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Abstract Employee attrition and absenteeism are major problems that affect many
industries and organizations, resulting in diminished productivity, elevated costs, and
losses. These phenomena can be attributed to multiple factors that are difficult to
anticipate for human resources or management. Therefore, this paper proposes a
content-based methodology for the analysis and classification of employee attrition
and absenteeism that can be used for talent analysis and management, a task that is
traditionally carried out ex-post. The developed methodology, called E(3A)CSPM, is
based on SPM (sequential pattern mining). In the methodology, four public datasets
with diversified employee data are adopted, which are initially transformed into a
suitable format. Then, SPM algorithms are applied to the transformed datasets to
reveal recurring patterns and rules of features. The discovered patterns and rules
not only offer information regarding features that have a key role in employee at-
trition and absenteeism but also their values. These frequent patterns of features are
thereafter used to classify/predict employee attrition and absenteeism. Eight classi-
fiers and multiple evaluation metrics are used in experiments. The performance of
E(3A)CSPM is contrasted with state-of-the-art approaches for employee attrition and
absenteeism and the obtained findings reveal that E(3A)CSPM surpasses these ap-
proaches.

Keywords Employee Attrition · Absenteeism · Classification · Sequential pattern
Mining · Analysis.

1 Introduction

Employee attrition refers to the reduction (leaving) of personnel in any industry/or-
ganization [1]. Attrition can occur due to unpredictable or uncontrollable factors,
such as resignation, voluntary retirement, termination, long-term illness, structural
changes, and layoffs [2–4]. On the other hand, absenteeism at work generally refers
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to an employee’s habitual pattern of absence from his or her duty or obligation [5].
Employee absenteeism can generate problems in the employee-employer relation-
ship and has an impact on an industry’s productivity [5–8]. According to the JOLTS
(Job Openings and Labor Turnover Survey), 3.7 million employees quit their jobs
in September 2023, representing 2.3% of the workforce [9]. Replacing an employee
costs almost three to four times the salary of the position [10]. Moreover, the US
Bureau of Labor Statistics reported an average employee absence rate of 3.6% in
2022 [11].

Employee attrition and absenteeism are a growing problem in industries/organi-
zations as they directly affect their performance and culture, disrupt ongoing tasks,
and create additional costs for re-employment, re-training and influence long-term
growth strategies [1, 3, 12]. In the past, industries relied on traditional methods, such
as interviews, surveys and post-action response to obtain data about this problem [2].
However, such methods are often unable to get accurate and honest answers from em-
ployees and the bias in the obtained data can lead to errors. With the recent advances
in machine learning (ML), industries and organizations can not only take preemptive
action by predicting the various reasons and factors for employee attrition and absen-
teeism, but also improve their policies, culture and regulatory environment to help
retain employees.

Literature on computational research for the employee attrition and absenteeism
problems can be divided into three broad groups: (1) ML-based methods [13–16],
(2) Deep learning (DL)-based methods [5, 7, 17–19] and (3) ensemble-based meth-
ods [1, 3, 20–23] (for more details, see Section 2). These studies used various feature
engineering and encoding methods for classification and prediction. However, the
majority of methods have issues with computing efficiency, interpretability, and scal-
ability. Moreover, the generalization ability of those models remains an open question
as they have been evaluated on few datasets, generally only one (as it will be observed
in Section 2). To analyze and manage employee data, simple yet sophisticated and in-
telligible techniques, such as frequent pattern mining (FPM) (also sometimes called
association analysis) [24], are desirable because attrition and absenteeism depend on
various causes and factors, and the data generally has atypical properties. FPM is a
set of techniques from data mining that aims at identifying interesting patterns in data
that can capture important information from the data, where patterns can have various
forms such as rules and be interpretable as they directly refer to attribute values from
the data.

In this paper, we aim to test the hypothesis that FPM techniques could be useful
for employee data analysis and management, and more specifically that the discov-
ered patterns could be used as features for the effective classification for employee
attrition and absenteeism. In particular, sequential pattern mining (SPM) [25] tech-
niques are employed, which are efficient methods for analyzing sequential data based
on sequential frequent patterns and sequential rules. Frequent sequential patterns have
a support (occurrence frequency) that is no less than a user-specified parameter called
minimum support (minsup). Frequent sequential rules have a support that is no less
than a minsup and a minimum confidence or probability (minconf) parameter, also set
by the user. SPM has been used recently in many applications, including to extract
hypernym relations from texts [26, 27], genome analysis [28, 29], tourist movement
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analysis [30], market basket analysis [31], malware behavior analysis [32], workload
prediction in cloud environment [33], mining discrete clinical data [34] and for the
analysis of protein structure sequences [35]. To the best of our knowledge, no study
is present in the literature that show how frequent sequential patterns of employee at-
tributes (features) can be used for the efficient classification of employee attrition and
absenteeism. The proposed SPM-based employee attrition and absenteeism approach
is evaluated on multiple datasets to gain insights into its effectiveness and generaliza-
tion ability across various data sources and characteristics. The presented approach is
embedded in a new methodology for analyzing employee data, called E(3A)CSPM
(Employee Attrition and Absenteeism Analysis and Classification using Sequential
Pattern Mining). It provides a pipeline with data transformation, sequential pattern
extraction and classifier training, offering:

– A SPM-based approach for employee attrition and absenteeism analysis. This
approach first transforms employee datasets into a format that is well-suited for
SPM. The resulting datasets are then fed to SPM algorithms to discover the fre-
quent sets of features and their values, and the strong sequential relationships
among them in the form of sequential patterns and rules.

– An approach for detecting employee attrition and absenteeism that uses the fre-
quent patterns, extracted by SPM algorithms, as features. In particular, eight clas-
sifiers are employed for classification using the patterns and various evaluation
metrics are used to compare their performance.

Extensive experiments were done with multiple assessment criteria to verify the
efficiency of this approach, using four different datasets of employee attrition and ab-
senteeism. The experimental results reveal that using the E(3A)CSPM methodology
to find frequent sequential patterns of features in attrition and absenteeism data and
using discovered patterns leads to improved classification performance as compared
to using all of the features. Overall, decision tree (DT) performed well for both binary
and multi-class classification. Moreover, it was found that the designed E(3A)CSPM
methodology outperforms recently developed approaches for employee attrition and
absenteeism detection. Through the frequent patterns found in this study, some valu-
able insights can be obtained into the causes/factors (features) that play a major role
in employee attrition and absenteeism. This contributes to a deeper understanding of
the characteristics and commonalities of employee data, potentially aiding in the de-
velopment of more robust detection models and strategies. The current research has
the potential to support industries in conducting quick, automatic, and well-informed
analysis, extract important information (key features) particularly in employee data
where ordering is important, and build essential knowledge bases, which could help
control or reduce attrition and absenteeism.

The rest of this paper is divided into five sections: Section 2 gives an overview
of ML, DL and ensemble-based methods for analyzing and detecting employee attri-
tion and absenteeism. In Section 3, the datasets used in this work are described. The
proposed E(3A)CSPM methodology is then presented in Section 4, which is used
for employee attrition and absenteeism analysis and classification. Section 5 presents
and discusses experimental results. Furthermore, the performance of E(3A)CSPM is
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compared to that of other recent approaches. Finally, in Section 6, a conclusion is
offered.

2 Related Work

This section reviews the recent computational methods for analyzing and detecting
employee attrition and absenteeism published in the last four years (2020-2023).

Table 1: Summary of related works that use ML, DL and ensemble learning algo-
rithms to address the employee attrition and absenteeism problem. FSM: Feature se-
lection model(s), FA: Feature analysis

Ref. Dataset FSM FA Classifier(s) Evaluation Metrics
[1] IBM-1 PCA No DT, LR, FR, GB, AB, Ensembling ACC, P, R, F1, AUC
[2] IBM-1 Chi-Square Yes RF, MLP, XGboost ACC, P, R, F1
[3] IBM-1 – Yes SVM, LR, ANN, XGB, RF,

Stacking-based ensemble model
ACC, P, R, F1, AUC

[5] BCC-3 PCA Yes Deep NN, DT, RF, SVM ACC, P, R, F1, ROC
[6] BCC-3 CFS Yes ZeroR, NB, 3 kNNs, J48 ACC, P, R, F1, ROC
[7] BCC-3 LRP Yes MLP ACC, R, S
[8] BCC-3 – Yes LR, DT, RF, AdaBoost (AB) RMSE
[13] Selfmade – Yes SVM, DT, RF, GNB, LR, kNN ACC, F1
[14] IBM-1 Correlation Matrix Yes RF, DT, LR ACC, P, R, F1
[15] IBM-1 Pearson Correlation Yes kNN, MLP, LR ACC
[16] IBM-1 Correlation Matrix Yes kNN, RF ACC, P, R, F1, AUC, FPR, S
[17] IBM-1,

HRA-4,
Selfmade

Recursive Feature Elimina-
tion, SelectKBest

Yes DT, SVM, LR, DNN, LSTM,
CNN, RF, XGB, Stacked-ANN,
Voting classifier

ACC, F1

[18] IBM-1 Pearson Correlation No ANN+SVMSmote ACC, P, R, F1
[19] IBM-1,

HRA-4,
Selfmade

Permutation Importance Yes RF, SVM, LDA, kNN, Bagging,
AB, XGB, LR, NB, Deep RF, NN

ACC, P, R, F1, AUC, S

[20] IBM-1,
HRA-4

Low Correlation with the Tar-
get

Yes 15 classifiers and Ensembling ACC, P, R, F1, AUC

[21] SAS – No RF, GB, MLP, Ensembling ACC, Lift, R, F1
[22] IBM-1 Pearson Correlation Yes LR, CT, RF, NN, NB, Ensembling ACC, F1, AUC
[23] Selfmade IG Yes GB, RF, NN, kNN, SVM, NB, LR,

Ensembling
ACC, P, R, F1, ROC

[36] IBM-1 PCA Yes RF, GB ACC, P, R, F1, Support
[37] IBM-1 – Yes SVM, LR, RF, XGBoost AUC
[38] IBM-1 EEDA Yes ETC, SVM, LR, DT ACC, P, R, F1, ROC
[39] IBM-1 Correlation Matrix Yes GNB, BNB, DT, LR, RF, MNB ACC, P, R, F1
[40] IBM-1 Chi-Square Yes LR, DT, RF, NB, kNN, SVM ACC, P, R, F1, AUC
[41] HRA-4 KPCA Yes NB, LR, KPCA+AdpKmeans ACC, P, R, AUC
[42] IBM-1 LIME, SHAP Yes LightGBM AUC
[43] IBM-1 Correlation Matrix Yes LR, kNN, RF ACC, P, R, F1
[44] IBM-1 Correlation Matrix Yes GNB, BNB, LR, kNN, DT, RF,

SVM, linear SVM
ACC, P, R, S, F1

[45] IBM-1 Max-out Yes LR, kNN, RF, FT, NB ACC, P, R, F1
[46] BCC-3 RFS, CFS, IGFS Yes NB, LR, MLP, kNN, Bagging, J48,

RF
ACC, P, R

[47] BCC-3 – Yes MLR, Tree, kNN ACC, P, R, F1
[48] IBM-1 – No LR, 3 SVMs, Boosted Trees ACC
[49] IBM-1 SHAP Yes LR, DT, RF, AB, kNN, XGBoost ACC, P, R, F1, RMSE
[50] IBM-1 Correlation Matrix Yes LR, kNN, DT, RF, AdaBoost ACC, P, R, F1, AUC
[51] IBM-1 MRMA, Chi-Square,

ANOVA, Kruskal-Wallis
Yes SVM, XGBoost, LR, DT, NB ACC, P, R, F1

[52] ORACLE
ERP

Intensive Optimized PCA No RF ACC, P, R, F1, ROC

[53] HRA-4 Fisher score, Chi-Square,
Spearman Correlation, and R
Coefficient Correlation

Yes SVM, DT, NN, LR, DF ACC, P, R

In the literature, the majority of the studies [2, 6, 8, 13–16, 36–52] used popular
ML classifiers, and studies [5,7,17–19] and [1,3,20–23] used ML as well as DL and
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ensembling for employee attrition, turnover and absenteeism classification/predic-
tion. The studies [1–3,14–20,22,36–40,42–45,48–51] used the IBM (called IBM-1)
dataset and [17,19,20,41,53] used Kaggle HR (called HRA-4) dataset. For employee
absenteeism classification/prediction, [5–8, 46, 47] used the courier company dataset
from Brazil, called BCC-3. The studies used different testing training ratios, or k-fold
cross validation, to analyze classifiers, and their performance was measured with dif-
ferent metrics, of which Accuracy (ACC), Precision (P), Recall (R) and F1-score (F1)
were the most common. All the studies used various feature engineering, encoding
and selection methods, of which principal component analysis (PCA) and correlation
matrix heatmap were the most common. Table 1 lists recent and relevant studies and
compares them in terms of the above characteristics.

The studies [2, 3, 5–8, 13–17, 19, 20, 22, 23, 36–47, 49–51, 53] used various statis-
tical, descriptive, and exploratory techniques to analyze features in the dataset and
their role in employees quitting the organization or their role in their absenteeism.
For example, Chung et al. [3] identified that three features (relationship satisfaction,
overtime and environmental satisfaction) were significant contributors to attrition.
Skorikov et al. [6] performed three experiments on the prediction of absenteeism. In
the first experiment, four features (the month of absence, age, disciplinary failure, so-
cial drinker), found by the using the CFS method, were used. The second experiment
used all the features from the BCC-3 dataset. The third experiment was conducted
with only one feature (disciplinary failure). Atef et al. [16] used five features (salary,
distance from home, marital status, age, and gender) from the IBM-1 dataset. Raza
et al. [38] found the significance of factors such as age, hourly rate, monthly income
and job level. Bansal et al. [40] used 20 features, according to the Chi-Square test,
and ignored 15 features as they were unable to contribute effectively in the target
prediction of "Attrition". Fallucchi et al. [44] examined how objective factors in the
IBM-1 dataset influence employee attrition. Naz et al. [53] found top features in the
HRA-4 dataset and used them in the classification process.

Sampling techniques such as SMOTE [54] were used in [3, 5, 6, 18, 19, 38, 50]
to overcome the class imbalance problem in the dataset(s). Only two studies [46, 48]
discussed the training time and total time for the classifiers while detecting employee
absenteeism and attrition, respectively. The studies discussed in this section used var-
ious feature engineering, encoding, and selection methods for classification/predic-
tion. However, because the proposed methods are tested on limited datasets, usually
one, they have issues with efficiency, interpretability, scalability, and generalization.
Moreover, some of the feature extraction methods are expensive. Differently from
prior work, this study extracts sequential frequent patterns of features that can be
used for reliable classification and detection purposes.

3 Datasets

In this study, four publicly available datasets for employee attrition and absenteeism
from Kaggle are used to access the performance and efficacy of the proposed method-
ology. The first dataset is the IBM HR Analytics Employee Attrition & Performance1,

1 kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset
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referred to as IBM-1, containing 35 features and 1,470 samples. In IBM-1, 1,233 em-
ployees were from the No attrition group, whereas the remaining 237 employees be-
longed to the Yes attrition group. We removed three features from IBM-1: Employee
count, since the numbers are all sequential (1, 2, 3, etc.) for this feature; Over18,
because it is Yes for every employee; and Standard hours, because all employees had
the same standard hours (80). Thus, the IBM-1 dataset in this work has 32 features,
of which 24 are numerical and 8 are categorical.

Table 2: Statistics about the four datasets
Dataset Samples Features (Numerical/Categorical) Dependent Feature
IBM-1 1,470 32 (24/8) Attrition (237 Yes/1,233 No)
HRD-2 311 28 (19/9) Terminated (104 Yes/207 No)
BCC-3 740 20 (20/0) Absenteeism Time (740)
HRA-4 14,999 11 (7/4) Left (3,571 Yes/11,428 No)

The second dataset, created by Rich Huebner and Carla Patalano, is the Human
Resources Data Set2, here called HRD-2. It contains 36 features and 311 samples.
Two features Employee_Name and Employee ID (EmpID) are not considered in this
study as they are unimportant features for analysis and classification. Five features
Position, Sex, Martial Status (MaritalDesc), Manager name and Employment Status
are duplicate of Position ID, Gender ID, Marital Status ID, Manager ID and TermD
respectively. The feature Date of termination is also not considered as most of the
employees are active and this features is empty for them. Thus, the HDR-2 dataset in
this work has 28 features, in which 19 are numerical and 9 are categorical.

The third dataset consists of records about employee absenteeism, containing 21
numerical features and 740 samples, at a courier company in Brazil from July 2007
to July 20103, called BCC-3. Only one feature ID was discarded from this dataset.
The fourth dataset is the HR Analytics data set4, referred to as HRA-4. It contains
14,999 samples, of which 3,571 belonged to employees that left the company and the
remaining 11,428 belonged to employees that have not left. HRA-4 dataset in this
work has 11 features, in which 7 are numerical and 4 are categorical. Statistics about
the four datasets and feature details are given in Table 2 and Table 3 respectively.
The dependent feature in each dataset is in bold in Table 3. Many samples from two
datasets (BCC-3 and HRA-4) have missing values for some features. MICE (Multiple
Imputation by Chained Equation) statistical method [55] was used to fill the missing
values in these two datasets.

In BCC-3, the feature absenteeism time in hours is considered the dependent
(class) feature. This attribute contains values that are continuous. However, as sug-
gested in previous work [6, 47], classification of absenteeism time in terms of cate-
gories allows the model to classify/predict different degrees of absence on test data.
We used the same categories (classes) for this feature (shown in Table 4).

2 kaggle.com/datasets/rhuebner/human-resources-data-set. rpubs.com/rhuebner/HRCodebook-13
3 www.kaggle.com/datasets/tonypriyanka2913/employee-absenteeism
4 kaggle.com/datasets/cezarschroeder/human-resource-analytics-dataset
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Table 3: Feature names in the four datasets

Dataset 1 (IBM-1)
(1) Age, (2) Attrition, (3) BusinessTravel, (4) DailyRate, (5) Department, (6) DistanceFromHome,

(7) Education, (8) EducationField, (9) EmployeeNumber, (10) EnvironmentSatisfaction,
(11) Gender, (12) HourlyRate, (13) JobInvolvement, (14) JobLevel, (15) JobRole,
(16) JobSatisfaction, (17) MaritalStatus, (18) MonthlyIncome, (19) MonthlyRate,

(20) NumberofCompaniesWorked, (21) OverTime, (22) PercentSalaryHike, (23) PerformanceRating,
(24) RelationshipSatisfaction, (25) StockOptionLevel, (26) TotalWorkingYears,

(27) TrainingTimesLastYear, (28) WorkLifeBalance, (29) YearsAtCompany, (30) YearsInCurrentRole,
(31) YearsSinceLastPromotion, (32) YearsWithCurrentManager

Dataset 2 (HRD-2)
(1) MarriedID, (2) MaritalStatusID, (3) GenderID, (4) EmpStatusID, (5) DepartmentID,

(6) PerfScoreID, (7) FromDiversityJobFairID, (8) Salary, (9) Termd, (10) PositionID, (11) State,
(12) Zip, (13) DOB, (14) CitizenDesc, (15) HispanicLatino, (16) RaceDescription, (17) DateOfHire,

(18) TerminationReason, (19) Department, (20) ManagerID, (21) RecruitmentSource,
(22) PerformanceScore, (23) EngagementSurvey, (24) EmployeeSatisfaction, (25) SpecialProjectsCount,

(26) LastPerformanceReviewDate, (27) DaysLateInTheLast30Days, (28) Absences
Dataset 3 (BCC-3)

(1) ReasonForAbsence, (2) MonthofAbsence, (3) DayofTheWeek, (4) Seasons,
(5) TransportationExpense, (6) DistanceFromResidenceToWork, (7) ServiceTime, (8) Age,

(9) WorkLoadAverage/Day, (10) HitTarget, (11) DisciplinaryFailure, (12) Education, (13) Son,
(14) SocialDrinker, (15) SocialSmoker, (16) Pet, (17) Weight, (18) Height, (19) BodyMassIndex,

(20) AbsenteeismTimeInHours
Dataset 4 (HRA-4)

(1) SatisfactionLevel, (2) LastEvaluation, (3) NumberofProjects, (4) AverageMonthlyHours,
(5) TimeSpentInCompany, (6) WorkAccident, (7) Left, (8) PromotionInLast5Years,

(9) Department, (10) Salary, (11) Smoker

Table 4: Categories for the absenteeism time in hours feature in BCC-3

Absent time in hours Class Samples
0 A 36

1-15 B 642
16-120 C 62

4 Methodology

The proposed E(3A)CSPM methodology (depicted in Figure 1) for the analysis and
detection/classification of employee attrition and absenteeism consists of four main
parts:

1. Datasets pre-processing and abstraction: The first step is to pre-process the datasets
so that they are ready for applying SPM. This is accomplished by transforming
each sequence into a discrete sequence. In this format, a positive integer repre-
sents each feature from the original datasets.

2. Learning via SPM: The second step is to apply various algorithms to extract dif-
ferent types of sequential patterns from the abstracted datasets to uncover features
that are frequently correlated. The result is frequent patterns representing sequen-
tial relationships among the discovered frequent features.

3. Classification via frequently occurring features: The third step is to classify/detect
employee attrition and absenteeism using the frequent patterns of features and
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Fig. 1: The E(3A)CSPM methodology for the analysis and classification of employee
attrition and absenteeism. E(3A)CSPM has four steps: (1) Pre-processing and ab-
stracting the datasets, (2) Learning sequential patterns and rules using SPM, (3) Clas-
sifying employees using the discovered patterns of features and their values in the
datasets by training different classifiers, and (4) Evaluating the methodology through
extensive experiments.

their values, discovered in Step 2. Several classifiers are utilized, and different
metrics are used to assess their performance.

4. Evaluation: Finally, experiments are preformed to evaluate the performance of
E(3A)CSPM and compare it with state-of-the-art employee attrition and absen-
teeism approaches.

The following subsections provides more detail about the first three steps of
E(3A)CSPM.

4.1 Datasets Pre-processing and Abstraction

The first step is data pre-processing, which consists of transforming features of each
dataset into a specific integer-based format. We discovered that in the datasets, differ-
ent features can have the same value. To avoid any ambiguity, each value of different
features in the datasets is encoded into a distinct positive integer, that are called fea-
ture values in the remaining of the paper. The next paragraphs discuss key concepts
related to sequences.
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Given a dataset, let F = {F1, F2, ..., Fm} denote the set of its feature values.
Then, any subset FS of feature values (FS ⊆ F ) is called a feature values set. The
number of feature values (set cardinality) in a feature values set FS is represented
by the notation |FS|. If FS contains k feature values (i.e. |FS| = k), we say that
FS has a length of k. In addition, we call FS a k-FS. For example, the features set
{Age, Attrition, BusinessTravel, DailyRate, Department} from the IBM-1 dataset has
five features, and hence a length of five. To allow a systematic exploration of the
search space of patterns, a relation ≺ is further defined on the set F of all feature
values. This order is a total order that is internally used by SPM algorithms to guide
the search for patterns and avoid finding duplicate patterns [25]. In practice, any total
order can be used, and thus, the lexicographical order is used in the implementation
of E(3A)CSPM.

Based on the concept of feature values set, a features sequence is a list S = ⟨FS1,
FS2, ..., FSn⟩ of feature values sets that are sequentially ordered (where FSi ⊆ F
for 1 ≤ i ≤ n). A features values corpus dataset FCD is a list of multiple features
sequences. The notation FCD = ⟨S1, S2, ..., Sp⟩ denotes a features corpus dataset
with p sequences. It is assumed that each sequence has a unique identifier (ID), which
is 1, 2, ..., p in this notation. For example, Table 5(a) shows a FCD containing the
first seven features of IBM-1 for employees represented by the IDs 1, 2, 3, and 4. To
apply SPM, the raw data must be formatted in a particular way. More precisely, the
features and their sequences of values in a FCD are transformed into sequences of
integers. In that format, each positive integer represents a value of a distinct feature.
Therefore, values that are identical in the original dataset for two different features
are denoted using a different integer in the transformed dataset to differentiate them.
The result is an abstracted dataset, where each line represents the feature sequence
of an employee and is a list of integers. Moreover, two special codes are used in that
format, namely -1 to separate feature values, an -2 to indicate the end of a sequence.
For instance, the four feature sequences of Table 5(a) are converted into the integer
feature sequences shown in Table 5(b).

Table 5: (a) A sample of FCD and (b) Features and their values as positive integers
(a)

ID Age Attrition BusinessTravel DailyRate Department DistanceFromHome Education....
1 41 Yes Travel_Rarely 1102 Sales 1 2 ....
2 49 No Travel_Frequently 279 R & D 8 1 ....
3 22 No Non_Travel 1123 R & D 16 2 ....
4 46 No Travel_Rarely 945 HR 5 2 ....

(b)
ID Age Attrition BusinessTravel DailyRate Department DistanceFromHome Education ....
1 91141 9121 9131 9141102 9151 9161 9172 ....
2 91149 9120 9132 914279 9152 9168 9171 ....
3 91122 9120 9133 9141123 9152 91616 9172 ....
4 91146 9120 9131 914945 9153 9165 9172 ....
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4.2 Learning using SPM

In the second step, a FCD is analyzed to identify frequent patterns in its features
sequences. This is done by searching for subsequences that occur with a high fre-
quency (have many occurrences). Formally, assume that we have two features se-
quences Sa and Sb that are defined as Sa = ⟨a1, a2, ..., ap⟩ and Sb = ⟨b1, b2, ..., bq⟩.
Then, Sa is called a subsequence of Sb if an only if there exist integers 1 ≤ i1 <
i2 < ... < ip ≤ q, such that a1 ⊆ bi1, a2 ⊆ bi2, ..., ap ⊆ biq . In that case,
it is also said that Sa is present in Sb, and this relationship is written as Sa ⊑
Sb. For instance, the sequence ⟨{Y es}, {TravelRarely}⟩ is a subsequence of se-
quence ⟨{Y es}, {TravelRarely}, {Sales}⟩. Thus, ⟨{Y es}, {TravelRarely}⟩ ⊑
⟨{Y es}, {TravelRarely}, {Sales}⟩.

In SPM, a subsequence importance and interestingness can be accessed by var-
ious measures, the most common of which is the support measure. In a FCD, the
number of sequences (S) containing Sa is the support of Sa, which is denoted by the
symbol sup(Sa):

sup(Sa) = |{S|Sa ⊑ S ∧ S ∈ FCD}|

The aim of SPM is to do the complete enumeration of all the frequent subse-
quences in a sequential dataset (here, a FCD). A sequence S is said to be a fre-
quent sequence (also known as a sequential pattern) iff sup(S) ≥ minsup, where
minsup (minimum support) is a cut-off threshold selected by the user. This is a dif-
ficult problem to solve since there are numerous possible patterns. For instance, if
there are n items in a sequence (feature values in this work), then up to 2n − 1 dis-
tinct subsequences may have to be considered. For most datasets, finding the support
of every possible subsequence using a naive approach is not possible. However, over
the last two decades, a number of effective algorithms have been created that can
detect all possible sequential patterns without having to search through all potential
subsequences.

Algorithms for SPM comb through the search space of sequential patterns by
performing two operations: s-extensions and i-extensions. A sequence Sa = ⟨a1, a2, .
.., an⟩ is a prefix of another sequence Sb = ⟨b1, b2, ..., bm⟩, if n < m, a1 = b1, a2 =
b2 , ..., an−1 = bn−1, where an is equal to the first |an| items of bn according to the
≺ order. SPM algorithms ensure that the same potential patterns are not visited more
than once during the searching process by following a specific order, ≺. Note that
the final outcome (sequential patterns) produced by SPM algorithms is unaffected
by the selection of ≺. For an time x, Sb is said to be an s-extension of Sa if Sb =
⟨a1, a2, ..., an, {x}⟩. Similarly, Sc is said to be an i-extension of Sa, for an item x, if
Sc = ⟨a1, a2, ..., an ∪ {x}⟩. SPM techniques typically use either a depth-first search
or a breadth-first search with a variety of data structures and optimizations.

A SPM algorithm used in this work is TKS (Top-k Sequential) [56]. TKS searches
a database for the top-k most frequent sequential patterns, where k is a user-specified
input value. The value of the parameter k denotes the number of patterns to be discov-
ered. The main reason for using TKS is that it lets us directly specify the number of
sequential patterns to discover via the parameter k, unlike traditional SPM algorithms
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that require setting a minimum frequency threshold. Using the parameter k provides
the convenience of knowing exactly how many patterns will be output before run-
ning the TKS algorithm and thus eliminate the need of running the algorithm several
times to get a desired number of patterns (e.g. by setting k = 500, TKS will find the
top 500 most frequent patterns). To find the desired patterns, TKS uses a candidate
generation process that follows a depth-first search and a vertical database represen-
tation. That database representation enables TKS to count patterns without scanning
the database, which improves its performance on dense or long sequences. TKS also
employs other strategies to reduce the search space, such as the PMAP (Precedence
Map) data structure and a bit vector representation with an efficient join operation.
For more details about TKS, please refer to [56].

One of the main drawbacks of traditional SPM algorithms such as TKS is that
they may discover too many sequential patterns, most of which are not interesting
or important for users. Sequential patterns with high support but low confidence are
not useful in decision-making or prediction/forecasting tasks. Therefore, another type
of patterns, known as sequential rule, can be discovered [57]. A sequential rule rep-
resents a relationship between two sets of items (feature values in this work) that
considers both the support and the confidence (conditional probability) of the items.
In this work, a sequential rule Y → Z represents a relationship between two feature
value sets Y,Z ⊆ FS s.t. Y ∩ Z = ∅ and Y,Z ̸= ∅. A sequential rule has the form
r : Y → Z and means that in a sequence, Y ’s items (feature values) will be likely
followed by Z’s items. A sequence Sa = ⟨a1, a2, . .., an⟩ contains a feature value set
Y (Y ⊑ Sa) iff Y ⊆

⋃n
i=1 ai. Moreover, Sa contains the rule r (r ⊑ Sa) iff there

exists an integer k s.t. 1 ≤ k < n, Y ⊆
⋃k

i=1 ai and Z ⊆ ∪n
i=k+1ai. The confidence

and support of the rule r in FCD is defined as:

confFCD(r) =
|{S|r ⊑ S ∧ S ∈ FCD}|
|{S|X ⊑ S ∧ S ∈ FCD}|

supFCD(r) =
|{S|r ⊑ S ∧ S ∈ FCD}|

|FCD|

A rule r is a frequent sequential rule iff supFCD(r) ≥ minsup and r is a valid
sequential rule iff it is frequent and confFCD(r) ≥ minconf , where the thresholds
minsup, minconf ∈ [0, 1] are set by the user. Sequential rule mining in a dataset
deals with enumerating all the valid sequential rules. We use the ERMiner (Equiva-
lence class based sequential Rule Miner) algorithm [57] in this work to find frequent
sequential rules in a feature corpus dataset. ERMiner uses a vertical database repre-
sentation and uses equivalence classes of rules having the same antecedent and conse-
quent to explore the entire search space of rules. To further explore the search space of
frequent sequential rules, it uses left and right merges operations. The Sparse Count
Matrix (SCM) technique is used for search space pruning that enables ERMiner to
perform more efficiently than earlier algorithms for mining sequential rules. In sum-
mary, SPM algorithms differ from each other based on (1) the use of a depth-first or
breadth-first search, (2) the use of a vertical or horizontal database representation and
specific data structures, and (3) the support measure that is used to count patterns in
datasets and output those that satisfy the user-specified constraints.
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4.3 Classification

The third step is to use the frequent patterns of features and their values discovered
with SPM to classify employee attrition and absenteeism. The datasets used for attri-
tion and absenteeism classification contain employee records (sequences) of various
lengths. A careful examination of the FCD datasets revealed that many sequences
(pertaining to both attrition and absenteeism instances) contain feature occurrences
that appear multiple times consecutively. In the context of employee-related records,
these redundant occurrences of features do not provide much helpful information for
classification. Hence, during the classification process, repeated features are consid-
ered a single entity.

More precisely, E(3A)CSPM utilizes the sequential frequent patterns discovered
by SPM algorithms for the classification of attrition and absenteeism datasets. Two
types of classification are carried out: binary and multi-class (MC). Binary classifi-
cation is utilized for attrition datasets (IBM-1, HRD-2 and HRA-4) and MC classi-
fication is used for the absenteeism dataset (BCC-3). For a selected dataset, binary
classification assigns "yes" or "no" labels to each sequence (employee record) repre-
senting whether they belong to that class or not.

For both binary and MC classification, seven standard ML algorithms and one
DL algorithm are used, which are: (1) Multinomial Naive Bayes (MNB), (2) Gaus-
sian Naive Bayes (GNB), (3) Decision Tree (DT), (4) Random Forest (RF), (5) Mul-
tilayer Perceptron (MLP), (6) Support Vector Machine (SVM), (7) k-Nearest Neigh-
bors (kNN) and (8) Logistic Regression (LR) [58, 59]. A brief description of the
classification models is given next.

MNB is a probabilistic classifier based on Bayes’ theorem. Despite its "naive" as-
sumption of feature independence, it often performs well and is computationally ef-
ficient. The probability of a class Ci given some input features P (Ci|x1, x2, ..., xn),
where P (Ci) is the prior probability of class Ci, is calculated by using Bayes’ theo-
rem (Equation 1).

P (Ci|x1, x2, ..., xn) =
P (Ci) · P (x1|Ci) · P (x2|Ci) · ... · P (xn|Ci)

P (x1) · P (x2) · ... · P (xn)
(1)

GNB is another variant of NBs designed for continuous data. It assumes that
features follow a Gaussian distribution and is commonly used in classification tasks
where features are real-valued. The probability density function for GNB P (x|Ci)
for a feature x given a class Ci, with µ the mean and σ the standard deviation of the
feature’s distribution, is given by the Gaussian distribution (Equation 2).

P (x|Ci) =
1

√
2πσ2

· e−
(x−µ)2

2σ2 (2)

A DT is a tree-like model where each node represents a decision based on a fea-
ture, leading to subsequent nodes. The tree building process (model training) recur-
sively splits the dataset based on the most significant features, creating a tree structure
that can be used for classification. The Gini Index is used as impurity measure, and
is given by Equation 3, where Pi is the proportion of instances of class i in a node.
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Gini Index = 1−
C∑

i=1

P 2
i (3)

RF is an ensemble learning method that constructs a multitude of decision trees
at training time. It combines the predictions of individual trees to improve overall
accuracy and control overfitting. The entropy for a decision tree (Entropy(S)) in the
forest, which plays a vital role in splitting the data, is calculated by using Equation 4,
where Pi denotes the probability of class i.

Entropy(S) = −
C∑

i=1

Pi · log2(Pi) (4)

MLP is a type of artificial neural network with multiple layers of nodes. It is a
powerful model capable of learning complex patterns. The output of a node in the
network with activation function f is given by Equation 5.

Output = f

(
n∑

i=1

wi · xi + b

)
(5)

where xi is an input feature, wi is the weight associated with input xi and b is the
bias term.

SVM is a powerful classification algorithm that aims to find a hyperplane that best
separates data points of different classes. The equation for the hyperplane is provided
in Equation 6.

−→w · −→x + b = 0 (6)

−→w is the weight matrix, −→x is the input feature, and b is the bias term.
kNN is a simple and intuitive classification algorithm that classifies data points

based on the majority class among their k nearest neighbors. New data points or cases
are classified based on similarity or distance measure (such as Euclidean distance,
Manhattan distance, Minkowski distance, etc). No specific equation is involved in the
training phase; it operates by finding the majority class among the k-nearest neighbors
in the feature space.

LR is a linear model for binary classification that uses the logistic function to
model the probability of a binary outcome. The logistic function is given by Equation
7.

P (Y = 1|X) =
1

1 + e−(b0+b1X1+b2X2+...+bnXn)
(7)

P (Y = 1|X) is the probability of class 1 given input features X , b0 is bias term,
b1, b2, ..., bn are the coefficients for input features X1, X2, ..., Xn and ex is the expo-
nential function.

Five metrics are used to evaluate the performance of classifiers: (1) accuracy, (2)
recall, (3) precision, (4) F1 score and (5) Area Under the ROC (Receiver Operating
Characteristic) Curve (AUC). The five measures are defined as follows:
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ACC =
TP + TN

TP + TN + FP + FN
(8)

Precision(P ) =
TP

TP + FP
(9)

Recall(R) =
TP

TP + FN
(10)

F1 = 2×
P ×R

P +R
(11)

AUC =

∫ 1

0
TPR(dFPR) (12)

whereas TP, TN, FP and FN stand for true positive, true negative, false positive
and false negative respectively. In equation 5, TPR represents the recall (R) and dFPR
is the derivative of the false positive rate (FPR), that is equal to: FP

FP+TN . All these
measures are standard measures used for assessing how models perform in classifi-
cation tasks.

5 Results

A computer with a 11th-generation Core i5 processor and 16 GB of RAM was utilized
for carrying out experiments. Moreover, an open-source cross-platform Java package
called SPMF [60], was used to analyze and discover patterns in the abstracted feature
sequence datasets. SPMF offers implementations of more than 250 algorithms for
various pattern discovery specializes tasks. For classification, Python is used, where
a variety of libraries are utilized, including scikit-learn [61] for classifiers, NumPy for
numerical computations, and Pandas for data manipulation. The performance of the
classifiers is evaluated by using standard 10-fold cross validation. Next, the results
obtained by applying the SPM algorithms on the datasets are discussed.

5.1 Frequent Patterns and Sequential Rules

Figure 2(a), (b) and (d) shows the frequent or top patterns in the whole datasets and
in the respective classes (Yes or No) discovered by using Apriori algorithm. In the
three datasets (IBM-1, HRD-2 and HRA-4), most of the features and their values in
the whole dataset and in the two classes are almost the same. For IBM-1, the three
differences are that (1) the No category has value 1 for the Stock Option Level feature,
which is different from value 0 in the whole dataset and in the Yes category, (2) the
Yes category has more Married employees, which is different from Single employees
in the whole dataset and in the No category, (3) the Yes category contains value Yes for
the feature Over Time, which is different from value No for Over Time in the whole
dataset and in the No category. Similarly, in HRA-4, the difference is in the number of
projects in the whole dataset and the two categories. For HRD-2, the top 10 frequent
features in the whole dataset, and the Yes and No categories are the same.
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For BCC-3, the count of all the features is shown in Figure 2(c). Apriori can also
be used to discover frequent patterns of features and their values. However, frequent
sets of feature values are unordered. Besides, Apriori does not ensure that feature val-
ues appear consecutively in a sequence. Thus, frequent patterns discovered by Apriori
are uninteresting and do not provide any useful information. As Apriori ignores the
sequential relationship among feature values, it cannot discover sequential patterns.
The results for the TKS algorithm show that it overcomes this drawback of Apriori,
as presented next.

  
(a) IBM-1                                                                                              (b) HRD-2 

  
      (c) BCC-3                                                                                                  (d) HRA-4 
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Fig. 2: Frequent features discovered in four datasets

Some frequent patterns of features discovered by the TKS algorithm in the four
datasets, of varied lengths are shown in Table 6 and Table 7 respectively. These se-
quential patterns provide very useful information related to frequent occurrences of
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Table 6: Frequent sequential patterns extracted by the TKS algorithm
IBM-1: Yes %
Male, PerformanceRating: 3 54
PerformanceRating: 3, StockOptionLevel: 0 53.16
PerformanceRating: 3, WorkLifeBalance: 3 46
Single, StockOptionLevel: 0 50.63
OverTime: Yes, PerformanceRating: 3 43.88
TravelRarely, StockOptionLevel: 0 43.45
Male, PerformanceRating: 3, WorkLifeBalance: 3 27.84
JobInvolvement: 3, JobLevel: 1, PerformanceRating: 3 26.16
TravelRarely, Male, PerformanceRating: 3, Stock OptionLevel: 0 24.47
R & D, Male, JobLevel: 1, PerformanceRating: 3 22.78
IBM-1: No %
Over Time: No, PerformanceRating: 3 64.63
TravelRarely, PerformanceRating: 3 61.23
Male, WorkLifeBalance: 3 36.33
Married, OverTime: No 36.17
TravelRarely, Male, OverTime: No 33.33
NumCompaniesWorked: 1, PerformanceRating: 3 28.46
TravelRarely, JobInvolvement: 3, OverTime: No, PerformanceRating: 3 27.65
R & D, EducationField: Medical 25.62
OverTime: No, PerformanceRating: 3, YearsSinceLastPromotion: 0 24.49
JobInvolvement: 3, OverTime: No, PerformanceRating: 3, WorkLifeBalance: 3 23.27

HRD-2: Yes %
State: MA, Dept: Production 79.80
PerfScoreID: 3, PerformanceScore: Fully Meets, DaysLateLast30Days: 0, 76.92
HispanicLatino: No, DaysLateLast30Days: 0 75.96
State: MA, Citizen: US, Dept: Production, SpecialProjectsCount: 0 75
DeptID: 5, State: MA, Citizen: US, Dept: Production, SpecialProjectsCount: 0 75
DeptID: 5, State: MA, HispanicLatino: No, Dept: Production, SpecialProjectsCount: 0 73.07
EmpStatusID 5, Citizen: US, SpecialProjectsCount: 0 69.23
DeptID: 5, State: MA, Citizen: US, HispanicLatino: No, Dept: Production, SpecialProjectsCount:
0

68.26

EmpStatusID: 5, DeptID: 5, State: MA, Citizen: US, SpecialProjectsCount: 0 67.30
FromDiversityJobFairID: 0, State: MA, HispanicLatino: No, Dept: Production, SpecialPro-
jectsCount: 0, DaysLateLast30Days: 0

55.76

HRD-2: No %
Citizen: US, N/A-StillEmployed, LastPerformanceReviewDate: 2019 95.65
Citizen: US, N/A-StillEmployed, LastPerformanceReviewDate: 2019, DaysLateLast30Days: 0 87.92
FromDiversityJobFairID: 0, Citizen: US, HispanicLatino: No, N/A-StillEmployed, LastPerfor-
manceReviewDate: 2019

82.12

PerfScoreID: 3, N/A-StillEmployed, PerformanceScore: FullyMeets, LastPerformanceReview-
Date: 2019, DaysLateLast30Days: 0

76.81

PerfScoreID: 3, Citizen: US, PerformanceScore: FullyMeets, LastPerformanceReviewDate: 2019,
DaysLateLast30Days: 0

73.42

N/A-StillEmployed, SpecialProjectsCount: 0, LastPerformanceReviewDate: 2019 72.94
EmpStatusID: 1, PerfScoreID: 3, FromDiversityJobFairID: 0, HispanicLatino: No, N/A-
StillEmployed, PerformanceScore: FullyMeets, LastPerformanceReviewDate: 2019, DaysLate-
Last30Days: 0

57.97

DeptID: 5, Citizen: US, N/A-StillEmployed, Dept: Production, SpecialProjectsCount: 0, LastPer-
formanceReviewDate: 2019

57

EmpStatusID: 1, DeptID: 5, FromDiversityJobFairID: 0, State: MA, N/A-StillEmployed, Dept:
Production, SpecialProjectsCount: 0, LastPerformanceReviewDate: 2019, DaysLateLast30Days:
0

45.89

feature values in the datasets. For example, in IBM-1 the pattern Single, Stock Op-
tion Level: O occurs for 50.63% of employees that left the company. Similarly, the
sequential pattern R & D, Male, Job Level: 1, Performance Rating: 3 occurs with
a frequency of 22.78%. Similarly, for employees that did not leave, the sequences
Over Time: No, Performance Rating: 3 and Job Involvement: 3, Over Time: No, Per-
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formance Rating: 3, Work Life Balance: 3 occur with frequencies of 64.63% and
23.27%, respectively.

Table 7: Frequent sequential patterns extracted by the TKS algorithm
BCC-3: Class A %
ReasonForAbsence: No, AbsenteeismTimeInHours: 0 97.22
ReasonForAbsence: No, DisciplinaryFailure: Yes, AbsenteeismTimeInHours: 0 88.88
ReasonForAbsence: No, DisciplinaryFailure: Yes, SocialSmoker: No, AbsenteeismTimeInHours:
0

75

DisciplinaryFailure: Yes, Education: High School, SocialDrinker: Yes, SocialSmoker: No 55.55
Seasons: Spring, DisciplinaryFailure: Yes, Education: High School, SocialSmoker: No, Absen-
teeismTimeInHours: 0

36.11

DayofWeek: Tuesday, Education: High School, SocialDrinker: Yes, AbsenteeismTimeInHours: 0 25
HitTarget: 88, DisciplinaryFailure: Yes, AbsenteeismTimeInHours: 0 13.88
BCC-3: Class B %
DisciplinaryFailure: No, SocialSmoker: No 92.52
SocialSmoker: No, Pet: 0 57.16
Education: High School, SocialDrinker: Yes, SocialSmoker: No, Pet: No 37.53
TransportationExpenses: 179, DisciplinaryFailure: No, Son: 0, SocialSmoker: No 22.89
ServiceTime: 18, DisciplinaryFailure: No, SocialDrinker: Yes, SocialSmoker: No, Pet: 0, Body-
MassIndex: 31

20.56

DistanceFromResidenceToWork: 51, ServiceTime: 18: Age: 38, Education: High School, Son: No,
Social Drinker: Yes, SocialSmoker: No, Weight: 89

16.82

BCC-3: Class C %
DisciplinaryFailure: No, Education: High School, SocialSmoker: No 79.03
SocialDrinker: Yes, SocialSmoker: No 66.12
Seasons: Winter, DisciplinaryFailure: No, Education: High School 33.87
DayOfTheWeek: Monday, DisciplinaryFailure: No, Education: High School, SocialDrinker: Yes,
SocialSmoker: No

29.03

ServiceTime: 13, DisciplinaryFailure: No, Education: High School, SocialDrinker: Yes 14.54
TransportationExpense: 155, DistanceFromResidenceToWork: 12, Age: 34, DisciplinaryFailure:
No, Pet: 0, Weight: 95, Height: 196

12.9

HRA-4: Yes %
NumberProject: 2, TimeSpendCompany: 3, WorkAccident: 0, PromotionLast5Years: 0 40.49
NumberProject: 2, PromotionLast5Years: 0 43.60
NumberProject: 2, WorkAccident: 0, PromotionLast5Years: 0, Smoker: No 41.55
NumberProject: 2, TimeSpendCompany: 3, WorkAccident: 0, Salary: Low 25.09
NumberProject: 2, TimeSpendCompany: 3, WorkAccident: 0, PromotionLast5Years: 0, Salary:
Low

24.97

TimeSpendCompany: 4, WorkAccident: 0, PromotionLast5Years: 0 24.05
TimeSpendCompany: 5, PromotionLast5Years: 0 25.28
NumberProject: 2, TimeSpendCompany: 3, WorkAccident: 0, PromotionLast5Years: 0, Depart-
ment: Sales, Salary: Low

8.26

NumberProject: 2, TimeSpendCompany: 3, WorkAccident: 0, PromotionLast5Years: 0, Depart-
ment: Sales, Salary: Medium

3.66

SatisfactionLevel: 0.37, NumberProject: 2, TimeSpendCompany: 3, WorkAccident: 0, Promotion-
Last5Years: 0, Salary: Low

1.26

HRA-4: No %
WorkAccident: 0, PromotionLast5Years: 0 80.50
PromotionLast5Years: 0, Salary: Low 44.55
WorkAccident: 0, Salary: Medium 37.32
WorkAccident: 0, PromotionLast5Years: 0, Salary: Medium 36.14
NumberProject: 4, PromotionLast5Years: 0 33.62
TimeSpendCompany: 3, WorkAccident: 0, PromotionLast5Years: 0, salary: Low 16.08
NumberProject: 4, PromotionLast5Years: 0, Salary: Low 15.92
NumberProject: 4, WorkAccident: 0, PromotionLast5Years: 0, Salary: Low 13.07
NumberProject: 4, TimeSpendCompany: 3, WorkAccident: 0, PromotionLast5Years: 0 12.67
NumberProject: 3, TimeSpendCompany: 3, WorkAccident: 0, PromotionLast5Years: 0, Salary:
Low

5.57
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Table 8: Sequential rules extracted by the ERMiner algorithm
IBM-1

Antecedents Consequents Sup. Conf.
PerformanceRating: 3 (StockOptionLevel: 0) Attrition: Yes 200 (154) 1 (1)
TravelRarely (JobLevel: 1) Attrition: Yes 156 (146) 1 (1)
R & D (OverTime: Yes) Attrition: Yes 133 (127) 1 (1)
PerformanceRating: 3, StockOptionLevel: 0 Attrition: Yes 126 1
Single, PerformanceRating: 3, StockOptionLevel: 0 Attrition: Yes 95 1
R & D, JobLevel: 1, PerformanceRating: 3 Attrition: Yes 80 1.0
Male Attrition: Yes, PerformanceRating: 3 128 0.85
PerformanceRating: 3 Attrition: Yes, StockOptionLevel: 0 126 0.63
TravelRarely Attrition: Yes, PerformanceRating: 3 134 0.85
TravelRarely, Male Attrition: Yes, PerformanceRating: 3 89 0.87
PerformanceRating: 3 (OverTime: No) Attrition: No 1,044 (944) 1 (1)
TravelRarely (R & D) Attrition: No 887 (828) 1 (1)
WorkLifeBalance: 3 (JobInvolvement: 3) Attrition: No 766 (743) 1 (1)
OverTime: No, PerformanceRating: 3 Attrition: No 797 1
TravelRarely, PerformanceRating: 3 Attrition: No 755 1
TravelRarely, OverTime: No, PerformanceRating: 3 Attrition: No 579 1
TravelRarely Attrition: No, PerformanceRating: 3 755 0.85
R & D Attrition: No, OverTime: No, PerformanceRating: 3 524 0.63
TravelRarely, OverTime: No Attrition: No, PerformanceRating: 3 579 0.85
R & D, OverTime: No Attrition: No, PerformanceRating: 3 524 0.83

HRD-2
Antecedents Consequents Sup. Conf.
State: MA (Citizen: US) Terminated: Yes 99 (96) 1 (1)
HispanicLatino: No (SpecialProjectsCount: 0) Terminated: Yes 95 (89) 1 (1)
DaysLateLast30Days: 0 (EmpStatusID: 5) Terminated: Yes 88 (88) 1 (1)
State: MA Terminated: Yes, Citizen: US 92 0.92
DeptID: 5 Terminated: Yes, State: MA, Department: Production 83 1
State: MA, Citizen: US Terminated: Yes 92 1
State: MA, Citizen: US, HispanicLatino: No Terminated: Yes 83 1
State: MA Terminated: Yes, Department: Production, Special-

ProjectsCount: 0
83 0.83

DeptID: 5, State: MA, Department: Production Terminated: Yes, SpecialProjectsCount: 0 83 1
DeptID: 5, State: MA Terminated: Yes, Department: Production 83 1
N/A-StillEmployed (HispanicLatino: No) Terminated: No 207 (188) 1 (1)
LastPerformanceReviewDate: 2019 (DaysLate-
Last30Days: 0)

Terminated: No 206 (190) 1 (1)

Citizen: US (FromDiversityJobFairID: 0) Terminated: No 199 (194) 1 (1)
FromDiversityJobFairID: 0, N/A-StillEmployed Terminated: No 194 1
Citizen: US, N/A-StillEmployed Terminated: No, LastPerformanceReviewDate: 2019 198 0.99
Citizen: US, N/A-StillEmployed, LastPerfor-
manceReviewDate: 2019

Terminated: No 198 1

FromDiversityJobFairID: 0, N/A-StillEmployed,
LastPerformanceReviewDate: 2019

Terminated: No 193 1

N/A-StillEmployed Terminated: No, LastPerformanceReviewDate: 2019 206 0.99
FromDiversityJobFairID: 0 Terminated: No, N/A-StillEmployed, LastPerfor-

manceReviewDate: 2019
193 0.99

Citizen: US Terminated: No, N/A-StillEmployed, LastPerfor-
manceReviewDate: 2019

198 0.99

Table 8 and 9 show the relationships among frequent features and their attributes
that are identified in each dataset via the ERMiner algorithm, revealing intricate pat-
terns that illuminate relationships between features and their values. It was observed
that different datasets require different parameter settings (minsup and minconf) be-
fore they start giving sequential rules. For example, for IBM-1, the threshold for con-
fidence (minconf) is set to 63%. A rule Y (antecedent) → Z (consequent) with a 63%
confidence means that Y ’s feature values is followed by Z’s feature values at least
63% of the times when a sequence contains the antecedent Y . The first three rules in
each dataset represent the six most dominant feature values in the four datasets. The
first rule in IBM-1 indicates that the feature PerformanceRating: 3 or Stock Option
Level: 0 is followed by the feature Attrition: Yes. Similarly, the seventh rule indicates
that Male is followed by Attrition: Yes and PerformanceRating: 3 128 (54%) times
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Table 9: Sequential rules extracted by the ERMiner algorithm
BCC-3

Antecedent(s) Consequent(s) Sup. Conf.
ReasonForAbsence: 0 (Education: High School) AbsenteeismTimeInHours: 0 35 (33) 1 (1)
SocialDrinker: 1 (Pet: 0) AbsenteeismTimeInHours: 0 23 (21) 1 (1)
DiscipinaryFailure: Yes (Social Smoker: No) AbsenteeismTimeInHours: 0 32 (31) 1 (1)
ReasonforAbsence: No, DisciplinaryFailure: Yes AbsenteeismTimeInHours: 0 32 1
ReasonForAbsence: No, Education: High School,
SocialSmoker: No

AbsenteeismTimeInHours:0 27 1

ReasonForAbsence: No, DisciplinaryFailure: Yes,
Education: High School, SocialSmoker: No

AbsenteeismTimeInHours:0 24 1

ReasonForAbsence: No, Education: High School,
SocialDrinker: Yes, SocialSmoker: No

AbsenteeismTimeInHours:0 22 1

ReasonForAbsence: No, DisciplinaryFailure: Yes,
Education: High School, SocialDrinker: Yes, So-
cialSmoker: No, Pet:0

AbsenteeismTimeInHours: 0 15 1

DiscipinaryFailure: No (Social Smoker: No) AbsenteeismTimeInHours: 8 200 (180) 0.31 (0.30)
DiscipinaryFailure: No (SocialSmoker: No) AbsenteeismTimeInHours: 2 155 (117) 0.24 (0.22)
DiscipinaryFailure: No (Social Smoker: No) AbsenteeismTimeInHours: 3 110 (105) 0.17 (0.17)
DisciplinaryFailure: No, Education: High School AbsenteeismTimeInHours: 2 117 0.22
DisciplinaryFailure: No, SocialSmoker: No AbsenteeismTimeInHours: 2 145 0.24
DisciplinaryFailure: No, SocialSmoker: No, Pet: 0 AbsenteeismTimeInHours: 3 67 0.18
DisciplinaryFailure: No, Son: 0, SocialSmoker:
No, Pet: 0

AbsenteeismTimeInHours: 2 78 0.30

DisciplinaryFailure: No, Education: High School,
SocialSmoker: No, Pet: 0

AbsenteeismTimeInHours: 2 68 0.23

DisciplinaryFailure: No, Education: High School,
SocialDrinker: Yes, SocialSmoker: No, Pet: 0,

AbsenteeismTimeInHours: 8 66 0.27

DiscipinaryFailure: No (SocialSmoker: No) AbsenteeismtimeInHours: 16 19 (17) 0.31 (0.29)
Education: High School (SocialDrinker: Yes) AbsenteeismTimeInHours: 16 (24) 14 (14) 0.26 (0.31)
Pet: 0 (Son: 0) AbsenteeismTimeInHours: 16 8 (14) 0.38 (0.31)
DisciplinaryFailure: Yes, SocialSmoker: No AbsenteeismTimeInHours: 24 18 0.28
Eduction: High School, SocialDrinker: Yes AbsenteeismTimeInHours:24 14 0.31
DisciplinaryFailure: No, Education: High School,
SocialDrinker: Yes, SocialSmoker: No

AbsenteeismTimeInHours:24 14 0.34

DisciplinaryFailure: No, Education: High School,
SocialDinker: Yes, SocialSmoker: No, Pet: 0

AbsenteeismTimeInHours: 16 8 0.27

DayoftheWeek: Wednesday, DisciplinaryFailure:
No, Education: High School, SocialDrinker: Yes,
SocialSmoker: No

AbsenteeismTimeInHours:24 8 0.66

Seasons: Winter, DisciplinaryFailure: No, Edu-
cation: High School, SocialDrinker: Yes, So-
cialSmoker: No, Pet: 0

AbsenteeismTimeInHours: 24 9 0.65

HRA-4
Antecedents Consequents Sup. Conf.
PromotionLast5years: 0 (WorkAccident: 0) Left: Yes 3,552 (3,402) 1 (1)
TimeSpendCompany: 3 (NumberProjects: 2) Left: Yes 1,583 (1,567) 1 (1)
Smoker: No (Salary: Low) Left: Yes 3,567 (2,172) 1(1)
WorkAccident: 0 Left: Yes, Salary: Low 2,077 0.61
TimeSpendCompany: 3 Left: Yes, PromotionLast5Years: 0 1,569 0.99
NumberProjects: 2, TimeSpendCompany: 3 Left: Yes 1,527 1
NumberProjects: 2, WorkAccident: 0 Left: Yes, Smoker: No 581 0.99
WorkAccident: 0, Salary: Low, Left: Yes 2,003 1
WorkAccident: 0, PromotionLast5Years: 0, Salary:
Low

Left: Yes 2,066 1

NumberProjects: 5, TimeSpendCompany: 5, Pro-
motionLast5Years: 0

Left: Yes 420 1

WorkaAccident: 0, PromotionLast5Years: 0 Left: Yes, Salary: Low 2,066 0.60
PromotionLast5Years: 0 (WorkAccident: 0) Left: No 11,128 (9,428) 1 (1)
TimeSpendCompany: 3 (NumberProjects: 3) Left: No 4,884 (3,983) 1(1)
Smoker: No (Salary: Low) Left: No 11,380 (5,144) 1 (1)
WorkAccident: 0 Left: No, PromotionLast5Years: 0 9,200 0.97
TimeSpendCompany: 3 Left: No, PromotionLast5Years: 0 476 0.97
TimeSpendCompany: 3 WorkAccident: 0, Left: No, Promotion-

Last5Years: 0
3,967 0.81

NumberProject: 3, WorkAccident: 0 Left: No, Smoker: No 3,260 0.99
TimeSpendCompany: 4, WorkAccident: 0 Left: No 1,396 1
WorkAccident: 0, PromotionLast5Years: 0, Salary:
Low

Left: No 4,162 1

with a confidence of 85%. In other words, the feature(s) from a rule’s antecedent can
be viewed as implying the features from the consequent.
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The tenth rule found in IBM-1 indicates that the features TravelRarely and Male
are followed by Attrition Yes, and Performance rating 3 respectively. Similarly, the
eighth rule in HRD-2 suggests that when an employee is in Massachusetts (State: MA)
and marked as "Terminated: Yes," is associated with the "Production" department,
and lacks special projects (SpecialProjectsCount: 0), a significant trend is observed.
With a support of 83, this common pattern reflects its prevalence in the dataset. The
confidence of 0.83 further highlights the strong correlation among these attributes,
indicating a 83% likelihood of employee termination when these conditions are met.
For BCC-3, absenteeism time in hours: 0 is found for all rules in Class A.

To gain more insights, the patterns and rules are visualized in Figure 3. One fre-
quent pattern Travel Rarely, Male, Performance Rating: 3, Stock Option Level: 0 is
represented by four dark orange arrows from the blue nodes (features) to the red node
(Figure 3(a)).

For rules, take the example of rule number ten, represented by R10 (Figure 3(b)).
There are three blue nodes TravelRarely, Male and PerformanceRating: 3. These
three nodes along with the yellow node for Attrition: Yes forms a rule where the
antecedents are TravelRarely and Male and the consequents are Attrition: Yes and
PerformanceRating: 3. The antecedent nodes have outgoing arrows toward the R10
node. Similarly there is an outgoing arrow from R10, towards the consequent Perfor-
manceRating: 3 node. For this particular example, the most important feature with
value is Performance Rating of 3, followed by Stock Option Level of 0, Male, Job
Level of 1, Work Life Balance of 3 respectively.

Single
(OG:1, IC:0)

Stock Option Level:0
(OG:4, IC:4)

Attrition
Yes

Male (OG:3, IC: 2)

Performance Rating:3 (OG:8, IC:6)

Work Life Balance:3
(OG:2, IC:2)

Overtime:Yes
(OG:1, IC:0)

Travel Rarely
(OG:2, IC:0)

R & D
(OG:1, IC:0)

Job Level:1
(OG:2, IC:2)

Job Involvement:3
(OG:1, IC:0)

(a) Sequential patterns of features

PerformanceRating:3

R1a

StockOptionLevel:0R1b

TravelRarely

R2a

R2b

R & D

JobLevel:1

R3a
R3b

OverTime:Yes

R6

R8

R7R9
R10

R4

R5

SingleMale

(b) Sequential rules of features

Fig. 3: Graphical representation of frequent sequential patterns and rules discovered
in a dataset (IBM-1, Attrition: Yes). Blue nodes in (a) and (b) represent features and
their values and yellow nodes in (b) represent the class Yes for Attrition. Arrows size
in (a) and yellow color nodes size in (b) is according to the support values. In (a)
OG stands for number of outgoing arrows and IC stands for number of incoming
arrows. Blue color nodes in (a) size is according to number of IG and OG. Arrows
with the same color in (a) represent a pattern. The features with black arrow in (b) are
antecedents and yellow nodes represent a consequent (Attrition: Yes). Yellow arrows
represent the second consequent in the rule. R = rule
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In summary, TKS and ERMiner provide some interesting relationships and de-
pendencies between features and their values. The obtained results indicate that the
effectiveness of SPM algorithms is directly correlated with the total number of fea-
tures in a dataset. SPM algorithms allow one to find not only the frequent features
and their relationships with each other but also the value of features that might play
an important role in employee attrition and absenteeism.

5.2 Classification Results

This section discusses the experimental results for binary and MC classification on
four datasets. The eight classifiers were used in two cases:

Case 1: The original datasets are used in this case without any preprocessing,
meaning all the sequences that contain missing values for features are also consid-
ered. To overcome class imbalance in the datasets, the SMOTE algorithm [54] for
oversampling is used.

Case 2: The frequent sequential patterns of feature values obtained with TKS
are used in the classification process. After pattern discovery, the frequent patterns
are pre-processed to ensure that each pattern contain at least 3 to 4 distinct frequent
feature values.

The two cases are considered to compare the performance of classifiers when
used on the original features and frequent sequential patterns of features.

For the classification in both cases, hyperparameters tuning was used to deter-
mine the best-fit parameters for the eight classifiers. The best hyperparameters for
each classifier were found by varying them iteratively while examining the classi-
fier’s ACC result on the datasets. The parameters for which a classifier achieved the
highest results were selected as its hyperparameters (Table 10).

Table 10: Hyperparamters of each classifier

Model Parameters
MNB α = 1
GNB default (no significant hyperparameters)
DT criterion: gini, splitter: best, max depth: none, min samples split: 2, min samples leaf: 1
RF estimators: 100, criterion: gini, max depth: none, min samples split: 2, min samples leaf: 1

MLP hidden layer size: 600, activation: tanh, optimizer: Adam, α = 0.0001, learning rate:
invscaling, learning rate init: 0.001

SVM C: 1, kernel: rbf, degree: 3, gamma: scale
kNN n neighbors: 2, weight scheme: uniform, algorithm: auto, leaf size: 30,

distance metric: euclidean
LR C: 1, solver: lbfgs, max iterations: 100

Table 11 provides the classification results for case 1 (all features are used for
classification). The format Acc

Time(Sec.) is used for classifiers. For example the entry
51.9
0.10 represents that the classifier MNB achieved an accuracy of 51.9% on IBM-1
and took 0.10 seconds to terminate. The results for HRD-2 is not included in the
table because some classifiers such as SVM, RF achieved 100% accuracy. The main
reasons for this is that HRD-2 contains very few sequences (311) that are insufficient
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for classifiers training. Interestingly, sixe classifiers (MNB, GNB, MLP, SVM, kNN,
LR) performed better without SMOTE. DT and RF performed better when SMOTE
is applied on the datasets. The highest accuracy of 85.5%, achieved by RF, on the
IBM-1 dataset without SMOTE is better than the highest accuracy achieved in studies
[16, 39, 45]. Whereas, the highest accuracy of 90.5%, achieved by RF, on the IBM-1
dataset with SMOTE is better than the highest accuracy achieved in studies [1, 2, 14,
15,22,40,43,44,48–50]. For BCC-3, the highest accuracy of 95.7%, achieved by RF
with SMOTE is better than the highest accuracy achieved in studies [6, 7, 46, 47].

Table 11: Accuracy of the classifiers (Case 1). Binary classification in IBM-1 and
HRA-4, MC classification in BCC-3

without SMOTE
Dataset MNB GNB DT RF MLP SVM kNN LR

IBM-1 51.9 78.8 74.3 85.5 79.9 83.8 81.2 84.4
0.10 0.09 0.55 11.68 3.37 1.09 0.28 5.87

BCC-3 72.4 86.3 82.7 88.1 86.6 86.8 86.6 86.8
0.06 0.07 0.09 3.30 0.58 0.50 0.36 0.85

HRA-4 76.1 68.7 97.7 98.9 95.3 94.8 94.1 79.1
0.17 0.18 0.91 15.11 34.67 188.61 0.83 0.33

Ave. 66.8 77.9 84.9 90.8 87.2 88.4 87.3 83.4
0.11 0.11 0.51 10.3 12.87 63.4 0.49 2.35

with SMOTE
Dataset MNB GNB DT RF MLP SVM kNN LR

IBM-1 55.1 71.8 75.9 90.5 55.8 59.1 76.1 71.7
0.12 0.15 0.91 14.27 8.59 5.74 0.52 6.20

BCC-3 74.0 82.1 94.1 95.7 33.7 46.3 77.9 75.2
0.10 0.07 0.63 11.32 1.67 13.21 0.29 1.32

HRA-4 67.8 64.6 98.0 98.9 95.7 94.6 95.9 79.5
0.24 0.32 2.08 41.26 102.53 781.56 2.07 0.60

Ave. 65.6 72.8 89.3 95.0 61.7 66.6 83.8 75.4
0.15 0.18 1.20 22.28 37.59 266.83 0.96 2.70

RF achieved the highest average accuracy of 95% on all datasets with SMOTE,
and 90.8% on all datasets without SMOTE. The ranking of classifiers on datasets
with SMOTE on the basis of average accuracy is in the order RF > DT > kNN >
LR > GNB > SVM > MNB > MLP. In terms of computational time, GNB and MNB
performed best. The ranking of classifiers on the basis of time is MNB > GNB > kNN
> DT > LR > RF > MLP > SVM. RF performed better than DT, on overall, but RF
was slow compared to DT. The detailed results for RF are listed in Table 12.

In Case 2, the classifiers exhibited notable improvement over Case 1 (see Table
13) by achieving excellent accuracies in all the three datasets. This underscores their
proficiency in achieving remarkable accuracies on datasets with frequent patterns. All
classifiers achieved their highest accuracy with IBM-1 patterns, followed by BCC-3
as compared to HRA-4. On average, the algorithms performed exceptionally well,
with an average accuracy ranging from 95.3% to 99.9% and average runtimes from
0.481 to 127.30 seconds. The ranking of classifiers on the basis of accuracy on pat-
terns discovered by TKS is in the order DT > LR > GNB > RF > SVM > MNB >
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Table 12: Classification results for RF (Case 1)

without SMOTE
Dataset ACC P R F1 AUC
IBM-1 85.5 69.44 15.16 24.38 0.798
BCC-3 88.1 64.6 66.9 64.8 0.864
HRA-4 98.9 99.0 98.0 98.5 0.996

with SMOTE
Dataset ACC P R F1 AUC
IBM-1 90.5 91.5 89.4 89.6 0.968
BCC-3 95.7 95.7 95.7 95.7 0.993
HRA-4 98.9 98.7 98.7 98.7 0.997

Table 13: Classifiers accuracy for sequential patterns (Case 2). Binary classification
in IBM-1 and HRA-4, MC classification in BCC-3

Dataset MNB GNB DT RF MLP SVM kNN LR

IBM-1 100 100 100 100 99.959 100 100 100
0.121 0.078 0.125 3.085 2.855 4.378 0.428 0.251

BCC-3 99.913 100 100 100 99.980 100 99.713 100
1.237 1.712 1.330 27.427 34.578 373.868 8.784 3.946

HRA-4 90.4 96.7 99.7 95.2 86.0 91.2 87.4 97.1
0.085 0.087 0.206 3.591 1.574 3.660 0.407 0.979

Ave. 96.7 98.9 99.9 98.4 95.3 97.1 95.7 99.0
0.481 0.625 0.553 11.367 13.01 127.30 3.20 1.725

Table 14: Classification results for DT (Case 2)

Dataset ACC P R F1 AUC
IBM-1 100 100 100 100 1.0
BCC-3 100 100 100 100 1.0
HRA-4 99.7 99.4 99.4 99.5 0.99

kNN > MLP. MLP performed lowest in both case 1 and case 2. Table 14 lists the
overall results for DT, which performed best on patterns discovered by using TKS.
The results presented in Tables 13 and 14 clearly demonstrate the advantage of us-
ing frequent patterns instead of using all the features in the classification process for
employee attrition.

Lessons learned from the research conducted and obtained results are: (1) discov-
ered sequential patterns and rules in employee data not only provide information for
features that play an important role in employee attrition and absenteeism, but also
about their values. (2) frequent sequential patterns of features and their values can be
used efficiently for classification and detection in place of providing all the features.
Table 3 lists the total number of features considered in each dataset: IBM-1 has 32
features, BCC-3 has 20 features and HRA-4 has 11 features. However, the sequen-
tial patterns discovered by the TKS algorithm contain 9 features for IBM-1 (71.8%
reduction), 13 features for BCC-3 (35% reduction) and 9 features for HRA-4 (18%
reduction).
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5.2.1 Comparison

E(3A)CSPM is compared in this section with state-of-the-art approaches (published
in 2020-2023) for employee attrition and absenteeism classification and detection
(Table 15).

Table 15: E(3A)CSPM comparison with state-of-the-art approaches
Ref. Dataset(s) used Best Learning Model ACC P R F1 AUC
[1] IBM-1 DT+LR 88.43 74 46 57 0.859
[2] IBM-1 XGBoost 87.1 65 37.7 47.7 –
[3] IBM-1 ESM1 97.6 99.8 95.1 97.5 0.975
[13] Selfmade RF 86 – – 85.99 –
[14] IBM-1 LR 87 78.5 66.5 70 –
[15] IBM-1 LR 90.47 – – – –
[16] IBM-1 kNN 84 47 12 18.7 0.79
[17] IBM-1, HRA-4, Selfmade Voting Classifier (VC) 99 – – 91 –
[18] IBM-1 ANN+SVMSMOTE

+BiasInitializer
96 96 96 96 –

[19] IBM-1, HRA-4, Selfmade Deep RF 98.7 99 95.5 97.2 0.99
[20] IBM-1, HRA-4 stacker-top5-RF 99.3 99.1 98 98.5 0.99
[21] SAS NN 85 – 99 59 –
[22] IBM-1 LR 87.96 – – 31.26 85.01
[23] Selfmade EL1 and EL2 94.7 94.7 94.7 94.7 –
[36] IBM-1 Gradient Boosting 95.05 71 71.5 77 –
[37] IBM-1 XGBoost – – – – 0.86
[38] IBM-1 Extra Trees 93 93 93 93 –
[39] IBM-1 Gaussian NB 73.34 32.6 70.76 44.63 –
[40] IBM-1 LR 86.73 63.89 46.94 54.11 0.84
[41] HRA-4 KPCA+AdpK-means

based
96.9 89.1 56.1 – 0.86

[42] IBM-1 LightGBM – – – – 0.83
[43] IBM-1 LR 88.09 88.5 66 48 –
[44] IBM-1 Linear SVC 87.9 66.5 24.7 35.8 –
[45] IBM-1 LR 81 43 82 56 –
[48] IBM-1 LR 87.78 – – – –
[49] IBM-1 XGBoost 87.07 79.8 64.7 68.4 –
[50] IBM-1 AdaBoost 87 78 66.5 70 0.80
[52] ORACLE ERP RF+PCA 99 88 99 93 –
[53] HRA-4 DT+CS 98.6 97.7 96.4 – –
[5] BCC-3 Deep NN 97.5 97 97 97 –
[6] BCC-3 KNN-Chy 92.3 87 68 75 –
[7] BCC-3 MLP 83 – 72.5 – –
[46] BCC-3 Bagging+CFS 92 90 92 – –
[47] BCC-3 Multinomial LR 88 63 63.6 63 –
E(3A)CSPM IBM-1, BCC-3, HRA-4 DT+TKS 99.9 99.73 99.8 99.83 0.996

Majority of prior studies used a single dataset. The maximum number of three
datasets were used in [17, 19]. The bold datasets in column 2 of Table 15 are those
datasets for which the corresponding learning model achieved the best results. For ex-
ample, the study [17] achieved the highest accuracy of 99% on the selfmade dataset
using voting classifier. For binary classification, the study [20] achieved the high-
est accuracy of 99.3%, by using stacker-top5-RF: an ensemble model obtained by
stacking the top five base models with RF as the meta-estimator, followed by [17]
with an accuracy of 99% and [19] with an accuracy of 98.7%. Note that we added
average DT results from this work on three datasets for comparison as it performed
better than other classifiers in case 2. ESM1 in [3] is the ensemble method where
two classifiers (RF and ANN) are used as base models and LR as meta-learner). EL1
and EL2 ensemble learning models of [23] are made of 7 classifiers (GB, RF, NN,
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kNN, SVM, NB, LR) and 3 classifiers (GB, RF, kNN) respectively. The results for the
study [8] are not provided in the table as it evaluated the performance of classifiers
for a different metric (the RMSE).

The study [53] found that DT classifier performed better when Chi-Square (CS)
was used as compared to the Fisher score, Spearman correlation and R coefficient cor-
relation. Similarly, the bagging algorithm performed better in [46] with correlation-
based feature selection (CFS) compared to relief-based and information-gain-based
feature selection algorithms. E(3A)CSPM(DT) results for both binary and MC clas-
sification and their average show that it outperforms other classifiers.

6 Conclusion

A novel SPM-based methodology (called E(3A)CSPM) is presented to analyze and
classify employee attrition and absenteeism. Four diverse public datasets were used to
investigate the effectiveness and generalization ability of E(3A)CSPM. The datasets
were first abstracted, and SPM algorithms were then used to find frequent feature and
their values, their frequent sequential patterns, and their frequent sequential rules.
Discovered frequent patterns of feature values were then used for classification. Eight
classifiers were used, and their performance was evaluated using five metrics. Ob-
tained results suggest that DT performed better than others for binary and MC classi-
fication. From the obtained results, it was observed that limited (or short) sequences,
containing only frequent patterns of feature and their values, can be used for reliable
prediction and classification rather than using all the features. Moreover, E(3A)CSPM
outperformed state-of-the-art approaches for employee attrition and absenteeism clas-
sification and detection.

This study has a number of limitations: (1) Retrospective and static datasets for
employee attrition and absenteeism are analyzed with no guarantee for the standard-
ization of features. The majority of the features in each dataset are different from each
other and have no specific range for values. (2) There is no explanation for how the
data was gathered and made public due to the online nature of the datasets; thus, we
cannot completely rule out information collection bias in the study. (3) Patterns and
rules discovered by algorithms require validation and verification from the industries
and their HR.

In the future, other types of patterns-based classifiers could be developed. In par-
ticular, rules could be used to build an associative classifier. A comparison could then
be done with the approach proposed in this paper based on frequent sequential pat-
terns to compare the classification performance. Another interesting area of research
for future work is to use emerging or contrast pattern mining [62] on the datasets
to find contrasting frequent patterns of feature and their values and use these pat-
terns for analysis and classification. Lastly, another research direction is to use SPM
algorithms on dynamic datasets for employee attrition and absenteeism.

Conflict of Interest: Authors declare no conflict on interest.
Funding: Authors did not receive funding for this work.



26 First Author et al.

References

1. A. Qutub, A. Al-Mehmadi, M. Al-Hssan, R. Aljohani and H.S. Alghamdi. Prediction of Employee At-
trition Using Machine Learning and Ensemble Methods. International Journal of Machine Learning
and Computing, 11(2), 110-114, 2021.

2. S. Gim and E.T. Im. A Study on Predicting Employee Attrition Using Machine Learning. In Proceed-
ings of BCD 2022, vol 1075, pp. 55-69, Springer, 2023.

3. D. Chung, J. Yun, J. Lee and Y. Jeon. Predictive Model of Employee Attrition based on Stacking
Ensemble Learning. Expert Systems with Applications, 215: 119364, 2023.

4. N. Lawrance, G. Petrides and M-A Guerry. Predicting Employee Absenteeism for Cost Effective
Interventions. Decision Support Systems, 147: 113539, 2021.

5. S. A. A. Shah, I. Uddin, F. Aziz, S. Ahmad, M. A. Al-Khasawneh and M. Sharaf. An Enhanced Deep
Neural Network for Predicting Workplace Absenteeism, Complexity, 5843932, 2020.

6. M. Skorikov, M. A. Hussain, M. R. Khan, M. K. Akbar, S. Momen, N. Mohammed and T. Nashin.
Prediction of Absenteeism at Work using Data Mining Techniques. In Proceedings of ICITR, pp. 1-6,
2020.

7. J. M. G. Junior and F. M. Lopes. Interpretability with Relevance Aggregation in Neural Networks for
Absenteeism Prediction. In Proceedings of BHI, pp. 01-04, 2022.

8. B. Hu. The Application of Machine Learning in Predicting Absenteeism at Work. In Proceedings of
CDS, pp. 270-276, 2021.

9. U.S. Bureau of Labor Statistics. Job Openings and Labor Turnover - September 2023, available at:
bls.gov/news.release/pdf/jolts.pdf, accessed on November 17, 2023.

10. K. Navarra. The real costs of recruitment. Society for Human Resource Management, available at:
shrm.org/resourcesandtools/hr-topics/talent-acquisition/pages/the-real-costs-of-recruitment.aspx, ac-
cessed on November 19, 2023.

11. U.S. Bureau of Labor Statistics. Labor force statistics from the current population survey, available
at: https://www.bls.gov/cps/cpsaat47.htm, accessed on November 19, 2023.

12. R. Punnoose and P. Ajit, Prediction of Employee Turnover in Organizations using Machine Learning
Algorithms. International Journal of Advanced Research in Artificial Intelligence, 5(9): C5, 2016.

13. R. Joseph, S. Udupa, S. Jangale, K. Kotkar and P. Pawar. Employee Attrition Using Machine Learning
And Depression Analysis. In Proceedings of ICICCS, pp. 1000-1005, 2021.

14. M. Maharana, R. Rani, A. Dev and A. Sharma, Automated Early Prediction of Employee Attrition in
Industry Using Machine Learning Algorithms. In Proceedings of ICRITO, 2022, pp. 1-6, 2022.

15. G. Raja Rajeswari, R. Murugesan, R. Aruna, B. Jayakrishnan and K. Nilavathy. Predicting Employee
Attrition through Machine Learning. In Proceedings of ICOSEC, pp. 1370-1379, 2022.

16. M. Atef, D. S. Elzanfaly and S. Ouf. Early Prediction of Employee Turnover Using Machine Learning
Algorithms. International Journal of Electrical and Computer Engineering Systems, 13(2): 135-144,
2022.

17. N. B. Yahia, J. Hlel and R. C.-Palacios. From Big Data to Deep Data to Support People Analytics for
Employee Attrition Prediction. IEEE Access, 9: 60447-60458, 2021.

18. S. Soner, A. A. Hussain, R. Khatri, S. K. Kushwaha, S. Mathariya and S. Bhayal. Predictive Deep
Learning approach of employee attrition for imbalance datasets using SVMSMOTE algorithm with
Bias Initializer, PREPRINT, 2022,

19. K. Gurler, B. K. Pak, V. C. Gungor. Deep Learning Based Employee Attrition Prediction. In Proceed-
ings of AIAI, vol 675, 2023.

20. X. Wang and J. Zhi. A machine learning-based analytical framework for employee turnover predic-
tion. Journal of Management Analytics, 8:3, 351-370, 2021.

21. F. K. Alsheref, I. E. Fattoh and W. M. Ead. Automated Prediction of Employee Attrition Using Ensem-
ble Model Based on Machine Learning Algorithms. Computational Intelligence and Neuroscience,
7728668, 2022.

22. F. Guerranti and G. M. Dimitri. A Comparison of Machine Learning Approaches for Predicting Em-
ployee Attrition. Applied Sciences, 13(1): 267, 2023.

23. A. K. Biswas, R. Seethalakshmi, P. Mariappan and D. Bhattacharjee. An Ensemble Learning Model
for Predicting the Intention to Quit among Employees using Classification Algorithms. Decision An-
alytics Journal, 9: 100335, 2023.

24. C. Aggarwal, M. Bhuiyan and M. Hasan. Frequent Pattern Mining Algorithms: A Survey. Springer,
2014.



Analysis and Classification of Employee Attrition and Absenteeism 27

25. P. Fournier-Viger, J. C. W. Lin, R. U. Kiran, Y. S. Koh and R. Thomas. A Survey of Sequential Pattern
Mining. Data Science and Pattern Recognition, 1(1):54-77, 2017.

26. A. I. A. Aldine, M. Harzallah, G. Berio, N. Bèchet, A. Faour. Mining Sequential Patterns for Hyper-
nym Relation Extraction. In Proceedings of the TextMine’19, pp. 21-24, 2019.

27. A. I. A. Aldine, M. Harzallah, G. Berio, N. BÃ©chet, A. Faour. A 3-phase Approach based on sequen-
tial Mining and Dependency Parsing for Enhancing Hypernym Patterns Performance. The Knowledge
Engineering Review, 36: E13, 2021.

28. M. S. Nawaz, P. Fournier-Viger, A. Shojaee, H. Fujita. Using Artificial Intelligence Techniques for
COVID-19 Genome Analysis. Applied Intelligence, 51(5): 3086-3103, 2021.

29. M. S. Nawaz, P. Fournier-Viger, M. Aslam, W. Li, Y. He and X. Niu. Using Alignment-free and Pattern
Mining methods for SARS-CoV-2 Genome Analysis. Applied Intelligence, 53: 21920-21943, 2023.

30. M. Cheng, X. Jin, Y. Wang, X. Wang and J. Chen. A Sequential Pattern Mining Approach to Tourist
Movement: The Case of a Mega Event. Journal of Travel Research, 62(6): 1237-1256, 2023.

31. L. Ni, W. Luo, N. Lu, W. Zhu. Mining the Local Dependency Itemset in a Products Network. ACM
Transactions on Management Information Systems, 11(1):3:1-3:31, 2020.

32. M. S. Nawaz , P. Fournier-Viger, M. Z. Nawaz, G. Chen and Y. Wu. MalSPM: Metamorphic mal-
ware behavior analysis and classification using sequential pattern mining. Computers & Security,
118: 102741, 2022.

33. M Amiri, L. Mohammad-Khanli and R. Mirandola. A Sequential Pattern Mining Model for Appli-
cation Workload Prediction in Cloud Environment. Journal of Network and Computer Applications,
105: 21-62, 2018,

34. H. Estiri, S. Vasey and S. N. Murphy. Transitive Sequential Pattern Mining for Discrete Clinical Data.
In Proceedings of AIME, pp. 414-424, 2020.

35. M. S. Nawaz, P. Fournier-Viger, Y. He and Q. Zhang. PSAC-PDB: Analysis and Classification of
Protein Structures. Computers in Biology and Medicine, 158: 106814, 2023.

36. V. Mehta and S. Modi. Employee Attrition System Using Tree Based Ensemble Method. In Proceed-
ings of C2I4, pp. 1-4, 2021.

37. N. Darapaneni, R. N. Turaga, V. C. Shah, A. R. Paduri, D. Kumar R, M. Suram and V. Venkatraman.
A Detailed Analysis of AI Models for Predicting Employee Attrition Risk. In Proceedings of (R10-
HTC), pp. 243-246, 2022.

38. A. Raza, K. Munir, M. Almutairi, F. Younas, N.M.S. Fareed. Predicting Employee Attrition Using
Machine Learning Approaches. Applied Sciences, 12: 6424, 2022.

39. A. Habous, E. H. Nfaoui and Y. Oubenaalla. Predicting Employee Attrition using Supervised Learning
Classification Models. In Proceedings of ICDS, pp. 1-5, 2021.

40. S. Y. Bansal, B. Kaur and J. R. Saini. A Novel Optimized Approach for Machine Learning Techniques
for Predicting Employee Attrition. In Proceedings of SMART GENCON, pp. 1-9, 2022.

41. G. Pratibha and N. P. Hegde. HR Analytics: Early Prediction of Employee Attrition using KPCA and
Adaptive K-means based Regression. In Proceedings of ICPS, pp. 11-16, 2022.

42. K. Sekaran and S. Shanmugam. Interpreting the Factors of Employee Attrition using Explainable AI.
In Proceedings of DASA, pp. 932-936, 2022.

43. S. Gupta, G. Bhardwaj, M. Arora, R. Rani, P. Bansal and R. Kumar. Employee Attrition Prediction in
Industries using Machine Learning Algorithms. In Proceedings of INDIACom, pp. 945-950, 2023.

44. F. Fallucchi, M. Coladangelo, R. Giuliano and E. William De Luca. Predicting Employee Attrition
Using Machine Learning Techniques. Computers, 9: 86, 2020.

45. S. Najafi-Zangeneh, N. Shams-Gharneh, A. Arjomandi-Nezhad and S. H. Zolfani. An Improved Ma-
chine Learning-Based Employees Attrition Prediction Framework with Emphasis on Feature Selec-
tion. Mathematics, 9: 1226, 2021.

46. Amal Al-Rasheed. Identification of Important Features and Data Mining Classification Techniques in
Predicting Employee Absenteeism at Work. International Journal of Electrical and Computer Engi-
neering, 11(5): 4587-4596, 2021.

47. D. Naganaidu, Z. M. Khalid and S. Govindan. Prediction of Absenteeism at Work with Multinomial
Logistic Regression Model. Advances and Applications in Mathematical Sciences, pp. 1479-1489,
2022.

48. N. Khalifa, M. Alnasheet and H. Kadhem, Evaluating Machine Learning Algorithms to Detect Em-
ployees’ Attrition. In Proceedings of AIRC, pp. 93-97, 2-22, 2022.

49. K. M. Mitravinda and S. Shetty. Employee Attrition: Prediction, Analysis Of Contributory Factors
And Recommendations For Employee Retention. In Proceedings of ICWITE, pp. 1-6, 2022.

50. P. J. Padmaja, D. Vinoodhini and K. Uma. Effective Classification Of Ibm Hr Analytics Employee
Attrition Using Sampling Techniques. In Proceedings of ICAECT, pp. 1-6, 2022.



28 First Author et al.

51. N. Silpa, V. V. R. Maheswara Rao, M. V. Subbarao, R. R. Kurada, S. S. Reddy and P. J. Uppalapati.
An Enriched Employee Retention Analysis System with a Combination Strategy of Feature Selection
and Machine Learning Techniques. In Proceedings of ICICCS, pp. 142-149, 2023.

52. A. B. W. Ali. Prediction of Employee Turn Over Using Random Forest Classifier with Intensive
Optimized PCA Algorithm. Wireless Personal Communications, 119:3365-3382, 2021.

53. K. Naz. I. F. Siddiqui, J. Koo, M. A. Khan and N. M. F. Qureshi. Predictive Modeling of Employee
Churn Analysis for IoT-Enabled Software Industry. Applied Sciences, 12: 10495, 2022.

54. N. V. Chawla, K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer. SMOTE: Synthetic Minority Over-
sampling Technique. Journal Of Artificial Intelligence Research, 16: 321-357, 2002.

55. I. R. White, P. Royston and A. M. Wood. Multiple Imputation using Chained Equations: Issues and
Guidance for Practice. Statistics in Medicine, 30(4): 377-399, 2011.

56. P. Fournier-Viger, A. Gomariz, T. Gueniche, E. Mwamikazi and R. Thomas. TKS: Efficient mining of
top-k sequential patterns. In: Proceedings of ADMA, pp. 109-120, 2013.

57. P. Fournier-Viger, T. Gueniche, S. Zida, and V. S. Tseng. ERMiner: Sequential rule mining using
equivalence classes. In Proceedings of IDA, pp. 108-119, 2014.

58. C. C. Aggarwal. Data Classification Algorithms and Applications. 1st Edition, CRC Press, 2015
59. R. J. Urbanowicz and W. N. Browne. Introduction to Learning Classifier Systems. 1st Edition,

Springer, 2017.
60. P. Fournier-Viger, J. C.-W. Lin, A. Gomariz, T. Gueniche, A. Soltani, Z. Deng H. T. Lam. The SPMF

Open-Source Data Mining Library Version 2. In Proceedings of ECML/PKDD, pp. 36–40, 2016.
61. O. Kramer. Scikit-Learn. In: Machine Learning for Evolution Strategies. Studies in Big Data, vol 20.

Springer, 2016.
62. S. Ventura and J. M. Luna, Supervised Descriptive Pattern Mining. Springer, 2018.




