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Abstract Genome sequence analysis and classification play critical roles in prop-
erly understanding an organism’s main characteristics, functionalities, and changing
(evolving) nature. However, the rapid expansion of genomic data makes genome se-
quence analysis and classification a challenging task due to the high computational
requirements, proper management, and understanding of genomic data. In this paper,
we present SPM4GAC, a sequential pattern mining (SPM)-based framework to an-
alyze and classify the genome sequences of viruses. First, a large dataset containing
the genome sequences of various RNA viruses is developed and transformed into a
suitable format. On the transformed dataset, algorithms for SPM are used to identify
frequent sequential patterns of nucleotide bases. The obtained frequent sequential
patterns of bases are then used as features to classify different viruses. Ten classifiers
are employed, and their performance is assessed by using several evaluation mea-
sures. Finally, a performance comparison of SPM4GAC with state-of-the-art meth-
ods for genome sequence classification/detection reveals that SPM4GAC performs
better than those methods.

Keywords Genomes · RNA Virus · Classification · Sequential pattern Mining ·
Nucleotides.

1 Introduction

A genome in molecular biology is an encoded sequence containing nucleotide bases
(Poor & Yaghoobi, 2019) and represents the complete set of an entire organism’s ge-
netic material. Genomes can now be sequenced at a rapid pace, thanks to advanced
sequence technology techniques, and can be shared on public repositories such as
GenBank (Sayers et al., 2020), NGDC (Members & Partners, 2023) and GISAID
(Kalia, Saberwal, & Sharma, 2021). However, the rapid growth in size and complex-
ity of genomics data has created new challenges for analyzing and interpreting large
biological datasets. The vast and intricate biological data are beyond the capacity of
traditional approaches. Most taxonomical genome classification tools use alignment-
based approaches. For example, BLAST (Altschul, Gish, Miller, Myers, & Lipman,
1990) and FASTA (Pearson, 1994) are widely used and regarded as the references
for sequence analysis and classification. However, these methods have certain limita-
tions, such as requiring more time and memory when very large genome sequences
are aligned, not operating well in low sequence identity scenarios, and the align-
ment results are dependent on various presumptions and criteria. (Zielezinski, Vinga,
Almeida, & Karlowski, 2017; Vinga, 2013).

Similarly, genome classification approaches that are based on k-mers or minimiz-
ers (Zielezinski et al., 2017; Ye, Siddle, Park, & Sabeti, 2019; Roberts, Hunt, Yorke,
Bolanos, & Delcher, 2004) require wider regions with high similarity, which can
yield lower recall and precision. It is now imperative to overcome the problems of
storage, management, and processing of massive genomic data and be able to extract
effective information while ensuring that this information carries a true biological
meaning. Moreover, the emergence of the COVID-19 (F. Wu et al., 2020; Ahamad
et al., 2020) pandemic in late 2019 and its impact showed the world that efficient
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computational approaches for genome analysis and classification, as well as well-
organized databases and search engines are required to face pandemics. In addition, a
wide range of viruses, particularly harmful ones, are emerging frequently around the
world. We believe that the huge amount of genomic data and their easy availability
offer a rich resource for frequent pattern mining and machine learning (ML) to be
used as alternatives to extract important information from biological sequences and
in the development of generic classification systems.

The main aims of this study are to: (1) develop a large corpus for genome se-
quences of RNA viruses; and (2) investigate how sequential pattern mining (SPM)
(Fournier-Viger, Lin, Kiran, Koh, & Thomas, 2017) is useful for the reliable classi-
fication and detection of genomes. SPM in genomics can offer new and meaningful
insights for organism behavior and can identify hidden information that can be of
importance to the biological community and thus aid in accelerating biological re-
search. SPM has been used in the past to find interesting hidden nucleotide bases
and amino acid patterns in genome sequences and their relationships with each other
(Nawaz, Fournier-Viger, Shojaee, & Fujita, 2021; Nawaz, Fournier-Viger, Aslam, et
al., 2023), analyze gene expression (Zihayat, Davoudi, & An, 2017), mine DNA
datasets for maximal contiguous frequent patterns (Karim, Rashid, Jeong, & Choi,
2012), mine rare cardiovascular disease symptom rules (Iqbal et al., 2022), discover
motifs in DNA sequences (Hsu, Chen, Hsu, & Liu, 2006), predict protein function
(Wang, Shang, & Li, 2008), discover patterns for gene interactions and their charac-
terizations (Cellier et al., 2013), interpret patterns extracted from DNA microarrays
(Sallaberry, Pecheur, Bringay, Roche, & Teisseire, 2011) and to recognize protein
folds (Exarchos, Papaloukas, Lampros, & Fotiadis, 2008). However, no studies have
yet been done that show the usefulness of frequent sequential patterns for the efficient
classification/detection of genome sequences without providing the whole sequences.

Some recently published ML and deep learning (DL)-based studies (Ali et al.,
2021; Alshayeji, Sindhu, & Abed, 2023; Arslan & Arslan, 2021; Arslan, 2021a,
2021b; Lopez-Rincon et al., 2021; Naeem, Mabrouk, Marzouk, & Eldosoky, 2021;
Randhawa et al., 2020; Ahmed & Jeon, 2022; Singh et al., 2021; El-Dosuky, Soli-
man, & Hassanien, 2021; Jing et al., 2020; Gunasekaran et al., 2021; Mateos, Balboa,
Easteal, Eyras, & Patel, 2021; Dlamini et al., 2021) classify and detect genome se-
quences that belong to various viruses and species. Most of these studies focused on
finding important features (such as CpG-based features, k-mers-based features, rep-
resentative genomic sequences, intrinsic genomic signatures, intrinsic dinucleotide
genomic signatures, and biomarkers) and used different kinds of encoding and em-
bedding techniques (e.g. one-hot and dictionary encoding, k-mers, label encoding,
discrete Fourier and discrete Cosine transform, and moment invariant). As far as we
are aware, there is currently no published study or method on the use of pattern min-
ing for whole genome sequence classification, especially for harmful viruses. The
following are the main contributions made in this paper:

– A dataset is developed that contains genome sequences belonging to various
RNA virus types. The genome sequences were taken from NCBI’s GenBank,
and they were preprocessed to make them suitable for applying SPM approaches.
The developed corpus can serve as an experimental testbed and benchmark for



4 Nawaz et al.

ML and DL tasks in genomics. The dataset is provided at: github.com/saqibdola/
SPM4GAC.

– Based on the analysis of nucleotide bases in genome sequences, we design a
framework called SPM4GAC, (SPM for Genome Analysis and Classification),
which offers a genome sequence analysis and classification/detection approach.
SPM4GAC classifies genome sequences based on frequent sequential patterns of
nucleotide bases that are discovered by using SPM algorithms. For classification,
ten classifiers are used, and comprehensive experiments are carried out by using
various metrics to investigate the efficacy of the developed classification system.

The proposed SPM4GAC approach was applied to a developed corpus that con-
tains genomes sequences (taken from GenBank) of 15 RNA viruses. Obtained results
by using the proposed SPM4GAC framework on the developed corpus indicate that
using frequent sequential patterns of nucleotide bases as features provides superior
classification performance than using all nucleotide bases in the whole genome se-
quences. It was found that overall, two text-based classifiers and one integer-based
classifier performed well. Compared to integer-based, the text-based classifiers were
slow during the training and testing phases. Obtained results by comparing the per-
formance of SPM4GAC with state-of-the-art (SOTA) genome sequence classifica-
tion/detection methods demonstrated that SPMF4GAC performs better than SOTA
methods.

The remaining four sections of the paper are: Section 2 provides the related work
on the use of ML and DL for genome analysis and classification/detection. Section
3 presents the details of the created dataset and the proposed SPM4GAC framework.
The results are presented and discussed in Section 4. Lastly, the paper is concluded
in Section 5.

2 Related Work

ML and DL approaches have been used for the classification and prediction of genome
sequences. For example, the studies (Arslan, 2021b; Arslan & Arslan, 2021; Arslan,
2021a) used CpG as features to classify SARS-CoV-2 genomes. The genome classi-
fication system of (Naeem et al., 2021) used various discrete transforms and moment
invariants-based features. (Lopez-Rincon et al., 2021) used a convolutional neural
network (CNN) combined with explainable AI techniques to discover representa-
tive genomic sequences. (Randhawa et al., 2020) first identified intrinsic genomic
signature and then used them with a ML-based alignment-free (AF) classification
approach. (Ahmed & Jeon, 2022) used various standard ML algorithms to classify
four viruses (Ebola, MERS, SARS-CoV-1 and SARS-CoV-2) genomes. Biomarkers,
based on three-base periodicity, were used in (Singh et al., 2021) for the classifica-
tion of genomes. (El-Dosuky et al., 2021) used a CNN, with a cockroach optimiza-
tion algorithm, to classify viruses genomes. (Alshayeji et al., 2023) implemented one
method based on k-mers and their frequencies for the identification of viral genomes
in human DNA sequences.

Some studies have considered a gene in place of a whole genome sequence for the
classification of viruses. For example, the classification approach in (Ali et al., 2021)
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for Spike (S) protein sequences of SARS-CoV-2 variants was based on k-mers (for
the generation of feature vector) and kernel approximation (for computing pairwise
similarity among sequences). Similarly, one-hot encoding was used on S sequences
to classify various coronaviruses (Kuzmin et al., 2020). S-PDB (Nawaz, Fournier-
Viger, & He, 2022) used the amino acid sequences of S protein structures, obtained
from Protein Data Bank (PDB), and their aligned amino acids and aligned secondary
structure elements for classification. Another study (Nawaz, Fournier-Viger, He, &
Zhang, 2023) presented the PSAC-PDB framework to analyze and classify protein
structures in the PDB. (Qiang, Xu, Fang, Liu, & Kou, 2020) collected the S protein
sequences of 2,666 coronaviruses. Three feature encoding algorithms were used to
obtain important features from S sequences that were used to train various random
forest classifiers.

(Gunasekaran et al., 2021) employed various DL methods (CNN, CNN-LSTM,
and CNN-Bidirectional LSTM) to classify DNA sequences that were encoded using
label and k-mer encoding. Another classification approach (Dlamini et al., 2021) is
based on analyzing the intrinsic dinucleotide genomic signatures. The genome se-
quences of eight pathogenic species were first transformed into dinucleotide relative
frequencies, that were then classified using the XGBoost model. (Mateos et al., 2021)
developed PACIFIC, a DL-based classifier, to detect various RNA viruses from RNA-
sequence data. PACIFIC used k-mers representation for nucleotide sequences and as-
signs them to numerical tokens. A continuous vector space is used to convert tokens
into dense representations. A deep learning-based tool, called autoBioSeqpy (Jing et
al., 2020), was developed for the classification of biological sequences. Two sequence
encoding methods (one-hot and dictionary-based) were used for bases/amino acids.

The aforementioned studies extracted important features, such as CpG-based fea-
tures (Arslan, 2021b; Arslan & Arslan, 2021; Arslan, 2021a), representative genomic
sequences (Lopez-Rincon et al., 2021), features extracted using the discrete Fourier
transform, discrete Cosine transform and seven moment invariants (Naeem et al.,
2021), intrinsic genomic signatures (Randhawa et al., 2020) ((sub)sequences of length
1 to 7 in conjunction with chaos game numerical representations), biomarkers (Singh
et al., 2021), one-hot and dictionary encoding (Kuzmin et al., 2020; Jing et al., 2020),
k-mers and kernel approximation-based features (Ali et al., 2021; Gunasekaran et al.,
2021; Mateos et al., 2021), and intrinsic dinucleotide genomic signatures (Dlamini et
al., 2021). Extracted features were then used for classification and detection purpose.
Some studies only considered specific parts of the genome sequence, such as the
Spike or Surface gene (Ali et al., 2021; Nawaz, Fournier-Viger, & He, 2022; Qiang
et al., 2020) and some only used sequences that contain four bases. The PMBC (Pat-
tern Mining from Biological sequences with wildcard Constraints) algorithm (X. Wu,
Zhu, He, & Arslan, 2013) mines frequent patterns in biological sequences with a self-
adaptive gap under the one-off condition. Besides random data, three human DNA
sequences (AX829174, AY315625, and AY315623) obtained from NCBI were ana-
lyzed.

Differently from prior works, this study extracts sequential frequent patterns from
whole genome sequences that can be used for reliable classification and detection
purposes. More precisely, SPM algorithms are applied to the prepared corpus to find
patterns (subsequences of bases) that appear frequently in genome sequences, and are



6 Nawaz et al.

later used as features in the classification process. Moreover, the developed dataset
of complete genome sequences contains bases other than A, C, G and T. However,
in the results, we find that the inclusion of bases other than A, C, G and T plays no
major role in classification/detection as they occur rarely in the sequences and thus
are not present in frequent patterns.

3 SPM4GAC

The proposed SPM4GAC framework (Figure 1) to analyze and classify genome se-
quences consists of three main steps:

(2) Learning(1) Corpus Development

AC...G...AG...
Genome Sequences

GC...T...CT...

TA...C...TT...

1 -1 2 -1...3 -1...1 -1 3 -1 -2...
Transformation

3 -1 2 -1...4 -1...2 -1 4 -1 -2...

4 -1 1 -1...2 -1...4 -1 4 -1 -2...

Bases Composition

Frequent Bases and
their Patterns

(3) Classification

Training
Corpus

Testing
Corpus

Frequent bases 
Representation

Classifier
Training

Frequent bases 
Representation

Hypothesis
Prediction

Training Phase

Testing Phase

SPM

Fig. 1: SPM4GAC framework to analyze and classify genome sequences involves
three steps: (1) Corpus development, (2) Learning via SPM, and (3) Classification via
the discovered frequent sequential patterns of nucleotide bases in the created corpus
by training various classifiers.

1. Development of corpus: First, genome sequences are obtained and converted into
a discrete sequences corpus, where a distinct positive integer is used to encode
each nucleotide.

2. Using SPM for learning: Second, frequent sequential patterns of nucleotide bases
are discovered by invoking SPM algorithms on the transformed corpus.

3. Using discovered frequent patterns in the classification: Third, obtained frequent
sequential patterns of nucleotide bases, discovered in step 2, are used to clas-
sify the genomes that belong to different virus families. The classification pro-
cess contains two main tasks: (1) the training phase comprises two subphases,
performed sequentially, representation of frequent nucleotides and training of a
classifier. (2) the testing phase comprises three subphases, representation of fre-
quent nucleotides, hypothesis prediction and evaluation. In the classification pro-
cess, frequent sequential nucleotides are represented using both string-based and
integer-based formats.

The following subsections provides more detail for the three steps of SPM4GAC.

3.1 Corpus Development

The GenBank (Sayers et al., 2020) database is used to acquire the sequencing data of
RNA viruses of various types: (1) positive-sense single-stranded (+ss), (2) negative-
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sense single stranded (-ss), (3) negative-sense reverse transcriptase (-RT) and double-
stranded (ds) (Table 1). Some genome sequences have limited research potential be-
cause they are smaller than the reference sequence or they contain a large number
of ambiguous letters. We filter and select only those genomes that are complete and
have a high coverage. Table 1 also provides details for the total bases (TB), minimum,
maximum and average length of genome sequences in each virus family. We can see
that on average, a genome sequence has an average length of 11,197. Genome data
must first be converted into a suitable format that meets the following two primary
conditions in order to be used with SPM:

– Obtained sequences must be transformed into sequences of discrete-type ele-
ments (items). This makes it possible to discover interesting hidden patterns in
the data.

– To represent the data as discrete sequences, the set of items should be selected
carefully. This requirement ensures a suitable abstraction that preserve all mean-
ingful information and omit information that is redundant or irrelevant.

Table 1: Viruses genome sequences and their statistics. TB, MinL, MaxL and ASL
represent total bases, minimum, maximum and average length of a sequence.

Virus Samples RNA Type Redundant samples (%) TB MinL MaxL ASL
Dabie Banda 2,806 (+/-)ssRNA 29 (1.03) 10,394,666 1,674 6,386 3,704

Dengue 4,788 (+)ssRNA 285 (5.95) 50,250,495 1,485 11,195 10,495
Ebola 657 (-)ssRNA 57 (8.67) 12,423,106 18,277 19,897 18,908
Hanta 951 (-)ssRNA 47 (4.94) 3,542,253 204 6,761 3,724
Hepaci 1,206 (+)ssRNA 322 (26.69) 11,301,523 5,967 11,013 9,371

HIV 6,740 (-RT)ssRNA 1,124 (16.67) 59,807,993 1,103 10,514 8,873
Influenza 11,241 (-)ssRNA 271 (2.41) 18,542,776 246 2,867 1,649
Measles 759 (-)ssRNA 59 (7.77) 11,130,696 395 19,800 14,644
MERS 657 (+)ssRNA 105 (15.98) 19,737,610 23,327 30,484 30,042
Noro 1,130 (+)ssRNA 34 (3.00) 8,524,533 6,222 7,778 7,453

Rabies 2,422 (-)ssRNA 408 (16.84) 23,616,784 405 13,152 9,750
Rhino 885 (+)ssRNA 80 (9.03) 6,251,840 867 7,202 7,064
Rota 2,494 dsRNA 47 (1.88) 4,159,710 357 3,538 1,667

SARS-CoV-2 12,502 (+)ssRNA 5,158 (41.25) 372,155,530 29,490 29,903 29,767
West Nile 1,798 (+)ssRNA 116 (6.45) 19,507,357 8,916 11,355 10,849

Total 51,036 8,142 (15.95) 41,336,356 6,595 12,789 11,197

For transformation, the “nucleotides to integers" abstraction (Nawaz et al., 2021)
is used. In such abstraction, each nucleotide is converted into a unique item, which is
represented with a positive integer. This broad abstraction enables the use of different
SPM algorithms.

Table 2: Nucleotide bases IUPAC codes.
Base (Code) Base (Code) Base (Code)
Adenine (A) Cytosine (C) Guanine (G)
Thymine (T) A/G (R) C/T(Y)

C/G (S) A/T (W) G/T (K)
A/C (M) C/G/T (B) A/G/T (D)

A/C/T (H) A/C/G (V) A/C/G/T (N)
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The obtained genome sequences, downloaded as FASTA files, contain the infor-
mation for the genome, followed by a nucleotides sequence. The four basic nucleotide
bases are A (Adenine), C (Cytosine), G (Guanine) and T (Thymine) in DNA or U
(Uracil) in RNA. However, there are some other nucleotides that represent different
combinations of four bases (Table 2) (Johnson, 2010). For example, R (known as
puRine) can be either A or G, and Y (known as pYrimidine) can be either C or T .
Similarly, N can be any of the four bases. Here, we call them ambiguous or redun-
dant nucleotides (RN ) as they occur rarely. After the information field is removed,
the whole genome sequence, shown as Ns, is a sequence of nucleotide bases. All of
these nucleotides sequences are combined to create a corpus of discrete sequences.
This corpus has the following formal definition.

Definition 1 (Nucleotide set) Assume that the set of all main nucleotides is formally
described as NB = {A,C,G, T,R, Y, S,W,K,M,B,D, H,V,N}. The notation
|NB| refers to its cardinality and is equal to 15.

Definition 1 provides the following representation of a genomic sequence and a
genome sequence corpus.

Definition 2 (Genome sequence) A list of nucleotides is called a genome sequence,
GS = ⟨NB1, NB2 , ..., NBn⟩, such that NBi ∈ NB (1 ≤ i ≤ n).

Definition 3 (Corpus of Genome sequences) A list of genome sequences creates a
genome sequences corpus (GSC), which is defined as GSC = ⟨GS1, GS2, ..., GSp⟩,
where each genome has a unique identifier (ID). For instance, Table 3(a) shows a
GSC that contains five genomes with IDs 1, 2, 3, 4 and 5. In this example and the
rest of the paper, the commas between NBs are omitted to be consistent with the
FASTA format of genome sequences.

Table 3: (a) A sample of GSC and (b) Bases as integers in genome sequences.
(a)

ID Sequence
1 ⟨{AATAACGG.....}⟩
2 ⟨{TGCAATAG.....}⟩
3 ⟨{CAGGTGTT.....}⟩
4 ⟨{CCCTAATC.....}⟩
5 ⟨{TGTAAACC.....}⟩

(b)

ID Sequence
1 1 -1 1 -1 4 -1 1 -1 1 -1 2 -1 3 -1 3 -1 -2
2 4 -1 3 -1 2 -1 1 -1 1 -1 4 -1 1 -1 3 -1 -2
3 2 -1 1 -1 3 -1 3 -1 4 -1 3 -1 4 -1 4 -1 -2
4 2 -1 2 -1 2 -1 4 -1 1 -1 1 -1 4 -1 3 -1 -2
5 4 -1 3 -1 4 -1 1 -1 1 -1 1 -1 2 -1 2 -1 -2

To enable the use of SPM algorithms on the corpus, the genome sequences are
converted into integer sequences in the last step. After this step, each row in the
corpus contain a sequence of nucleotides that are substituted with positive integers.
For example, the bases A, C, G, and T are changed to 1, 2, 3 and 4, respectively. Other
bases N, R, Y, K, M, S, W, B, D, H and V are replaced with 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, and 15 respectively. Additionally, for SPM algorithms, a separator characters,
such as -1 is added between bases and -2 is put after the last element of a row, that is
a genome sequence, to indicate that it has ended (Fournier-Viger et al., 2016). Table
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3(b) shows the five sequences from Table 3(a) that have been transformed into integer
sequences.

To be more precise about how the transformation process is conducted, a for-
mal description of the transformation process is given next. Let there be a genome
sequence corpus GSC = ⟨GS1, GS2, ..., GSp⟩. The transformation process con-
sists of transforming each genome sequence GSi of the corpus GSC (1 ≤ i ≤ p).
For a genome sequence GS = ⟨NB1, NB2 , ..., NBn⟩, the transformed genome se-
quence is denoted as GS′ and is defined as GS′ = ⟨f(NB1), −1, f(NB2), −1, ...,
f(NBn), −1, −2 ⟩ where f : NB → N is a function mapping a nucleotide to an
integer. The transformation function f is defined as follows: f(A) = 1, f(C) = 2,
f(G) = 3, f(T ) = 4, f(N) = 5, f(R) = 6, f(Y ) = 7, f(K) = 8, f(M) = 9,
f(S) = 10, f(W ) = 11, f(B) = 12, f(D) = 13, f(H) = 14, and f(V ) = 15.

The transformation process yield datasets that can be used directly with most
SPM algorithms to extract patterns. To allow reproducibility, interested readers can
find the original datasets and their transformations at github.com/saqibdola/SPM4GAC.

3.2 Learning using SPM

For its application in genome sequence analysis, following is the definition of fre-
quent SPM.

Definition 4 (Containment of a genome sequence) Let GSx = ⟨x1, x2, ..., xn⟩
and GSy = ⟨y1, y2, ..., ym⟩ represent two genome sequences. GSx is contained (or
present), in GSy (denoted as GSx ⊑ GSy), if and only if 1 ≤ i1 < i2 < ... < in ≤
m, s.t. x1 = yi1, x2 = yi2, ..., xn = yim. GSx is a subsequence of GSy if GSy

contains GSx.

Definition 5 (Support measure) For a genome sequence GSx, the support, denoted
as sup(GSx), in GSC refers to how many (sub)sequences contain GSx. It is defined
as: sup(GSx) = |{GS|GSx ⊑ GS ∧GS ∈ GSC}|.

Definition 6 (Task of frequent SPM in a GSC) For a GSC and a minsup > 0
(minimum support threshold given by a user), the goal of frequent SPM is to find
every frequent genome (sub)sequences. It is said that GS, a genome subsequence, is
frequent if sup(GS) ≥ minsup.

⟨TAA⟩ in Table 3 is present in three genome sequences 1, 4, and 5 respectively.
Thus its support is 3.

Discovering frequent sequential patterns in GSC is difficult since the genome
sequences could be lengthy and repetitive. There can be up to 2n−1 different subse-
quences in a genome sequence with n nucleotides. This means that it is not efficient
to find sequential patterns by first determining the support of every possible subse-
quence using a naive counting algorithm. For that reason, in the last decade, a number
of effective and novel algorithms were designed that employ different optimization
techniques to discover the exact solution for the SPM problem without requiring an
exhaustive search space exploration.
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Algorithms in SPM establish a total order relation ≺ on items to expedite the
process of identifying sequential patterns and prevent the discovery of identical se-
quences multiple times. In this study, the order ≺ is defined as the lexicographical
order based on nucleotides from NB (A ≺ C ≺ G ≺ T... ≺ V ). In SPM, algorithms
either use a breadth-first search (BFS) or a depth-first search (DFS) to explore and
find frequent patterns. BFS-based SPM algorithms first scan the dataset to identify
sequential patterns that comprise a single item (1-sequences) and have a high oc-
currence frequency. They then generate 2-sequences by performing s-extensions and
i-extensions of 1-sequences. In the same manner, 2-sequences are used to generate 3-
sequences and so on. This procedure repeats till no more sequences can be produced.
On the other hand, DFS-based SPM algorithms begin with sequences that comprise
single items and work recursively to create larger sequences by applying i-extensions
and s-extensions to one of these sequences. If a pattern is not extendable, the algo-
rithms backtrack and extend other patterns. For this study, the following defines s-
and i-extensions, which take one or more k-sequences and produce a (k+1)-sequence
from them. A genome sequence GSx = ⟨x1, x2, ..., xp⟩ is a prefix of another genome
sequence GSy = ⟨y1, y2, ..., yq⟩, if p < q, x1 = y1, x2 = y2 , ..., xp−1 = yp−1, where
xp is equal to the first |xp| items of yn in the ≺ order. GSy is an s-extension of GSx,
for an item n, if GSy = ⟨x1, x2, ..., xp, {n}⟩. This means that GSx is a prefix of GSy

and the item n follows after all the itemsets of GSx. Here, i-extension is not defined
as it does not apply in our case. It is noteworthy to mention that SPM can be ap-
plied in a broader scenario where concurrent items are permitted in a sequence, than
what is described in this study. However, this general case is not discussed here as
nucleotides are totally ordered in genome sequences.

SPM algorithms avoid searching the entire search space by using the Apriori
property, which states that for GSx and GSy , if GSx is a (sub)sequence of GSy ,
then GSy must have a support less than or equal than that of GSx’s support. This is
explained with a simple example. Suppose that a sequence ⟨C⟩ is having a support
of 4. Then, the (sub)sequence ⟨CG⟩’s support should be less than or equal to 4. This
Apriori property helps in reducing the whole search space. All the extensions of rarely
occurring sequences are also infrequent and thus they are not considered sequential
patterns. For instance, for a minsup of 5, it is not required to find ⟨C⟩’s extensions
because all of them are infrequent. SPM algorithms either use a horizontal database
format (HDF) or a vertical database format (VDF). In HDF, each entry represents a
sequence. On the other hand, a VDF shows the itemsets where each item (nucleotide)
is present in the sequence database. Table 3(a) shows a horizontal genome sequence
database. SPM algorithms differs from each other in the following aspects:

1. Which strategy is employed- DFS or BFS,
2. Which kind of database representation (VDF or HDF) and internal data structures

are employed,
3. How the support measure for patterns is calculated for finding those frequent

patterns that meet the user-specified minsup constraint.

CM-SPAM (Fournier-Viger, Gomariz, Campos, & Thomas, 2014) and TKS (Fournier-
Viger, Gomariz, Gueniche, Mwamikazi, & Thomas, 2013) are a few of effective SPM
algorithms. CM-SPAM (Fournier-Viger et al., 2014) uses the CMAP (Co-occurrence
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MAP) data structure for reducing the search space and discovering sequential pat-
terns. Information about the co-occurrences of an item is stored in a CMAP. How-
ever, in CM-SPAM, setting the minsup threshold is not intuitive. There could be no
patterns found with a high minsup and many patterns found with a low minsup.
TKS (Top-k Sequential), which is an extension of CM-SPAM, addresses this limita-
tion by providing the users with the option to select how many patterns (k) to find in
the corpus. TKS uses tailored strategies to reduce the whole search space. Both TKS
and CM-SPAM use a vertical database representation.

3.3 Using Frequent Sequential Nucleotide Patterns for Classification

The third step of SPM4GAC is to classify genome sequences using the frequent pat-
terns discovered with SPM algorithms.

Genome sequences are generally long, as shown in Table 1. Examining the GSC
closely showed that nearly every sequence had the four bases (A, C, G and T) occur-
ring hundred or even thousand times, sometimes consecutively. In genome sequences,
frequent sequential patterns of bases can replace this bases repetition for improved
classification results. In the Section 4, we found that using frequent patterns of bases
enhanced the performance of classification. To be more precise, frequent sequential
patterns of nucleotides are used to classify RNA virus families in the SPM4GAC
framework.

Binary classification is used in SPM4GAC to classify/detect each virus type sep-
arately in GSC. The definition 7 of binary classification gives a label "virus name"
to each genome sequence that belongs to a specific virus type and assigns "Others"
to genome sequences that do not belong to that virus type.

Definition 7 Let V represents the set of virus types. GS, a genome sequence, is
labelled in relation to v for a particular viral class v ∈ V as:

GSv =

{
v, if GS∈ v,

Others, otherwise
(1)

Type labels belonging to v are labelled as v in Equation 1, whereas labels for
other types are labelled as Others in order to train a binary model. For instance, for
the Influenza virus, Equation 1 assigns "Influenza" to genomes belonging to this virus
and "Others" to genomes of other viruses.

In the multi-class (MC) classification setting, each genome in CGS is designated
with its corresponding class name. Fifteen distinct virus types are considered in this
study (Table 1). Thus, a model can be trained in MC for accurate labeling of genomes
to their respective type.

Models performance, for both binary and MC classification, is evaluated and
compared by using six metrics: accuracy (ACC), precision (P), recall (R), F1 score,
false positive rate (FPR), and Matthews correlation coefficient (MCC). ACC in this
study is calculated by dividing the total number of virus types by the proportion of
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correctly categorized virus types. The definitions of the six measures are provided in
the Appendix.

In total, ten models are used, including (1) SVM (Support Vector Machine),
NB (Naive Bayes), (3) kNN (k-Nearest Neighbor), (4) J48 (Decision Tree), (5) K∗

(KStar), (6) LR (Logistic Regression), (7) (RF) Random Forest, (8) (SGDT) Stochas-
tic Gradient Descent Text, (9) MNBT (Multinomial Naive Bayes Text) and (10) Ze-
roR. Three classification models (MNBT, SGDT and and ZeroR) are string (text)-
based, while the remaining are integer-based. String-based models use four strate-
gies for tokenization: (1) Alphabetic Tokenizer (AT), (2) Character NGram Tokenizer
(CNGT), (3) NGram Tokenizer (NGT) and (4) Word Tokenizer (WT). The following
section discusses how those four tokenizers affect models’ performance. The perfor-
mance of each model is evaluated by using 10-fold cross validation.

4 Results

For the experiments, a computer with an eleventh generation Core i5 processor and
16 GB of RAM was used. The SPMF (Fournier-Viger et al., 2016) tool was used to
analyze and find frequent sequential patterns in the corpus. Java built SPMF is open
source and offers easy-to-use implementations for over 230 algorithms for pattern
mining. Moreover, open-source WEKA (Frank, Hall, & Witten, 2016), also built in
JAVA, was used for the models’ training and testing on discovered frequent sequential
patterns of nucleotides. WEKA was used because it is a cross-platform, offers various
ML models and data preparation tools, meta-learners. In addition to a CLI (command
line interface), it has an user-friendly GUI (graphical user interface). The results of
analyzing the genome sequences of 15 virus families by using the SPM algorithms
are discussed next.

4.1 Frequent Patterns

In a preliminary experiment, the developed corpus GSC was first analyzed to find the
frequently occurring nucleotides and redundant nucleotides (RN) to compare their oc-
currence frequencies for different viruses, and see if insights could be obtained. For
this purpose, the Apriori algorithm (Aggrawal & Srikant, 1994) was first applied,
which is a popular and efficient algorithm for frequent itemset mining (FIM), that
is for counting the occurrences of individual values or sets of values in data. The
obtained frequencies are given in Table 4. The displayed values for GC and AT/GC
contents were calculated from genome sequences using a Python script that is avail-
able at: github.com/saqibdola/SPM4GAC. From these results it is found that genome
sequences that belong to various virus families are AT rich except for the Hepaci and
West Nile viruses. This means that genome sequences that belong to Hepaci and West
Nile contain high GC content as compared to genome sequences of other viruses.

Note that in the above preliminary experiment, the Apriori algorithm was used
for counting the frequencies of bases because it is a popular algorithm, and it has
many efficient implementations available in commercial or open-source data analysis
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software but other more efficient algorithms could have been used to obtain the same
information. The above analysis using Apriori allowed us to study the frequencies
of bases. However, this analysis remains limited since Apriori does not consider the
sequential ordering of bases and does not ensure that bases appear contiguously in a
sequence. For this reason, only the frequencies of individual bases found by Apriori
are displayed in Table 4 and frequent patterns containing multiple bases are not re-
ported. In other words, the Apriori algorithm is unable to find sequential relationships
among bases.

Table 4: Extracted frequent bases, GC and AT/GC ratio.
Bases Dengue Ebola MERS HIV Influenza Rabies Rota Virus Rhino

A 16,279,238 3,950,626 5,176,581 21,621,106 6,150,122 6,737,671 1,518,158 2,076,576
C 10,346,422 2,667,182 3,988,412 10,570,284 3,596,428 5,195,917 631,627 1,172,485
G 12,913,744 2,461,603 4,129,121 14,310,427 4,492,900 5,456,877 749,196 1,243,521
T 10,708,322 3,342,358 6,438,632 13,256,397 4,298,300 6,224,481 1,260,659 1,758,747

RN 2,769 1,337 4,864 49,779 5,026 1,838 70 511
GC 46.20 41.20 41.10 41.60 43.60 45.10 33.10 38.60

AT/GC 1.16 1.42 1.43 1.40 1.29 1.21 2.01 1.58
Bases SARS-CoV-2 West Nile Noro Dabie Measles Hanta Hepaci

A 111,129,474 5,330,138 2,393,619 2,762,812 3,242,426 1,135,264 2,312,262
C 68,136,870 4,345,791 2,124,232 2,293,859 2,657,697 613,041 3,328,455
G 72,953,276 5,590,500 2,070,037 2,780,521 2,661,026 755,646 3,170,521
T 119,477,777 4,224,812 1,935,632 2,557,414 2,597,064 1,037,857 2,481,019

RN 2,529,366 16,116 1,115 60 22,483 445 9,266
GC 37.95 50.90 49.20 48.80 47.40 38.60 57.50

AT/GC 1.63 0.96 1.03 1.04 1.10 1.58 0.73

Apriori limitations led to the development of efficient algorithms such as TKS
and CM-SPAM. (Fournier-Viger et al., 2013, 2014, 2017; Nawaz, Fournier-Viger,
Nawaz, Chen, & Wu, 2022). They are able to identify more meaningful information
and patterns in the data. The top-k frequent sequential patterns of bases are found in
the corpus by using TKS. In contrast to TKS, minsup needs to be set by the user for
running CM-SPAM. Table 5 lists a few frequent sequential patterns of bases, having
different lengths, that the TKS and CM-SPAM identified in the genome sequences
of 15 viruses. Table 5 offers some helpful insights regarding bases’ frequent occur-
rences. We found that discovered frequent patterns in each virus family do not contain
any RN as they occur rarely. Thus, the discovered frequent patterns only contain 4
bases (A, C, G and T). We observed that the process of pattern mining in genome
sequences was fast. However, for a virus type that has long genome sequences, such
as Ebola, MERS and SARS-CoV-2, we need to fine tune some parameters of both
algorithms to find frequent patterns of bases. To gain more insights, the frequent pat-
terns discovered in a raw RNA sequence are visualized in Figure 2. Each discovered
pattern is a multiple of three nucleotides (codon) that encodes 20 different amino
acids or stop signals. In the top of the figure, the raw RNA sequence is shown with
the occurrences of each pattern displayed in with a different color. At the bottom left
corner of the figure, the frequent sequential patterns are listed with their colors. It can
be observed that some sequential patterns such as AAAGAT and ATC appear multiple
times at different locations of the sequence. The combination of the patterns found in
a sequence can be viewed as a description of the sequence.
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Table 5: Extracted frequent sequential patterns of bases in each virus family.
T

K
S

Dabie Dengue Ebola Hanta Hepaci
AAA ATC CCC GCG GGA
CCA ATT TTA TCG TAT

TGGATG AAAGAT CGTGGGGAA ACTA GCCT
CCTGGA GAAGGA AGTCTA ATGTG TACA

AAAAAGAAG ATCCTGCTG GGAAGATTA ATTGA CTTTC
AAGACAATG GAGACCCCT ATGATTTTG ATACT ACGGC

AAGACAATGATG CAATATGCTGAA ATGAAGATTAAG AAAGAA CTGGCT
AAGACCCCCTTC GAAGCTGTACGC ATGAAGATTAAG TGATGA CTCCAA

HIV Influenza Measles MERS Noro
ACA CGT ACG ACCA GGT
GAC CGC TTCC CCAA GTA

GGGAGT GCCG GTGC CATCC CACT
CACCAA TGCCC GTGCC ATACTA GGAC

GATGGCAGG ACTAC GTGCGG ATAGCA GATTC
ATGGCCAGT AAATTG AGACTGG GCAAAGC TCAGT

GGTGCGAGAGCG GAGAAC CTGCTTGC ACAAGCAG ACATGA
TGGAAAGGTGAA ATGATG AGATTCCTC GTCAATATT CACCAA

Rabies Rhino Rota SARS-CoV-2 West Nile
CCA TTA AAA CAAG GCC

ACGG CTC AAG CTAAT AAT
AAGAT GGGC AAAT CACTCA AAAGAT

TACTGC TTAC AAACA CGTCTGC CAGGCC
CTATTC AGATGA AATGC CAACAAG AGGTCCTTC

GACTATG TGGACA AATGAC CACACTAAA TGAGAATGG
ATAGTGAA GGTGGTGGA AATTAG AAGGGTGGT CCTGGCTGTT
TGATGTAT TGGTGGTGG AATTAG CCGGAAGCCA ACCTGGCTGTT

TGTGAAAAAA CGTGGCTGCCT AAAAGAT

C
M

-S
PA

M

Dabie Dengue Ebola Hanta Hepaci
AAA AAA AAA AAA AAA
AAC AAC AAC AAC AAC

AAAATC AAAC AAAA AACA AAAG
AAACCA AAGA AAAG AACC AAAC

AAACTCCAC AAGAG AAACA AACCT ACCTA
AAATGCTCC AACTT AAACC AACTT ACCAAG

AACTCCACTGCA AAGACA AAATGG AGCTCA ACAGCT
AAAAAGAAGACA AAGAGA AAATTC AGGAAC ACCTGGA

HIV Influenza Measles MERS Noro
AAA AAA AAA AAA AAA
AAG AAAT AAAAG AAAA AAC

AAAGGA AAAGT AAAAAAC AAAAC AAAG
AAAACA AAGTT AAAACC AAAAGA AAAC

AAAACAAAT AATGAA AAAACGT AAAATGT AAACG
AAAAGCATT ACCAAA AAAACTTA AAACAAC ACATGA

AAAGGGGGGATT CAATTG AAAACTTAG AAACACTG AAATTT
AAATAAAATAGT AGGACA AAAAGAAACA AAACACTGT AAACTGA

Rabies Rhino Rota SARS-CoV-2 West Nile
AAA AAA TCCG AAA AAA

AACT AAAG GGCG AAG AAC
AAAAC AAACA CCATC AAAAAC AACAAA
AAACG AACTCA AGACAA AAAAAG AACAAC

AAAGAG AAGCACT TGATAA AAAAACC AACACCTTC
AAAGCGG AATAAAT AAGAAA AAAAAGG AAAACCATG

AAAGGGCT AATCAGA TTTTAAA AAAAAGGT AAAACCATGGGA
AACACTTCT AATGTTGG AGAAAAT AAAAATTAT AAAACAAAAGAA

4.2 Binary and MC Classification Results

For both binary and MC classification, the default hyperparameters for classifiers
provided in WEKA version 3.8.6 were used. TKS and CM-SPAM are used to identify
frequent 100, 200, 300 and 400 patterns of bases in each virus family. The discovered
frequent patterns are preprocessed further to ensure that each pattern has 3 different
bases, at least. The primary goal of finding patterns of various counts, such as 100
patterns, 200 patterns, 300 patterns and 400 patterns, is to investigate their effect on
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AGATTGTTAGTCTGTGTGGACCGACATTACAGTTCCAAATCGGAAGCTTGCTTAACACAGTTCTAACAGTTTGTTTGA

ATCGAGAGCAGATCTCTGGAAAAATGAACCAACGAAAAAAGATGGTTAGACCACCTTTCATCCTGCTGAAACGCGAG

AGAACCGCGTATCGAGAACCCCTCAAGGGTTGGTGAAGAGATTCTCAACCGGACTTTATTCTGGAGAAGGACCCTT

AAAGATGGTGCTAGCATTCATCACGTTTTTGCGAGTCCTTTCCATCCCACCAACAGCAGGGATTCTGAAAAGATGGG

GCAGTGAAGGAAAAGCATCCTGCTGACG……..  Raw RNA sequence

Frequent Sequential Patterns

ATC
ATT

AAAGAT
GAAGGA

ATCCTGCTG

Fig. 2: A sample of frequent sequential patterns found in a raw RNA sequence.

the models’ performance. Table 6 provides the classification results of models, both
for binary and MC, when discovered frequent patterns are used as features.

In each table, the format ( 100(200)300(400) ) is used to provide the results for each model’s

metrics. Table 6 first entry, 27.26(27.16)
27.57(27.83) , indicates that the NB classifier obtained an

ACC of 27.26%, 27.16%, 27.57% and 27.83% with 100, 200, 300 and 400 patterns,
respectively, that were discovered by using TKS. To keep the number of tables in this
part to a minimum, metrics results are presented in the aforementioned format. Four
tokenization algorithms are used with two string-based models (SGDT and MNBT):
AT, CNGT, NGT and WT. For both MNBT and SGDT, CNGT outperformed AT,
NGT and WT. The findings for MNBT and SGDT using the CNGT strategy are pro-
vided in Table 6. Whereas, ZeroR generated an ACC of 93.33 for all virus families.
That is why they are not included in the tables. For binary classification, on over-
all SGDT using CNGT outperformed MNBT with CNGT. Training set results are
obtained for MC classification. Moreover, SGDT in WEKA can only perform binary
classification and not MC classification. In contrast to MNBT and ohter integer-based
classifiers, SGDT was slow. On the other hand, RF was slow, followed by LR, for
integer-based classifiers.

When it came to binary classification, all the classifiers performed better on CM-
SPAM’s patterns compared to TKS’s patterns. For MC classification, kNN, K∗ and
RF outperformed others on TKS’s patterns as compared to CM-SPAM’s patterns. For
TKS’s patterns, J48 and RF, which are tree-based models, performed better than LR,
SVM, NB and kNN. On the other hand, J48 outperformed RF in binary classifica-
tion. The opposite is true for MC classification, where RF outperformed J48. NB
performed worst in all integer-based classifiers. Tree-based models performed better
than others others as all the discovered sequential frequent patterns are utilized in
the classification process where each frequent pattern contains nucleotide bases only,
which are regarded as features.

We observed the same behavior for classifiers with CM-SPAM’s patterns. J48
and RF outperformed other integer-based models and J48 performed better than RF
for binary classification. For MC classification, we found that the classifiers NB,
SVM, LR and MNBT performed better as compared to their performance on patterns
discovered by using TKS. To avoid class imbalance, the frequent sequential patterns
discovered in the first 657 genome sequences of each virus is used in the classification
process. It is noteworthy to mention that every integer in the GSC is substituted with
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Table 6: Classifiers accuracy on frequent sequential patterns of bases discovered in
each virus family by using TKS and CM-SPAM.

Classifiers accuracy on frequent patterns of bases discovered by using TKS
P Dabie Dengue Ebola Hanta Hepaci HIV Influenza Measles

NB 27.26(27.16)
27.57(28.83)

90.33(93.33)
92.08(92.15)

57(22.26)
26.31(30.76)

62.66(61.70)
60.95(60.07)

48.66(46.70)
46.06(45.05)

90.86(92.96)
93.28(93.31)

35.60(35)
36.11(39.43)

89.53(89.40)
88.88(89.06)

SVM 93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

kNN 86(87.33)
88.17(87.38)

86.40(87.70)
87.60(87.53)

87.66(93.30)
88.46(88.70)

87.20(87.23)
87.20(87.02)

87.06(87.56)
87.17(87.83)

87.66(88.50)
87.97(87.81)

87.06(86.93)
86.28(86.80)

89(90.10)
91.66(91.46)

K∗ 92.46(93.06)
93.28(93.31)

92.13(92.70)
93.06(93.13)

92.40(92.73)
92.93(92.90)

92.66(93.23)
93.33(93.33)

92.33(93.10)
93.26(93.30)

93(92.80)
92.97(92.88)

92.60(93.03)
93.31(93.33)

93.20(93.60)
94.28(94.48)

J48 93.33(93.33)
93.33(93.33)

93.33(93.13)
93.33(93.33)

93.33(93.13)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

92.66(94.46)
94.28(94.48)

RF 91.60(91.46)
91.42(91.60)

92.06(91.63)
91.37(91.83)

92.40(91.66)
91.97(91.96)

91.20(90.16)
90.33(90.93)

90.66(90.16)
90.68(91.31)

92.46(92.30)
91.84(92.05)

91.60(90.76)
90.55(91.20)

93.46(93.96)
94.35(95.01)

LR 93.10(93.20)
93.26(93.26)

93.06(93.33)
93.22(93.26)

93.20(93.30)
93.28(93.25)

93.13(93.10)
93.24(93.30)

93.26(93.16)
93.16(93.28)

93.06(93.20)
93.24(93.26)

93.13(92.26)
93.31(93.30)

93.13(93.23)
93.17(93.01)

MNBT 91.93(92.73)
92.24(91.13)

91.13(91.10)
91(89.35)

92.20(92.63)
92.04(92.96)

88.40(92.36)
93.08(93)

90.53(89.43)
90.42(87.33)

88.60(89.20)
90.40(85.11)

92.33(92.40)
92.77(91.75)

84.26(83.30)
83.66(83.40)

SGDT 93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.60(95.06)
94.97(95.61)

P MERS Noro Rabies Rhino Rota SARS-CoV-2 West Nile MC
NB 89.33(89)

89.24(89.18)
42.66(37.66)
35.95(36.48)

28.33(21.70)
22.75(22.61)

30.26(29.03)
28.68(28.93)

29.53(29.36)
29.04(29.93)

93.60(93.96)
93.37(93.48)

51.53(46.63)
42.48(30.27)

17.86(17.30)
16.35(16.20)

SVM 93.33(93.40)
93.42(93.46)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.13(93.73)
93.17(93.33)

93.33(93.33)
93.33(93.31)

20.93(19.63)
19.42(19.68)

kNN 89.66(90.10)
89.97(90.86)

85.73(88)
86.95(87.15)

88(88.03)
87.84(87.86)

87(86.96)
86.93(87.35)

88.33(88)
87.17(87.18)

92.46(94.23)
93.99(94.35)

87.93(87.96)
88.37(88.46)

88.26(79.10)
71.51(65.50)

K∗ 93.06(92.63)
93.04(90.86)

92.40(93.23)
93.26(93.30)

92.80(92.76)
92.97(93.13)

92.46(93.23)
93.22(93.31)

92.86(93.06)
93.24(93.33)

95.20(95.86)
95.79(96.01)

92.40(92.80)
92.80(93)

88.20(79)
71.17(64.96)

J48 93(92.60)
93.17(92.86)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

96.60(96.50)
96.33(96.56)

93.33(93.33)
93.33(93.31)

55.73(51.43)
47.93(44.55)

RF 93(93.16)
92.80(93.05)

91(90.80)
90.73(91.11)

92.40(91.66)
91.20(91.70)

91.46(91.06)
90.91(91.20)

92.06(90.70)
90.93(91)

96(96.73)
96.48(96.80)

92.13(91.93)
91.75(91.80)

88.26(79.10)
71.51(65.50)

LR 93.20(93.43)
93.37(93.40)

93.33(93.23)
93.24(93.26)

93.26(93.26)
93.26(93.21)

93.20(93.30)
93.26(93.25)

93.26(93.26)
93.20(93.25)

94(94.63)
93.73(93.56)

93.20(93.23)
93.24(93.25)

21.86(20.30)
20.46(20.13)

MNBT 92.86(93)
92.93(92.43)

91.53(92.26)
92.82(92.18)

92.73(93.26)
93.17(92.96)

91.93(92.96)
93.28(92.51)

87.20(87.16)
87.46(86.63)

92.53(91.76)
93.26(97.56)

89.40(90.86)
90.02(86.18)

22.13(20.33)
19.86(23.53)

SGDT 93(93.46)
93.46(93.60)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

94.06(95.53)
95.57(98.86)

93.33(93.33)
93.33(93.33)

−(−)
−(−)

Classifiers accuracy on frequent patterns of bases discovered by using CM-SPAM
P Dabie Dengue Ebola Hanta Hepaci HIV Influenza Measles

NB 86(85.76)
85.95(85.83)

59.20(47.20)
42.33(41.78)

54(53.86)
48.89(53.20)

49.05(53.83)
51.88(53.93)

56(56.50)
54.26(54.26)

89.53(86.63)
85.66(85.20)

57.33(56.63)
55.73(55.48)

94.53(94.63)
92.55(93.26)

SVM 93.33(95.23)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

94(93.70)
93.33(93.33)

95.46(95.33)
95(94.50)

97.86(97.40)
95.57(95.53)

kNN 94.93(95.80)
95.37(95.65)

90.80(93.76)
91.71(91.31)

89.46(90.03)
90.48(90.51)

89.80(89.50)
90.40(89.96)

90.53(90.43)
90.93(91.66)

95.53(92.83)
92.33(92.76)

93.53(92.50)
92.33(91.88)

98.13(97.66)
97.11(97.53)

K∗ 97.26(97.50)
97.26(97.31)

94(93.76)
93.88(93.66)

93.20(93.36)
93.46(93.40)

93.33(93.33)
93.26(93.33)

93.53(93.23)
93.31(93.61)

95.13(95.33)
95.33(95.43)

93.93(94.03)
93.77(93.90)

98.33(98.50)
98.04(98.48)

J48 96.33(96.86)
96.75(96.78)

94.06(93.73)
94.26(93.83)

93.33(93.43)
93.33(93.23)

93.33(93.33)
93.26(93.13)

93.26(93.33)
93.33(93.66)

94.93(94.86)
94.60(94.93)

94.93(95.03)
94.57(94.55)

98.73(98.60)
97.84(98.48)

RF 97.06(97.26)
97.15(97.20)

93.33(93.33)
92.22(92.90)

92.20(91.76)
91.75(91.90)

92.46(91.96)
92.17(92)

92.46(92.50)
92.31(92.55)

94.80(94.80)
94.62(94.76)

94.53(93.96)
93.60(93.23)

98.86(98.83)
98.33(98.60)

LR 93.33(95.16)
94.62(94.53)

93.46(93.50)
93.28(93.33)

93.33(93.23)
93.30(93.33)

93.20(93.23)
93.28(93.33)

93.33(93.30)
93.28(93.31)

94.20(93.73)
93.31(93.18)

95.26(95.26)
94.97(94.70)

97.46(94.63)
95.73(95.63)

MNBT 94.13(94.70)
91.97(92.50)

92.60(84.13)
91.82(92.51)

92.53(86.20)
93.46(89.15)

90.53(88.63)
93.17(93.28)

85.86(85.13)
93.24(90)

88.80(86.20)
88.64(86.80)

86.20(85.06)
93.02(93.16)

98.13(97.20)
96.28(96.06)

SGDT 96.86(97.16)
96.55(96.63)

94.53(93.66)
93.91(93.40)

93.06(93.26)
93.22(93.36)

93.33(93.33)
93.33(93.33)

93.33(93.36)
93.33(93.23)

94.86(95)
95(94.56)

94.80(95.03)
94.60(94.38)

98.93(98.96)
98.40(98.83)

P MERS Noro Rabies Rhino Rota SARS-CoV-2 West Nile MC
NB 84.60(84.46)

85.80(85.03)
44.66(43.86)
45.93(41.48)

60.26(44.70)
43.86(38.95)

42.73(38.03)
39.02(42.38)

46.40(45.26)
46.71(47)

84.13(86.06)
89.57(91.03)

59(50.33)
53.46(44.73)

30.86(30.60)
27.51(29.05)

SVM 93.53(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

93.33(93.33)
93.33(93.33)

95.40(94.43)
95.11(96.15)

93.33(93.33)
93.33(93.33)

38(38)
35.68(37.08)

kNN 93.80(93.13)
93.11(93.01)

90.60(90.70)
90.51(90.60)

93.53(91.83)
92.15(91.01)

90.73(91.56)
91.04(91.40)

90.53(89.76)
89.95(89.65)

95.06(95.90)
96.28(96.16)

92.53(93.03)
92.82(92.73)

55.20(55.86)
55.26(56.55)

K∗ 95.73(95.76)
95.80(95.63)

93.33(93.33)
93.35(93.31)

95.73(94.66)
94.31(94.40)

93.33(93.53)
93.48(93.38)

93.26(93.16)
93.24(93.26)

96.73(97.66)
97.84(98.05)

95.20(95.43)
95.08(95.31)

55.13(55.66)
55.04(56.28)

J48 95.20(95.50)
95.64(95.45)

93.33(93.33)
93.33(93.40)

94.80(94.16)
94.06(93.81)

93.33(98.83)
93.28(93.76)

93.33(93.46)
93.33(93.35)

96.40(97.90)
98.33(98.61)

94.86(95.66)
94.80(94.91)

51.40(50.83)
50.71(51.06)

RF 95.53(95.26)
95.06(95.13)

92.26(92.60)
92.46(92.01)

95.60(93.60)
93.50(93.71)

92(92.93)
92.51(92.75)

91.93(91.70)
91.37(91.56)

97.20(97.56)
98.06(98.03)

94.33(95.06)
94.44(94.65)

55.20(55.86)
55.26(56.55)

LR 94.46(93.70)
93.42(93.40)

93.26(93.33)
93.33(93.30)

93.20(93.30)
93.26(93.30)

93.33(93.13)
93.33(93.33)

93.26(93.26)
93.15(92.95)

95.26(94.63)
95.22(96.15)

93.53(93.30)
93.33(93.33)

37.13(38.03)
35.17(35.90)

MNBT 92.06(95.06)
90.07(90.90)

90.46(79.96)
93.33(91.20)

87.46(84.16)
90.66(87.38)

81.66(89.16)
90.08(87.88)

86.73(84.46)
90.46(87.63)

97.26(98.23)
90.13(90.23)

85.80(99.93)
84.75(85.33)

36.86(39.50)
28.04(27.73)

SGDT 95.73(95.80)
94.84(94.96)

93.33(93.31)
93.33(93.33)

94.46(94.76)
94.04(93.86)

93(93.33)
93.33(93.33)

93.33(93.20)
93.33(93.33)

97.86(98.53)
94.62(94.83)

94.60(100)
94(93.56)

−(−)
−(−)

its corresponding nucleotide letter when using string-based models. This is done to
see if string-based models outperform integer-based classifiers. We found that for
binary classification, SGDT outperformed integer-based models.

For patterns discovered with both SPM algorithms, all classifiers performed bet-
ter, overall, on all pattern lengths (100, 200, 300 and 400). In some cases of CM-
SPAM patterns, in comparison to 200, 300, and 400 patterns, the models performed
better on 100 patterns. Overall, J48 outperformed other integer-based models on pat-
terns discovered with both SPM algorithms, followed by RF for binary classification.
Whereas SGDT performed better than J48. The complete results of SGDT and J48 on
CM-SPAM’s patterns are provided in Table 7, where the value ? is displayed when no
result can be computed by WEKA. It should be noted that the high MCC values for
SGDT and J48 indicate that both classifiers were successful in correctly predicting
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in the majority of the confusion matrix’s four categories (TP, TN, FP and FN). The
confusion matrix information for MC classification results obtained with kNN, that
is similar to RF, is shown in Figure 3.

Table 7: SGDT and J48 results on patterns discovered by using CM-SPAM

.

SGDT results
P Dabie Dengue Ebola Hanta Hepaci HIV Influenza Measles

ACC 96.86(97.16)
96.55(96.63)

94.53(93.66)
93.91(93.40)

93.06(93.26)
93.22(93.36)

93.33(93.33)
93.33(93.33)

93.33(93.36)
93.33(93.23)

94.86(95)
95(94.56)

94.80(95.03)
94.60(94.38)

98.93(98.96)
98.40(98.83)

FPR 0.38(0.34)
0.43(0.41)

0.76(0.87)
0.84(0.90)

0.91(0.91)
0.93(0.92)

0.93(0.93)
0.93(0.93)

0.92(0.91)
0.93(0.92)

0.64(0.63)
0.64(0.74)

0.56(0.60)
0.58(0.65)

0.12(0.11)
0.15(0.13)

P 0.96(0.97)
0.96(0.96)

0.94(0.92)
0.94(0.91)

0.88(0.90)
0.87(0.91)

?(?)
?(?)

0.90(0.91)
?(0.88)

0.94(0.94)
0.94(0.94)

0.94(0.94)
0.93(0.93)

0.98(0.98)
0.98(0.98)

R 0.96(0.97)
0.96(0.96)

0.94(0.93)
0.93(0.93)

0.93(0.93)
0.93(0.93)

0.93(0.93)
0.93(0.93)

0.93(0.93)
0.93(0.93)

0.93(0.95)
0.95(0.94)

0.94(0.95)
0.94(0.94)

0.98(0.99)
0.98(0.98)

F1 0.96(0.96)
0.96(0.96)

0.92(0.91)
0.91(0.90)

0.90(0.90)
0.90(0.90)

?(?)
?(?)

0.90(0.90)
?(0.90)

0.93(0.94)
0.93(0.92)

0.94(0.94)
0.93(0.93)

0.98(0.98)
0.98(0.98)

MCC 0.71(0.74)
0.68(0.69)

0.41(0.21)
0.28(0.12)

0.05(0.08)
−.009(0.07)

?(?)
?(?)

0.06(0.10)
?(0.03)

0.47(0.49)
0.49(0.41)

0.50(0.50)
0.47(0.42)

0.91(0.91)
0.86(0.90)

P MERS Noro Rabies Rhino Rota SARS-CoV-2 West Nile
ACC 95.73(95.80)

94.84(94.96)
93.33(93.31)
93.33(93.33)

94.46(94.76)
94.04(93.86)

93(93.33)
93.33(93.33)

93.33(93.20)
93.33(93.33)

97.86(98.53)
94.62(94.83)

94.60(100)
94(93.56)

FPR 0.51(0.52)
0.66(0.66)

0.93(0.93)
0.93(0.93)

0.44(0.64)
0.78(0.85)

0.91(0.93)
0.93(0.93)

0.93(0.92)
0.93(0.93)

0.27(0.18)
0.61(0.62)

0.70(0)
0.79(0.88)

P 0.95(0.95)
0.94(0.94)

?(?)
?(?)

0.96(0.94)
0.93(0.93)

0.88(?)
?(?)

?(0.88)
?(?)

0.97(0.98)
0.93(0.94)

0.93(1)
0.93(0.91)

R 0.95(0.95)
0.94(0.95)

0.93(0.93)
0.93(0.93)

0.96(0.94)
0.94(0.93)

0.93(0.93)
0.93(0.93)

0.93(0.93)
0.93(0.93)

0.97(0.98)
0.94(0.94)

0.94(1)
0.94(0.93)

F1 0.95(0.95)
0.93(0.93)

?(?)
?(?)

0.96(0.93)
0.92(0.91)

0.90(?)
?(?)

?(0.90)
?(?)

0.97(0.98)
0.93(0.93)

0.93(1)
0.92(0.91)

MCC 0.59(0.59)
0.46(0.48)

?(?)
?(?)

0.67(0.46)
0.32(0.27)

0.04(?)
?(?)

?(0.01)
?(?)

0.81(0.87)
0.46(0.48)

0.43(1)
0.31(0.20)

J48 results
P Dabie Dengue Ebola Hanta Hepaci HIV Influenza Measles

ACC 96.33(96.86)
96.75(96.78)

94.06(93.73)
94.26(93.83)

93.33(93.43)
93.33(93.23)

93.33(93.33)
93.26(93.13)

93.26(93.33)
93.33(93.66)

94.93(94.86)
94.60(94.93)

94.93(95.03)
94.57(94.55)

98.73(98.60)
97.84(98.48)

FPR 0.45(0.40)
0.42(0.41)

0.77(0.82)
0.75(0.85)

0.93(0.91)
0.93(0.91)

0.93(0.93)
0.93(0.89)

0.93(0.93)
0.93(0.85)

0.70(0.63)
0.70(0.64)

0.61(0.54)
0.60(0.65)

0.15(0.15)
0.26(0.19)

P 0.96(0.96)
0.96(0.96)

0.93(0.92)
0.93(0.93)

?(0.92)
?(0.89)

?(?)
0.88(0.89)

0.87(?)
?(0.92)

0.95(0.94)
0.94(0.94)

0.94(0.94)
0.93(0.93)

0.98(0.98)
0.97(0.98)

R 0.96(0.96)
0.96(0.96)

0.94(0.93)
0.94(0.93)

0.93(0.93)
0.93(0.93)

0.93(0.93)
0.93(0.93)

0.93(0.93)
0.93(0.93)

0.94(0.94)
0.94(0.94)

0.94(0.950)
0.94(0.94)

0.98(0.98)
0.97(0.98)

F1 0.95(0.96)
0.96(0.96)

0.92(0.91)
0.92(0.91)

?(0.90)
?(0.90)

?(?)
0.90(0.90)

0.90(?)
?(0.91)

0.93(0.93)
0.93(0.93)

0.94(0.94)
0.93(0.93)

0.98(0.98)
0.97(0.98)

MCC 0.66(0.71)
0.70(0.70)

0.33(0.26)
0.37(0.26)

?(0.12)
?(0.07)

?(?)
0.01(0.10)

−.007(?)
?(0.23)

0.47(0.48)
0.42(0.48)

0.49(0.52)
0.46(0.44)

0.89(0.88)
0.813(0.872)

P MERS Noro Rabies Rhino Rota SARS-CoV-2 West Nile MC
ACC 95.20(95.50)

95.64(95.45)
93.33(93.33)
93.33(93.40)

94.80(94.16)
94.06(93.81)

93.33(98.83)
93.28(93.76)

93.33(93.46)
93.33(93.35)

96.40(97.90)
98.33(98.61)

94.86(95.66)
94.80(94.91)

51.40(50.83)
50.71(51.06)

FPR 0.58(0.52)
0.50(0.53)

0.93(0.93)
0.93(0.0.89)

0.60(0.79)
0.79(0.81)

0.91(0.82)
0.93(0.82)

0.93(0.91)
0.93(0.75)

0.35(0.18)
0.15(0.14)

0.67(0.57)
0.66(0.64)

0.03(0.03)
0.03(0.03)

P 0.94(0.95)
0.95(0.94)

?(?)
?(0.91)

0.94(0.93)
0.93(0.92)

0.90(0.92)
0.88(0.92)

?(0.93)
?(0.91)

0.96(0.97)
0.98(0.98)

0.94(0.95)
0.94(0.94)

0.68(0.62)
0.57(0.62)

R 0.95(0.95)
0.95(0.95)

0.93(0.93)
0.93(0.93)

0.94(0.94)
0.94(0.93)

0.93(0.93)
0.93(0.93)

0.93(0.93)
0.93(0.93)

0.96(0.97)
0.98(0.98)

0.94(0.95)
0.94(0.94)

0.51(0.50)
0.50(0.51)

F1 0.94(0.94)
0.95(0.94)

?(?)
?(0.90)

0.93(0.92)
0.92(0.91)

0.90(0.91)
0.90(0.91)

?(0.90)
?(0.91)

0.96(0.97)
0.98(0.98)

0.93(0.94)
0.93(0.93)

0.52(0.50)
0.51(0.51)

MCC 0.52(0.56)
0.58(0.56)

?(?)
?(0.14)

0.48(0.34)
0.32(0.28)

0.09(0.27)
0.02(0.26)

?(0.13)
?(0.27)

0.68(0.82)
0.86(0.88)

0.47(0.57)
0.46(0.48)

0.52(0.50)
0.49(0.50)

To determine whether RF significantly outperforms J48 and the other five integer-
based models on patterns found by using CM-SPAM, a paired t-test is run in WEKA.
The comparative results for the ACC of models are shown in Table 8. Bold entries
indicate models that considerably under-performed RF, whereas blue-colored entries
indicate those that significantly outperformed RF. NB and kNN performed signifi-
cantly worst than RF. Whereas K∗ has almost the same performance as RF, indicating
that in many cases, the performance gap between these two classifiers is not that sig-
nificant. J48 outperformed, significantly, RF in most of the cases. T-test is also used
to determine that in two models (SGDT and MNBT), which one performs signifi-
cantly better than the other one. When using the CNGT, SGDT outperformed MNBT
significantly.

The main findings are: (1) For binary classification: (a) classification models per-
formed better on CM-SPAM’s patterns, and (b) String-based model (SGDT) outper-
formed integer-based models. (2) Overall, J48 and RF outperfomed other models
(NB, SVM, kNN K∗ and LR). (3) It is not possible to recommend a particular se-
quence pattern mining algorithm for MC classification as some classifiers performed
better than others on TKS’s patterns, while others performed better on CM-SPAM’s
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Dabie Dengue Ebola Hanta Hepaci HIV Influenza Measles MERS Noro Rabies Rhino Rota SARS-
CoV-2 

West 
Nile 

 

100(200)

300(400)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

Dabie 

3(11)

21(38)
 

97(189)

279(362)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

Dengue 

3(12)

21(31)
 

0(2)

8(20)
 

97(186)

271(349)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

Ebola 

3(17)

42(98)
 

2(13)

32(49)
 

2(9)

15(19)
 

93(161)

211(234)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

Hanta 

4(13)

30(75)
 

1(7)

23(36)
 

0(4)

11(14)
 

6(27)

46(63)
 

89(149)

190(212)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

Hepaci 

2(6)

16(27)
 

1(4)

11(19)
 

0(2)

4(10)
 

2(7)

17(24)
 

3(11)

16(20)
 

92(170)

236(300)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

HIV 

9(26)

46(79)
 

2(6)

22(37)
 

0(5)

13(20)
 

6(15)

36(59)
 

3(12)

33(42)
 

3(4)

10(18)
 

77(132)

140(145)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

Influenza 

1(3)

8(16)
 

0(1)

2(4)
 

1(2)

5(9)
 

2(2)

4(9)
 

0(2)

7(7)
 

0(3)

2(5)
 

0(2)

3(4)
 

96(185)

269(346)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

Measles 

0(2)

3(7)
 

0(0)

2(1)
 

1(2)

4(6)
 

0(1)

4(4)
 

1(1)

3(4)
 

0(0)

0(2)
 

0(2)

1(1)
 

0(1)

1(2)
 

98(191)

282(373)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
 

0(0)

0(0)
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Fig. 3: MC classification confusion matrix for kNN on frequent patterns of bases
discovered by using TKS.

patterns. (4) There was no noticeable difference in the performance of classifiers with
variable pattern lengths. For CM-SPAM’s patterns, the models’ performance was bet-
ter, in some cases, with 100 patterns than with 200, 300 or 400 patterns. (5) Rather
than using the whole genome sequences, frequent sequential patterns of bases can be
utilized efficiently in the classification/detection process. Table 1 shows that the av-
erage genome sequence of an RNA virus has thousands of nucleotides. On the other
hand, the CM-SPAM’s patterns only contain a maximum of 37 bases (Table 9).

4.2.1 Comparison

SPM4GAC is compared in this section with SOTA approaches for genome detec-
tion/classification, published in last three years.

Table 10 compares the performance of SPMG4GAC with previous approaches.
SGDT (indicated in bold) of SPM4GAC achieved improved performance compared
to kNN (Alshayeji et al., 2023; Arslan & Arslan, 2021; Arslan, 2021a), RF (Arslan,
2021b; Singh et al., 2021), SVM (Ahmed & Jeon, 2022), CNN (Lopez-Rincon et al.,
2021; El-Dosuky et al., 2021; Gunasekaran et al., 2021) and PACIFIC (Mateos et al.,
2021) for binary classification. SPM4GAC(J48) performed better than RF (Arslan,
2021b; Singh et al., 2021), SVM (Ahmed & Jeon, 2022) and CNN (Gunasekaran
et al., 2021), and similar to kNN (Arslan & Arslan, 2021; Alshayeji et al., 2023)
and CNN (Lopez-Rincon et al., 2021). (Alshayeji et al., 2023) used their method
on human DNA sequences and used six classifiers in which kNN performed best
with accuracy of 98.6%, for the prediction of human DNA sequence contigs. Their



SPM4GAC: SPM based approach for genome analysis and classification 19

Table 8: Paired t-test results for classifiers.
Dataset RF NB SVM kNN K∗

Dabie 97.04(97.32)
97.11(97.22)

86.05(85.69)
85.85(85.79)

93.33(95.21)
93.36(93.33)

95.36(95.75)
95.57(95.73)

97.18(97.53)
97.27(97.34)

Dengue 93.49(93.20)
93.18(92.86)

59.11(47.60)
42.27(41.72)

93.33(93.33)
93.33(93.33)

91.15(91.48)
91.67(91.23)

94.11(93.77)
93.87(93.71)

Ebola 91.62(91.89)
91.96(91.84)

54.09(54)
48.88(53.22)

93.33(93.33)
93.33(93.33)

89.76(90.14)
90.41(90.38)

93.06(93.30)
93.45(93.39)

Hanta 92.26(91.80)
92.26(91.99)

49.35(53.82)
51.81(53.95)

93.33(93.33)
93.33(93.33)

90(89.65)
90.43(90.05)

93.33(93.33)
93.29(93.32)

Hepaci 92.58(92.45)
92.35(92.57)

55.85(56.53)
54.27(54.06)

93.33(93.33)
93.33(93.33)

90.97(90.76)
90.76(91.53)

93.58(93.19)
93.30(93.60)

HIV 94.75(94.84)
94.62(94.80)

89.30(86.52)
85.82(85.08)

94(93.66)
93.33(93.33)

92.69(92.69)
92.56(92.89)

95.21(95.43)
95.42(95.43)

Influenza 94.37(94.14)
93.54(93.08)

57.33(56.62)
55.71(55.50)

95.45(95.33)
94.99(94.50)

93.43(92.79)
92.30(91.72)

93.99(94.06)
93.73(93.72)

Measles 98.76(98.73)
98.29(98.56)

94.36(94.59)
92.57(93.24)

97.99(97.29)
95.60(95.58)

98.01(97.74)
97.14(97.49)

98.44(98.51)
98.08(98.48)

MERS 95.38(95.31)
95.15(95.03)

84.66(84.34)
85.73(85.10)

93.5(93.33)
93.33(93.33)

93.84(93.31)
93.18(92.98)

95.75(95.79)
95.77(95.64)

Noro 92.17(92.44)
92.36(92.11)

44.73(43.78)
45.90(41.48)

93.33(93.33)
93.33(93.33)

90.31(90.26)
90.63(90.64)

93.33(93.34)
93.35(93.33)

Rabies 95.31(93.79)
93.50(93.70)

60.29(44.81)
43.81(39)

93.33(93.33)
93.33(93.33)

93.32(92.10)
92.19(92.18)

95.63(94.70)
94.45(94.43)

Rhino 92.28(92.91)
92.59(92.60)

42.70(38.02)
38.93(42.25)

93.33(93.33)
93.33(93.33)

90.87(91.37)
91.24(91.25)

93.26(93.51)
93.50(93.38)

Rota 91.70(91.65)
91.29(91.57)

46.21(45.28)
46.83(47.03)

93.33(93.33)
93.33(93.33)

90.07(89.84)
89.66(89.73)

93.31(93.11)
93.24(93.27)

SARS-CoV-2 97.74(97.52)
98.06(98.03)

84.33(86.12)
89.57(91.03)

95.34(94.59)
95.17(96.17)

95.25(95.66)
96.16(96.19)

97(97.46)
97.86(97.49)

West Nile 94.55(95.20)
94.52(94.77)

58.81(50.36)
53.52(44.80)

93.33(93.33)
93.33(93.33)

92.38(93.10)
92.96(92.58)

95.13(95.45)
95.07(95.35)

MC 33.68(34.63)
33.11(34.24)

29.09(29.77)
27.08(28.86)

34.33(36.36)
33.97(35.71)

29.23(29.88)
28.69(29.62)

32.56(34.10)
33.08(34.61)

Dataset J48 LR MNBT SGDT
Dabie 96.41(96.88)

96.82(96.71)
93.87(95.16)
94.55(94.49)

96.79(94.69)
92.06(92.53)

96.79(97.22)
96.47(96.59)

Dengue 94.39(93.74)
94.24(93.71)

93.50(93.48)
93.30(93.33)

91.49(83.47)
91.80(92.50)

94.53(93.59)
93.87(93.44)

Ebola 93.33(93.34)
93.33(93.27)

93.32(93.28)
93.31(93.31)

91.71(86.02)
93.18(88.90)

93.13(93.29)
93.24(93.35)

Hanta 93.33(93.34)
93.28(93.26)

93.24(93.28)
93.29(93.31)

88.87(87.82)
92.92(93.22)

93.31(93.33)
93.33(93.33)

Hepaci 93.28(93.30)
93.31(93.67)

93.25(93.28)
93.27(93.29)

83.57(84.98)
93.08(89.72)

93.43(93.25)
93.33(93.25)

HIV 95.06(95.04)
94.64(94.80)

93.94(93.79)
93.34(93.21)

88.43(85.70)
88.74(86.58)

95.04(94.93)
94.97(94.51)

Influenza 94.89(95.19)
94.59(94.60)

95.31(95.35)
94.98(94.74)

83.41(84.67)
92.68(93)

94.49(95.12)
94.54(94.43)

Measles 98.65(98.66)
97.98(98.48)

97.61(97.06)
95.67(95.64)

97.75(97.10)
96.25(95.92)

98.91(99.03)
98.54(98.81)

MERS 95.19(95.64)
95.65(95.41)

94.45(93.63)
93.45(93.44)

91.38(94.74)
90.68(90.79)

95.67(95.70)
94.93(94.92)

Noro 93.33(93.28)
93.33(93.40)

93.24(93.28)
93.32(93.32)

89.18(78.63)
93.31(91.09)

93.33(93.36)
93.33(93.33)

Rabies 94.93(94)
93.97(93.94)

93.28(93.31)
93.32(93.33)

87.13(84.57)
90.72(87.37)

96.43(94.82)
94.13(93.82)

Rhino 93.25(93.82)
93.30(93.68)

93.31(93.33)
93.32(93.32)

80.01(88.76)
89.91(87.67)

92.97(93.33)
93.33(93.33)

Rota 93.32(93.31)
93.33(93.39)

93.24(93.22)
93.21(92.97)

84.03(85.92)
90.32(87.60)

93.29(93.21)
93.22(93.29)

SARS-CoV-2 96.67(97.78)
98.40(98.50)

95.32(94.62)
95.30(96.20)

97.31(98.23)
89.94(90.15)

97.79(98.47)
94.68(94.74)

West Nile 95.01(95.56)
94.73(94.92)

93.48(93.31)
93.31(93.33)

84.55(99.93)
84.39(85.34)

94.70(100)
93.96(93.59)

MC 40.11(42.94)
41.65(43.09)

32.53(35.15)
32.86(34.15)

−(−)
−(−)

−(−)
−(−)

Table 9: Statistics for the CM-SPAM’s patterns discovered in virus families.
Virus ASL MaxL Virus ASL MaxL Virus ASL MaxL
Dabie 10.85(12.68)

11.87(12.20)
22(32)
32(32)

MERS 11.04(10.86)
11.03(10.84)

24(28)
33(33)

Measles 19.02(19.18)
17.92(18.31)

37(37)
37(37)

Dengue 7.96(7.28)
7.52(7.28)

22(22)
22(22)

Noro 5.86(5.88)
5.85(5.86)

7(9)
9(9)

Influenza 5.08(4.97)
4.93(4.92)

6(6)
6(6)

Ebola 7.51(7.49)
7.33(7.30)

12(12)
12(12)

Rabies 9.68(8.51)
8.02(7.89)

19(19)
19(19)

West Nile 9.15(9.38)
8.87(9.13)

21(21)
21(21)

Hanta 5.56(5.53)
5.42(5.41)

7(7)
7(7)

Rhino 5.44(5.40)
5.23(5.23)

7(7)
7(7)

HIV 10.89(10.52)
10.56(10.19)

31(31)
31(31)

Hepaci 5.62(5.59)
5.58(5.59)

7(7)
7(7)

Rota 5.44(5.40)
5.23(5.23)

7(7)
7(7)

SARS-CoV-2 11.08(11.31)
11.50(11.49)

15(15)
15(15)

method first found k-mers and the bag-of-words technique was then used for feature
extraction. Extracted features were then fed into classifiers.

RF in (Arslan, 2021b) achieved the highest accuracy of 93% by using CpG based
features in genome sequences of viruses. (Arslan & Arslan, 2021) achieved the high-
est accuracy of 98.4% when any of the six metric (Canberra, Chebyshev, Manhattan,
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Kulezynski, Sorensen and Mean character) were used as a distance measure in kNN.
Highest accuracy of 99.8% was obtained in (Arslan, 2021a) with kNN by combin-
ing similarity features features with CG-based features. RF in (Singh et al., 2021)
achieved highest accuracy of 97.47% on derived biomarkers, in genomes, based on
three-based periodicity properties. CNN in (Gunasekaran et al., 2021) achieved high-
est accuracy of 93.16% by using label and k-mer encoding for genome sequences
of viruses. PACIFIC (Mateos et al., 2021), that performed embedding of k-mer and
CNN filtering to BiLSTM layers, achieved average accuracy of 99.95% for each of
the five virus classes.

Table 10: Comparison of SPM4GAC with recent classification/detection methods for
genome sequences

Type Best Models ACC FPR R P F1 MCC

B
in

ar
y

kNN (Alshayeji et al., 2023) 0.98 – 0.98 0.98 0.98 0.89
RF (Arslan, 2021b) 0.93 – 0.93 0.93 0.93 –

kNN (Arslan & Arslan, 2021) 0.98 – 0.99 0.98 0.98 –
kNN (Arslan, 2021a) 0.99 – 0.99 0.99 0.99 0.99

CNN (Lopez-Rincon et al., 2021) 0.98 – – – – –
SVM (Ahmed & Jeon, 2022) 0.97 – 0.77 0.97 0.97 –

RF (Singh et al., 2021) 0.97 – 0.96 – – –
CNN (El-Dosuky et al., 2021) 0.99 – 0.99 0.99 – –

CNN (Gunasekaran et al., 2021) 0.93 – 0.98 0.90 0.94 –
PACIFIC (Mateos et al., 2021) 0.99 0.003 0.99 0.99 – –

SPM4GAC(SGDT) 1 0 1 1 1 1
SPM4GAC(J48) 0.98 0.150 0.98 0.98 0.98 0.89

MC SPM4GAC(RF) 0.88 0.008 0.88 0.88 0.88 0.87

Although the studies (Randhawa et al., 2020; Naeem et al., 2021) produced clas-
sification results with 100% accuracy, Table 10 does not include their findings since
the datasets they used had much fewer genome sequences. The binary classification
results of the studies (Ali et al., 2021; Kuzmin et al., 2020; Nawaz, Fournier-Viger, &
He, 2022; Nawaz, Fournier-Viger, He, & Zhang, 2023; Qiang et al., 2020) are also not
included in Table 10 because only sequences of the Spike protein of viruses are con-
sidered for the classification process. Note that SPM4GAC(SGDT) performed better
than SVM (Ali et al., 2021), SVM and DT (Kuzmin et al., 2020), SGDT (Nawaz,
Fournier-Viger, & He, 2022) and RF (Nawaz, Fournier-Viger, He, & Zhang, 2023;
Qiang et al., 2020). Majority of the listed methods only performed binary classifica-
tion. We also include MC classification results for SPM4GAC(RF). Obtained results
show that preforming classification on a reduced feature set obtained from frequent
sequential patterns yield better performance, while reducing memory and computa-
tional requirements.

5 Conclusion

A framework (called SPM4GAC) was presented in this paper to analyze and clas-
sify genome sequences of various RNA viruses. A corpus that contains genome se-
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quences of RNA viruses was first developed and formatted appropriately. The trans-
formed corpus was then subjected to SPM algorithms to discover frequently occur-
ring nucleotides and their frequent sequential patterns. Discovered frequent patterns
of bases were then used in classification. Ten classification models, in which seven
were integer-based and three were string-based, were used. The performance of the
models were assessed by using six evaluation metrics. Results obtained for binary
classification indicate that one string-based classifier, SGDT, and two integer-based
classifiers, J48 and RF outperformed others. On the other hand, two integer-based
classifiers, RF and kNN, outperformed others in MC classification. The main take
away from obtained results is that shorter (or limited) genomes of RNA viruses, con-
taining frequent occurring bases only, can be utilized for reliable prediction/ classi-
fication rather than whole sequences. SPM4GAC outperformed SOTA methods for
genome sequence classification/detection and offers many interesting future work
opportunities, such as:.

– Investigating the performance of SPM4GAC on DNA viruses that contain larger
genomes as compared to RNA viruses.

– SPM4GAC is developed for genome sequences in nucleotide form. Extending
this framework to analyze and classify genome sequences in two other forms:
coding region and protein.

– Using contrasting or emerging pattern mining (Ventura & Luna, 2018) on the de-
veloped corpus to discover contrasting frequent patterns of nucleotides and using
these patterns for the analysis and classification task.
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Appendix

ACC is defined as:

ACC =
TP + TN

TP + TN + FP + FN
where TP = true positive: total count of frequent sequential patterns of nucleotides that are correctly
classified to a particular virus class.
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TN = the true negative: total count of frequent sequential patterns of nucleotides that is correctly
identified as not belonging to a particular virus class.

FP = false positive: total count of frequent sequential patterns of nucleotides that are incorrectly
classified to a particular virus class, and

FN = false negative: total count of frequent sequential patterns of nucleotides that is incorrectly
classified as not belonging to a given virus class.

The following formulas are used for other five measures:

FPR =
FP

FP + TN

Recall(R) =
TP

TP + FN

Precision(P ) =
TP

TP + FP

F −measure = 2×
P ×R

P +R

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)




