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Abstract

The task of mining high-utility itemsets in a database given a minimum threshold is attracting more and more interest due to its
many applications. Existing algorithms such as the vertical ones have the advantages of high scalability, efficiency and extensibility.
However, they depend on a costly join operation to generate new itemsets. To overcome this limitation, this paper proposes a novel
vertical algorithm, FOTH (Fast sOrted iTemset searcH), which employs a novel effective data structure, the IndexSet. The IndexSet
self-propagates to produce sub-IndexSets, eliminating the need to perform join operations, which considerably reduces the memory
and computation requirements. Experiments were conducted on eight benchmark databases to compare the performance of FOTH
with four state-of-the-art list-based algorithms. The results show that FOTH outperforms the other algorithms on dense databases.
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1. Introduction

Mining interesting patterns is an essential task in the data
mining research field. The FIM (Frequent Itemset Mining)
problem was first introduced by Agrawal et al [1] in 1993 to
discover the frequent itemsets (sets of values) that occur in a
database. A traditional application of FIM, among many oth-
ers, is to identify the sets of items that are often purchased
(e.g., {egg, milk, bread}) by customers. Nonetheless, FIM [2]
does not capture the utility of itemsets, that is their relative
importance in terms of aspects such as profit. Hence, Yao et
al. [3] formulated the problem of High Utility Itemset Min-
ing (HUIM), where the aim is to identify all the itemsets that
are greater or equal to a given minimum utility threshold. As
HUIM is a generalization of FIM, most HUIM algorithms ex-
tend FIM algorithms [4–10] but also incorporate several tai-
lored optimizations and strategies.

HUIM algorithms can be classified into two main types:
two-phase algorithms [11–14] and one-phase algorithms [15–
22; 22–26]. Two-phase algorithms require two scans of the
database. The initial scan generates the set of candidate high
utility itemsets; the subsequent scan identifies the true high util-
ity itemsets among these candidates. Generally, one-phase al-
gorithms outperform two-phase algorithms as they conduct a
single scan of the database and eliminate the need to gener-
ate candidates. Among one-phase algorithms, list-based algo-
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rithms [15; 18; 21; 22; 24; 27] have garnered significant atten-
tion in recent years due to their excellent performance. How-
ever, a key limitation of list-based algorithms that hinders their
performance is that they rely on a list join operation for explor-
ing the search space of itemsets. Three main types of join oper-
ations have been suggested, with time complexities [15; 21; 22]
of O(n log m), O(n + m) and O(n), where m and n denote the
numbers of entries in two utility-lists being joined. Despite this,
joins remain the main bottleneck of list-based algorithms. Thus,
an important question arises: is it possible to entirely eliminate
the join operation?

In this paper, we answer this question positively by proposing
a novel list-based algorithm called FOTH (Fast sOrted iTemset
searcH), which leverages a new data structure called IndexSet.
First, the item space is converted into a binary one. Each item xi

is encoded as a binary number. The parameter i is the position
of item xi, when items are sorted in Transaction-Weighted Uti-
lization [11] descending order. Using these codes, every item-
set can be encoded with its items’ codes, which allows sorting
itemsets for efficient search.

Second, a new method for generating itemsets without the
join operation, called propagation, is designed. Unlike previous
algorithms, there is no need to compare the transaction identi-
fiers of lists. During the propagation process, a transaction can
generate itemsets with utility information called vectors, by it-
self. These vectors can also continue to generate sub-vectors
without repetition.

Third, an IndexSet structure is designed to mine high utility
itemsets. An IndexSet for an itemset X contains all the utility
information of X, that is its vectors. IndexSets are all sorted in
a red-black tree [28]. When vectors are about to be merged into
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the IndexSets, the ordered IndexSet structure can be obtained
in O(log n) complexity.

The proposed FOTH algorithm performs a new type of search
that is different from a depth-first or breath-first search. A spe-
cial set of IndexSets called mining area is introduced to con-
trol the mining process. Although there is no join operation in
FOTH, there is still a performance overhead for propagation.
The complexity analysis proves that FOTH is faster in mining
large itemsets in theory.

Experiments are conducted in various databases to test the
performance of FOTH. The results show that FOTH outper-
forms several state-of-the-art list-based algorithms, except for
sparse databases.

The rest of this paper is organized as follows: Section 2 intro-
duces the related work on HUIM. Section 3 describes the prob-
lem definition. Section 4 presents the design of FOTH. Then,
Section 5 describes the experimental results. Finally, Section 6
draws a conclusion.

2. Related work

Finding all the high utility itemsets in a transaction database
with N items and M transactions is a very challenging task.
There are 2N possible high utility itemsets even for a small N,
M, and a low threshold. To simplify the HUI mining (HUIM)
problem, several approximate HUIM algorithms were designed
such as HUIM-SA [29], HUIM-BPSO [30] and HUIM-AF [31].
Approximate algorithms are generally very fast since they use
heuristic strategies to explore the search space, but they cannot
guarantee to find all the HUIs. Based on the Apriori algorithm
[4], Liu et al. proposed the first complete algorithm for HUIM,
named Two-Phase [11] in 2005. Thereafter, more and more
researchers began developing exact algorithms to improve the
efficiency of HUIM in terms of time and memory.

The Two-Phase algorithm is applied in two steps (phases):
generating candidate high utility itemsets and then filtering
those that are low utility itemsets. To reduce the search space,
Two-Phase [11] introduced an important monotone upper-
bound on the utility, named the TWU (Transaction-Weighted
Utilization) measure [11]. If the TWU value of an itemset is
less than the user-defined threshold, all its supersets can be ig-
nored, as they cannot be high utility itemsets [11]. The TWU
measure has been used by many subsequent HUIM algorithms
due to its low computation cost and its relatively powerful ef-
fect on search space reduction. However, Two-Phase [11] may
generate many itemsets that do not exist in the database, and
perform multiple costly database scans. To address those is-
sues, some pattern-growth algorithms were developed based on
FP-Growth [5] such as UP-Growth [12], HUP-Growth [32],
and MU-Growth [14]. These pattern-growth algorithms use a
database projection technique and a tree-based database repre-
sentation to avoid generating unexisting itemsets. A projected
database usually contains fewer items and transactions than the
original one, which reduces the cost of database scanning.

Nevertheless, the aforementioned algorithms still perform
two phases, and thus have to keep a large number of can-
didates in memory during phase 1 before performing phase

2, which degrades performance [15]. For this reason, one-
phase algorithms were designed. The first two algorithms of
this type, HUI-Miner [15] and d2HUP [16], were introduced
in 2012. Different from two-phase algorithms, one-phase al-
gorithms transform a database into vertical or horizontal data
structures using a single database scan. Then, these structures
are used to directly search for high utility itemsets (without
keeping candidates in memory).

Inspired by the Eclat algorithm [6] for FIM, the HUI-Miner
[15] algorithm relies on a data structure called utility-list. A
utility-list stores information about an itemset’s utility and the
transactions where it appears. A new itemset and its utility-
list can be constructed by joining the utility-lists of some of its
subsets. The itemset’s utility can then be directly derived from
its utility-list without reading the database. Besides, an upper-
bound tighter than the TWU was also proposed in HUI-Miner
[15], based on the concept of remaining utility.

Thereafter, various list-based algorithms and optimization
strategies were proposed. The FHM [18] algorithm introduced
a search space pruning strategy based on the TWU of item pairs.
Thanks to this optimization, FHM performs fewer join opera-
tions than HUI-Miner [15], increasing its performance. HUP-
Miner [20] utilizes a partitioned utility-list data structure to di-
vide a database into many parts. Moreover, two pruning strate-
gies, LA-Prune and PU-Prune, are applied to reduce the search
space. IMHUP [23] links elements from the same transactions
to reduce the cost of the join operation, while mHUIMiner [24]
combines a utility-list with a prefix-tree structure to reduce the
number of generated itemsets. To reduce the cost of the join
operation, ULB-Miner [27] uses a buffer to efficiently store and
retrieve utility-lists, and reuse memory during the mining pro-
cess. HMiner [19] uses a compact utility-list structure with vir-
tual hyper-links for the same purpose. HUI-Miner* [21] takes
the same idea but uses a different structure called utility-list*.
The join operation complexity is then reduced to O(m+n). The
UBP-Miner [22] algorithm introduces the utility bit partition
list structure where transaction identifiers are encoded into a bi-
nary form. Then, the join operation is done using the bitwise
AND operation, and the complexity is reduced from O(m + n)
to O(n).

As outlined above, many researchers have worked on design-
ing efficient join operations. This is because joins are the main
performance bottleneck of list-based HUIM algorithms [18].
However, previous studies have not found a method to avoid
the join operation completely. Designing a list-based algorithm
without join operations has thus great potential.

Many extensions of High Utility Itemset Mining (HUIM)
have also been extensively studied. For instance, it was ob-
served that for a low minimum utility threshold, too many item-
sets may be output. And it can be hard for users to find inter-
esting patterns among them. To address this issue, algorithms
were developed to extract concise representations of high util-
ity itemsets, that is a smaller set of representative high utility
itemsets. Several types of representations have been proposed,
such as Closed High Utility Itemsets [33–36], Maximal Item-
sets [37; 38], and Generators of High-Utility Itemsets [39; 40].
Another challenge is how to choose an appropriate threshold.

2



In traditional HUIM algorithms, this value is specified by users,
who may not have prior knowledge of the utility distribution in
the database. The task of Top-k high utility itemset mining was
proposed to solve this problem, which allows users to discover
the k itemsets with the highest utilities in a database. Several
efficient algorithms have been proposed for this problem based
on Frequent Itemset Mining (FIM) and HUIM techniques [41–
43]. This paper focuses on the traditional HUIM problem.

3. Preliminaries

This section introduces preliminaries and the problem defini-
tion. First, a database D is given by users.

Definition 1. (Database [3]) A database is a triple

D = (T, I, q) (1)

where T = {t1, t2, . . . , tM} is the set of Tids (transaction IDs),
I = {x1, x2, . . . , xN} is the ordered set of all items from the
database, and q : I × T → Z+ is an injective function indicating
the quantity of each item in each transaction. Moreover, Z+ is
the set of non-negative integers. Without losing generality, we
assume that the order is x1 < x2 < · · · < xN .

Definition 2. (Item utility [3]) Given a database D, the unit
utility of an item x ∈ I is eu(x) ∈ R+. Moreover, R+ is the set of
positive real numbers.

Therefore, given an item x ∈ I, its utility in a transaction
t ∈ T is

f (x, t) = eu(x) × q(x, t). (2)

Definition 3. (Itemset [3]) Given a database D and an ordered
index list i1 < i2 < · · · < ik, X = {xi1 , xi2 , . . . xik } is called an
itemset if ∀ j ∈ [1, k], xi j ∈ I and i j ∈ [1,N].

Given a database D and an itemset X, X matches a transaction
t iff ∀x ∈ X, q(x, t) , 0. Formally, the matching function of X
on t ∈ T is

m(X, t) =
{

1, if Xmatches t;
0, otherwise. (3)

Given a database D and an itemset X, the utility of X in a
transaction t ∈ T is

u(X, t) = m(X, t) ×
∑
x∈X

f (x, t). (4)

Therefore, the utility of X in the whole database D is

U(X,T ) =
∑
t∈T

u(X, t). (5)

Example 1. An example database is shown in Table 1 and
the unit utility of items is shown in Table 2. In this database,
T = {t1, t2, . . . , t6} and I = {a, b, . . . , g} is sorted in alphabetical
order. The utility of item b in transaction t1 is eu(b) × q(b, t1) =
2. Itemset {b, c} appears in t4 and t6, then U({b, c},T ) =
u({b, c}, t4) + u({b, c}, t6) = 8 + 4 = 12. The utility value repre-
sents the importance of an itemset (e.g., profit).

Table 1: The example database
Tid Items Quantity
t1 {a, b, d, e} 1, 1, 1, 3
t2 {d} 3
t3 {e, f , g} 1, 2, 3
t4 {b, c, d, e} 3, 2, 2, 4
t5 {a, d, g} 3, 3, 3
t6 {b, c, d, g} 1, 2, 2, 3

Table 2: Unit utility
Item a b c d e f g

Unit utility 4 2 1 1 2 6 3

Let σ be the minimum utility threshold. An itemset X is a
high utility itemset iff

U(X,T ) ≥ σ. (6)

The goal of the High Utility Itemset Mining (HUIM) problem
is to discover all the high utility itemsets in D.

Example 2. In the example database, let σ = 15. We have
U({b, c},T ) = 12 and U({b, c, d, g},T ) = 15. Thus, {b, c, d, g} is
a high utility itemset and {b, c} is not.

Because HUIM is an NP-hard problem, pruning strategies
must be used to reduce the search space. Two popular prun-
ing strategies called TWU-Prune and RU-Prune are presented
next. The TU (Transaction Utility) [11] of a transaction t ∈ T
is denoted as

TU(t) =
∑
y∈I

f (y, t). (7)

The TWU [11] of an item x in D is calculated by

TWU(x,T ) =
∑
t∈T

m({x}, t) × TU(t). (8)

Property 1. (TWU-prune [11]) Let Y be any itemset that con-
tains an item x. Y is not a high utility itemset if TWU(x,T ) < σ.

Example 3. In the example database, all the TWU of items in
I are shown in Table 3. Let σ = 35, then any superset of {c} or
{ f } is not a high utility itemset.

Property 1 provides a method to reduce the size of transac-
tions in the input database. Revised transactions are easier to
mine because they contain fewer items. We say that a transac-
tion ∀t ∈ T is revised if q(x, t) has been changed to q(x, t) = 0
if x ∈ {x ∈ I ∧ TWU(x,T ) < σ} in the database D.

Let X be an itemset and y ∈ I be an item in D. We say that
X < y iff ∀x ∈ X, x < y. The remaining utility [15] of X is

RU(X,T ) =
∑
t∈T

(m(X, t) ×
∑
X<y

f (y, t)). (9)

Property 2. (RU-prune [15]) Let X be an itemset. Any superset
of X is not high utility if U(X,T ) + RU(X,T ) < σ.
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Table 3: TWU of items
Item a b c d e f g
TWU 37 46 33 73 54 23 62

Example 4. Let items be sorted in alphabetical order in the
example database, then RU({b, d},T ) = 6 + 8 + 9 = 23 and
U({b, d},T ) = 3+8+4 = 15. If σ is set to 40, then any superset
of {b, d} is not a high utility itemset because RU({b, d},T ) +
U({b, d},T ) = 38.

4. FOTH Algorithm

This section presents the novel FOTH algorithm to mine high
utility itemsets. First, the proposed IndexSet structure and prop-
agation mechanism are explained. Then, the algorithm is de-
scribed, and finally, a complexity analysis is presented.

4.1. IndexSet structure and propagation

Traditional list-based HUIM algorithms apply a join opera-
tion to generate new itemsets while calculating their utility. In
the FOTH algorithm, joins are replaced by a novel merge oper-
ation. We first describe how to efficiently implement this oper-
ation using an encoding method for all items of I. This method
allows to efficiently compare, sort itemsets, and access item-
sets to update their utility information. The encoding method
assigns a unique number to each item from I as follows.

Definition 4. (Encoding) Let xi ∈ I be the i-th item. The code
of xi is a |I| bits binary number, denoted as code(x) and is equal
to

B(2i−1), (10)

where B : decimal → binary. For an itemset X, it be can be
encoded by

code(X) =
∑
x∈X

code(x). (11)

Thus, the code is a binary number where the i-th bit is set to ‘1’
iff xi ∈ X

Example 5. Itemset {a, d} is encoded by the binary number
(0000001)2 + (0001000)2 = (0001001)2. The item a and d are
respectively represented as (0000001)2 and (0001000)2 because
they are the first and fourth items according to the alphabetical
order used in this example. For convenience, we will omit the
notation (·)2 when referring to itemset codes in this paper.

From an implementation perspective, an item’s code may be
too large to fit into a single variable. Therefore, a code array of
integers is utilized to represent each code.

Definition 5. (Code array) Let a be an integer array and a[i]
be the i-th integer that has k bits. Given an itemset X, the code
array a of X is calculated by

a[l] =
∑

x∈X∧ code(x)∈[2kl,2k(l+1))

code(x) ≫ kl (12)

where ‘≫’ is the right shift operator.

21 x

22 y

utilSum:7

0000110

21 x

22 y

62 3

utilSum:15

0000110

Merge

62 -1

utilSum:18

0011110

8 2
fixedPos

code

vectors

62 3 +

Figure 1: IndexSet for {b, c, d, e}.

Example 6. If code(X) = 2100 and k = 32, the code array of X
is ⟨000 . . . 010000, 0, 0, 0⟩ in binary form.

Based on this encoding method, the proposed IndexSet struc-
ture of an itemset X has four fields:

1. code: a number that represents the itemset, that is code(X)
2. utilSum: the utility of the itemset, that is U(X,T ).
3. vectors: a list of vectors. A vector is the sub-structure

of IndexSet that contains the utility information of X in a
transaction t. And one vector is encoded in the same way.
And every vector of vectors has the same code as X.

4. fixedPos: a variable used to facilitate the itemset propaga-
tion process.

Each transaction is an itemset itself. Thus, after the first
database scan, IndexSets are constructed for every transaction.
Figure 1 shows an IndexSet for t4. All the IndexSets are stored
in a red-black tree [28] because it has an excellent average com-
plexity for insertion and search. Note that it could be beneficial
to use other structures supporting the same operations in some
specific situations such as a hash map if there are few IndexSets.

The second important component of FOTH is a new method
that allows each itemset to propagate information to their sub-
sets. To achieve this, a key challenge is that different vectors
coming from a given transaction may propagate to the same
vector during the propagation process, resulting in redundant
propagation and an incorrect result. This is explained with an
example. Consider the IndexSet of {b, c, d, e} shown in Figure
1. The IndexSet {b, c, d, e} can generate many smaller subsets as
vectors but only {b, c, d} and {b, c, e} will make utility contribu-
tions to {b, c}. In particular, vectors of {b, c, d} and {b, c, e} can
both propagate to vector {b, c}, and thus vectors from T4 may
be collected twice by the IndexSet {b, c}. This will lead to a
miscalculation because u({b, c}, t4) must be counted only once.
Although this problem could be avoided if all the vectors of T4
could be generated at the same time, it is a very tough task to
do because if a transaction has l items, there will be 2l vectors.
Hence, the propagation process should be executed step by step
and a mechanism should be devised to avoid redundant propa-
gation. For this purpose, a fixedPos value is introduced in the
IndexSet structure.

A vector has a pointer fixedPos that points to an item from the
itemset represented by the vector. Items that are greater than or
equal to fixedPos are fixed and cannot be removed during prop-
agation to generate other vectors. Each IndexSet propagates
its vectors according to fixedPos. If fixedPos is equal to −1, it
means that no item is fixed and any item can be removed. The
pseudo code of the propagation process is shown in Algorithm
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Algorithm 1 Propagate.
Input: IS , an IndexSet; R, a red-black tree.

1: for all vector v in IS .vectors do
2: for all item x in {x|x ∈ v ∧ x < v. f ixedPos} do
3: c← IS .code;
4: for all item y in {y|y ∈ v ∧ y ≤ x} do
5: sub v← a copy of v;
6: remove item y from sub v;
7: sub v.utilSum = sub v.utilSum − u(y, v);
8: c = c − y.code; // calculate code of sub v.
9: sub v.code← c;

10: S = R.find(sub v.code);
11: sub v. f ixedPos ← the position of the next largest

item that is smaller than y;
12: if S == None then
13: S ← an empty IndexSet;
14: S .utilSum← 0;
15: S .code← sub v.code;
16: R.put(S );
17: end if
18: S .utilSum = S .utilSum + sub v.utilSum;
19: S .vectors.append(v) ;
20: end for
21: end for
22: end for

1. This procedure takes an IndexSet and a red-black tree as in-
put, and consists of three loops to iterate over all vectors of the
input IndexSet. When a vector v is being propagated, a copy
of IS ’code is stored in a variable c (line 3). All the codes of
v’s sub-vectors are derived from c. Sub-vectors of v are con-
structed by operations in lines 5-9. Lines 10-19 show how to
merge vectors with an IndexSet.

To describe the propagation process more clearly, take the
propagation of IndexSet {b, c, d, e} as an example, which is il-
lustrated in Figure 2. At first, the algorithm selects a vector
as the parent. Here, it is {b, c, d, e}, which is represented by
the code 0011110. The notation [0011110] represents a vec-
tor structure with the code 0011110. As this vector’s fixed-
Pos is equal to −1, all items can be removed. The posi-
tion of the next largest item after fixedPos is item 5. Hence,
the new fixedPos is set to 5 while the parent is turned into
a set of vectors, called base-1. This is done by removing
each ‘1’ one by one from fixedPos to generate the sub-vectors:
[0001110], [0000110], [0000010] and [0000000]. The fixed-
Pos value of each sub-vector is set to the position of the next
largest item after the removed one. In the figure, a value ‘1’
in red indicates that fixedPos has been changed by the algo-
rithm. The real fixedPos value in a vector is the smallest red
‘1’. After base-1 has been generated, the fixedPos of base-1 is
moved again, turning base-1 into base-2. The same process is
performed until fixedPos reaches the last position. All the sub-
vectors are merged into the IndexSets that have the same code
as them in the red-black tree.

Merging vectors is relatively simple. For instance, assume
that there already exists an IndexSet {b, d} from transactions t1

[0011110]

[0011110] [0001110] [0000110] [0000010]

[0011110] [0010110] [0010010]

[0011110] [0011010] [0011000]

[0010000]

[0000000]

[0011110] [0011100]

parent

base-1

base-2

base-3

base-4

Figure 2: Propagation of vector {b, c, d, e} for one step.

21 x

22 y

utilSum:7

0001010

21 x

22 y

62 2

utilSum:15

0001010

Merge
62 2 +

Figure 3: Merge operation for vector {b, d} of t4.

and t6. The vector {b, d} from the transaction t4 will be merged
with this IndexSet. As the algorithm does not pay attention to
fixedPos and the order during the merging process, fixedPos is
replaced by unknown parameters x and y for convenience. The
vector {b, d} can be simply appended to the end of the vectors
field. And utilSum will be updated to 7 + 8 = 15. The merge
operation for a vector shown in Figure 3 is completed.

4.2. The FOTH procedure
In this section, the FOTH algorithm is described. In general,

FOTH is composed of two processes: reconstruction and min-
ing.

The reconstruction process takes a database D and a positive
real number σ as input. The pseudocode is shown in Algorithm
2. The goal of this process is to convert all transactions in D
into IndexSets. Then, these IndexSets are sorted in R. First,
each item is encoded (lines 1-5). If the number is too large,
an integer array is used. Second, transactions are transformed
into vectors (lines 8-10) and merged into the IndexSets (lines
18-19). When looking up for an IndexSet in the red-black tree
by its code, if there is no IndexSet, an empty one is created and
initialized (lines 12-17). From Algorithm 1 and Algorithm2, the
most two important operations of R are ‘put’ and ‘find’. If there
are not too many IndexSets in R, a hash map will be better for
these two operations. Using a hash map, a particular IndexSet
can be found in O(1) time complexity if there is no collision.

The mining process is the main part of FOTH. Instead of us-
ing a depth-first or breadth-first search, an approach similar to
a binary-search is applied on all 2n combinations, as shown in
Algorithm 3. After the reconstruction process is completed, a
loop is created to search for high utility itemsets. First, a cut
point denoted as low is initialized to 2n−1. All the IndexSets
which are bigger than or equal to low are collected into a set
called mining area. The sum of the utilSum of all IndexSets in
the mining area is accumulated, denoted as vs. It is actually the
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sum of U(X,T ) and RU(X,T ) where X is the itemset encoded
by low. Therefore, vs can be used to estimate whether there are
high utility itemsets in this mining area. This feature can be
maintained automatically if IndexSets are sorted in ascending
order. For example, given two codes 01100 and 11001, low is
set to 01000. A code c which is larger than low satisfies the
equation low & c = low where & is the bitwise AND opera-
tor. For example, 01000 & 01100 = 01000. This means that c
has all of low’s items. But if c is too large, this equation will
be broken like 01000 & 11001 , 01000. Therefore, a binary-
search-like search is performed to control the highest bit.

Back to the mining process, since vs is equal to U(X,T ) +
RU(X,T ), RU-Prune can be applied to reduce the search space.
If vs < σ, there will be no high utility itemset in the current
mining area. If not, low is set to low+ low/2, low+ low/4, low+
low/8, ..., low + 1 and the mining area also changes with low.
These steps are performed recursively until there is no IndexSet
left in R. Whether vs is smaller than σ or not, IndexSets must be
propagated after the mining area is searched. The pseudocode
of the mining process is shown in Algorithm 3.

So far, all the necessary processes of FOTH have been intro-
duced. But an additional, simple process shown in Algorithm 4
is needed to start FOTH.
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15
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0011100
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Figure 4: IndexSets of the example database.

4.3. Mining high utility itemsets using FOTH

To more clearly describe how the FOTH works, consider the
example database previously presented and σ is set to 20. First,
Algorithm 4 is called to start FOTH. Second, the reconstruc-
tion process (Algorithm 2) is invoked for initialization. In this
example, items are first sorted in alphabetical order, for conve-
nience (line 4). But in practice, FOTH actually sorts items in
the descending order of TWU. In this way, there will be fewer
IndexSets because FOTH always attends to split low bits. The
utility of items that have large TWU will be recombined with
smaller ones. It was also shown in prior work that this order is
effective for HUIM [21]. After reconstruction, the whole search
space is 27 because there are 7 items in the database. IndexSets
are sorted as shown in Figure 4, and low is initialized to 26 first.

Third, the mining process (Algorithm 3) starts. The min-
ing area is set to {[1001001], [1001110], [1110000]} which are
all larger than low (line 1). Because the sum of the utilSum is
24 + 15 + 23 = 62 > σ in the current mining area (lines 2-5),
there may exist high utility itemsets (line 7). Therefore, low is
updated to 1000000 + 0100000 = 1100000, and Algorithm 3

Algorithm 2 Reconstruction.
Input: D, a transaction database.
Output: R, a red-black tree initialized with D’s transactions;

n, the number of items in D.
1: scan D and calculate the TWU of all the items in D;
2: revise all the transactions in D according to the TWU;
3: n← the remaining number of items;
4: sort items in TWU descending order;
5: encode all the remaining items;
6: create an empty red-black tree R;
7: for all transaction T in D do
8: v← vector form of T ;
9: v.utilSum← the sum of items’ utility in T ;

10: v.code← the sum of all items’ codes in T ;
11: IS = R.find(v.code);
12: if IS == None then
13: IS ← an empty IndexSet;
14: IS .utilSum← 0;
15: IS .code← v.code;
16: R.put(IS );
17: end if
18: IS .utilSum = IS .utilSum + v.utilSum;
19: IS .vectors.append(v);
20: end for
21: return R, n;

is invoked recursively (line 10). Then the mining area is set to
{[1110000]} (line 1). Since 23 > σ, low is changed to 1110000
and Algorithm 3 is called again. The next mining area is set to
{[1110000]}. The sum of the current mining area’s utilSum is
23 > σ. The condition of line 7 is still satisfied. Algorithm 3 is
executed and low becomes 1111000. Since there is no IndexSet
larger than the low, the current recursive invocation concludes
and control returns to the last call level (line 10) where low is
1110000. And the mining area is {[1110000]}. With no In-
dexSet large enough, the for-loop (lines 9-11) terminates early.
Execution proceeds to lines 13-16. The utilSum of IndexSet
[1110000] is 23 > σ (line 14). Hence, {e, f , g} qualifies as a
high utility itemset after decoding (line 15).

Fourth, the IndexSet [1110000] undergoes the propagation
process commencing at line 17 (Algorithm 1), propagating five
vectors to other IndexSets as depicted in Figure 5. The propa-
gation process has been explained in Section 4.1. Thus, further
details are omitted here. After propagation, the mining process
returns to the last mining area and resumes on line 13 where
low is 1100000. The IndexSet {[1100000]} is then output as
a high utility itemset (lines 14-15) and propagated (line 17).
Next, the algorithm reverts to the preceding call level (line 10)
with low = 1000000. The for-loop (lines 9-10) continues and
sets i = 2. The method Mine is called with low = 1010000.
These steps are repeated until all the high utility itemsets have
been identified. The results are shown in Table 4.

4.4. Complexity
Let there be an itemset P, and two itemsets Px and Py, where

the notation Px means P ∪ {x}. The lists of Px and Py are
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Figure 5: Propagation of [1110000].
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Figure 6: The join operation between two utility-lists.

Table 4: The itemsets mined from the example database
Itemsets Utility Itemsets Utility
{e, f , g} 23 {b, e} 22
{ f , g} 21 {b, d, e} 25
{a, g} 21 {g} 27
{a, d, g} 24 {d, g} 23
{a, d} 20

denoted as list(Px) and list(Px). Let D be a database which
has N items and M transactions. Without losing generality, as-
sume that list(Px) contains n transactions and list(Py) contains
m transactions where n ≤ m ≤ M. There are two necessary
processes to generate an itemset Pxy: constructing and discov-
ering.

The join operation is used by algorithms such as HUI-Miner
[15] is illustrated in Figure 6. It consists of searching for lines
that have the same Tids in both lists. Although a binary search
can be performed on the Tids of list(Py), the complexity is up to
O(n log m). Thus, algorithms such as ULB-Miner [27] instead
perform the join as a two-way scan, which has a complexity
of O(n + m). The fastest join operation in UBP miner, called
BEO, is O(n) [22]. But Wu et al. ignored the complexity of en-
coding each Tidset and handling hash collisions in UBP-Miner
[22]. Because a Tidset may be too large to be stored in an inte-

Algorithm 3 The mining process.
Input: R, a red-black tree returned by Algorithm 2; σ, a min-
imum utility threshold; low, a cut point which is initialized to
2n−1.
Output: all high utility itemsets.
Method: Mine.

1: mining area← a set of IndexSets which are larger than low
in R;

2: vs ← 0; // the sum of utilSum.
3: for all IndexSet IS in mining area do
4: vs = vs + IS .utilSum;
5: end for
6: item x ← the smallest item satisfying low;
7: if vs ≥ σ then
8: // U-prune.
9: for i = 1, 2, 3, . . . , log2 low do

10: Mine(R, low + low/2i);
11: end for
12: end if
13: for all IndexSet IS in mining area do
14: if IS .utilSum ≥ σ then
15: decode IS .code and output;
16: end if
17: Propagate(IS , R);
18: R.remove(IS );
19: end for

ger variable, an array must be used. The encoding complexity
and that of handling hash collisions must be considered. If an
integer has L bits, then the actual complexity of BEO increases
to O(n2N + M/L) in the worst case.

In the proposed FOTH algorithm, the complexity of encod-
ing is O(N/L) and the complexity of searching an IndexSet in
R is O(N) or O(1). It depends on the red-black tree and the
number of hash collisions. Different structures (hash map or
red-black tree) will be investigated for specific databases. A
red-black tree is more general but may not be the fastest in spe-
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Figure 7: Runtime comparison.

Algorithm 4 FOTH booting function.
Input: D, a transaction database; σ, a minimum utility thresh-

old;
Output: all high utility itemsets;

1: R, n ← Reconstruction(D, σ);
2: for i = n − 1, n − 2, n − 3, . . . , 1 do
3: Mine(R, 2i);
4: end for

cific situations. The complexity of generating a sub-vector is
O(1) because FOTH only needs to remove a ‘1’ and set fixed-
Pos. Therefore, the complexity of constructing a complete In-
dexSet is O(MN2/L) in the worst case. Compared to the join
operation, FOTH does not construct the complete Pxy at once
from two smaller existing utility-lists. Instead, FOTH merges
vectors propagated by other IndexSets into the IndexSet of Pxy
until this IndexSet is complete. This merging operation does
not perform any kind of Tids comparison. It just needs to ap-
pend a new vector to the end of the filled vectors and update
utilSum in O(1) complexity.

In the worst case, FOTH needs to generate an itemset X that
appears in all transactions, that is n = m = M and σ is set to 0.
The complexities of the join operation of previous algorithms
are O(M log M), O(2M) and O(M2N + M/L). In practice, L
usually is equal to 32. It seems that O(2M) is the fastest join
operation when N ≥ 8. If L is equal to 64, the critical condi-
tion will be changed to 8 2

√
2. However, the worst case will not

happen frequently in practice. And high utility itemsets rarely
cause numerous hash collisions. For example, if D is a super-

market transaction database, it is unlikely that all customers will
buy exactly the same set of items. Therefore, the complexity of
BEO and FOTH is still O(n) in most cases.

The above analysis is about constructing an itemset X. Let us
consider the complexity of discovering X. If an itemset |X| = k,
we say that X is a k-itemset. Without considering any prun-
ing strategy, previous algorithms have to generate 1-itemsets,
2-itemsets, 3-itemsets, ... , (k− 1)-itemsets first. The total num-
ber of them is

∑k−1
i=1

(
N
i

)
. In FOTH, only the itemsets whose

codes are larger than X’s may contribute to X. As |X| = k,
code(X) is greater than or equal to 2k. Therefore, there are at
most 2N−k itemsets that not only contain X but are also larger
than X’s code. Comparing these two numbers, there exists a k′

that makes
k′−1∑
i=1

(
N
i

)
= 2N−k′ .

And for k ≥ k′, 2N−k ≤
∑k−1

i=1

(
N
i

)
. Therefore, FOTH is faster in

generating large itemsets.
In summary, FOTH has the same minimum complexity for

construction as BEO. But FOTH uses less steps to discover
large itemsets. Therefore, FOTH is expected to perform bet-
ter than other list-based algorithms for mining large high utility
itemsets.

5. Experiment

In this section, experiments are conducted to evaluate the per-
formance of FOTH. Four recent list-based algorithms are com-
pared with FOTH, namely UBP-Miner [22], HUI-miner* [21],
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Figure 8: Memory consumption comparison.

Table 5: The information of databases.
Database Trans Items AvgLen Density Size (MB)
Mushroom 8,416 119 23.0 19.33% 1.0
Chess 3,196 75 37.0 49.33% 0.6
Connect 67,557 129 43.0 33.33% 16.2
Accidents 340,183 468 3.8 7.22% 63.4
Chicago 2,662,309 35 1.8 5.13% 27.7
c20d10k 10,000 192 20.0 10.42% 1.3
Retail 88,162 16,470 1,030.0 0.06% 6.5
Chainstore 1,112,949 46,086 7.2 0.02% 79.2

mHUI-Miner [24], and ULB-Miner [27]. All of them have dif-
ferent implementations of the join operation. These algorithms’
implementations can be obtained from the SPMF website [44].

FOTH and other algorithms are implemented in Java. All
these algorithms were run on a machine equipped with an Intel
Core i7 processor and 16 GB of memory.

5.1. Experimental setup

5.1.1. Databases information
Eight standard benchmark databases were used to conduct

the experiments. Detailed information about them is given in
Table 5. All the databases can be obtained from the SPMF web-
site [44], which is an open-source data mining library. In the
table, AvgLen refers to the average item count per transaction.
The density of a database is defined as

density(D) =
AvgLen
Items

, (13)

where D is a database from Table 5. The density value is gener-
ally an indicator of the probable size of itemsets in a database.
Depending on the density, we can roughly divide databases
into dense databases and sparse databases. There is no strict
boundary between these two types of databases. In [22], if a
database’s density > 5%, it will be considered dense. In this pa-
per, we adopt the same rule. For a particular σ, dense databases
are more likely to generate larger itemsets than sparse ones.
Database c20d10k was generated by the IBM Quest Synthetic
Data Generator. Except c20d10k, other databases in Table 5
are real. Mushroom, Chess, Connect and Retail were originally
used for FIM. Database Chicago was used to mine fuzzy asso-
ciation rules by Zhang et al. [45]. Then, it has been converted to
the SPMF format and shared for HUIM by Zhang et al. Further
information about Chicago can be obtained on the SPMF web-
site [44]. Chainstore is transactions from a major grocery store
chain in California, USA. In the experiments, a value called
minutil is used to represent the threshold σ as a percentage.
From minutil, σ can be obtained as:

σ = minutil ×
∑
t∈T

∑
x∈I

f (x, t). (14)

5.1.2. Evaluation metrics
Four evaluation metrics: runtime, memory consumption,

speedup, and scalability are utilized in the experimental eval-
uation. To obtain suitable experimental results, we have run the
algorithm with many different minutil values. On the one hand,
when minutil values are too large, few HUIs are found, the task
of HUI mining becomes easier, runtimes are short, and it is hard
to compare the algorithms. On the other hand, when minutil
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Figure 9: High utility itemsets’ size under different thresholds.

values are too small, a huge number of HUIs may be found,
and algorithms may have very long runtimes, which makes it
time-consuming to run experiments, especially because some
algorithms are considerably slower than others. Thus, to pro-
vide fair experiments, we took into account the choice of minu-
til values from other papers such as [22], and made some slight
changes due to using different hardware. These minutil values
are also used in memory consumption and speedup metrics.

For memory consumption, all the algorithms were imple-
mented in Java and run in the Java Virtual Machine (JVM). The
JVM may slightly affect the memory consumption of the algo-
rithms. Therefore we recorded the peak memory consumption
during algorithms running without losing generality. To verify
the effect of FOTH’s joinless approach, a speedup metric [25]
is used, which is calculated by

speedup(x) =
RJO(x)

RS PP(FOT H)
, (15)

where RJO is short for the runtime of join operation and RSPP
stands for the runtime of search and propagation processes. It
is very hard to record the RSPP precisely because search and
propagation are deeply integrated with the other parts of FOTH.
But we can still compute a lower bound by

speedup∗(x) =
RJO(x)

runtime(FOT H)
. (16)

We replace RSPP(FOTH) by the runtime of FOTH. In this way,
a lower bound on speedup(x) can be easily computed.

5.2. Runtime analysis
5.2.1. Overall runtime comparison

The runtime of the five algorithms on the databases shown in
Table 5 is depicted in Figure 7. Except for databases Retail and

Table 6: The ratio value runtime(x)/runtime(FOT H)
Database UBP-Miner mHUI-Miner HUI-Miner* ULB-Miner
Mushroom 5.6 19.3 4.7 12.5
Chess 7.9 27.5 6.2 20.7
Connect 71.2 186.3 112.9 147.2
Accidents 8.0 35.9 11.5 17.7
Chicago 2.2 2.0 1.0 1.4
c20d10k 4.4 14.7 3.6 10.2
Retail 0.1 0.6 0.6 0.5
Chainstore 0.3 1.6 0.7 0.2

Table 7: The standard deviation of runtime
Database UBP-Miner mHUI-Miner HUI-Miner* ULB-Miner FOTH

Mushroom 13.7 40.8 8.4 24.5 2.3
Chess 362.6 1214.6 272.3 823.6 44.4
Connect 31.3 55.1 40.7 61.2 0.3
Accidents 1027.1 4724.0 1365.5 2257.1 42.3
Chicago 1.3 0.2 0.2 0.3 0.3
c20d10k 2.1 5.4 1.7 5.0 0.9
Retail 2.7 1.9 2.6 6.7 36.2
Chainstore 5.3 76.9 40.6 6.2 46.0

Chainstore, FOTH is obviously faster than the others. To assess
by exactly how much FOTH is faster than other algorithms, we
calculated the ratio value runtime(x)/runtime(FOT H) where
x is another algorithm. Table 6 shows the average ratio for a
particular algorithm under different minutil values. Besides, a
significance test was conducted to determine if the experimen-
tal results have a significant difference for each pair of algo-
rithms. Inspired by Krishna and Ravi [46], we performed the
pairwise t-test between FOTH and the other algorithms, where
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Table 8: Average speedup*
Database UBP-Miner mHUI-Miner HUI-Miner* ULB-Miner
Mushroom 5.1 19.1 3.1 11.7
Chess 7.5 24.0 4.1 19.5
Connect 58.6 150.3 44.5 147.2
Accidents 7.5 35.9 5.0 17.7
Chicago 1.1 1.5 0.2 0.8
c20d10k 4.1 14.1 2.3 10.0

the database and the minutil thresholds are fixed. Each algo-
rithm was executed 25 times for each test. The significance
level threshold α was set to 0.05. Due to the involvement of
multiple comparisons, the significance level needs to be ad-
justed using the Bonferroni correction. The new threshold is
α/k = 0.0125, where k = 4 is the number of comparisons. The
results are shown in Table 9. If the p-value is below 0.0125,
then the null hypothesis is rejected, which means that the exper-
imental results are significantly different. There is only one p-
value > 0.0125, where the minutil is 0.05 ‰ on Chicago. Some
further observations are made.

First, the results show that for relatively dense databases,
FOTH outperforms the other algorithms. However, FOTH per-
forms badly on Retail and Chainstore, which are relatively
sparse. Especially on Connect, FOTH is 70.2 times faster than
UBP-Miner [22], 185.3 times faster than mHUI-Miner [24],
111.9 times faster than HUI-Miner* [21] and 146.2 times faster
than ULB-Miner [27]. For the database Chicago, FOTH is not
so excellent. It is just 0.4 times faster than ULB-Miner [27]
and has nearly the same runtime as HUI-Miner* [21]. Except
for Connect and Chicago, FOTH is 5.5 times faster than UBP-
Miner [22], 23.3 times faster than mHUI-Miner [24], 5.5 times
faster than HUI-Miner* [21] and 14.3 times faster than ULB-
Miner [27] on average in dense databases.

Second, as the minutil values increase, the standard deviation
of the runtime of FOTH is the smallest in most databases. Table
7 shows the standard deviation of algorithms’ runtime. For the
database Chicago, the standard deviation of FOTH is almost
the same as others. In Connect, FOTH’s standard deviation is
at least 100 times smaller than for the other dense databases.
For sparse databases, especially Retail, FOTH had a less stable
performance than for dense databases.

Therefore, we can draw three conclusions from the above
experimental results:

1) FOTH is faster in dense databases.
2) FOTH is more stable in dense databases.
3) FOTH does not perform well in sparse databases.

We next analyze the reasons behind these three conclusions.
Conclusions 1 and 3 can be directly explained by the complex-
ity analysis in Section 4.4. FOTH has a low complexity in min-
ing large utility itemsets in theory. However, the relationship
between density and high utility itemset’s length is not abso-
lute. A dense database can also generate numerous small high
utility itemsets and vice versa. The result of runtime compar-
ison cannot completely prove the above conclusions. There-
fore, we collect all the high utility itemsets mined in different
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Figure 10: Runtime in different densities

databases and thresholds. Figure 9 illustrates the percentage
distribution of high utility itemsets of various sizes under a spe-
cific threshold. The thresholds are represented with different
colors in that figure. It should be noted that there is only one
high utility itemset that contains 65 items in the database Retail.
For the convenience of plotting, it is ignored. Figure 9 shows
that dense databases can generate numerous large itemsets. For
instance, consider the results for Connect in Figure 9c. More
than 90% of high utility itemsets of Connect contain at least 13
items whatever the minutil value is. These high utility itemsets
are very large compared to the other databases. This is why
FOTH achieved a remarkable runtime result in Connect. The
sizes of high utility itemsets in both Retail and Chainstore are
obviously smaller. And the database Chainstore mostly con-
tains high utility 1-itemsets and high utility 2-itemsets. There-
fore, according to the complexity analysis, FOTH consumed
more time to mine these small itemsets.

To better understand the influence of density on perfor-
mance, we have then added synthetic transactions to the densest
database, Chess, to obtain databases with different densities.
The Chess database is selected for this experiment because it
has the largest density. The runtime results are shown in Figure
10. It can be observed that the runtime of FOTH grows slowly
as the density increases. The larger the density, the better FOTH
performed.

The last conclusion we want to explain is why FOTH is more
stable in dense databases. As the minutil value increases, it is
clear that the runtime of algorithms will decrease for all algo-
rithms. Returning to Figure 9, except for Connect, the percent-
age of small size itemsets becomes larger and larger. This is
the reason why the bars look like stairs for a particular small
size in some databases. For example, when the size is 9, bars of
different minutil values look like stairs. According to the com-
plexity analysis, algorithms like UBP-Miner [22] are very good
at mining small high utility itemsets. Therefore, the runtime
of these algorithms decreases rapidly as the minutil increases.
As for FOTH, the runtime decreases slowly because some large
itemsets are no longer high utility itemsets. FOTH spends little
time to mine these itemsets. Therefore, the runtime of FOTH is
more stable.
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Figure 11: Scalability comparison.

5.2.2. Speedup of the join operation
From Section 5.2.1, FOTH is proven to be the fastest for

dense databases. To verify the effect of the joinless approach of
FOTH, another experiment was conducted where the join oper-
ation of the compared algorithms was considered separately.

Table 8 shows the average speedup* for the six dense
databases, where the threshold values are the same as in Fig-
ure 7. Compared with Table 6, we can easily observe that the
non-joining approach improves performance. For example, in
the database Mushroom, the ratio of UBP-Miner [22] is 5.6 in
Table 6 and the average speedup* is 5.1 in Table 8. We can
calculate the percentage 5.1/5.6 = 91.1%, which indicates how
much the join operation costs to the whole runtime. In this way,
the average percentages of the four algorithms from left to right
in Table 8 are 84.2%, 89.6%, 49.8%, and 90.5%, respectively.
Although the other operations of HUI-Miner* cost a lot of time,
the non-joining optimization still reduces the runtime by nearly
50%. Notice that the speedup* is smaller than 1 except for the
Chicago database. From Table 5, we can see that the AvgLen of
Chicago is only 1.8. The sizes of itemsets in Chicago are rela-
tively small compared to the other dense databases, as shown in
Figure 9. Therefore, the join operation is performed less. That
is also why FOTH did not provide a very large improvement on
Chicago. Overall, the non-joining optimization of FOTH works
well.

5.2.3. Algorithm scalability in terms of runtime
To compare the scalability of these algorithms, we trans-

formed the largest database Accidents into ten smaller databases
containing 10% to 100% of the transactions. The minutil value
was fixed to 10%. Each database has at least 30,000 transac-
tions.

Figure 11a shows the runtime of different algorithms as the
database size changes. The standard deviations of ULB-Miner
[27], HUI-Miner* [21], mHUI-Miner [24], UBP-Miner [22]
and FOTH are 103.6, 76.9, 176.7 54.5 and 17.2 respectively.
The Pearson correlation coefficient of FOTH is 0.99 and the
p-value is 0.00 < 0.05. Therefore, FOTH has a good linear
scalability in runtime.

5.3. Memory consumption analysis

5.3.1. Overall memeory consumption
Figure 8 shows the peak memory consumption of the al-

gorithms in different databases. FOTH has a higher memory
consumption than the other algorithms, except for Connect and
Chicago. Especially in Mushroom, FOTH consumes 5.6 times
more memory than ULB-Miner [27]. FOTH consumes the least
memory only in Connect. Therefore, we can conclude that
FOTH consumes more memory in most databases.

The conclusion can be explained by the propagation pro-
cess of FOTH. There are two nested for loops in Algorithm 1.
Hence, the space complexity of propagating a vector of IS is
O(n2) where n is the vector size. The example shown in Figure
2 also confirms this. However, algorithms using the join oper-
ation like Figure 6 construct only one new list structure each
time. Therefore, FOTH attempts to generate numerous unnec-
essary vectors, leading to excessive memory consumption. But
why does FOTH consume the least memory in Connect? We al-
ready know that high utility itemsets are very large in Connect.
According to the analysis in Section 4.4, FOTH has a very low
complexity for discovering a large itemset. Therefore, FOTH
did not perform propagation too many times. On the contrary,
the join operation is performed frequently. Then many unneces-
sary utility-lists are constructed. Although there are large item-
sets in other databases, they are not large enough. Overall, the
memory consumption of FOTH is deemed acceptable.

5.3.2. Algorithm scalability in terms of memory consumption
The same settings as the Section 5.2.3 were used to mea-

sure the memory scalability. The result is shown in Figure 11b.
When the database size is smaller than 70%, FOTH consumes
more memory than the other algorithms. The standard devia-
tion of FOTH is 573.4 which is bigger than ULB-Miner [27]
and UBP-Miner [22]. The Pearson coefficient of FOTH is 0.87
and the p-value is 0.00. It indicates that the memory overhead of
FOTH grows linearly with the database’s size. Overall, FOTH
shows good scalability in terms of memory consumption.
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5.4. Discussion

The experiments have been conducted to evaluate runtime
and memory consumption. Based on the previous analysis and
experimental results, we have two conclusions:

1) Because of the non-joining optimization, FOTH demon-
strates superior performance compared to other list-based
algorithms in dense databases in terms of runtime.

2) FOTH consumes more memory to mine HUIs unless most
itemsets are very large.

FOTH can mine itemsets very quickly in dense databases and
slowly in sparse databases. The large memory overhead is an-
other weakness of FOTH. Although some analyses have been
done before, there are still some questions that could be inves-
tigated further such as: why does the density affect the perfor-
mance of FOTH so much? The complexity analysis presented
in Section 4.4 is the key to answering this question. In sparse
databases, transactions generally have few common items, un-
like dense databases. However, HUIs usually contain items that
are common to many transactions. Therefore, sparse databases
generally contain smaller HUIs than dense databases. In Sec-
tion 4.4, it was proved that FOTH will take more time to dis-
cover small HUIs (no matter from dense databases or sparse
databases). Thus, because there are few small HUIs in dense
databases, FOTH is generally faster than the compared algo-
rithms, Both Figure 7 and Figure 9 corroborate this analysis. In
the case of sparse databases, FOTH executes the propagation
process more frequently to generate smaller itemsets, that is,
IndexSets. Therefore, FOTH no longer performs better than the
other algorithms. Numerous IndexSets impede the search pro-
cess of FOTH and consume a considerable amount of memory.

6. Conclusion

This paper presented FOTH, a novel high utility itemset min-
ing algorithm that introduces a new structure called the In-
dexSet. By propagating IndexSets, FOTH avoids the join opera-
tion. After analyzing the complexity of FOTH, it was concluded
that FOTH can perform better than other list-based algorithms
for mining large itemsets.

The performance of FOTH was evaluated on eight databases
and compared with four state-of-the-art utility-list-based algo-
rithms. For a specific minutil threshold, the experimental results
show that FOTH outperforms the other algorithms on dense
databases. As the minutil threshold is increased, FOTH pro-
gressively demands less time and memory to identify high util-
ity itemsets. This efficiency gain is attributed to the reduction
in the number of high utility itemsets as the minutil value in-
creases.

In future work, we aim to enhance FOTH by introducing an
additional pruning strategy to reduce the number of IndexSets
generated during the propagation process. In this way, FOTH
could be more efficient. Besides, the current IndexSet structure
and the propagation procedure of FOTH are difficult to apply to
mine condensed representations such as the Closed High Utility
Itemsets[2]. The IndexSet structure would have to be adapted to

store more information about itemsets such as the support. We
will design new search procedures and data structures to mine
condense representations in future work.
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[1] R. Agrawal, T. Imieliński, A. Swami, Mining association rules between

sets of items in large databases, SIGMOD Rec. 22 (2) (1993) 207–216.
[2] P. Fournier-Viger, J. Chun-Wei Lin, T. Truong-Chi, R. Nkambou, A sur-

vey of high utility itemset mining, High-utility pattern mining: Theory,
algorithms and applications (2019) 1–45.

[3] H. Yao, H. J. Hamilton, C. J. Butz, A foundational approach to mining
itemset utilities from databases, in: Proceedings of the 2004 SIAM Inter-
national Conference on Data Mining, SIAM, 2004, pp. 482–486.

[4] R. Agrawal, R. Srikant, Fast algorithms for mining association rules, Pro-
ceedings of the 1994 international conference on very large data bases
(VLDB’94) 1215 (1994) 487–499.

[5] J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate genera-
tion, SIGMOD Rec. 29 (2) (2000) 1–12.

[6] M. Zaki, Scalable algorithms for association mining, IEEE Transactions
on Knowledge and Data Engineering 12 (3) (2000) 372–390.

[7] J. S. Park, M.-S. Chen, P. S. Yu, An effective hash-based algorithm for
mining association rules, SIGMOD Rec. 24 (2) (1995) 175–186.

[8] A. Savasere, E. Omiecinski, S. B. Navathe, An efficient algorithm for
mining association rules in large databases, in: Proceedings of the 21th
International Conference on Very Large Data Bases, VLDB ’95, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1995, p. 432–444.

[9] H. Toivonen, et al., Sampling large databases for association rules, in:
Vldb, Vol. 96, 1996, pp. 134–145.

[10] R. C. Agarwal, C. C. Aggarwal, V. Prasad, A tree projection algorithm
for generation of frequent item sets, J. Parallel Distrib. Comput. 61 (3)
(2001) 350–371.

[11] Y. Liu, W.-k. Liao, A. Choudhary, A two-phase algorithm for fast discov-
ery of high utility itemsets, in: T. B. Ho, D. Cheung, H. Liu (Eds.), Ad-
vances in Knowledge Discovery and Data Mining, Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2005, pp. 689–695.

[12] V. S. Tseng, B.-E. Shie, C.-W. Wu, P. S. Yu, Efficient algorithms for min-
ing high utility itemsets from transactional databases, IEEE Transactions
on Knowledge and Data Engineering 25 (8) (2013) 1772–1786.

[13] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong, Y.-K. Lee, Efficient tree struc-
tures for high utility pattern mining in incremental databases, IEEE Trans-
actions on Knowledge and Data Engineering 21 (12) (2009) 1708–1721.

[14] U. Yun, H. Ryang, K. H. Ryu, High utility itemset mining with techniques
for reducing overestimated utilities and pruning candidates, Expert Sys-
tems with Applications 41 (8) (2014) 3861–3878.

[15] M. Liu, J. Qu, Mining high utility itemsets without candidate generation,
in: Proceedings of the 21st ACM International Conference on Informa-
tion and Knowledge Management, CIKM ’12, Association for Computing
Machinery, New York, NY, USA, 2012, p. 55–64.

[16] J. Liu, K. Wang, B. C. M. Fung, Direct discovery of high utility item-
sets without candidate generation, in: Proceedings of the 2012 IEEE 12th
International Conference on Data Mining, ICDM ’12, IEEE Computer
Society, USA, 2012, p. 984–989.

[17] S. Zida, P. Fournier-Viger, J. C.-W. Lin, C.-W. Wu, V. S. Tseng, Efim: A
highly efficient algorithm for high-utility itemset mining, in: G. Sidorov,
S. N. Galicia-Haro (Eds.), Advances in Artificial Intelligence and Soft
Computing, Springer International Publishing, Cham, 2015, pp. 530–546.

[18] P. Fournier-Viger, C.-W. Wu, S. Zida, V. S. Tseng, Fhm: Faster high-
utility itemset mining using estimated utility co-occurrence pruning, in:
T. Andreasen, H. Christiansen, J.-C. Cubero, Z. W. Raś (Eds.), Foun-
dations of Intelligent Systems, Springer International Publishing, Cham,
2014, pp. 83–92.

13



[19] S. Krishnamoorthy, Hminer: Efficiently mining high utility itemsets, Ex-
pert Systems with Applications 90 (2017) 168–183.

[20] S. Krishnamoorthy, Pruning strategies for mining high utility itemsets,
Expert Systems with Applications 42 (5) (2015) 2371–2381.

[21] J.-F. Qu, M. Liu, P. Fournier-Viger, Efficient algorithms for high utility
itemset mining without candidate generation, High-Utility Pattern Min-
ing: Theory, Algorithms and Applications (2019) 131–160.

[22] P. Wu, X. Niu, P. Fournier-Viger, C. Huang, B. Wang, Ubp-miner: An ef-
ficient bit based high utility itemset mining algorithm, Knowledge-Based
Systems 248 (2022) 108865.

[23] H. Ryang, U. Yun, Indexed list-based high utility pattern mining with util-
ity upper-bound reduction and pattern combination techniques, Knowl.
Inf. Syst. 51 (2) (2017) 627–659.

[24] A. Y. Peng, Y. S. Koh, P. Riddle, mhuiminer: A fast high utility itemset
mining algorithm for sparse datasets, in: J. Kim, K. Shim, L. Cao, J.-G.
Lee, X. Lin, Y.-S. Moon (Eds.), Advances in Knowledge Discovery and
Data Mining, Springer International Publishing, Cham, 2017, pp. 196–
207.

[25] J.-F. Qu, P. Fournier-Viger, M. Liu, B. Hang, F. Wang, Mining high utility
itemsets using extended chain structure and utility machine, Knowledge-
Based Systems 208 (2020) 106457.

[26] J.-F. Qu, P. Fournier-Viger, M. Liu, B. Hang, C. Hu, Mining high util-
ity itemsets using prefix trees and utility vectors, IEEE Transactions on
Knowledge and Data Engineering (2023) 1–14.

[27] Q.-H. Duong, P. Fournier-Viger, H. Ramampiaro, K. NØrvåg, T.-L. Dam,
Efficient high utility itemset mining using buffered utility-lists, Applied
Intelligence 48 (7) (2018) 1859–1877.

[28] L. J. Guibas, R. Sedgewick, A dichromatic framework for balanced trees,
in: 19th Annual Symposium on Foundations of Computer Science (sfcs
1978), 1978, pp. 8–21.

[29] M. S. Nawaz, P. Fournier-Viger, U. Yun, Y. Wu, W. Song, Mining high
utility itemsets with hill climbing and simulated annealing, ACM Trans.
Manage. Inf. Syst. 13 (1) (oct 2021).

[30] J. C.-W. Lin, L. Yang, P. Fournier-Viger, T.-P. Hong, M. Voznak, A binary
pso approach to mine high-utility itemsets, Soft Comput. 21 (17) (2017)
5103–5121.

[31] W. Song, J. Li, C. Huang, Artificial fish swarm algorithm for mining high
utility itemsets, in: Advances in Swarm Intelligence: 12th International
Conference, ICSI 2021, Qingdao, China, July 17–21, 2021, Proceedings,
Part II, Springer-Verlag, Berlin, Heidelberg, 2021, p. 407–419.

[32] C.-W. Lin, T.-P. Hong, W.-H. Lu, An effective tree structure for min-
ing high utility itemsets, Expert Systems with Applications 38 (6) (2011)
7419–7424.

[33] T.-L. Dam, K. Li, P. Fournier-Viger, Q.-H. Duong, Cls-miner: Effi-
cient and effective closed high-utility itemset mining, Front. Comput. Sci.
13 (2) (2019) 357–381.

[34] S. Pramanik, A. Goswami, Discovery of closed high utility itemsets using
a fast nature-inspired ant colony algorithm, Applied Intelligence 52 (8)
(2022) 8839–8855.

[35] A. Hidouri, S. Jabbour, B. Raddaoui, B. Ben Yaghlane, Mining closed
high utility itemsets based on propositional satisfiability, Data & Knowl-
edge Engineering 136 (2021) 101927.

[36] C.-W. Wu, P. Fournier-Viger, J.-Y. Gu, V. S. Tseng, Mining closed+ high
utility itemsets without candidate generation, in: 2015 Conference on
Technologies and Applications of Artificial Intelligence (TAAI), 2015,
pp. 187–194.

[37] A. Hidouri, S. Jabbour, I. O. Dlala, B. Raddaoui, On minimal and maxi-
mal high utility itemsets mining using propositional satisfiability, in: 2021
IEEE International Conference on Big Data (Big Data), 2021, pp. 622–
628.

[38] H. Duong, T. Hoang, T. Tran, T. Truong, B. Le, P. Fournier-Viger, Ef-
ficient algorithms for mining closed and maximal high utility itemsets,
Knowledge-Based Systems 257 (2022) 109921.

[39] P. Fournier-Viger, C.-W. Wu, V. S. Tseng, Novel concise representations
of high utility itemsets using generator patterns, in: X. Luo, J. X. Yu, Z. Li
(Eds.), Advanced Data Mining and Applications, Springer International
Publishing, Cham, 2014, pp. 30–43.

[40] J. Sahoo, A. K. Das, A. Goswami, An efficient approach for mining asso-
ciation rules from high utility itemsets, Expert Systems with Applications
42 (13) (2015) 5754–5778.

[41] X. Han, X. Liu, J. Li, H. Gao, Efficient top-k high utility itemset mining

on massive data, Information Sciences 557 (2021) 382–406.
[42] K. Singh, S. S. Singh, A. Kumar, B. Biswas, Tkeh: An efficient algorithm

for mining top-k high utility itemsets, Applied Intelligence 49 (3) (2019)
1078–1097.

[43] S. Krishnamoorthy, Mining top-k high utility itemsets with effective
threshold raising strategies, Expert Systems with Applications 117 (2019)
148–165.

[44] P. Fournier-Viger, J. C.-W. Lin, A. Gomariz, T. Gueniche, A. Soltani,
Z. Deng, H. T. Lam, The spmf open-source data mining library version 2,
in: Machine Learning and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23,
2016, Proceedings, Part III 16, Springer, 2016, pp. 36–40.

[45] Z. Zhang, J. Huang, J. Hao, J. Gong, H. Chen, Extracting relations of
crime rates through fuzzy association rules mining, Applied Intelligence
50 (2) (2020) 448–467.

[46] G. J. Krishna, V. Ravi, High utility itemset mining using binary differen-
tial evolution: An application to customer segmentation, Expert Systems
with Applications 181 (2021) 115122.

14



Table 9: The p-values of the pairwise t-test.
Database minutil UBP-Miner mHUI-Miner HUI-Miner* ULB-Miner

Mushroom

2.0% 0.0000 0.0000 0.0000 0.0000
2.5% 0.0000 0.0000 0.0000 0.0000
3.0% 0.0000 0.0000 0.0000 0.0000
3.5% 0.0000 0.0000 0.0000 0.0000
4.0% 0.0000 0.0000 0.0000 0.0000
4.5% 0.0000 0.0000 0.0000 0.0000

Chess

11% 0.0000 0.0000 0.0000 0.0000
12% 0.0000 0.0000 0.0000 0.0000
13% 0.0000 0.0000 0.0000 0.0000
14% 0.0000 0.0000 0.0000 0.0000
15% 0.0000 0.0000 0.0000 0.0000
16% 0.0000 0.0000 0.0000 0.0000

Connect

30.0% 0.0000 0.0000 0.0000 0.0000
30.2% 0.0000 0.0000 0.0000 0.0000
30.4% 0.0000 0.0000 0.0000 0.0000
30.6% 0.0000 0.0000 0.0000 0.0000
30.8% 0.0000 0.0000 0.0000 0.0000
31.0% 0.0000 0.0000 0.0000 0.0000

Accidents

5% 0.0000 0.0000 0.0000 0.0000
6% 0.0000 0.0000 0.0000 0.0000
7% 0.0000 0.0000 0.0000 0.0000
8% 0.0000 0.0000 0.0000 0.0000
9% 0.0000 0.0000 0.0000 0.0000

10% 0.0000 0.0000 0.0000 0.0000

Chicago

0.05‰ 0.0000 0.0002 0.4517 0.0000
0.07‰ 0.0000 0.0000 0.0000 0.0000
0.09‰ 0.0000 0.0000 0.0001 0.0000
0.11‰ 0.0000 0.000 0.0000 0.0000
0.13‰ 0.0000 0.0000 0.0000 0.0000
0.15‰ 0.0000 0.0000 0.0000 0.0000

c20d10k

1.0% 0.0000 0.0000 0.0000 0.0000
1.2% 0.0000 0.0000 0.0000 0.0000
1.4% 0.0000 0.0000 0.0000 0.0000
1.6% 0.0000 0.0000 0.0000 0.0000
1.8% 0.0000 0.0000 0.0000 0.0000
2.0% 0.0000 0.0000 0.0000 0.0000

Retail

0.1‰ 0.0000 0.0000 0.0000 0.0000
0.2‰ 0.0000 0.0000 0.0000 0.0000
0.3‰ 0.0000 0.0000 0.0000 0.0000
0.4‰ 0.0000 0.0000 0.0000 0.0000
0.5‰ 0.0000 0.0000 0.0000 0.0000
0.6‰ 0.0000 0.0000 0.0000 0.0000

Chainstore

0.5‰ 0.0000 0.0000 0.0000 0.0000
0.6‰ 0.0000 0.0000 0.0000 0.0000
0.7‰ 0.0000 0.0000 0.0000 0.0000
0.8‰ 0.0000 0.0000 0.0000 0.0000
0.9‰ 0.0000 0.0000 0.0000 0.0000
1.0‰ 0.0000 0.0000 0.0000 0.0000
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