
An Evolutionary/Heuristic-Based Proof Searching
Framework for Interactive Theorem Prover

M. Saqib Nawaza, M. Zohaib Nawazb,c, Osman Hasanb, Philippe
Fournier-Vigera,∗, Meng Sund

aSchool of Humanities and Social Sciences, Harbin Institute of Technology (Shenzhen),
Shenzhen, China

bSchool of Electrical Engineering and Computer Science, National University of Sciences
and Technology (NUST), Islamabad, Pakistan

cDepartment of Computer Science and IT, University of Sargodha, Sargodha, Pakistan.
dSchool of Mathematical Sciences, Peking University, Beijing, China

Abstract

The proof development process in interactive theorem provers (ITPs) requires
the users to manually search for proofs by interacting with proof assistants. The
activity of finding the correct proofs can become quite cumbersome and time
consuming for users. To make the proof searching process easier in proof as-
sistants, we provide an evolutionary/heuristic-based framework. The basic idea
for the framework is to first generate random proof sequences from a population
of frequently occurring proof steps that are discovered with sequential pattern
mining. Generated proof sequences are then evolved till their fitness match
the fitness of the target (or original) proof sequences. Three algorithms based
on the proposed framework are developed using the Genetic Algorithm (GA),
Simulated Annealing (SA) and Particle Swarm Optimization (PSO). Extensive
experiments are performed to investigate the performance of the proposed algo-
rithms using the HOL4 proof assistant. Results have shown that the proposed
algorithms can efficiently evolve the random sequences to obtain the target se-
quences. In comparison, PSO performed better than SA and SA performed
better than GA. In general, the experimental results suggest that combining
evolutionary/heuristic algorithms with proof assistants allow efficient support
for proof finding/optimization.

Keywords: Fitness, Genetic Algorithm, HOL4, Particle Swarm Optimization,
Proof Searching Framework, Simulated Annealing

∗Corresponding author
Email addresses: msaqibnawaz@hit.edu.cn (M. Saqib Nawaz),

mnawaz.mscs16seecs@seecs.edu.pk (M. Zohaib Nawaz), osman.hasan@seecs.edu.pk
(Osman Hasan), philfv8@yahoo.com (Philippe Fournier-Viger), sunmeng@math.pku.edu.cn
(Meng Sun)

Preprint submitted to Applied Soft Computing August 23, 2025

Phil
Text Box
Preprint of:
Nawaz, M.S., Nawaz, M.Z., Hasan, O, Fournier-Viger, P., Sun, M. (2021). An Evolutionary/Heuristic-Based Proof Searching Framework for Interactive Theorem Prover. Applied Soft Computing, Elsevier. 104: 107200

1. Introduction

Theorem proving is a popular formal verification method that is used for the
analysis of both hardware and software systems. Theorem proving consists of
two main activities: (1) Using appropriate mathematical logic for the modeling
of systems that need to be analyzed, and (2) Proving important/critical prop-
erties for the system using theorem provers [25] based on deductive reasoning.
The initial objective to develop theorem provers was to enable mathematicians
to develop formal proofs for theorems using computer tools. Thus, theorem
provers allowed mathematicians to set up mathematical theories, define impor-
tant properties and do logical reasoning to verify the properties. However, these
mechanical tools have evolved in the last two decades and now play a critical
part in the modeling and reasoning about complex and large-scale systems, par-
ticularly safety-critical systems. Today, theorem provers are used in verification
projects that range from compilers, operating systems and hardware compo-
nents to prove the correctness of large mathematical proofs such as the Kepler
conjecture and the Feit-Thomson theorem [30].

There are two main classes of theorem provers: Automated theorem provers
(ATPs) and interactive theorem provers (ITPs). ATPs are based on proposi-
tional and first-order logic (FOL). They deal with the development of computer
tools that can automatically perform logical reasoning. However, the main lim-
itation of ATPs is their inability to model and reason about complex systems
as the logic they use is FOL, which is less expressive in nature. Additionally,
the problem of search space (combinatorial) explosion does not allow ATPs to
be scaled to the large mathematical libraries. ITPs, on the other hand, are
based on higher-order logic (HOL). Compared to FOL, HOL allows rich logical
formalisms and provides ITPs the expressiveness that is required to define and
reason about complex systems. However, this expressive power leads to the un-
decidability problem in ITPs, i.e., the reasoning process cannot be made fully
automated in HOL and some sort of human guidance is always needed during
the process of proof searching and development. This is the reason that ITPs
are also known as proof assistants. Some well-known proof assistants are HOL4
[58], Coq [6], Isabelle/HOL [50], PVS [52] and Lean [10].

In ITPs, the user guides the proof process by providing the proof goal and
by applying proof commands and tactics to prove the goal [66]. Generally, the
user in ITP needs to add mathematical details and carry out lots of repetitive
work while verifying a non-trivial theorem (proof goal) [20, 45]. This heavy
interaction makes the overall proving process a laborious and a time consuming
activity for a user. For example, the list of formalizing 100 classic mathematical
theorems using ITPs is maintained at [63].The writing and verification process
for many of these theorems required several months or even years to complete
(approximately 20 years for the Kepler conjecture proof in HOL Light [24] and
twice as much for the Feit-Thompson theorem in Coq [21]) and the complete
proofs contain thousands of low-level inference steps. Other real-life systems
where ITPs are used for the analysis and verification include the compilers
[39, 40], microkernels [23, 37], distributed systems [64], file systems [4, 9] and

2

conference system [34].
The specifications and proof goals for a given system or problem is collec-

tively called a theory in ITPs. Developing the formal proof for a goal mainly
depends on the specifications available in a theory or a set of theories along with
different combinations of existing proof commands, inference rules, intermediate
states and tactics. Thus, the proof development process is a search problem,
where the aim is to find a sequence of deductions that leads from presumed facts
to the given conjecture (unproved proof goal). However, a theory often contains
many definitions and theorems [8, 32], so it is quite inefficient to apply a brute
force or pure random search based approach for proof searching. This makes
proof guidance and proof automation along with proof searching an extremely
desirable feature for ITPs. The proof scripts for theories in ITPs can be com-
bined together to develop a more complex computer-understandable corpora.
With the recent evolution in computing systems, it is now possible to use ar-
tificial intelligence (AI) techniques, such as machine learning, data mining and
deep learning, on such corpora for guiding the proof search process, for proof
automation and for the development of proof tactics/strategies, as indicated in
several studies [3, 14, 19, 30, 31, 48, 69]. Recent studies [5, 27, 41, 53, 55, 59, 66]
focused on developing large-scale datasets and learning environments, based on
machine learning and neural networks, to search for proofs and to automate the
interaction in different ITPs.

For proof searching and optimization in HOL4, we proposed an evolutionary
approach [49]. The basic idea of the approach was to use a Genetic Algorithm
(GA) for proof searching where an initial population (a set of potential solu-
tions) is first created from frequent HOL4 proof steps that are discovered using a
sequential pattern mining (SPM)-based proof guidance approach [48]. Random
proof sequences from the population are then generated by applying two GA op-
erators (crossover and mutation). Both operators randomly evolve the random
proof sequences by shuffling and changing the proof steps at particular points.
This process of crossover and mutation continues till the fitness of random proof
sequences match the fitness of original (target) proofs for the considered theo-
rems/lemmas. The reason for using different crossover and mutation operators
was to compare their effect on the overall performance of GAs in proof search-
ing. The approach was successfully used on six theories taken from the HOL4
library. This proof searching approach [49] was quite efficient in evolving ran-
dom proofs efficiently. However, alternative proof searching approaches could
be developed. Thus efforts are made in this work to further investigate the ap-
plicability of evolutionary and heuristic techniques in the HOL4 proof assistant.
This paper extends the work published in [49] with the following contributions:

1. Two heuristic-based approaches are proposed, where Simulated Annealing
(SA) and Particle Swarm Optimization (PSO) are used for proof searching
and optimization in HOL4. The performance of SA and PSO are compared
with that of GA [49] for various parameter values. It is found that both
SA and PSO perform better than GA for proof finding and optimization
and PSO further outperforms SA. Moreover, we elaborate on how pure

3

random search and brute force approach are not suitable for this task.

2. The Headless Chicken Test is performed to examine the usefulness of
crossover operators in GA [49]. In the test, GA with normal crossovers
are compared with the same GA that employs the randomized version
of the crossovers. It is observed that GA with normal crossovers and
GA with random crossovers perform similarly with negligible difference.
Moreover, convergence speed of the proposed proof searching approaches
is investigated.

3. For experimental evaluation, we have selected 14 theories from the HOL4
library out of which, we selected 300 different theorems and lemmas in
total. All three approaches are used on these theories and the detailed
results are presented in this paper.

The rest of this paper is organized as follows: Section 2 briefly discusses the
HOL4 theorem prover. Section 3 provides a brief introduction for the evolution-
ary/heuristic algorithms (GA, SA, and PSO). Section 4 presents the proposed
proof searching approaches, where GA, SA and PSO are used to find and opti-
mize random HOL4 proofs. Evaluation of the proposed approaches on different
theories of the HOL4 library is presented in Section 5. Section 6 discusses the
related work. Finally, Section 7 concludes the paper while highlighting some
future directions.

2. HOL4

HOL4 [58], the successor of HOL98, is a member of the HOL theorem prover
family. Other three members of the family are HOL Light, ProofPower and
HOLZero. HOL4 utilizes the simple type theory along with Hindley-Milner
polymorphism for the implementation of HOL. The logic in HOL4 is represented
in the meta language (ML), which is a strongly-typed functional programming
language. Theorems/lemmas are defined using the ML abstract data types and
the only way to interact with the HOL4 proof assistant is by executing ML
procedures that operate on values of these data types. A theory in HOL4 is a
collection of definitions, axioms, types, theorems and proofs, as well as tactics
[2]. Users can reload a theory into the HOL4 and can use the corresponding
definitions and theorems in the theory right away. Here, we provide a simple
example of the factorial function as a case study.

The factorial, denoted as !, of a positive integer n returns the product of all
positive integers that are less than or equal to n. Mathematically, factorial for
n can be defined as:

n! =

{
1 n = 0

n× (n− 1)! n > 0

For example, factorial of 6! = 6 × 5 × 4 × 3 × 2 × 1 = 720. Whereas 0!
equal 1. This definition is recursive as a factorial is defined in terms of another
factorial. In HOL4, factorial function can be specified recursively as:

4

val factorial_def = Define ‘(factorial 0 = 1) /\

(factorial(SUC n) = (SUC n)*(factorial n))’;

The term SUC n in the HOL4 specification for factorial function represents
successor of n, i.e., n + 1. Recursive definitions in HOL4 generally consist of two
parts: (1) a base case, and (2) a recursive case. For the factorial function, the
base case is factorial 0 = 1, which directly tells us the answer. The recursive case
is factorial(n+1) = (n+1)*(factorial n). The recursive case does not provide us
the answer, but defines how to construct the answer for the factorial of (n+ 1)
on the basis of the answer of factorial of n. The base and the recursive cases
are connected with a conjunction (∧). An elaborative example for the factorial
function that calculates the factorial of 3 is provided for better understanding
as follows: factorial 3 = 3 * factorial 2 = 3 * (2 * factorial 1) = 3 * (2 * (
1 * factorial 0)) = 3 * (2 * (1 * 1))) = 6.

In HOL4, a new theorem is given to the HOL proof manager via the ML
function g, which starts a fresh goalstack. For the factorial function, suppose we
want to prove that for any natural number n, the factorial function will always
be greater than 0, i.e., ∀n. (0 < factorial n). Using g and the HOL notation,
this statement can be specified as:

g‘!(n:num). (0 < factorial n)’

Theorems/lemmas can be proved in HOL4 by two ways: (1) forward method
and (2) backward method. In the forward proof method, the user starts with
previously proved theorems and applies inference rules to get the proof of new
theorem. A backward (also called goal directed proof) method is the reverse of
the forward proof method. It is based on the concept of a tactic; which is an
ML function that divides the main goal into simple sub-goals. In this method,
the user starts with the desired theorem (a main goal) and specifies tactics to
reduce it to simpler intermediate sub-goals. The above steps are repeated for
the remaining intermediate goals until the user is left with no more sub-goals
and this concludes the proof for the desired theorem.

The aforementioned theorem for factorial is proved using the backward proof
method. The first step is to remove the forall-quantifiers using the GEN TAC

tactic. The second step is to apply induction on natural number n. This divides
the main theorem (proof goal) into two sub-goals. The base case (first sub-goal)
is proved by using the RW TAC tactic with the definition of factorial function.
For the recursive case (second sub-goal), RW TAC is again used to expand the
factorial definition with respect to its specifications. In the arithmeticTheory,
there is a theorem called LESS MULT2 that proves that for any two natural
numbers (n and m), their product (multiplication) will always be greater than
0, i.e., ∀n,m. (0 < n×m). MATCH MP TAC is used with LESS MULT2 to
further simplify the sub-goal, which is then proved by using the RW TAC. The
complete proof steps for the theorem are as follows:

e (GEN_TAC)

5

e (Induct_on ‘n‘);

e (RW_TAC std_ss [factorial_def]);

e (RW_TAC std_ss [factorial_def]);

e (MATCH_MP_TAC LESS_MULT2);

e (RW_TAC std_ss []);

where e is an ML function that is used in HOL4 before applying any proof
step/tactic.

3. Evolutionary/Heuristic Algorithms

Evolutionary and heuristic algorithms optimize a given problem by itera-
tively improving the candidate solutions with respect to a given measure of
quality (objective function). These algorithms are now used to solve not only
the optimization problems, but are popular in various other fields too, such as
bioinformatics, scheduling applications, artificial intelligence, robotics and con-
trol engineering. Next, we describe the evolutionary/heuristic algorithms that
we use in this work.

3.1. Genetic Algorithms

GAs [26, 44], that are based on biological evolution principles, can explore a
huge search space (population) to find near optimal solutions to complex prob-
lems. The four main steps of a GA are: (1) population generation, (2) selection
of candidate solutions from a population, (3) crossover and (4) mutation. Can-
didate solutions in a population are known as chromosomes (or individuals),
which are typically finite sequences or strings (x = x1, x2 ..., xn). Each xi
(genes) refers to a particular characteristics of the chromosome. For a specific
problem, GA starts by randomly generating a set of chromosomes to form a
population. It then iteratively evolves the chromosomes with two operators and
evaluates them using a fitness function f . The function generally takes a chro-
mosome as parameter and finds a score that indicates how good the candidate
solution is.

The crossover operator in GA plays an important role and is used to guide
the search toward the best solutions. A crossover operator combines two se-
lected chromosomes (called parents chromosomes) to produce potentially bet-
ter chromosomes (called child chromosomes). If appropriate crossing point(s)
are chosen, then the combination of sub-chromosomes (also known as building
blocks) from parents may produce better childs. The mutation operator is ap-
plied to a parent chromosome and carries out some random changes to one or
more genes. The mutation process may transform a solution into a better solu-
tion. The main purpose of this operator is to introduce and preserve diversity
of the population so that a GA can avoid local minima. Both crossover and
mutation operators help GAs to make progress during the evolution and search
process.

6

3.2. Simulated Annealing

Simulated annealing (SA) [7, 11] is a well-known metaheuristic method to
solve both unconstrained and bound-constrained optimization problems. SA is
based on the analogy of physical annealing, which is the process of heating and
then slowly cooling a metal to obtain a strong crystalline. The four main steps
of SA to solve any problem are: (1) problem configuration, (2) neighborhood
configuration, (3) objective function and (4) cooling/annealing schedule. More
specifically, SA starts by creating a random initial solution. In each iteration,
the current solution is replaced by a random ”neighbor” solution. The neighbor
solution is selected if it is better than the previous solution or with a probability
that depends on the difference between the corresponding function values and
on a global parameter T (called the temperature), whose value is decreased
gradually after each iteration.

For some optimization and computational problems, SA performs better
than GA because it can find the optimal solution with point-by-point iteration
rather than a search over a population of solutions. On the other hand, SA is
very similar to the Hill-Climbing algorithm with one main difference: at high
temperature, SA switches to a worse neighbor that helps in avoiding the local
optima.

3.3. Particle Swarm Optimization

Particle swarm optimization (PSO) [36] is a population-based stochastic op-
timization algorithm. The development of PSO was inspired from the behavioral
nature of collective fish schooling and birds flocking. In PSO, each individual
(called particle) can roam around in the search space with a velocity factor that
constantly gets updated by each particle’s personal experience and the experi-
ence of the best particle (which, in most cases, is a neighbor). The four main
steps of PSO are: (1) initialization of parameters and swarm positions, (2) up-
dating the fitness of each swarm particle, (3) updating pbest and gbest and (4)
updating the particles’ velocity and position.

For a specific problem, PSO starts by randomly distributing a set of parti-
cles in the search space and evaluates these particles using a fitness function.
The function takes a particle as input and returns a score indicating how good
the particle is (i.e. how close it is to the problem’s goal). In each iteration,
the particles are updated while keeping track of the following two parameters:
(1) the best solution of every particle (known as local best (pbest)), and (2) the
best fitness value (known as global best (gbest)) that is obtained so far, among
all neighbors. Particles gradually move towards the optimum solutions by ex-
changing information with each other through pbest, gbest and a velocity factor.
In this paper, we use GA, SA and SPO for the problem of proof searching in
HOL4 and more details about them are provided later in Section 4.

4. Proposed Proof Searching Framework

We propose a generic evolutionary/heuristic-based framework that can be
used to find and optimize the proofs of theorems/lemmas in HOL4. We name

7

this framework PSF and its schematic is shown in Figure 1.

Begin

Create an initial population
from HOL4 proof steps

Random generation of proof
sequence(s) from population

Stopping
Criteria

N

Evolve random
proof sequence(s)

Determine fitness of the
evolved sequence(s)

Generation = Generation + 1

Generation = 0

Y

Figure 1: The proposed proof searching framework (PSF)

The interactive proof development process in HOL4 follows the lambda cal-
culus proof representation. Formal proofs in HOL4 are built with an interactive
goal stack and then put together using the ML function prove. A user first
provides the property (in the form of a lemma or theorem) that is called a
proof goal. A proof goal is a sequent that constitutes a set of assumptions and
conclusion(s) as HOL formulas. Then the user cooperates with the HOL4 proof
assistant and applies proof commands and tactics to solve the proof goal. HOL4
also offers automatic proof procedures. A tactic in HOL4 is a function that takes
a proof goal and returns a sub-goal(s) together with a validation function. The
action resulting from the application of a proof command and tactics is referred
to as a HOL4 proof step (HPS). A HPS may either prove the goal or generate
another proof goal or divide the main goal into sub-goals. The proof develop-
ment process for a theorem or lemma is completed when the main goal or all the
sub-goals are discharged from the goal stack. The fact that the complete proof
script of a particular theorem or lemma depends on the application of the HPS
in a specific order makes automatic proof searching for a goal quite challenging.
However, evolutionary and heuristic algorithms have the potential to search for
the proofs of theorems/lemmas due to their ability to handle black-box search
and optimization problems.

We propose to convert the data available in HOL4 proof files to a proper
computational format so that evolutionary/heuristic algorithms can be used.
Moreover, the redundant information (related to HOL4) that plays no part in

8

proof searching and evolution is removed from the proof files. The complete
proof for a goal (theorem/lemma) can now be considered as a sequence of HPS.
Let PS = {HPS1, HPS2, . . . HPSm} represent the set of HPS proof steps.
A proof step set PSS is a set of HPS, that is PSS ⊆ PS. Let the nota-
tion |PSS| denote the set cardinality. PSS has a length n (called n-PSS) if
it contains n proof commands, i.e., |PSS| = n. For example, consider that
PS = {FULL SIMP TAC, PROVE TAC, RW, DISCH TAC, REPEAT GEN TAC,

REWRITE TAC}. Now, the set {FULL SIMP TAC, RW, DISCH TAC, REWRITE

TAC} is a proof step set that contains four HPS. A proof sequence is a list of
proof step sets S = 〈PSS1, PSS2, ..., PSSn〉, such that PSSi ⊆ PSS (1 ≤ i ≤
n). For example, 〈{FULL SIMP TAC, PROV E TAC}, {RW}, {DISCH TAC,

REPEAT GEN TAC, REWRITE TAC}〉 is a proof sequence, which has three
PSS and six HPS that are used to prove a theorem/lemma.

A proof dataset PD is a list of proof sequences PD = 〈S1, S2, ..., Sp〉, where
each sequence has an identifier (ID). For example, Table 1 shows a PD that has
five proof sequences.

Table 1: A sample proof dataset

ID Proof Sequence
1 〈{MP TAC, CONJ TAC, GEN TAC}〉
2 〈{X GEN TAC, PROVE TAC, GEN TAC}〉
3 〈{RW, AP TERM TAC, MAP EVERYTHING TAC, CONJ TAC, PROVE TAC}〉
4 〈{CASES TAC, DISCH TAC, SUBGOAL THEN, CASES ON, BETA TAC,

AP TERM TAC, GEN TAC}〉
5 〈{SRW TAC, Q.SUBGOAL THEN, SUBST1 TAC, RW TAC, FULL SIMP TAC}〉

4.1. PSF-GA

Algorithm 1 presents the pseudocode of the proposed PSF-GA that is used
to find proofs in the HOL4 theories. It contains the HPS used for the verification
of theorems and lemmas in the considered theories.

An initial population (Pop) is first created from frequent HPS (FHPS) that
are discovered with various sequential pattern mining (SPM) techniques [15].
From the initial population, two random proof sequences (P1 and P2) are gen-
erated. Both P1 and P2 go through the crossover operation where the child
proof sequences are generated and their fitness are evaluated. The child having
the better fitness value goes through the mutation operation that generates one
mutated child sequence. If the fitness of the mutated child sequence is equal
to the fitness of the target proof sequence from PD, then the mutated child is
returned as the final proof sequence. The process of crossover and mutation
continues until randomly generated proof sequences exactly match the proof
sequences from the PD. The fitness values guide the GA toward the best so-
lution(s) (proof sequences). Here the fitness value represents the total number
of HPS in the random proof sequence that match the HPS in the position of

9

Algorithm 1 Flow of the GA

Input: FHPS: Frequent HOL proof steps, PD: proof sequences database
Output: Generated proof sequences

1: Pop ← FHPS
2: for each P ∈ PD do
3: P1 ← randomseq(Pop, length(P))
4: P2 ← randomseq(Pop, length(P)) . P1 6= P2

5: repeat
6: C ← Crossover(P1, P2, P)
7: Child←Mutation(C)
8: if Fitness(Child, P) < Fitness(P, P) then
9: repeat

10: else
11: bF itness← Fitness(Child, P)
12: bChild← Child
13: end if
14: until (Fitness(Child, P) = Fitness(P, P))
15: return bF itness, bChild
16: end for

Algorithm 2 Fitness

Input: Pseq: A proof sequence, P: The current target proof sequence
Output: Integer that represents the fitness of a proof sequence (Pseq)

1: procedure Fitness(Pseq, P)
2: i, f ← 0
3: while (i ≤ length(Pseq) - 1) do
4: if (Pseq[i] = P[i]) then
5: f ← f + 1
6: end if
7: i← i+ 1
8: end while
9: return f

10: end procedure

the original (target) proof sequence. Algorithm 2 presents the procedure for
calculating the fitness value of a proof sequence.

In each generation of GA, the priority of the randomly generated proof
sequences are ranked according to the fitness values calculated through the
procedure listed in Algorithm 2. This procedure evaluates the resemblance of
a given solution to the optimum solution (in our case, the target solution) by
comparing each gene i of a random proof sequence (Pseq) with the genes of the
target (P). The fitness (represented as f) is set to 0 initially and increased by 1
if the genes in Pseq and P are equal. This is explained with a simple example.
Consider the following random proof sequence (RP) and the target sequence
(TP):

10

RP = RULE ASSUM TAC, X GEN TAC, MAP EVERYTHING TAC,
DISCH TAC, AP TERM TAC, SRW TAC, RW TAC, DECIDE TAC

TP = X GEN TAC, X GEN TAC, COND CASES TAC, REAL ARITH TAC,
AP TERM TAC, RULE ASSUM TAC, RW TAC, POP ASSUM

The Fitness procedure returns 3 as three HPS are the same in both se-
quences (at Positions 2, 5 and 7 respectively).

Algorithm 3, 4 and 5 present the pseudocode of the three crossover operators.
The symbol o in these algorithms represents the concatenation. Simple examples
are used next to explain these three crossover operators. Let P1 and P2 be:

P1 = MAP EVERYTHING TAC, SRW TAC, AP TERM TAC, X GEN TAC,
DISCH TAC, RULE ASSUM TAC, RW TAC, DECIDE TAC

P2 = POP ASSUM, REAL ARITH TAC, COND CASES TAC, X GEN TAC,
RULE ASSUM TAC, RW TAC, AP TERM TAC, X GEN TAC

Consider that both sequences have the same length, denoted as n. Let one
position cp (1 ≤ cp ≤ n) be randomy chosen as crossing point. For cp = 5,
single point crossover (SPC) generates the following child sequences for P1 and
P2:

P ′1 = MAP EVERYTHING TAC, SRW TAC, AP TERM TAC, X GEN TAC,
DISCH TAC, RW TAC, AP TERM TAC, X GEN TAC

P ′2 = POP ASSUM, REAL ARITH TAC, COND CASES TAC, X GEN TAC,
RULE ASSUM TAC, RULE ASSUM TAC, RW TAC, DECIDE TAC

Child proof sequences fitness values are then checked and SPC returns the
child proof sequence with the highest fitness value.

Algorithm 3 Single Point Crossover

Input: P1, P2: Two proof sequences, P: The current target proof sequence
Output: Child proof sequence

1: procedure SPC(P1, P2, P)
2: size← min(length(P1), length(P2))
3: cp← randomint(1, size) . (1 ≤ cp ≤ size)
4: P1 ← P1[1, cp] o P2[cp+ 1, length(P2)]
5: P2 ← P2[1, cp] o P1[cp+ 1, length(P1)]
6: if (Fitness(P1, P) > Fitness(P2, P) then
7: return P1

8: else
9: return P2

10: end if
11: end procedure

With the multi point crossover (MPC) operator, two crossing points are
selected. Let cp1 and cp2 represent two crossing points (1 ≤ cp1 < cp2 ≤ n).
For cp1 = 3 and cp2 = 5, the new child proof sequences generated by MPC for
P1 and P2 are:

11

P ′1 = MAP EVERYTHING TAC, SRW TAC, AP TERM TAC, X GEN TAC,
RULE ASSUM TAC, RULE ASSUM TAC, RW TAC, DECIDE TAC

P ′2 = POP ASSUM, REAL ARITH TAC, COND CASES TAC, X GEN TAC,
DISCH TAC, RW TAC, AP TERM TAC, X GEN TAC

The fitness of child proof sequences are evaluated last and MPC returns the
child proof sequence that has the highest fitness value.

In uniform crossover (UC), each element (gene) of the proof sequences is
assigned to the child sequences with a probability value p. For two parent
sequences, if p is 0.5, then the child sequences will have approximately half of
the genes from the first parent and the other half from the second parent. Two
child proof sequences for P1 and P2 after UC with p = 0.5 are:

P ′1 = MAP EVERYTHING TAC, REAL ARITH TAC, COND CASES TAC,
X GEN TAC, DISCH TAC, RW TAC, RW TAC, X GEN TAC
P ′2 = POP ASSUM, SRW TAC, AP TERM TAC, X GEN TAC,

RULE ASSUM TAC, RULE ASSUM TAC, AP TERM TAC, DECIDE TAC

The randomized nature of UC and the probability can generate different
child in different runs. Finally, the fitness of child proof sequences are checked
and the UC returns the child with the high fitness value.

Algorithm 4 Multi Point Crossover

Input: P1, P2: Two proof sequences, P: The current target proof sequence
Output: Child proof sequence

1: procedure MPC(P1, P2, P)
2: size← min(length(P1), length(P2))
3: cp1 ← randomint(1,size)
4: cp2 ← randomint(1,size)
5: if cp2 > cp1 then
6: cp2 ← cp2 + 1
7: else
8: cp2 ← cp1
9: cp1 ← cp2

10: end if
11: P1 ← P1[1, cp1] o P2[cp1 + 1, cp2] o P1[cp2 + 1,length(P1)]
12: P2 ← P2[1, cp1] o P1[cp1 + 1, cp2] o P2[cp2 + 1,length(P2)]
13: if (Fitness(P1, P) > Fitness(P2, P) then
14: return P1

15: else
16: return P2

17: end if
18: end procedure

In GAs, the mutation operation is used after the crossover operation. The
standard mutation (SM) operator can add random information to the search
and evolution process to avoid getting stuck in a local optimum. Algorithm

12

Algorithm 5 Uniform Crossover

Input: P1, P2: Two proof sequences, P: The current target proof sequence
Output: Child proof sequence

1: procedure UC(P1, P2, P)
2: size← min(length(P1), length(P2))
3: p← 0.5
4: for i in range(size) do
5: if unifromreal[0,1] ≤ p then
6: P1[i]← P2[i]
7: P2[i]← P1[i]
8: end if
9: end for

10: if (Fitness(P1, P) > Fitness(P2, P) then
11: return P1

12: else
13: return P2

14: end if
15: end procedure

6 presents the pseudocode for the SM operator. It first selects a location and
changes it with some probability (called mutation probability) denoted as pm.
Here for a proof sequence, a randomly chosen genes value i is replaced by a
random HPS from the Pop. For example, a mutation of P1 is:

P ′1 = MAP EVERYTHING TAC, SRW TAC, AP TERM TAC, X GEN TAC,
REWRITE TAC, RULE ASSUM TAC, RW TAC, DECIDE TAC

Algorithm 6 Standard Mutation

Input: P1: A proof sequence
Output: Mutated child proof sequence

1: procedure SM(P1)
2: ind← randomint(1, length(P1))
3: alter ← randomsample(Pop, 1) . (1-length proof sequence form Pop)
4: P1[ind]← alter . (P1[ind] 6= alter)
5: return P1

6: end procedure

The pairwise interchange mutation (PIM) operator, a variant of SM, selects
and interchanges two arbitrary genes in a proof sequence. But for proof search-
ing, we empirically observed that a GA was unable to find the target proof
sequence with PIM. The reason was that PIM only interchanges the genes at
two selected locations in the random proof sequence. To address this problem,
we revised the PIM procedure such that the two selected gene values are replaced
by random HPS from the population rather than interchanging the values. For

13

instance, with modified PIM (listed in Algorithm 7) on the proof sequence P1,
the following mutated proof sequence can be obtained:

P ′1 = MAP EVERYTHING TAC, SRW TAC, RW, X GEN TAC, DISCH TAC,
RULE ASSUM TAC, REWRITE TAC, DECIDE TAC

Algorithm 7 Modified Pairwise Interchange Mutation

Input: P1: A proof sequence
Output: Mutated child proof sequence

1: procedure MPIM(P1)
2: mp1 ← randomint(1, length(P1))
3: mp2 ← randomint(1, length(P1)) . mp1 6= mp2
4: ng, alter ← randomsample(Pop, 2)
5: P1[mp1]← ng . (P1[mp1] 6= ng)
6: P1[mp2]← alter . (P1[mp2] 6= alter)
7: return P1

8: end procedure

The main reason of using more than one crossover and mutation operators
is to investigate their effect on the overall performance of the PSF-GA. Note
that random proof sequence(s) goes through crossover and mutation operators
with a probability of 1 in each generation. This reduces the total number of
iterations performed by the PSF-GA.

4.1.1. Illustrated Example

Table 1 is used to explain the working of PSF-GA. In Table 1, we have five
proof sequences and the population (Pop) contains 18 distinct HPS. Consider
the original proof sequence P = GEN TAC, CONJ TAC, MP TAC and Fitness(P ,
P) = 3. Two random proof sequences (P1 and P2) are generated from the Pop.
Suppose that P1 = PROVE TAC, CASES TAC, DISCH TAC and P2 = GEN TAC,

MP TAC, RW. Then assume that SPC is used for crossing with cp = 2. New
proof sequences are obtained as P1 = PROVE TAC, CASES TAC, RW and P2 =

GEN TAC, MP TAC, DISCH TAC. As one HPS at the first position is the same
in P and P2, so Fitness(P2, P) = 1 and Fitness(P1, P) = 0. Thus, P2 is selected
for the mutation operation.

Suppose that SM is selected and the random number ind = 3 is generated,
and a randomly selected HPS from Pop is alter = MP TAC. So new P2 =

GEN TAC, MP TAC, MP TAC. Now two HPS are the same in P and P2 (at
the first and third position). Hence, Fitness(P2, P) = 2. As Fitness(P , P) >
Fitness(P2, P), so the new P1 and P2 will again go through the crossover and
mutation operations. This process continues till the fitness of one random proof
sequence (either P1 or P2) matches with the fitness of P .

4.2. PSF-SA

Algorithm 8 presents the pseudocode of the PSF-SA that is used to find the
proofs in HOL4 theories. As for PSF-GA, an initial population (Pop) is first

14

created from FHPS in PSF-SA. From Pop, a random proof sequence (PS) is
then generated that passes through the annealing process (Steps 9-25 in Algo-
rithm 8), where it is evolved until its fitness is equal to the fitness of the target
proof sequence from PD. PSF-SA consists of two main procedures, Fitness and
Get Neighbor (GN), which are explained next.

Algorithm 8 Flow of the SA

Input: FHPS: Frequent HOL4 proof steps, PD: proof sequences database, Temp,
Temp min, α
Output: Generated proof sequences

1: Pop ← FHPS
2: for each P ∈ PD do
3: OF ← Fitness(P, P)
4: PS ← randomseq(Pop, length(P))
5: BF ← Fitness(PS, P)
6: if BF ≥ OF then
7: return PS
8: end if
9: while (Temp > Temp min) do

10: NS ← get neighbor(PS)
11: NF ← Fitness(NS,P)
12: if NF == OF then
13: return NS
14: end if
15: if NF > BF then
16: PS ← NS
17: BF ← NF
18: end if
19: ar ← exp(T

1+T
)

20: if ar > randomuniform(0, 10) then
21: PS ← NS
22: BF ← NF
23: end if
24: Temp← Temp× α
25: end while
26: return PS
27: end for

Fitness values guide the PSF-SA toward the best solution(s) (proof se-
quences). Here the fitness value is the total number of HPS in the random
proof sequence that matches the HPS in the position of the original (target)
proof sequence. Algorithm 2 (from Section 4.1) presents the procedure for cal-
culating the fitness value of a proof sequence.

In the annealing process, a neighbor random sequence is first generated.
Algorithm 9 presents the procedure for getting the neighbor solution. The
selected location value is changed from its original value in Get Neighbor. For
a proof sequence, a randomly chosen gene value i is replaced by a random HPS
from the current population Pop. Note that the SM operator of GA and the

15

Get Neighbor procedure in SA are quite similar.

Algorithm 9 Get Neighbor

Input: P1: A proof sequence
Output: A neighbor proof sequence

1: procedure GN(P1)
2: ind← randomint(1, length(P1))
3: alter ← randomsample(Pop, 1) . (1-length proof sequence form Pop)
4: P1[ind]← alter . (P1[ind] 6= alter)
5: return P1

6: end procedure

After the Get Neighbor procedure is applied, the fitness of the randomly
generated proof sequence is compared with its neighbor sequence. If the fitness
of the neighbor is better, then it is selected. Otherwise, an acceptance rate
(Step 19 in Algorithm 8) is used to select one out of the two sequences. The
acceptance rate depends on the temperature (Temp) parameter. Finally, the
Temp value is decreased according to the following formula:

Temp = Temp ×α

where the value of α is in the range of 0.8 < α < 0.99.
The annealing process is repeated (Steps 9-24 in Algorithm 8) until the

fitness of the random proof sequence matches with that of the target proof
sequence or Temp reaches the minimum value (Temp min). In our case, we set
the value of Temp such that the SA always terminates when the random proof
sequence matches with the target proof sequence. Note that the annealing
process distinguishes SA from GAs.

The second main concept in SA, besides the annealing process, is the accep-
tance probability. In each iteration, SA evaluates the fitness of the new solution.
If the fitness of the new solution is not better than the previous solution, SA can
still select the new solution with a probability called the acceptance probability.
Acceptance probability governs whether to switch to the worst solution or not.
This allows the SA to explore other solutions to avoid getting stuck at the local
optimum. For this purpose, we chose the acceptance probability by using the
following acceptance rate (AR) formula:

AR = exp(
Temp

1 + Temp
) (1)

The next section describes experiments to examine the effect of AR on the
performance of PSF-SA. From the simulation results, it was observed that this
parameter affects the performance of PSF-SA, but it is negligible.

4.2.1. Illustrated Example

The working of PSF-SA is explained using Table 1. Consider the orig-
inal proof sequence P = GEN TAC, CONJ TAC, MP TAC, and hence OF =

16

Fitness(P , P) = 3. One random proof sequence (PS) is generated from Pop.
Suppose PS = PROVE TAC, CASES TAC, DISCH TAC, so BF = Fitness(PS,
P) = 0. The proof sequence PS goes through the Get Neighbor procedure.
In the Get Neighbor, suppose ind = 2 and alter = CONJ TAC, so NS (the
neighbor of PS) = PROVE TAC, CONJ TAC, DISCH TAC and NF = 1 as one
HPS at the second position matches in both NS and P . As NF > BF , so NS
is assigned to PS and new PS = PROVE TAC, CONJ TAC, DISCH TAC with
BF = 1.

NS was assigned to PS as NF > BF . If NF ≤ BF after the Get Neighbor
procedure, then SA can still replace the PS withNS if the probability calculated
using Equation (1) is greater than a random number generated in the range (0,
10). Finally, the value of Temp is decreased with the factor α. The above process
continues till the value of Temp becomes less than or equal to Temp min. In
the next section, we discuss the optimal values we selected for Temp, Temp min
and α.

4.3. PSF-PSO

Algorithm 10 presents the pseudocode of the PSF-PSO that is used to find
the proofs in HOL4 theories.

Following the same process, an initial population (Pop) is first created from
FHPS. From this population, a random proof sequence (PS) that represents a
particle is generated. In each iteration, the position of the particle is updated
by adding the updated velocity to the current particle position. This process
continues until the particle fitness is equal to the fitness of the target proof
particle from the PD.

In PSO, the general equations for updating the velocity and position of a
particle are:

vt+1
i = (w × vti) + (c1 × r1(0, 1)× (pbest − xti)) + (c2 × r2(0, 1)× (gbest − xti))

(2)

xt+1
i = xti + vt+1

i (3)

where vti and xti are the current velocity and position, respectively, of a particle,

v
(t+1)
i and xt+1

i are the updated velocity and position, respectively, at time t+1.
The three weighting coefficients w, c1 and c2 are the acceleration constants for
cognitive and social components. Whereas r1 and r2 represent random number
i in the range (0,1).

In each iteration of PSO, the first term (w × vti) in Equation (2) includes
the previous velocity and makes up the momentum component. The second
term (c1× r1(0, 1)× (pbest− xti)) includes the previous best position and makes
up the cognitive component and the third term (c2 × r2(0, 1) × (gbest − xti))
takes the best previous position of the neighborhood and constitutes the social
component.

17

Algorithm 10 Flow of the PSO

Input: FHPS: Frequent HOL4 proof steps, PD: proof sequences database
Output: Generated proof sequences

1: Pop ← FHPS
2: for each P ∈ PD do
3: gbest ← Fitness(P, P)
4: PS ← randomseq(Pop, length(P))
5: pbest ← Fitness(PS, P)
6: FS ← ()
7: if pbest ≥ gbest then
8: return PS
9: end if

10: while (pbest < gbest) do
11: for i in range(length(PS)) do
12: if PS[i] = P [i] then
13: FS.append[i]
14: end if
15: end for
16: Calculate updated velocity UV using Equation 4
17: NS ← update position(PS,UV, FS)
18: NF ← Fitness(NS,P)
19: if NF = gbest then
20: return NS
21: end if
22: if NF > pbest then
23: PS ← NS
24: pbest ← NF
25: end if
26: end while
27: return PS
28: end for

According to the nature of our problem, the velocity in Equation (2) is
adapted to be an integer number. For that, we modified Equation (2) as:

UV = b(w + (c1 × r1(0, 1)× (pbest − fit)) + (c2 × r2(0, 1)× (gbest − fit)))c
(4)

where UV represents the updated velocity, pbest and gbest represents the fitness
values for the current random proof sequence, and the original proof sequence
respectively. The fit represents the fitness of sequence in the current iteration.
Note that the acceleration constants do not play any role in our case so their
values are fixed to 1.

Equation (4) for updating the velocity basically indicates how many positions
are required to be changed in a random proof sequence so that it reach the next
position. In the position update process, randomly selected position values of
a proof sequence are changed from their original values. This means that for a
given random proof sequence, a randomly chosen value i is replaced by a random

18

HPS from the current population Pop. As the position update function depends
on the velocity factor, the continuously changing nature of velocity proved to be
unfavorable in our case as PSF-PSO kept on running for more than two hours
and still was unable to completely evolve large random proof sequences.

To solve the aforementioned velocity update issue, we keep track of those
positions in the random proof sequences that have matched its value with the
target proof sequence by using an array called fixedSlots(FS). While updating
the positions of a random proof sequence, we check whether the position in
the sequence, which is to be replaced with a random HPS, is already present
in FS or not. If the position is present in FS, then another random number
is generated for a different position. If the position is not present, then that
particular position is updated with a random HPS from Pop. Algorithm 11
presents the procedure for updating the position.

Algorithm 11 Update Position

Input: PS: A proof sequence, UV : updated velocity, and FS: fixedSlots array
Output: Updated Sequence

1: procedure update position(PS,UV, FS)
2: for i in range(0, UV) do
3: rp← randomint(1, length(PS))
4: if (rp /∈ FS) then
5: alter ← randomsample(Pop, 1) . (1-length proof sequence form Pop)
6: PS[rp]← alter . (PS[rp] 6= alter)
7: end if
8: end for
9: return PS

10: end procedure

4.3.1. Illustrated Example

Just like for PSF-GA and PSF-SA, Table 1 is used to explain the work-
ing of PSF-PSO. Suppose P = CASES TAC, SUBGOAL THEN, DISCH TAC,

BETA TAC, so gbest = Fitness(P , P) = 4. Consider that the PS = PROVE TAC,

CONJ TAC, MP TAC, X GEN TAC, so pbest = Fitness(PS, P) = 0. As pbest = 0,
thus the fixedSlots (FS) array is empty. Assume that the UV using Equa-
tion (4) is 1. This means that one position will be changed in PS by applying
the update position procedure. Suppose that generated rp = 3 and alter =
DISCH TAC, so NS = PROVE TAC, CONJ TAC, DISCH TAC, X GEN AC and
NF = Fitness(NS, P) = 1. As NF > pbest, thus NS will be assigned to PS
and pbest becomes 1.

As still pbest < gbest, the PS again goes through the update position pro-
cess. This time FS = {3} as one HPS at location 3 is same in both PS and P .
Suppose that the generated number obtained by Equation (4) is 2. This means
that two positions in PS will be changed. The update position procedure must
generate these two random positions other than 3 because this value is already

19

the same in PS and P . Suppose it generated the first random position as rp =
1 and alter = BETA TAC. Hence NS = BETA TAC, CONJ TAC, DISCH TAC,

X GEN TAC. Assume that the second time, the update position procedure gen-
erates rp = 2 and alter = SUBGOAL THEN. Thus, the new NS = BETA TAC,

SUBGOAL THEN, DISCH TAC, X GEN TAC. As pbest < NF (Fitness (NS, P)),
so pbest would be updated to 2 and the NS will be assigned to PS. The above
process continues till pbest = gbest.

5. Experimental Evaluation

The proposed evolutionary/heuristic-based algorithms are implemented in
Python and the code can be found at [54]. To evaluate the proposed approaches,
experiments were carried on a computer equipped with a fifth generation Core
i5 processor and 4 GB of RAM. For GA, the value of p for UC is set to 0.5. For
SA, maximum temperature (Temp), minimum Temperature (T min) and α are
set to 100000, 0.00001 and 0.99954001 respectively. For PSA, coefficients w, c1,
and c2 are set to 1. Some important results obtained by applying the proposed
algorithms on PD are discussed in this section.

We first investigated the performance of PSF-GA for finding the proofs of
theorems/lemmas in 14 HOL4 theories available in its library. These theories
are: Transcendental, Arithmetic, RichList, Number, Sort, Bool, BinaryWords,
FiniteMap, InductionType, Combinator, Coder, Encode, Decode and Rational.
We selected five to twenty theorems/lemmas from each theory. In total, the
PD contains 300 proof sequences and 93 distinct HPS. Table 2 lists some of the
important theorems/lemmas from the theories. For example, L1 (Lemma 1)
from the transcendental theory proves the property for the exponential bound
of a real number x. Similarly, T2 is the theorem for the positive value of sine
when the given value is in the range [0 − 2]. T10 from the Rational theory is
the dense theorem that proves that there exists a rational number between any
two real numbers.

The PSF-GA was run with the different crossover and mutation operators
on the considered theorems/lemmas ten times. The fitness values in Table 3
represents the total HPS that is used in the complete proof and these values
are same for respective theorems and lemmas in all crossover and mutation
operators. The generations column indicates how many times a random proof
sequence goes through GA operators to reach the target proof sequence. The
time column represents the amount of time (in seconds) used by the GA to find
the complete proof for a theorem/lemma. We found that different crossover
operators with the same mutation operator required almost the same number
of generations to find the target proofs. However, with MPIM (Algorithm 7),
the target proofs are found in less generations as compared to SM (Algorithm
6). It is important to point out that the probability in UC (Algorithm 5) has
no noticeable effect on the average generation count of the GA. That is why we
select the probability (p = 0.5) for UC.

Next, we investigate the performance of PSF-SA for finding the proofs of
theorems/lemmas in 14 HOL4 theories. The obtained results are listed in Table

20

Table 2: A sample of theorems/lemmas in six HOL4 theories

HOL Theory No. HOL4 Theorems

L1 ` ∀x. 0<=x∧x <= inv(2) ==> exp(x) <= 1+2*x

Transcendental T1 ` ∀ x. (\n. (∧exp ser) n*(x pow n)) sums exp(x)

T2 ` ∀ x. 0 < x∧ x < 2 ==> 0 < sin (x)

Arithmetic T3 ` ∀n a b. 0 < n ==>((SUC a MOD n = SUC b MOD n)

= (a MOD n = b MOD n))

RichList T4 ` ∀m n. ((l:’a list). ((m + n)=(LENGTH l))==>

(APPEND (FIRSTN n l) (LASTN m l) = l)

T5 ` ∀n m. (m <= n ==> (iSUB T n m = n - m)) ∧
Number (m < n ==> (iSUB F n m = n - SUC m))

T6 ` ∀ n a. 0 < onecount n a ∧ 0 < n ==>

(n = 2 EXP (onecount n a - a) - 1)

Sort T7 `(PERM L[x]<==>(L= [x])∧(PERM [x] L <==>(L = [x])

T8 ` PERM = PERM SINGLE SWAP

T9 ` ∀ x y. abs rat (frac add (rep rat (

Rational abs rat x)) y) = abs rat (frac add x y)

T10 ` ∀ r1 r3. rat les r1 r3 ==> ?r2. rat res r1 r2

∧ rat les r2 r3

4. The comparison of PSF-SA with PSF-GA for T2 is shown in the third part of
Table 4. For PSF-GA, a different crossover operator has no great effect on the
overall performance of PSF-GA. However, using the MPIM operator allowed
to find the target proof sequences considerably more quickly than using the
SM operator. For T2, PSF-SA is found to be faster (39,028 generations) than
PSF-GA with different crossover and mutation operators. For this particular
example, PSF-SA is approximately sixty seven times faster than PSF-GA with
different crossover operators and SM. Whereas, it is approximately fourteen
times faster than the PSF-GA with different crossover operators and MPIM.

The results for PSF-PSO to find the proofs of theorems/lemmas in 14 HOL4
theories are listed in Table 4. The comparison of PSF-PSO with PSF-SA and
PSF-GA for T2 is shown in the third part of Table 4. For T2, PSF-PSO is
found to be faster (17,456 generations) than both PSF-SA and PSF-GA with
different crossover and mutation operators. For this particular example, PSF-
PSO is approximately two times faster than PSF-SA. There are two possible
reasons for this. First, the update velocity function in some generations may
allow the particle to change the HPS in large number of positions. Second,
the fixedSlots array helps the particle to not make changes in those positions
where the HPS in both random particle and original particle match. This avoid
the mismatching of HPS at already matched positions in both particles.

The average number of generations for the three algorithms to reach the
target proof sequences in the whole dataset are shown in Table 5. PSF-GA with
different crossover and MPIM operators is approximately fourteen times faster
than PSF-GA with different crossover operators and SM. A possible explanation
for this is that the SM changes the HPS at a single location of the sequence, while
MPIM changes two locations. Thus, MPIM explores a more diverse solution

21

Table 3: Results for the proposed PSF-GA algorithm
T/L C∗ & M∗ Fit∗∗ Generations Time C & M Fit Generations Time
L1 SPC/SM 54 1,768,791 33.43 SPC/MPIM 54 154,043 3.22
T1 SPC/SM 58 2,094,931 36.80 SPC/MPIM 58 204,043 6.73
T2 SPC/SM 81 2,231,664 48.56 SPC/MPIM 81 500,500 14.89
T3 SPC/SM 66 2,527,404 41.35 SPC/MPIM 66 291,162 6.61
T4 SPC/SM 19 593,052 6.72 SPC/MPIM 19 38,307 0.81
T5 SPC/SM 23 675,215 9.05 SPC/MPIM 23 33,655 0.87
T6 SPC/SM 20 338,105 4.25 SPC/MPIM 20 24,776 0.51
T7 SPC/SM 17 264,263 3.36 SPC/MPIM 17 21,136 0.40
T8 SPC/SM 42 971,951 19.49 SPC/MPIM 42 94,172 1.91
T9 SPC/SM 23 654,111 8.45 SPC/MPIM 23 38,309 0.80
T10 SPC/SM 23 695,671 9.69 SPC/MPIM 23 45,552 1.01
L1 MPC/SM 54 1,488,005 27.21 MPC/MPIM 54 205,521 3.89
T1 MPC/SM 58 1,840,467 35.93 MPC/MPIM 58 153,644 5.01
T2 MPC/SM 81 2,713,867 53.84 MPC/MPIM 81 589,292 16.14
T3 MPC/SM 66 2,128,636 37.54 MPC/MPIM 66 259,784 5.26
T4 MPC/SM 19 458,182 5.25 MPC/MPIM 19 24,960 0.48
T5 MPC/SM 23 487,539 5.91 MPC/MPIM 23 32,750 0.83
T6 MPC/SM 20 495,812 5.82 MPC/MPIM 20 28,091 0.63
T7 MPC/SM 17 276,087 3.22 MPC/MPIM 17 19,997 0.43
T8 MPC/SM 42 1,245,801 23.67 MPC/MPIM 42 101,795 2.22
T9 MPC/SM 23 469,625 6.73 MPC/MPIM 23 50,780 1.19
T10 MPC/SM 23 680,625 8.96 MPC/MPIM 23 35,314 0.70
L1 UC/SM 54 1,652,013 31.83 UC/MPIM 54 114,277 2.51
T1 UC/SM 58 1,976,025 36.32 UC/MPIM 58 126,097 4.72
T2 UC/SM 81 2,905,410 56.63 UC/MPIM 81 589,292 17.15
T3 UC/SM 66 2,662,751 44.81 UC/MPIM 66 257,215 5.21
T4 UC/SM 19 706,950 9.12 UC/MPIM 19 20,702 0.41
T5 UC/SM 23 819,903 11.97 UC/MPIM 23 51,614 1.37
T6 UC/SM 20 407,183 4.89 UC/MPIM 20 26,635 0.58
T7 UC/SM 17 321,183 6.16 UC/MPIM 17 20,263 0.48
T8 UC/SM 42 1,786,216 25.53 UC/MPIM 42 115,606 2.15
T9 UC/SM 23 625,908 8.38 UC/MPIM 23 28,030 .51
T10 UC/SM 23 716,950 9.16 UC/MPIM 23 45,925 1.44
∗ Crossover and mutation ∗∗ Fitness

as compared to SM. Whereas, PSF-SA is approximately six times faster than
PSF-GA with MPIM and different crossover operators. Similarly, PSF-PSO is
approximately 1.7 times faster than PSF-SA. The main reasons for this is that
in PSF-SA and PSF-PSO, only one procedure (Get Neighbor in PSF-SA and
Update Position in PSF-PSO) is called. On the other hand, in PSF-GA, two
procedures (crossover and mutation) are called.

Population diversity greatly influences the ability of GAs to make progress as
it iterates from one generation to another [51]. The proof searching process with
PSF-GA can be trapped in a local optimum due to the loss of diversity through
premature convergence of the HPS in the population. This makes diversity
maintenance as one of the fundamental issues for GAs in general. Next, we
studied population diversity in PSF-GA with two measures. The first one being
the standard deviation of fitness SDf , which is measured as:

SDf =

√∑N
i=1(fi − f̄)2

N − 1
(5)

22

Table 4: Results for PSF-SA and PSF-PSO and comparison with PSF-GA

T/L Technique Fitness Generations Time (s)
L1 54 20,192 0.490
T1 58 20,476 0.497
T2 81 39,028 0.986
T3 66 30,560 0.628
T4 19 7,301 0.113
T5 23 9,892 0.142
T6 PSF-SA 20 6,675 0.0539
T7 17 5,278 0.082
T8 42 15,020 0.261
T9 23 9,584 0.192
T10 23 9,639 0.162
L1 54 11,034 0.716
T1 58 12,842 0.785
T2 81 17,456 1.85
T3 66 15,651 1.391
T4 19 6,302 0.0815
T5 23 8,285 0.193
T6 PSF-PSO 20 5,884 0.098
T7 17 3,320 0.052
T8 42 10,019 0.245
T9 23 6,317 0.0848
T10 23 6,317 0.0841
T2 PSF-GA(SPC/SM) 81 2,231,664 48.56
T2 PSF-GA(MPC/SM) 81 2,713,867 53.84
T2 PSF-GA(UC/SM) 81 2,905,410 56.63
T2 PSF-GA(SPC/MPIM) 81 500,500 14.89
T2 PSF-GA(MPC/MPIM 81 524,272 16.14
T2 PSF-GA(UC/MPIM) 81 589,292 17.15

SPC = single point crossover, MPC = multi point crossover, UC = uni-
form crossover, SM = standard mutation, MPIM = modified pairwise
interchange mutation.

where N is the total number of proof sequences, fi is the fitness of the ith
proof sequence and f̄ is the mean of the fitness values. As the fitness values
for random proof sequences remain the same (after evolution) for all crossover
and mutation operators, so SDf is 12.02 with a mean of 14.03 for PSF-GA.
The second measure used to examine the variability of HPS in the Pop and
the extent of deviation (dispersion) for the proof sequences as a whole is the
standard deviation of time (SDt), which is measured as:

SDt =

√∑N
i=1(ti − t̄)2

N − 1
(6)

23

Table 5: Average total generation count for PSF-PSO, PSF-SA, and PSF-GA

Algorithm Ave. Generation Count Total Time Memory
PSF-PSO 783,502 20.76 s 3495 Mb
PSF-SA 1,357,268 20.54 s 3507 Mb

PSF-GA(SPC/SM) 119,062,973 1463.48 s 3395 Mb
PSF-GA(MPC/SM) 122,378,292 1583.30 s 3463 Mb
PSF-GA(UC/SM) 124,115,903 1616.69 s 3507 Mb

PSF-GA(SPC/MPIM) 8,833,888 174.25 s 3450 Mb
PSF-GA(MPC/MPIM) 9,141,943 188.34 s 3427 Mb
PSF-GA(UC/MPIM) 8,704,233 170.491 s 3382 Mb

where ti is the time taken by PSF-GA to find the correct ith proof sequence and
t̄ is the mean of the time values. The calculated SDt for all the proof sequences
in the PD is listed in Table 6 along with their mean for different crossover and
mutation operators. A low SD indicates that the data (time values to find
respective HPS in proof sequences) is less spread out and is clustered closely
around the mean average values. Whereas a high SD means that the data is
spread apart from the mean. As PSF-GA with SM was slower (fourteen times)
than PSF-GA with MPIM, there is more time points for SM than MPIM, which
makes the SDt and the respective mean higher for SM. Moreover, the calculated
SDt and mean for PSF-SA and PSF-PSO are also listed in Table 6. Similar to
PSF-GA, the SDf for PSF-SA and PSO-PSO is 12.02 with a mean of 14.03. The
amount of memory used by the three algorithms while searching for proofs is
also listed in Table 6. It can be seen that three algorithms require approximately
the same memory while searching for proof sequences in the PD.

Table 6: SDt, mean and total time for three algorithms

Algorithm Mean SDt Time Memory
PSF-GA(SPC/SM) 4.876 7.52 1463.48 s 3395 Mb
PSF-GA(MPC/SM) 4.580 7.04 1583.30 s 3463 Mb
PSF-GA(UC/SM) 4.667 7.09 1616.69 s 3507 Mb

PSF-GA(SPC/MPIM) 0.538 1.14 174.25 s 3450 Mb
PSF-GA(MPC/MPIM) 0.585 1.12 188.34 s 3427 Mb
PSF-GA(UC/MPIM) 0.583 1.19 170.491 s 3382 Mb

PSF-SA 0.062 0.101 20.54 s 3507 Mb
PSF-PSO 0.074 0.262 20.76 s 3495 Mb

Statistical tests are usually performed to investigate whether one algorithm
offers a significant improvement (or not) over another for a given problem. The
studies [1, 12, 17] suggested to use non-parametric statistical tests for compar-
ing evolutionary/heuristic algorithms. Thus, the Friedman test [16] is used on
the means for the times and generations taken by the three proposed algorithms
to find the correct proofs for target proof sequences in the PD. The following
hypotheses are tested:

24

H0T: The means for the times taken by the proof searching approaches for
each proof sequence in PD are same.

H1T: The mean number of times for at least one algorithm is different from
the others.

H0G: The means for the generations taken by the proof searching approaches
for each proof sequence in PD are same.

H1G: The mean number of generations for at least one algorithm is differ-
ent from the others.

The results of the Friedman test indicate that both H1T and H1G should
be accepted (p < 0.05) with results of 1876.38 and 1577.21, respectively. The
Wilcoxon test [65] results for the mean times and number of generations for the
three algorithms are listed in Table 7 and Table 8, respectively. The results in
both tables show that PSF-PSO is significantly better than PSF-SA and PSF-
SA is significantly better than different versions of PSF-GAs. For time (Table
7), it can bee seen that PSF-GA with SM and different crossover operators
(PSF-GA(SPC/SM, MPC/SM and UC/SM)) are not significantly better than
each other. The same is the case with GA with MPIM and different crossover
operators (PSF-GA(SPC/MPIM, MPC/MPIM and UC/MPIM)). However for
generations (Table 8), the opposite is true for PSF-GA with same mutation
operator and different crossover operators. Combining these statistical results
with previous results suggests that PSF-PSO is significantly better than PSF-SA
and PSF-SA is significantly better than GAs.

Table 7: Wilcoxon p-value matrix for times
SPC/SM MPC/SM UC/SM SPC/MPIM MPC/MPIM UC/MPIM PSF-SA PSF-PSO

SPC/SM — 9.83E-01 4.54E-01 6.08E-51 6.08E-51 6.08E-51 6.08E-51 6.08E-51
MPC/SM 9.83E-01 — 2.75E-01 6.08E-51 6.08E-51 6.08E-51 6.08E-51 6.08E-51
UC/SM 4.54E-01 2.75E-01 — 6.08E-51 6.08E-51 6.08E-51 6.08E-51 6.08E-51

SPC/MPIM 6.08E-51 6.08E-51 6.08E-51 — 5.23E-02 5.60E-01 6.46E-51 6.08E-51
MPC/MPIM 6.08E-51 6.08E-51 6.08E-51 5.23E-02 — 6.40E-02 6.46E-51 6.14E-51
UC/MPIM 6.08E-51 6.08E-51 6.08E-51 5.60E-01 6.40E-02 — 6.14E-51 6.08E-51
PSF-SA 6.08E-51 6.08E-51 6.08E-51 6.46E-51 6.46E-51 6.14E-51 — 5.07E-10
PSF-PSO 6.08E-51 6.08E-51 6.08E-51 6.08E-51 6.14E-51 6.08E-51 5.07E-10 —

Table 8: Wilcoxon p-value matrix for generations
SPC/SM MPC/SM UC/SM SPC/MPIM MPC/MPIM UC/MPIM PSF-SA PSF-PSO

SPC/SM — 2.03E-11 4.63E-42 6.08E-51 6.08E-51 6.08E-51 6.08E-51 6.08E-51
MPC/SM 2.03E-11 — 2.80E-042 6.08E-51 6.08E-51 6.08E-51 6.08E-51 6.08E-51
UC/SM 4.63E-42 2.80E-042 — 6.08E-51 6.08E-51 6.08E-51 6.08E-51 6.08E-51

SPC/MPIM 6.08E-51 6.08E-51 6.08E-51 — 1.17E-03 4.09E-02 6.46E-51 6.08E-51
MPC/MPIM 6.08E-51 6.08E-51 6.08E-51 1.17E-03 — 8.89E-05 6.08E-51 6.08E-51
UC/MPIM 6.08E-51 6.08E-51 6.08E-51 4.09E-02 8.89E-05 — 6.08E-51 6.08E-51
PSF-SA 6.08E-51 6.08E-51 6.08E-51 6.08E-51 6.08E-51 6.08E-51 — 8.81E-51
PSF-PSO 6.08E-51 6.08E-51 6.08E-51 6.08E-51 6.08E-51 6.08E-51 8.81E-51 —

In GAs, the idea of crossover is simple: selecting two chromosomes (solu-

25

tions) as parents and combining some parts from parents to generate better
child chromosomes. This intuition has been formalized in [26] with the concept
of building blocks used in schema theory. The mechanics of crossover provides a
way to implement this idea. Thus, all types of crossover share the same idea but
the mechanics to implement the idea may vary considerably. For example, SPC
uses a single crossing point and MPC employs two crossing points. Investigating
the usefulness of crossover operators in GAs is an important research topic. The
standard procedure (or test) to determine the usefulness of crossover operators
is to compare a GA that implement crossover with a GA without crossover.
If better performance is obtained with GA with crossover, then it proves the
usefulness of crossover. Jones [29] argued that this conclusion is not justifiable
and made a distinction between the crossover idea and the crossover mechan-
ics. It was shown through various experiments in [29] that crossover mechanics
alone can be used effectively for search and evolution even in the absence of the
crossover idea. For this, a testing method (called headless chicken test (HCT))
was proposed to examine the usefulness of crossover for a particular problem
instance. Next, we investigate the usefulness of three crossover operators (SPC,
MPC, and UC) in PSF-GA using the HCT. In the HCT, the PSF-GA with nor-
mal crossovers are compared with the identical PSF-GA that uses the random
version of crossovers as shown in Figure 2.

Figure 2: HCT with random crossover

For the two parents, the random crossover operator generates two random
individuals and uses them in crossover with the parents. Thus, instead of recom-
bining two parents as a normal crossover would do, two random individuals are
created and crossed with parents in a random crossover. The normal crossover
(that can be either SPC or MPC) procedure is the one used in the GA that is
being compared to the GA with random crossover. GA with random crossover
has no direct communication between parents as the random crossover does not
work directly with parents. As the individuals involved in the crossover process
is chosen randomly, the operation is purely mechanical and has nothing of the
spirit of crossover. Despite the identical mechanical re-arrangement, the oper-
ation is not a crossover in reality. Another argument regarding the fact that
this operation is not really a crossover is that two parents are not required. For
example, for MPC, one can simply select the crossing points and set the loci

26

between the points to randomly chosen alleles. This means that it is clearly a
macromutation.

Using this test, one can distinguish the gains the GA is making through the
idea of crossover from those made simply through the mechanics. If GA is not
making any additional progress due to the idea of crossover, one might do as
well simply by using macromutations. The poor performance of original GA
with normal crossover compared to the GA with random crossover indicates the
absence of well-defined building blocks. Table 9 shows the results for PSF-GA
with original crossovers and its randomized versions. The + sign with the name
of crossover operators represents the randomized version of that crossover. For
generations, it can be seen that the original PSF-GA with normal crossover
operators performs as PSF-GA with randomized crossover operators without
any significant differences. This shows the availability of well-defined building
blocks for the crossover operators in PSF-GA.

Table 9: HCT results for the PSF-GA
PSF-GA Ave. Generation Count Time (Sec)
SPC/SM 119,062,973 1463.48 s
MPC/SM 122,378,292 1583.30 s
UC/SM 124,115,903 1616.69 s

SPC/MPIM 8,833,888 174.25 s
MPC/MPIM 9,141,943 188.34 s
UC/MPIM 8,704,233 170.49 s
SPC+/SM 116,739,893 2122.57 s
MPC+/SM 121,801,416 2002.83 s
UC+/SM 122,226,585 2114.20 s

SPC+/MPIM 8,405,133 214.79 s
MPC+/MPIM 8,349,399 201.81 s
UC+/MPIM 8,966,029 242.44 s

SA can select the new solution obtained with the GN procedure that is not
better than the present solution with the acceptance probability. The reason for
this is that there is always a possibility that the new solution could lead the SA
to the global optimum. In PSF-SA, we chose the acceptance probability (AR)
using Equation (1), which is then compared with a random number generated
within the range (2.71825400004040, 2.71825464604849).

The above range is selected after experimenting with the following val-
ues: Temp = 100000.0, Temp min = 0.00001, and α = 0.99954001. If the
value of AR is greater than the random number generated within the range
(2.71825400004040, 2.71825464604849), then the new solution (that is not bet-
ter than present) is selected. We used a counter named acceptance rate counter
(ARC) that keeps track of how many times the new solution is picked. By
simulation, it was found that this factor does not play huge role in the overall
generation count or time. This is because of the fact that in our case, we do
not have any local optimum. PSF-SA finds only one global solution for each

27

random proof sequence based on the fitness value. The average generation count
of PSF-SA for all proof sequences in the PD with and without the acceptance
rate is listed in Table 10. The obtained results are the same with negligible
difference.

Table 10: Performance of PSF-SA with and without AR
Results without AR Results with AR (ARC = 123675)

Avg. Gen. Count Time (S) Avg. Gen. Count Time (S)
1,357,268 20.54 s 1,480,943 21.92 s

Next, we checked how much time the algorithms take on average to find the
HPS in the random proof sequence that matches with the HPS in the target
sequence (PSF-GA time is shown in Figure 3 and PSF-SA, PSF-PSO are shown
in Figure 4). The runtime difference when applying the three algorithms to find
the correct HPS in a proof sequence is negligible. It is observed that PSF-PSO
and PSF-SA were able to quickly find the matched HPS as compared to the
PSF-GA with different crossover and mutation operators. For three algorithms,
the time to find the HPS increases for each following HPS. On average, the time
taken by the PSF-SA and PSF-PSO to find HPS was almost same. .

0

0.4

0.8

1.2

1.6

1 2 3 4 5 6 7 8 9 10

Ti
m

e
(S

e
c)

Number of HPS

SPC/SM

MPC/SM

UC/SM

SPC/MPIM

MPC/MPIM

UC/MPIM

Figure 3: Time used by the PSF-GA to find the first ten matched HPS

The longest proof in the PD is for theorem T2 (positive value of sine) and it
consists of 81 HPS. Here we call this theorem PVoS. The runtime of the PSF-
GA to find all matched 81 HPS in PVoS with different crossover and mutation
operators is shown in Figure 5 and the runtime of PSF-SA and PSF-PSO is
shown in Figure 6. Those generations are shown on the x-axis where the three
algorithms were able to find the HPS in a random proof sequence that matches
with the HPS in PVoS. Generations where HPS does not match are excluded.
We observed that in most of the generations, the algorithms were unable to find

28

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5 6 7 8 9 10

Ti
m

e
(S

ec
)

Number of HPS

PSF-SA

PSF-PSO

Figure 4: Time used by the PSF-SA and PSF-PSO to find the first ten matched HPS

the same HPS in a random proof sequence and PVoS. For the three algorithms,
it was observed that the time to find the HPS increases with increase in the
number of HPS. Moreover, with increase in generations, the performance of
algorithms tend to decrease for fitness. This means that with more generations,
the algorithms become slow in finding the correct HPS for long proof sequence
as compared to earlier generations.

In each generation, the probability for the three algorithms to find the com-
plete correct proof for PVoS is listed in Table 11. PSF-PSO and PSF-SA have
high probability compared to PSF-GA. Overall, the performance of the three
algorithms is far better than proof searching with a pure random search. For
example, the probability (which is very low as compared to PSF-GA, PSF-SA
and PSF-PSO) for a pure random search to find a valid proof is also listed in
Table 11. Even for the theorems with smaller (fitness of 10) proof sequences,
the probability is still in the magnitude of 10−16.

The brute force approach (BFA) tries to produce a possible candidate for the
solution (original proof sequence in this work) by enumerating all the possible
candidates. In the Introduction, we argued that using BFA for proof searching
is infeasible. To support this argument, we also implemented a BFA in Python.
The BFA takes a lot of time when run on the proof sequences from the PD, even
for proof sequences with smaller fitness values. For example, Table 12 lists the
results obtained with the BFA. The attempts column shows how many times
(iterations) the approach tried to find the target proof sequence. For a theorem

29

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81

T
im

e
 (

Se
c)

Generations

SPC/SM

MPC/SM

UC/SM

SPC/MPIM

MPC/MPIM

UC/MPIM

Figure 5: Time and generations for the PVoS theorem with PSF-GA

0

0.5

1

1.5

2

2.5

1 3 5 7 9 111315171921232527293133353739414345474951535557596163656769717375777981

Ti
m

e
(S

ec
)

Generations

PSF-SA

PSF-PSO

Figure 6: Time and generations for the PVoS theorem with PSF-SA and PSF-PSO

with four different HPS, BFA took 19.76 seconds and 5,444,048 attempts, that

30

Table 11: Comparison of PSF-PSO, PSO-SA, PSO-GA and Pure Random Search (PRS)

Algorithm Probability
PSF-PSO 4.64× 10−3

PSF-SA 2.07× 10−3

PSF-GA(CO/SM) 3.09× 10−5

PSF-GA(CO/MPIM) 1.50× 10−4

PRS 2.69× 10−156

is approximately 275,508 attempts per second. For a theorem with ten different
HPS, the program was unable to find the target proof sequence even after
running for more than 3 hours. Note that for a theorem with a fitness value of
10, there are 9310 total possible candidate proof sequences.

Table 12: Results for BFA
Proof Sequence Fit Time Attempts
GEN TAC REWRITE TAC 2 0.0009 s 160
SRW TAC METIS TAC STRIP TAC 3 1.138 s 348,925
BETA TAC SUBST TAC CONJ TAC

Q.SPEC TAC

4 19.796 s 5,444,048

RW TAC SUBGOAL THAN CASES ON

CASES ON MATCH MP SRW TAC

5 1972.07 s 574,262,133

Lastly, we compared the three algorithms in terms of convergence speed to
investigate how fast the algorithms were able to converge towards the optimal
solution. For the first 20,000 generations, the convergence speed of the three
algorithms for PVoS is shown in Figure 7. PSF-PSO converges very fast and
found the correct HPS within 17,500 generations. Similarly, PSF-SA is at
second position by finding 76 correct HPS in 20,000 generations. Whereas
PSF-GA(MPC/MPIM) is fast at the beginning reaching the speed of the other
two algorithms but gets slow after 3,000 iterations till the end. On the other
hand, PSF-GA(MPC/SM) convergence speed is linear and slow from the start.
At 20,000 generations, PSF-GA(MPC/MPIM) find approximately 66 correct
HPS, whereas PSF-GA(MPC/SM) find approximately 5 correct HPS.

Overall, it was observed through various experiments that the proposed three
algorithms are able to quickly optimize and automatically find the correct proofs
for theorems/lemmas in different HOL4 theories. PSF-PSO was found to be
much faster than PSF-SA and PSF-GA. Whereas, PSF-SA performed better
than PSF-GA. Besides HOL4, the proposed evolutionary/heuristic-based ap-
proaches can also be used for proof searching and proof optimization in other
proof assistants, such as Coq [6] and PVS [52].

31

0

9

18

27

36

45

54

63

72

81

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

60
00

65
00

70
00

75
00

80
00

85
00

90
00

95
00

10
00

0

10
50

0

11
00

0

11
50

0

12
00

0

12
50

0

13
00

0

13
50

0

14
00

0

14
50

0

15
00

0

15
50

0

16
00

0

16
50

0

17
00

0

17
50

0

18
00

0

18
50

0

19
00

0

19
50

0

20
00

0

Fi
tn
e
ss

Generations

PSF-SA

PSF-GA(MPC/MPIM)

PSF-GA(MPC/SM)

PSF-PSO

Figure 7: Convergence performance

6. Related Work

Our work on using evolutionary/heuristic algorithms in proof assistant is
not the first one.

For example, a GA was used in [28, 67] with the Coq proof assistant to
automatically find formal proofs of theorems. However, the approach can only
be used to successfully find the proofs of very small theorems that contain few
proof steps. For large and complex theorems that require induction and de-
pend on the proofs of other lemmas, interaction between the proof assistant
and the user is still required. A recent work [45] briefly discussed how evolu-
tionary computation can be used to improve the heuristics of automatic proof
search in Isabelle/HOL. The objective is to find heuristics that can select the
most promising PSL [46] (which is a proof strategy language for Isabelle/HOL)
strategy from various available hand written strategies when applied to a given
proof goal. A framework based on GA is provided in [57] to find good search
heuristics for the E ATP.

A genetic programming [38] and a pairwise combination (that focuses only
on crossover based approach) were used in [13] on patterns (simple tactics)
discovered in Isabelle proofs to evolve them into compound tactics. However,
Isabelle’s proofs were represented using a linearized tree structure where the
proofs were divided into separate sequences and weights were assigned to them.
However, linearization of proofs tree leads to the loss of important connections
(information) among various branches. Because of this, interesting patterns
and tactics may be lost in the evolution process. In this work, the proposed

32

framework for proof searching can handle proof goals of various length. More-
over, the dataset for the proof sequences contains all the necessary information
that is required for the discovery of frequent proof steps, through which initial
population for the proposed proof searching approaches is generated. In last,
no human guidance is required in the proposed approaches during the evolution
process for random proof sequences.

On the other hand, machine learning was first used in [60] for reasoning in
large theories. For ITPs, [31] used machine learning for the task of premise
selection in the Coq system. For HOL Light, a machine learning benchmark
was developed in [30] for higher-order logic reasoning. GamePad [27] and Coq-
GyM [66] provide machine learning environments and benchmarks for the Coq
proof assistant. Deep learning was first used in [3], where convolutional neural
networks were used for premise selection in large theories from the Mizar Math-
ematical library. Experiments were done in the ATP E. Similarly, [42] used deep
neural networks for internal guidance in E. The applicability of reinforcement
learning was demonstrated in [33] on hand engineered features in first order
logic using the ATP rlCoP. A deep graph embedding-based learning approach
was provided in [61] for premise selection. GRU networks were used in [62] for
theorem proving in MetaMath. Some external provers were also developed for
the HOL4 theorem prover in [18, 19]. GNNs (graph neural networks) were used
in [53] for higher-order proof searching. RNNs and LSTMs were used in [69] for
the prediction of tactics in one Coq theory.

Proverbot9001 [55] and HOList [5] provide deep learning environments and
benchmarks for the Coq and HOL Light proof assistant respectively. A large
dataset for mechanised proofs was developed in [41] and various neural sequence-
to-sequence models were used for proposition generation. Neural networks were
also used recently in [59] on several datasets for creating conjectures. Similar
to related datasets in [5, 27, 30, 31, 41, 55, 59, 66], we also build a dataset for
theorems/lemmas in higher-order logic that only consists of tactics and proof
procedures.

We used the SPM-based proof process learning approach [48] to find the
frequent HPS that are then used by the proposed framework for the creation of
an initial population for proof searching approaches. The approach [48] is not
limited to PVS only, but can be used in other proof assistants as shown in this
paper and in [49]. The GA-based proof process learning approach [49] lacks the
ability to learn the previously proved facts and to predict the proofs for new
unproved theorems/lemmas (conjectures). For this, a deep learning technique
(long short-term memory (LSTM)) was used in [47] on various HOL4 theories
for learning and predicting proof sequences.

7. Conclusion

Despite the evolution in computing systems, ITPs still depend on user in-
teraction to manually guide the proofs assistants in finding the proof for a
particular goal. This interaction makes the proof development process quite
cumbersome and time consuming activity for users, in particular for long and

33

complex proofs. We introduced three proof searching approaches in this pa-
per for the possible linkage between evolutionary/heuristic algorithms (such as
GA, SA and PSO) with theorem provers (such as HOL4) to make the proof
finding and development process easier. The three proof searching approaches
were used to optimize and find the correct proofs in different HOL4 theories.
Moreover, a performance comparison of the three algorithms showed that both
SA and PSO outperformed GA.

The main limitation of the proposed approaches is that they lack the abil-
ity to learn the previously proved facts and can be used on proof sequences
of formalized theorems/lemmas in HOL4 theories. Nevertheless, obtained re-
sults suggest that the research direction of linking and integrating evolution-
ary/heuristic algorithms with proof assistants is worth pursuing. This kind of
framework may have a considerable impact to advance and accumulate human
knowledge, especially in the field of automated reasoning. There are several
directions for future work, some of which are:

• Making the proof searching process more general in nature to evolve fre-
quent HOL4 proof steps to compound proof tactics for guiding the proofs
of new conjectures.

• Implementing the PSO with headless chicken marcomutation [22] for proof
searching and compare the results with the proposed PSO approach. More-
over, relatively new optimization algorithms such as Bat Algorithm [68],
Artificial Bee Colony [35] and Grey Wolf Optimizer [43] could also be
considered for proof searching.

• Taking advantage of the Curry-Howard isomorphism for sequent calcu-
lus [56] that provides a direct relation between programming and proofs,
where finding proofs can be viewed as writing programs. With such cor-
respondence, a GA, SA or PSO-based approach can be used to write pro-
grams (proofs) and HOL4 proof assistant for simplification and verification
by computationally evaluating the programs.

• Using deep learning techniques, such as recurrent neural networks, for
the predictions of proofs for new theorems (conjunctures). In this regard,
neural networks were recently used in [47, 69] to predict and suggest the
correct tactics in HOL4 and Coq proof assistants, respectively.

Acknowledgments

The work was partially supported by the Guangdong Science and Technol-
ogy Department (under grant no. 2018B010107004) and the National Natural
Science Foundation of China (under grant no. 61772038 and 61532019).

34

References

[1] B. H. Abed-alguni and D. J. Paul. Hybridizing the cuckoo search algo-
rithm with different mutation operators for numerical optimization prob-
lems. Journal of Intelligent Systems, 29(1):1043–1062, 2020.

[2] K. Aksoy, S. Tahar, and Y. Zeren. Introduction to HOL4 theorem prover.
Sigma Journal of Engineering and Natural Sciences, 10(2):237–243, 2019.

[3] A. A. Alemi, F. Chollet, N. Eén, G. Irving, C. Szegedy, and J. Urban.
Deepmath - Deep sequence models for premise selection. In Proceedings of
NIPS 2016, pages 2235–2243. ACM, 2016.

[4] S. Amani, A. Hixon, Z. Chen, C. Rizkallah, P. Chubb, L. O’Connor,
J. Beeren, Y. Nagashima, J. Lim, T. Sewell, J. Tuong, G. Keller, T. C.
Murray, G. Klein, and G. Heiser. Cogent: Verifying high-assurance file sys-
tem implementations. In Proceedings ASPLOS 2016, pages 175–188. ACM,
2016.

[5] K. Bansal, S. M. Loos, M. N. Rabe, C. Szegedy, and S. Wilcox. HOList: An
environment for machine learning of higher order logic theorem proving. In
Proceedings of ICML 2019, volume 97 of PMLR, pages 454–463, 2019.

[6] Y. Bertot and P. Casteran. Interactive theorem proving and program devel-
opment: Coq‘Art: The calculus of inductive construction. Springer, 2003.

[7] D. Bertsimas and J. Tsitsiklis. Simulated annealing. Statistal Science,
8(1):10–15, 1993.

[8] J. C. Blanchette, M. P. L. Haslbeck, D. Matichuk, and T. Nipkow. Mining
the archive of formal proofs. In Proceedings of CICM 2015, volume 9150
of LNCS, pages 3–17. Springer, 2015.

[9] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek, and N. Zel-
dovich. Using crash hoare logic for certifying the FSCQ file system. In
Proceddings of USENIX ATC 2016. USENIX Association, 2016.

[10] L. M. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer.
The Lean theorem prover (system description). In Proceedings of CADE
2015, volume 9195 of LNCS, pages 378–388. Springer, 2015.

[11] D. Delahaye, S. Chaimatanan, and M. Mongeau. Simulated annealing:
From basics to applications, volume 272, pages 1–35. Springer, 2019.

[12] J. Derrac, S. Garćıa, D. Molina, and F. Herrera. A practical tutorial on
the use of nonparametric statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms. Swarm and Evolutionary
Computation, 1(1):3–18, 2011.

[13] H. Duncan. The use of data-mining for the automatic formation of tactics.
PhD thesis, University of Edinburgh, UK, 2007.

35

[14] M. Färber and C. E. Brown. Internal guidance for Satallax. In Proceedings
of IJCAR 2016, volume 9706 of LNCS, pages 349–361. Springer, 2016.

[15] P. Fournier-Viger, J. C. W. Lin, R. U. Kiran, Y. S. Koh, and R. Thomas. A
survey of sequential pattern mining. Data Science and Pattern Recognition,
1(1):54–77, 2017.

[16] M. Friedman. A comparison of alternative tests of significance for the
problem of m rankings. Annals of Mathematical Statistics, 11(1):86–92,
1940.

[17] S. Garćıa, D. Molina, M. Lozano, and F. Herrera. A study on the use of non-
parametric tests for analyzing the evolutionary algorithms’ behaviour: A
case study on the CEC’2005 special session on real parameter optimization.
Journal of Heuristics, 15(6):617–644, 2009.

[18] T. Gauthier and C. Kaliszyk. Premise selection and external provers for
HOL4. In Proceedings CPP 2015, pages 49–57. ACM, 2015.

[19] T. Gauthier, C. Kaliszyk, and J. Urban. TacticToe: Learning to reason
with HOL4 tactics. In Proceedings of LPAR 2017, volume 46 of EPiC
Series in Computing, pages 125–143, 2017.

[20] H. Geuvers. Proof assistants: History, ideas and future. Sadhana,
34(1):3–25, 2009.

[21] G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot,
S. L. Roux, A. Mahboubi, R. O’Connor, S. O. Biha, I. Paşca, L. Rideau,
A. Solovyev, E. Tassi, and L. Théry. A machine-checked proof of the Odd
Order theorem. In Proceedings of ITP 2013, volume 7998 of LNCS, pages
163–179. Springer, 2013.

[22] J. Grobler and A. P. Engelbrecht. Headless chicken particle swarm opti-
mization algorithms. In Proceedings of ICSI 2016, volume 9712 of LNCS,
pages 350–357. Springer, 2016.

[23] R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sjöberg, and D. Costanzo.
Certikos: An extensible architecture for building certified concurrent OS
kernels. In Proceedings of OSDI, pages 653–669. USENIX Association,
2016.

[24] T. C. Hales, M. Adams, G. Bauer, D. T. Dang, J. Harrison, T. L. Hoang,
C. Kaliszyk, V. Magron, S. McLaughlin, T. T. Nguyen, T. Q. Nguyen,
T. Nipkow, S. Obua, J. Pleso, J. M. Rute, A. Solovyev, A. H. T. Ta, T. N.
Tran, D. T. Trieu, J. Urban, K. K. Vu, and R. Zumkeller. A formal proof
of the Kepler conjecture. Forum Mathematics, Pi, 5(e2):1–29, 2017.

[25] O. Hasan and S. Tahar. Formal verification methods. In Encyclopedia
of Information Science & Technology, 3rd edition, pages 7162–7170. IGI
Global, 2015.

36

[26] J. H. Holland. Adaptation in natural and artificial systems. University of
Michigan Press, Ann Arbor, MI, USA, 1975.

[27] D. Huang, P. Dhariwal, D. Song, and I. Sutskever. GamePad: A learning
environment for theorem proving. In Proceedings of ICLR 2020, 2019.

[28] S. Y. Huang and Y. P. Chen. Proving theorems by using evolutionary search
with human involvement. In Proceedings of CEC 2017, pages 1495–1502.
IEEE, 2017.

[29] T. Jones. Crossover, macromutationand, and population-based search. In
Proceedings of ICGA 1995, pages 73–80. Morgan Kaufmann, 1995.

[30] C. Kaliszyk, F. Chollet, and C. Szegedy. HolStep: A machine learning
dataset for higher-order logic theorem proving. CoRR, abs/1703.00426,
2017.

[31] C. Kaliszyk, L. Mamane, and J. Urban. Machine learning of Coq proof
guidance: First experiments. In Proceedings of SCSS 2014, volume 30 of
EPiC Series in Computing, pages 27–34, 2014.

[32] C. Kaliszyk and J. Urban. Learning-assisted theorem proving with millions
of lemmas. Journal of Symbolic Computations, 69:109–128, 2015.

[33] C. Kaliszyk, J. Urban, H. Michalewski, and M. Olsák. Reinforcement learn-
ing of theorem proving. In Proceedings of NIPS 2018, pages 8836–8847,
2018.

[34] S. Kanav, P. Lammich, and A. Popescu. A conference management system
with verified document confidentiality. In Proceddings of CAV 2014, volume
8559 of LNCS, pages 167–183. Springer, 2014.

[35] D. Karaboga. An idea based on honey bee swarm for numerical optimiza-
tion. Technical Report TR06, Erciyes University, 2005.

[36] J. Kennedy and R. Eberhart. Particle sawrm optimization. In Proceedings
of ICNN 1995, pages 1942–1948. IEEE, 1995.

[37] G. Klein, J. Andronick, K. Elphinstone, T. C. Murray, T. Sewell, R. Kolan-
ski, and G. Heiser. Comprehensive formal verification of an OS microkernel.
ACM Transactions on Computer Systems, 32(1):2:1–2:70.

[38] J. R. Koza. Genetic programming - On the programming of computers by
means of natural selection. MIT Press, 1993.

[39] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens. CakeML: A verified
implementation of ML. In Proceddings of POPL’14, pages 179–192. ACM,
2014.

[40] X. Leroy. Formal verification of a realistic compiler. Communications of
the ACM, 52(7):107–115, 2009.

37

[41] W. Li, L. Yu, Y. Wu, and L. C. Paulson. Modelling high-level mathematical
reasoning in mechanised declarative proofs. CoRR, abs/2006.09265, 2020.

[42] S. M. Loos, G. Irving, C. Szegedy, and C. Kaliszyk. Deep network guided
proof search. In Proceedings of LPAR 2017, volume 46 of EPiC Series in
Computing, pages 85–105, 2017.

[43] S. Mirjalili, S. M. Mirjalili, and A. Lewis. Grey wolf optimizer. Advances
in Engineering Software, 69:46–61, 2014.

[44] M. Mitchell. An introduction to genetic algorithms. MIT Press, 1996.

[45] Y. Nagashima. Towards evolutionary theorem proving for Isabelle/HOL.
In Proceedings of GECCO (Poster) 2019, pages 419–420. ACM, 2019.

[46] Y. Nagashima and R. Kumar. A proof strategy language and proof script
generation for Isabelle/HOL. In Proceedings of CADE 2019, volume 10395
of LNCS, pages 528–545. Springer, 2017.

[47] M. S. Nawaz, M. Z. Nawaz, O. Hasan, P. Fournier-Viger, and M. Sun. Proof
searching and prediction in HOL4 with evolutionary/heuristic and deep
learning techniques. Applied Intelligence, https://doi.org/10.1007/s10489-
020-01837-7, 2020.

[48] M. S. Nawaz, M. Sun, and P. Fournier-Viger. Proof guidance in PVS with
sequential pattern mining. In Proceedings of FSEN 2019, volume 11761 of
LNCS, pages 45–60. Springer, 2019.

[49] M. Z. Nawaz, O. Hasan, M. S. Nawaz, P. Fournier-Viger, and M. Sun. Proof
searching in HOL4 with genetic algorithm. In Proceedings of SAC 2020,
pages 513–520. ACM, 2020.

[50] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A proof assistant
for higher-Order logic. Springer, 2002.

[51] A. L. Nsakanda, W. L. Price, M. Diaby, and M. Gravel. Ensuring pop-
ulation diversity in genetic algorithms: A technical note with application
to the cell formation problem. European Journal of Operational Research,
178:634–638, 2007.

[52] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS
system guide, PVS prover guide, PVS language reference. Technical report,
SRI International, November 2001.

[53] A. Paliwal, S. M. Loos, M. N. Rabe, K. Bansal, and C. Szegedy. Graph
representations for higher-order logic and theorem proving. In Proceedings
of AAAI 2020, pages 2967–2974, 2020.

[54] Python codes and HOL4 data. Available at:. github.com/

MuhammadzohaibNawaz/E.H-PSF-GA-SA-PSO.

38

[55] A. Sanchez-Stern, Y. Alhessi, L. K. Saul, and S. Lerner. Generating cor-
rectness proofs with neural networks. In Proceedings of MAPL@PLDI 2020,
pages 1–10. ACM, 2020.

[56] J. E. Santo. Curry-howard for sequent calculus at last! In Proceedings of
TLCA 2015, volume 38 of LIPIcs, pages 165–179, 2015.

[57] S. Schäfer and S. Schulz. Breeding theorem proving heuristics with genetic
algorithms. In Proceedings of GCAI 2015, volume 36 of EPiC Series in
Computing, pages 263–274. EasyChair, 2015.

[58] K. Slind and M. Norrish. A brief overview of HOL4. In Proceedings of
TPHOL 2008, volume 5170 of LNCS, pages 28–32. Springer, 2008.

[59] J. Urban and J. Jakubuv. First neural conjecturing datasets and experi-
ments. In Proceedings of CICM 2020, volume 12236 of LNCS, pages 315–
323. Springer, 2020.

[60] J. Urban, G. Sutcliffe, P. Pudlák, and J. Vyskocil. Malarea SG1- machine
learner for automated reasoning with semantic guidance. In Proceedings of
IJCAR, volume 5195 of LNCS, pages 441–456. Springer, 2008.

[61] M. Wang, Y. Tang, J. Wang, and J. Deng. Premise selection for theorem
proving by deep graph embedding. In Proceedings of NIPS 2017, pages
2786–2796, 2017.

[62] D. Whalen. Holophrasm: A neural automated theorem prover for higher-
order logic. CoRR, abs/1608.02644, 2016.

[63] F. Wiedijk. Formalizing 100 theorems, available at. http://www.cs.ru.

nl/~freek/100, Accessed on 18 August 2020.

[64] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst,
and T. E. Anderson. Verdi: A framework for implementing and formally
verifying distributed systems. In Proceedings of PLDI 2015, pages 357–368.
ACM, 2015.

[65] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics
Bulletin, 1(6):80–83, 1945.

[66] K. Yang and J. Deng. Learning to prove theorems via interacting with
proof assistants. In Proceedings of ICML 2019, volume 97 of PMLR, pages
6984–6994. PMLR, 2019.

[67] L. A. Yang, J. P. Liu, C. H. Chen, and Y. P. Chen. Automatically proving
mathematical theorems with evolutionary algorithms and proof assistants.
In Proceddings of CEC 2016, pages 4421–4428. IEEE, 2016.

[68] X. Yang. A new metaheuristic bat-inspired algorithm. In Nature Inspired
Cooperative Strategies for Optimization (NICSO), pages 65–74, 2010.

39

[69] X. Zhang, Y. Li, W. Hong, and M. Sun. Using recurrent neural network
to predict tactics for proving component connector properties in Coq. In
Proceedings of TASE 2019, pages 107–112. IEEE, 2019.

40

