,6)(e,2)(g,5) & \\ (a,1)(b,2)(c,1)(d,6)(e,1)(f,5) & \\ (b,4)(c,3)(d,3)(e,1) & \end{array} $	$ \begin{array}{c cccc} \hline (a,1)(c,1)(d,1) & \mbox{Item} & a & b \\ \hline (a,2)(c,6)(e,2)(g,5) & \mbox{Profit} & 5 & 2 \\ \hline (a,1)(b,2)(c,1)(d,6)(e,1)(f,5) & \mbox{(b,4)}(c,3)(d,3)(e,1) & \ \end{array} $	$ \begin{array}{c cccc} \hline (a,1)(c,1)(d,1) & \mbox{Item} & a & b & c \\ \hline (a,2)(c,6)(e,2)(g,5) & \mbox{Profit} & 5 & 2 & 1 \\ \hline (a,1)(b,2)(c,1)(d,6)(e,1)(f,5) & \ (b,4)(c,3)(d,3)(e,1) & \ \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

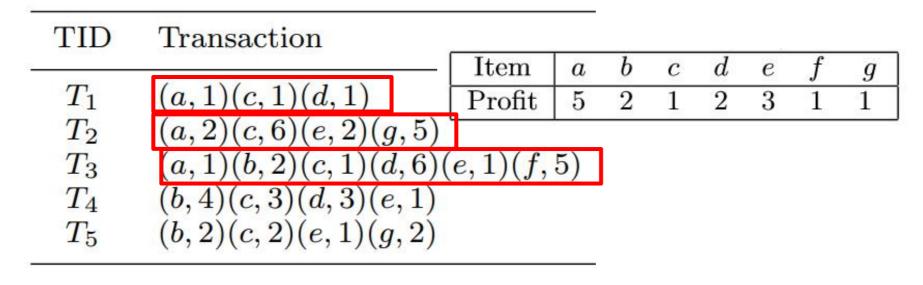
Definition (Remaining utility). The remaining utility of an itemset X in a transaction T_c is defined as $re(X, T_c) = \sum_{i \in T_c \land i \succ x \forall x \in X} u(i, T_c)$

Example $\alpha =$

 $\boldsymbol{\alpha} = \{a, b\}$

We can obtain $re(\alpha) = \dots = 21$

Definition (Local utility). Let be an itemset α and an item $z \in E(\alpha)$. The Local Utility of z w.r.t. α is $lu(\alpha, z) = \sum_{T \in g(\alpha \cup \{z\})} [u(\alpha, T) + re(\alpha, T)].$

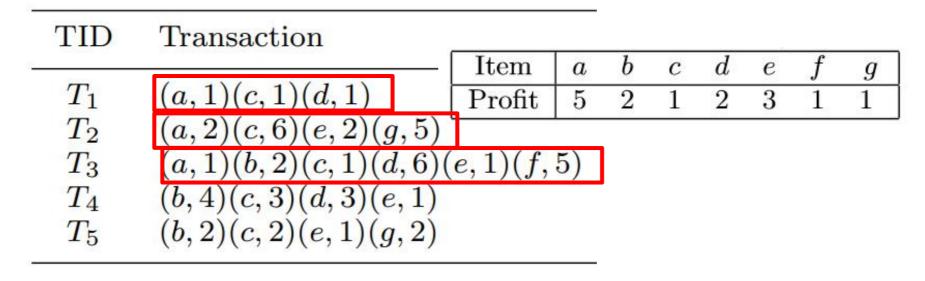

Example

		— Item	a	b	c	d	e	f	g
T_1	(a,1)(c,1)(d,1)	Profit	5	2	1	2	3	1	1
T_2	(a, 2)(c, 6)(e, 2)(g, 4)	5)		25335		0.0055			200
T_3	(a,1)(b,2)(c,1)(d,0)		5)						
T_4	(b,4)(c,3)(d,3)(e,1)	1)	120						
T_5	(b,2)(c,2)(e,1)(g,2)	2							

$$\boldsymbol{\alpha} = \{\} \qquad \mathbf{z} = a$$

Definition (Local utility). Let be an itemset α and an item $z \in E(\alpha)$. The Local Utility of z w.r.t. α is $lu(\alpha, z) = \sum_{T \in g(\alpha \cup \{z\})} [u(\alpha, T) + re(\alpha, T)].$

Example



 $\boldsymbol{\alpha} = \{\} \qquad \mathbf{z} = a$

We can obtain $lu(\alpha, z) = ... = 8 + 27 + 30 = 65$

Definition (Local utility). Let be an itemset α and an item $z \in E(\alpha)$. The Local Utility of z w.r.t. α is $lu(\alpha, z) = \sum_{T \in g(\alpha \cup \{z\})} [u(\alpha, T) + re(\alpha, T)].$

Example

 $\boldsymbol{\alpha} = \{\} \qquad \mathbf{z} = a$

We can obtain $lu(\alpha, z) = ... = 8 + 27 + 30 = 65$

==> Any itemset containing «a» cannot have a utility greater than 65! ⁶¹

Definition (Local utility). Let be an itemset α and an item $z \in E(\alpha)$. The Local Utility of z w.r.t. α is $lu(\alpha, z) = \sum_{T \in g(\alpha \cup \{z\})} [u(\alpha, T) + re(\alpha, T)].$

Example

and the second se		– Item	a	b	c	d	e	f	g
T_1	(a,1)(c,1)(d,1)	Profit	5	2	1	2	3	1	1
T_2	(a,2)(c,6)(e,2)(g,3)	5)		28335		100104			2000 12
T_3	(a,1)(b,2)(c,1)(d,0)	6)(e,1)(f,	5)						
T_4	(b,4)(c,3)(d,3)(e,1)		,						
T_5	(b,2)(c,2)(e,1)(g,2)	/							

 $\boldsymbol{\alpha} = \{\mathbf{d}\} \qquad \mathbf{z} = e$

Definition (Local utility). Let be an itemset α and an item $z \in E(\alpha)$. The Local Utility of z w.r.t. α is $lu(\alpha, z) = \sum_{T \in g(\alpha \cup \{z\})} [u(\alpha, T) + re(\alpha, T)].$

Example

TID	Transaction								
		Item	a	b	c	d	e	f	g
T_1	(a,1)(c,1)(d,1)	Profit	5	2	1	2	3	1	1
T_2	(a, 2)(c, 6)(e, 2)(g, 5))		XXX12		0.0053	10000	101-20	500
T_3	(a,1)(b,2)(c,1)(d,6)		5)						
T_4	(b,4)(c,3)(d,3)(e,1)								
T_5	(b,2)(c,2)(e,1)(g,2)								

 $\boldsymbol{\alpha} = \{\mathbf{d}\} \qquad \mathbf{z} = e$

We can obtain $lu(\alpha, z) = ... = 20 + 9 = 29$

==> Any itemset extending {d} and containing «e» cannot have a utility greater than 29!

Definition (Local utility). Let be an itemset α and an item $z \in E(\alpha)$. The Local Utility of z w.r.t. α is $lu(\alpha, z) = \sum_{T \in g(\alpha \cup \{z\})} [u(\alpha, T) + re(\alpha, T)].$

Example

		– Item	a	b	c	d	e	f	g
T_1	(a,1)(c,1)(d,1)	Profit	5	2	1	2	3	1	1
T_2	(a, 2)(c, 6)(e, 2)(g, 3)	5)		20035		1992			20012
T_3	(a,1)(b,2)(c,1)(d,0)	6)(e,1)(f,	5)						
T_4	(b,4)(c,3)(d,3)(e,1)		<i>.</i>						
T_5	(b,2)(c,2)(e,1)(g,2)	/							

$$\boldsymbol{\alpha} = \{\mathbf{d}\} \qquad \mathbf{z} = f$$

Definition (Local utility). Let be an itemset α and an item $z \in E(\alpha)$. The Local Utility of z w.r.t. α is $lu(\alpha, z) = \sum_{T \in g(\alpha \cup \{z\})} [u(\alpha, T) + re(\alpha, T)].$

Example

TID	Transaction								
		- Item	a	b	c	d	e	f	g
T_1	(a,1)(c,1)(d,1)	Profit	5	2	1	2	3	1	1
T_2	(a,2)(c,6)(e,2)(g,5))		45335		1.015			1000
T_3	(a,1)(b,2)(c,1)(d,6)	(e, 1)(f,	5)						
T_4	(b,4)(c,3)(d,3)(e,1)								
T_5	(b,2)(c,2)(e,1)(g,2)	/							

 $\boldsymbol{\alpha} = \{\mathbf{d}\} \qquad \mathbf{z} = f$

We can obtain $lu(\alpha, z) = ... = 20$

==> Any itemset extending {d} and containing «f» cannot have a utility greater than 20!

Definition (Sub-tree utility). Let be an itemset α and an item z that can extend α according to the depth-first search ($z \in E(\alpha)$). The Sub-tree Utility of z w.r.t. α is $su(\alpha, z) = \sum_{T \in g(\alpha \cup \{z\})} [u(\alpha, T) + u(z, T) + \sum_{i \in T \land i \in E(\alpha \cup \{z\})} u(i, T)].$

Example

TID	Transaction		125.0	1	9250	1		C	202
0.000		- Item	$\mid a$	0	c	a	e	J	g
T_1	(a,1)(c,1)(d,1)	Profit	5	2	1	2	3	1	1
T_2	(a,2)(c,6)(e,2)(g,4)	5)							
T_3	(a,1)(b,2)(c,1)(d,b)	(e, 1)(f, 1)(f, 1)	5)						
T_4	(b,4)(c,3)(d,3)(e,1)	1)	(194)						
T_5	(b,2)(c,2)(e,1)(g,2)	2)							
	$\alpha = \{\mathbf{d}\}$	7 -	= f	7					

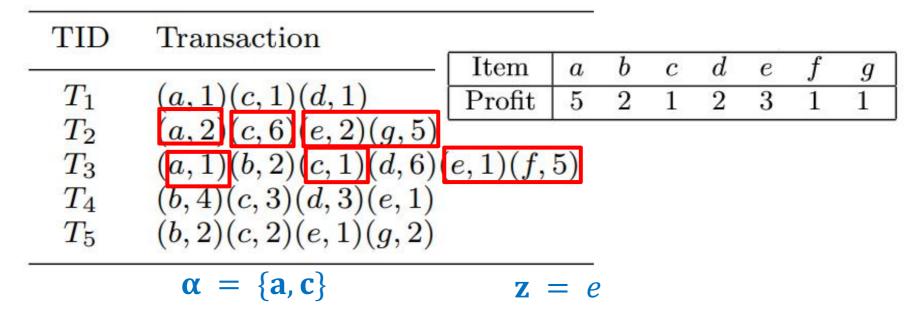
Definition (Sub-tree utility). Let be an itemset α and an item z that can extend α according to the depth-first search ($z \in E(\alpha)$). The Sub-tree Utility of z w.r.t. α is $su(\alpha, z) = \sum_{T \in g(\alpha \cup \{z\})} [u(\alpha, T) + u(z, T) + \sum_{i \in T \land i \in E(\alpha \cup \{z\})} u(i, T)].$

Example

TID	Transaction								
1000		Item	a	b	c	d	e	f	g
T_1	(a,1)(c,1)(d,1)	Profit	5	2	1	2	3	1	1
T_2	(a,2)(c,6)(e,2)(g,5)	L		22225		1.112.00			
T_3	(a,1)(b,2)(c,1)(d,6)	(e, 1)(f,	5)						
T_4	(b,4)(c,3)(d,3)(e,1)								
T_5	(b,2)(c,2)(e,1)(g,2)								
	$\alpha = \{\mathbf{d}\}$	7	= f	7					

We can obtain $su(\alpha, z) = \dots = 17$

==> Any itemset extending {d,f} cannot have a utility greater than 17!


Definition (Sub-tree utility). Let be an itemset α and an item z that can extend α according to the depth-first search ($z \in E(\alpha)$). The Sub-tree Utility of z w.r.t. α is $su(\alpha, z) = \sum_{T \in g(\alpha \cup \{z\})} [u(\alpha, T) + u(z, T) + \sum_{i \in T \land i \in E(\alpha \cup \{z\})} u(i, T)].$

Example

TID	Transaction								
1.897.5		- Item	a	b	c	d	e	f	g
T_1	(a,1)(c,1)(d,1)	Profit	5	2	1	2	3	1	1
T_2	(a, 2)(c, 6)(e, 2)(g, 5))		222.04		1.112.00			
T_3	(a,1)(b,2)(c,1)(d,6)	(e, 1)(f,	5)						
T_4	(b,4)(c,3)(d,3)(e,1))	1						
T_5	(b,2)(c,2)(e,1)(g,2))							
	$\alpha = \{a, c\}$	77 -	= e						

Definition (Sub-tree utility). Let be an itemset α and an item z that can extend α according to the depth-first search ($z \in E(\alpha)$). The Sub-tree Utility of z w.r.t. α is $su(\alpha, z) = \sum_{T \in g(\alpha \cup \{z\})} [u(\alpha, T) + u(z, T) + \sum_{i \in T \land i \in E(\alpha \cup \{z\})} u(i, T)].$

Example

We can obtain $su(\alpha, z) = 27 + 14 = 41$

==> Any itemset extending {a,c,e} cannot have a utility greater than 41!

Primary and secondary items

For an itemset α :

• The primary items are:

 $Primary(\alpha) = \{ z | z \in E(\alpha) \land su(\alpha, z) \ge minutil \}$

• The secondary items are:

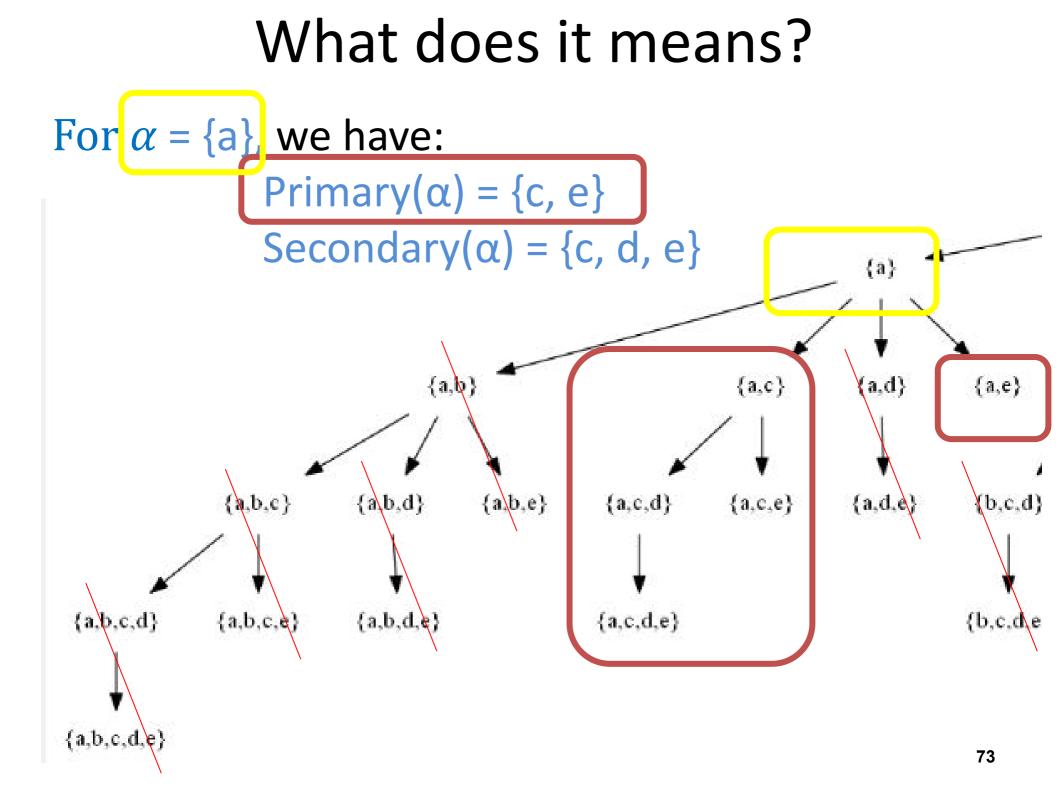
 $Secondary(\alpha) = \{ z | z \in E(\alpha) \land lu(\alpha, z) \ge minutil \}$

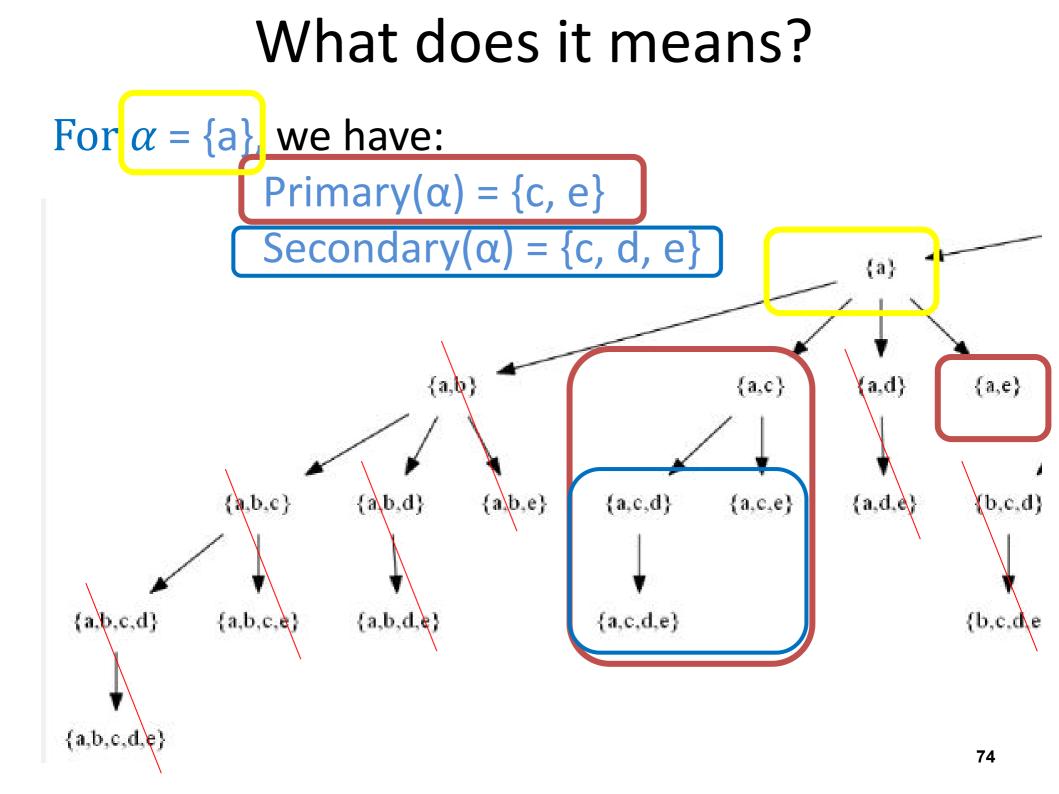
Note:

Because $lu(\alpha, z) \ge su(\alpha, z)$, $Primary(\alpha) \subseteq Secondary(\alpha)$.

For reducing the search...

```
For \alpha = \{a\}, we have:


Primary(\alpha) = {c, e}


Secondary(\alpha) = {c, d, e}
```

This means that we should only explore extensions of {a,c} and {a,e}.

And in to further extend {a,c} and {a,e}, we should only use items c, d or e.

What does it means? For $\alpha = \{a\}$, we have: Primary(α) = {c, e} Secondary(α) = {c, d, e} {a} a,b $\{a,c\}$ $\{a,e\}$ $\{a,d\}$ $\{a,b,c\}$ a,b,d $\{a,b,e\}$ a,c,d $\{a,c,e\}$ $\{a,d,e\}$ $\{b,c,d\}$ a,b,c,d $\{a,b,c,e\}$ {a,b,d,e} $\{a,c,d,e\}$ {b,c,d,e $\{a,b,c,d,e\}$

Other details...

- In the EFIM paper, there is also another upper bound called revised sub-tree utility.
- See the paper for more details.

Definition 4.13 (Redefined Sub-tree utility). Let be an itemset α and an item z. The redefined sub-tree utility of item z w.r.t. itemset α is defined as: $su(\alpha, z) = \sum_{T \in g(\alpha \cup \{z\})} [u(\alpha, T) + u(z, T) + \sum_{i \in T \land i \in E(\alpha \cup \{z\} \land i \in Secondary(\alpha)} u(i, T)].$

The difference between the su upper-bound and the redefined su upper-bound is that in the latter, items not in $Secondary(\alpha)$ will not be included in the calculation of the su upper-bound. Thus, this redefined upper-bound is always less than or equal to the original su upper-bound and the reu upper-bound. It

EFFICIENTLY CALCULATING THE UTILITY AND UPPER-BOUNDS USING ARRAYS

How to efficiently calculate the utility of an itemset?

- EFIM reads the database
- EFIM uses a special data structure called Utility Bins to calculate the utility of all items at the same time.
- It is an **array** with a length equal to the number of different items in the database.
- EFIM also use this structure to calculate the local utility and sub-tree utility of all items.

	U[a]	U[b]	U[c]	U[d]	U[e]	U[f]	U[g]
A) Initialization	0	0	0	0	0	0	0

	U[a]	U[b]	U[c]	U[d]	U[e]	U[f]	U[g]
A) Initialization	0	0	0	0	0	0	0
B) After reading transaction T ₁	8	0	8	8	0	0	0

	U[a]	U[b]	U[c]	U[d]	U[e]	U[f] U[g]
A) Initialization	0	0	0	0	0	0	0
B) After reading transaction T ₁	8	0	8	8	0	0	0
C) After reading transaction T ₂	35	0	35	8	27	0	27

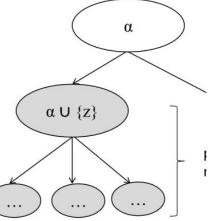
	U[a]	U[b]	U[c]	U[d]	U[e]	U[f]	U[g]
A) Initialization	0	0	0	0	0	0	0
B) After reading transaction T ₁	8	0	8	8	0	0	0
C) After reading transaction T ₂	35	0	35	8	27	0	27
D) After reading transaction T ₃	65	30	65	38	57	30	27

	U[a]	U[b]	U[c]	U[d]	U[e]	U[f]	U[g]
A) Initialization	0	0	0	0	0	0	0
B) After reading transaction T ₁	8	0	8	8	0	0	0
C) After reading transaction T ₂	35	0	35	8	27	0	27
D) After reading transaction T ₃	65	30	65	38	57	30	27
E) After reading transaction T ₄	65	50	85	58	77	30	27

	U[a]	U[b]	U[c]	U[d]	U[e]	U[f]	U[g]
A) Initialization	0	0	0	0	0	0	0
B) After reading transaction T ₁	8	0	8	8	0	0	0
C) After reading transaction T ₂	35	0	35	8	27	0	27
D) After reading transaction T ₃	65	30	65	38	57	30	27
E) After reading transaction T ₄	65	50	85	58	77	30	27
F) After reading transaction T ₅	65	61	96	58	88	30	38

Efficient?

- EFIM reads the database to compute the utility and upper bounds of all items in **linear time.**
- The arrays requires **linear memory**.

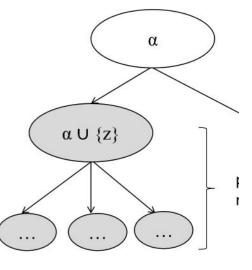

THE ALGORITHM

EFIM

Algorithm 1: The EFIM algorithm

input : D: a transaction database, minutil: a user-specified threshold
output: the set of high-utility itemsets

- $\mathbf{1} \ \alpha = \emptyset;$
- 2 Calculate $lu(\alpha, i)$ for all items $i \in I$ by scanning D, using a utility-bin array;
- **3** Secondary(α) = { $i | i \in I \land lu(\alpha, i) \ge minutil$ };
- 4 Let \succ be the total order of TWU ascending values on $Secondary(\alpha)$;
- **5** Scan D to remove each item $i \notin Secondary(\alpha)$ from the transactions, sort items in each transaction according to \succ , and delete empty transactions;
- 6 Sort transactions in D according to \succ_T ;
- 7 Calculate the sub-tree utility $su(\alpha, i)$ of each item $i \in Secondary(\alpha)$ by scanning D, using a utility-bin array;
- **8** $Primary(\alpha) = \{i | i \in Secondary(\alpha) \land su(\alpha, i) \ge minutil\};\$
- 9 Search $(\alpha, D, Primary(\alpha), Secondary(\alpha), minutil);$

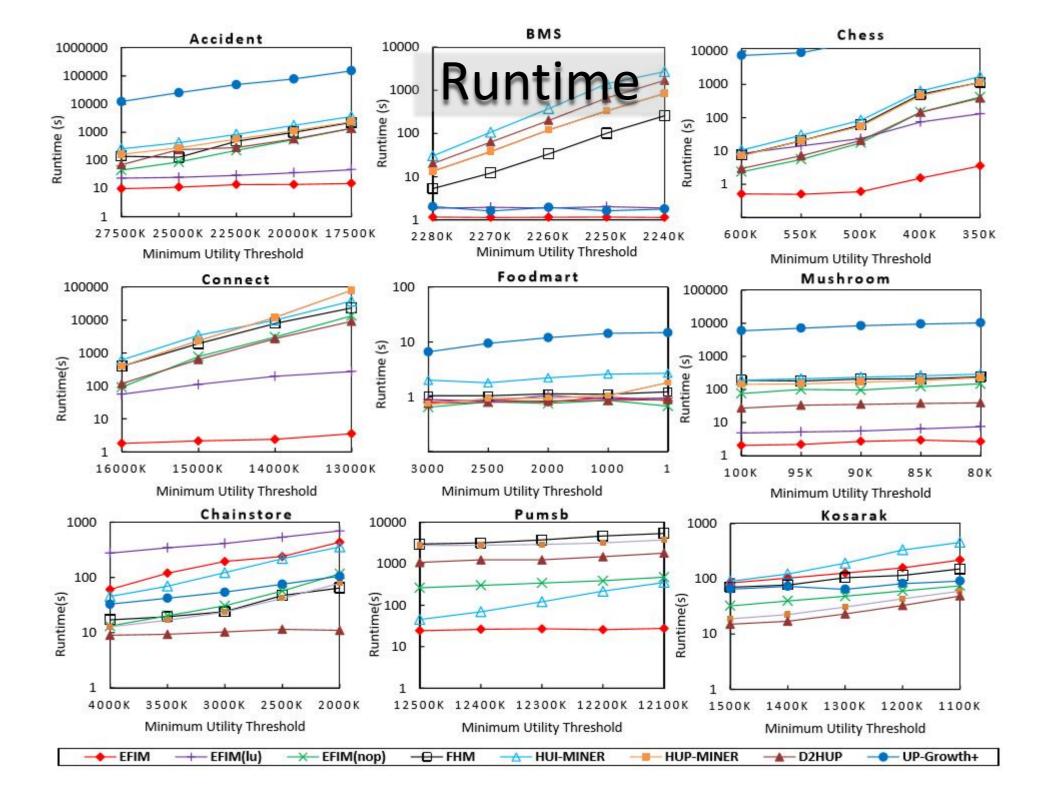

EFIM (2)

Algorithm 2: The Search procedure

input : α : an itemset, α -D: the α projected database, $Primary(\alpha)$: the primary items of α , $Secondary(\alpha)$: the secondary items of α , the *minutil* threshold

output: the set of high-utility itemsets that are extensions of α

- 1 foreach item $i \in Primary(\alpha)$ do
- $\mathbf{2} \mid \beta = \alpha \cup \{i\};$
- 3 Scan α -D to calculate $u(\beta)$ and create β -D; // uses transaction merging
- 4 **if** $u(\beta) \ge minutil$ **then** output β ;
- 5 Calculate $su(\beta, z)$ and $lu(\beta, z)$ for all item $z \in Secondary(\alpha)$ by scanning β -D once, using two utility-bin arrays;
- 6 $Primary(\beta) = \{z \in Secondary(\alpha) | su(\beta, z) \ge minutil\};$
- 7 $Secondary(\beta) = \{z \in Secondary(\alpha) | lu(\beta, z) \ge minutil\};$
- 8 Search $(\beta, \beta-D, Primary(\beta), Secondary(\beta), minutil);$
- 9 end



Experimental Evaluation

Datasets' characterictics

Dataset	transaction count	distinct item count	average transaction length
Accidents	340,183	468	33.8
BMS	59,601	497	4.8
Chess	3,196	75	37
Connect	67,557	129	43
Foodmart	4,141	1,559	1,559
Mushroom	8,124	119	23

- **Foodmart** is a real-life transaction datasets from retail stores.
- External and internal utility values have been generated in the [1, 000] and [1, 5] intervals using a log-normal distribution

Memory usage (MB)

Dataset	HUI-MINER	FHM	EFIM	UP-Growth+	HUP-Miner	$\mathrm{d}^{2}\mathrm{HUP}$
Accident	1,656	$1,\!480$	895	765	1,787	1,691
BMS	210	590	64	64	758	282
Chess	405	305	65		406	970
Connect	2,565	3,141	385		1,204	1,734
Foodmart	808	211	64	819	68	84
Mushroom	194	224	71	1,507	196	468
Chainstore	1,164	1,270	460	1,058	1,034	878
Pumsb	1,221	1,436	986	_	1,021	2,046
Kosarak	1,163	1,409	576	1,207	712	1,260

Table 10. Comparison of maximum memory usage (MB)

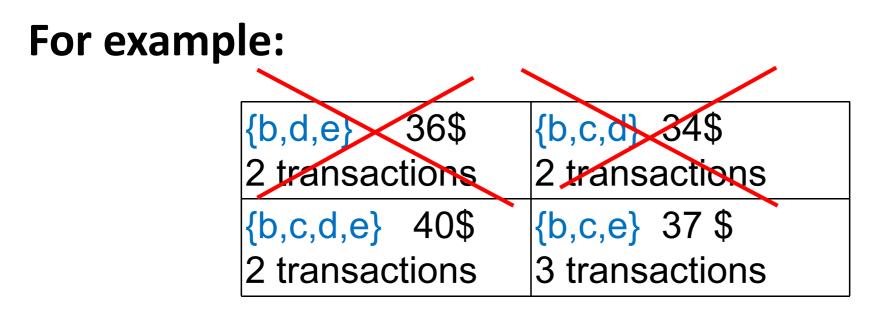
Influence of merging on database size

Dataset	EFIM	$\mathrm{EFIM}(\mathrm{nop})$	Size reduction (%)
Accident	784	113,304	99.3%
BMS	112.6	204.1	44.8%
Chess	2.6	1363.9	99.8%
Connect	1.4	43687	99.9 %
Foodmart	1.12	1.21	7.1%
Mushroom	1.3	573	99.7%
Chainstore	1,085	1,326	18.1%
Pumsb	1,075	22,326	95.2%
Kosarak	1,727	3,653	53%

Table 11. Average projected database size (number of transactions)

Conclusion

- The EFIM algorithm for high utility itemset mining
- Many operations in linear time.
- Outperforms many other algorithms
- Source code and datasets available as part of the SPMF data mining library (GPL 3).

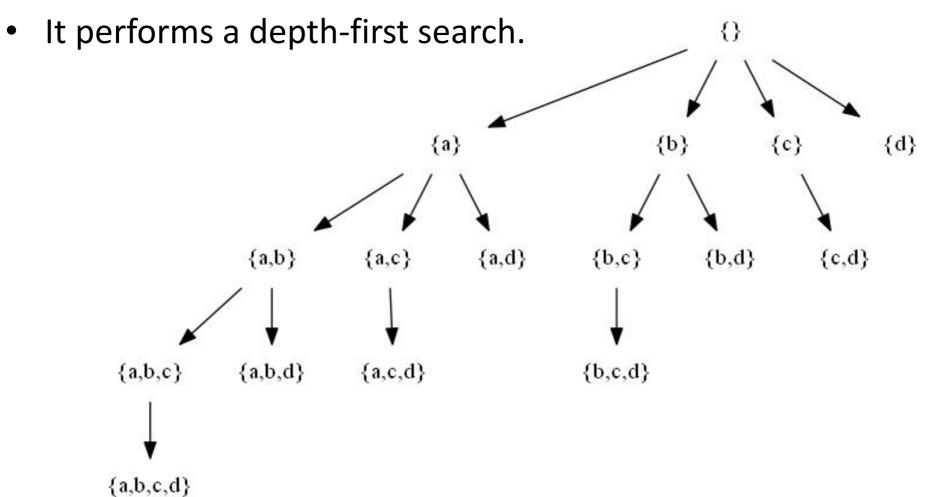

Open source Java data mining software, 275 algorithms http://www.phillippe-fournier-viger.com/spmf/

EFIM-CLOSED

Fournier-Viger, P., Zida, S. Lin, C.W., Wu, C.-W., Tseng, V. S. (2016). **EFIM-Closed: Fast and Memory Efficient Discovery of Closed High-Utility Itemsets**. Proc. 12th Intern. Conference on Machine Learning and Data Mining (MLDM 2016). Springer, LNAI, pp. 199-213.

What is a closed high utility itemset?

It is a **high-utility itemset** that has no proper superset having the same **support** (frequency).



Interesting properties:

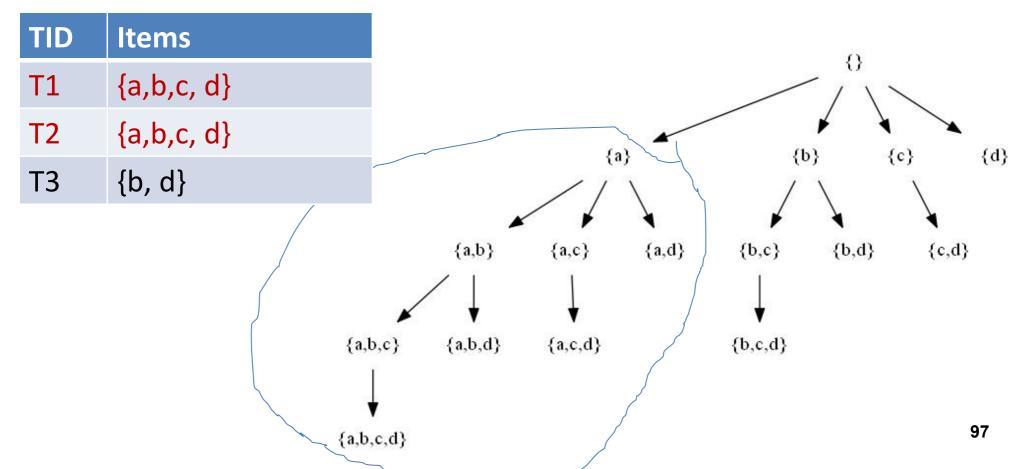
- A closed itemset is the largest group of items bought by a groups of customers.
- A closed pattern is always more profitable than its corresponding non closed patterns.

The EFIM-Closed algorithm

• An algorithm for mining closed high utility-itemsets

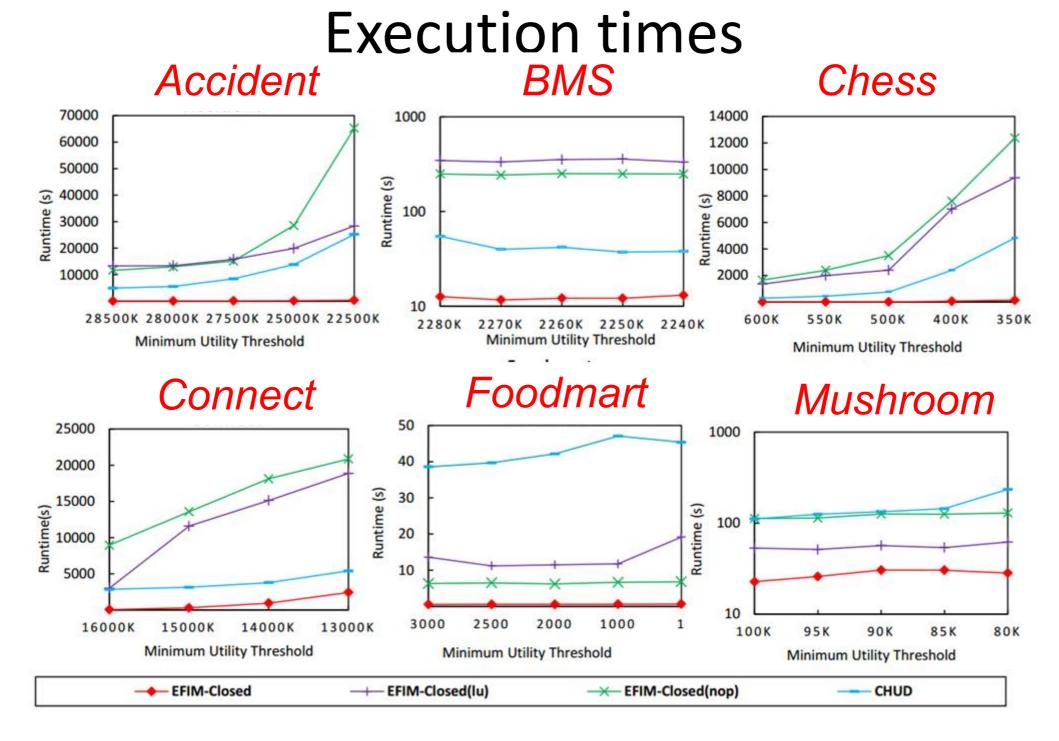
 It applies pruning strategies to prune the search space based on upper-bounds on the utility.

Forward/Backward extension checking


To determine if an itemset X is closed, check if there exists an item not in X that appears in all transactions where X appears. If yes, then X is not closed

TID	Transaction
T_1	(a, 1), (b, 5), (c, 1), (d, 3), (e, 1), (f, 5)
T_2	(b,4), (c,3), (d,3), (e,1)
	(a,1), (c,1), (d,1)
	(a, 2), (c, 6), (e, 2), (g, 5)
	(b,2), (c,2), (e,1), (g,2)

e.g. {b,d,e} is not closed because of item c


Closure jumping

For an itemset X, if all items not in X that can be appended to X have the same support as X, they can be directly appended to X to obtain a closed itemset.

Pseudocode

Algorithm 1: The EFIM-Closed algorithm	Algorithm 2: The Search procedure
 input : D: a transaction database, minutil: a user-specified threshold output: the set of high-utility itemsets 1 α = Ø; 2 Calculate lu(α, i) for all items i ∈ I by scanning D, 	 input : α: an itemset, α-D: the α projected database, <i>Primary</i>(α): the primary items of α, <i>Secondary</i>(α): the secondary items of α, the <i>minutil</i> threshold output: the set of high-utility itemsets that are extensions of α
 2 Calculate <i>lu</i>(<i>α</i>, <i>t</i>) for all items <i>i</i> ∈ <i>I</i> by scalining <i>D</i>, using a utility-bin array; 3 Secondary(<i>α</i>) = {<i>i</i> <i>i</i> ∈ <i>I</i> ∧ <i>lu</i>(<i>α</i>, <i>i</i>) ≥ <i>minutil</i>}; 4 Let ≻ be the total order of TWU ascending values on Secondary(<i>α</i>); 5 Scan <i>D</i> to remove each item <i>i</i> ∉ Secondary(<i>α</i>) from the transactions, and delete empty transactions; 6 Sort transactions in <i>D</i> according to ≻_T; 7 Calculate the sub-tree utility <i>su</i>(<i>α</i>, <i>i</i>) of each item <i>i</i> ∈ Secondary(<i>α</i>) by scanning <i>D</i>, using a utility-bin array; 	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
8 $Primary(\alpha) = \{i i \in Secondary(\alpha) \land su(\alpha, i) \ge minutil\};$ 9 Search (α , D, $Primary(\alpha)$, $Secondary(\alpha)$, $minutil$);	8 9 $ Primary(\beta) = \{z \in Secondary(\alpha) su(\beta, z) \ge minutil\};$
	10 11 Secondary(β) = { $z \in$ Secondary(α) $lu(\beta, z) \ge minutil$ }; Search (β, β -D, Primary(β), Secondary(β), minutil);
	12if β has no forward extension and $u(\beta) \ge minutil$ then output β ;13end
	14 end 15 end

EFIM-Closed is up to 71 times faster than CHUD

Maximum Memory usage (MB)

Dataset	EFIM-Closed	CHUD
Accidents	895	2,603
BMS	64	707
Chess	65	327
Connect	385	1,504
Foodmart	64	215
Mushroom	71	1,308

EFIM-Closed consumes up to 18 times less memory

Number of visited nodes

Dataset	EFIM-Closed	CHUD
Accidents	1,341	29,932
BMS	7	27
Chess	348,633	7,759,252
Connect	19,336	218,059
Foodmart	6,680	6,680
Mushroom	8,017	17,621

- **EFIM-Closed** is generally more effective at pruning the search space.
- On Chess, 22 times less nodes are visited by EFIM-Closed

Conclusion

• Contribution:

New algorithm for mining closed high utility itemsets named EFIM-Closed

- > Experimental results:
 - EFIM-Closed is up to 71 times faster and consumes up to 18 times less memory than the state-of-the-art CHUD algorithm
- Source code and datasets available as part of the SPMF data mining library (GPL 3).

Open source Java data mining software, 275 algorithms http://www.phillippe-fournier-viger.com/spmf/