Preprint of:

Nawaz, M. Z., Nawaz, M. S., Fournier-Viger, P. Selmaoui-Folcher, N. (2025) GRIMP: A Genetic Algorithm
for Compression-based Descriptive Pattern Mining. Expert Systems, Wiley, 42(5)
DOI: 10.1111/exsy.70033

GRIMP: A Genetic Algorithm for
Compression-based Descriptive Pattern Mining

M. Zohaib Nawaz!-2[0000-0001-9205-912X] N[Gaqih
1{0000-0001-9856-2885] Phyilippe Fournier-Viger!0000—0002—7680—9899]

[0000—0003—1667—3819]

Nawaz , and

Nazha Selmaoui-Folcher?

L College of Computer Science and Software Engineering, Shenzhen University, China
2 Faculty of Computing and Information Technology, Department of Computer
Science, University of Sargodha, Pakistan
3 ISEA, University of New Caledonia, New Caledonia
zohaib.nawazQuos.edu.pk, {nawazmuhammadzohaib2022, msaqibnawaz,
philfv}@szu.edu.cn,nazha.selmaouiCunc.nc

Abstract. Traditional frequent pattern mining algorithms often report
an overwhelming number of patterns in large datasets, many of which are
redundant. To address this issue, Minimum Description Length (MDL)-
based methods have been employed, which use data compression to cap-
ture a smaller yet significant set of patterns. However, finding a good
set of patterns according to MDL involves a very large search space and
current MDL-based techniques often suffer from long runtimes and find
suboptimal solutions. To discover better sets of patterns in less time,
this paper introduces GRIMP (a Genetic algoRIthm for coMpression-
based descriptive Pattern mining), a novel framework that combines a
genetic algorithm with MDL-based pattern selection. Multiple genetic
algorithm variants are explored within the GRiMP framework, and their
effectiveness is compared using a large number of datasets. Experimen-
tal results demonstrate that GRIMP consistently outperforms previous
methods by achieving higher compression ratios, generating more repre-
sentative itemsets, and requiring less time. Additionally, the extracted
patterns improve downstream classification tasks, highlighting the ability
of GRIMP to find more representative patterns within the data.

Keywords: Pattern Mining - Genetic Algorithm - Data Compression -
Minimum Description Length.

Funding. The authors declare that no funds, grants, or other support
were received during the preparation of this manuscript.

Conflicts. The authors have no relevant financial or non-financial inter-
ests to disclose.

Author contributions. All authors contributed to the study concep-
tion and design. Experiments were performed by M. Zohaib Nawaz. All
authors wrote the manuscript and approved the final manuscript.
Data and code availability. The datasets used in this study and
the code of GRIMP are openly available in the GRIMP repository at
http://github.com/MuhammadzohaibNawaz/GRIMP/.

Ethics statement. This study does not involve humans, patients, ani-

Phil
Text Box
Preprint of:
	Nawaz, M. Z., Nawaz, M. S., Fournier-Viger, P. Selmaoui-Folcher, N. (2025) GRIMP: A Genetic Algorithm for Compression-based Descriptive Pattern Mining. Expert Systems, Wiley, 42(5)
DOI: 10.1111/exsy.70033

2 M. Zohaib Nawaz et al.

mals or clinical trials. It is solely conducted on public data.
Permission to reproduce. All content of this paper is original.

1 Introduction

Frequent itemset mining (FIM) (Luna et al., 2019), also referred to as frequent
pattern mining or large itemset mining, was introduced in the early 1990s. It is
a data mining task aimed at identifying sets of items - such as values, events, or
symbols - that co-occur frequently within a database. FIM was initially employed
for market basket analysis in transactional databases to uncover frequently co-
occurring items (Agrawal et al., 1993). A transaction database is a collection
of transactions where each transaction is a set of items. The goal of FIM is to
find set of items that appear frequently (the frequent itemsets). An itemset is
considered frequent if it occurs in the database with a frequency that meets or
surpasses a user-specified threshold called the minimum support (min_ sup). For
example, if the user sets min_ sup to 5, then only the itemsets that are contained
in at least 5 transactions are reported. Beyond market basket analysis, FIM is
used in numerous fields where data can be represented as records (transactions)
described by binary attributes (items). FIM not only allows the discovery of
interesting patterns in databases but also supports other tasks such as clustering
and classification (Aggarwal, 2014).

In the last few decades, researchers have introduced many variations of FIM
to select itemsets based on various properties and measures, either as alternatives
or in addition to the support measure (Luna et al., 2019; Farghaly and El-
Hafeez, 2022). These variations include identifying representative itemsets (Seno,
2023), closed frequent itemsets (Pasquier et al., 1999), free-sets (Boulicaut et al.,
2003), non-derivable itemsets (Calders and Goethals, 2007), itemsets that respect
various user-defined constraints (Belaid and Lazaar, 2021; Bonchi et al., 2006),
local dependency itemsets (Ni et al., 2020), and statistically significant itemsets
(Fournier-Viger et al., 2018). Besides, many studies have investigated alternative
approaches to explore the search space to improve the performance of FIM (Cao
et al., 2023).

Despite these advancements, a major challenge in FIM remains the pattern
explosion problem (Luna et al., 2019; Vreeken et al., 2011). This occurs when
a low minimum support threshold is set, resulting in an overwhelming number
of patterns, often exceeding the total number of transactions in the database by
several orders of magnitude. This problem arises due to the locality of the min-
imal support constraint (Belaid and Lazaar, 2021), where each distinct itemset
fulfilling the support constraint is included in the result set independently of
other already selected itemsets. Because of this, redundant sets of patterns are
generally presented to the user, many of which describe the same area of the
database and vary only slightly. A promising approach to address this issue is to
change the focus from evaluating each pattern individually to evaluating itemsets
collectively (to identify a good collection of patterns), through processes such
as the iterative removal of redundancy (Darrab et al., 2021; Liu et al., 2022b).

Title Suppressed Due to Excessive Length 3

While these approaches mitigate the issue to some extent, they are not with-
out drawbacks. Redundancy still remains a concern and removing information
inappropriately may lead to the loss of important details.

An emerging approach to address the pattern explosion problem involves
removing redundancy while ensuring that a small yet informative set of item-
sets is discovered. This is accomplished by searching for the best compact set of
patterns that succinctly describe the data within a database. The principle of
Minimum Description Length (MDL) (Griinwald, 2007) can be used to discover
such compact and compressed patterns by selecting the model (a set of item-
sets) that minimizes the overall length of the data encoding, effectively balancing
complexity and information retention. Based on MDL, several algorithms were
designed, such as KRIMP (Vreeken et al., 2011) and SLIM (Smets and Vreeken,
2012), for itemsets mining. These algorithms utilize heuristic-based search meth-
ods that primarily focused on local optimizations. They manage the vast search
space by selectively evaluating itemsets according to specific heuristic criteria.

KRriMP, for instance, employs a sequential selection strategy to minimize the
description length of individual itemsets, adhering closely to a greedy approach
that prioritizes local improvements. Conversely, SLIM enhances KRIMP by dy-
namically adjusting its itemsets during the mining process. Both KrRiMP and
SLIM tend to overlook global optimal sets due to their narrow search perspective
and are slow due to their heuristic-based direct search methods. SLIM’s speed
advantage is counterbalanced by its high algorithmic complexity, especially with
large datasets, as it requires an exhaustive exploration of the search space due to
the limitations of its heuristic approach. KRiMP and SLIM also face several other
challenges, such as their inability to guarantee the identification of an optimal
pattern set, the imposition of arbitrary restrictions on parameter spaces, and
limited suitability for multi-class classification (Bouritsas et al., 2021; Proenga
and van Leeuwen, 2020; Galbrun, 2022).

The search space for finding all patterns (itemsets) that result in optimal
compression is extremely vast, encompassing 2(2"~1) possible combinations of
itemsets, where n represents the number of unique items in the dataset. The
combinatorial explosion of these combinations makes it computationally infea-
sible to exhaustively evaluate every pattern’s contribution to compression. A
promising approach to address this challenge is to adopt evolution-based heuris-
tic search techniques for selecting optimal patterns. These techniques provide a
good balance or trade-off between performance and completeness (Yu and Gen,
2010; Nawaz et al., 2021a). They have the ability to explore large search spaces
to find near-optimal solutions based on fitness functions while adhering to var-
ious constraints. In this paper, we propose the use of a genetic algorithm (GA)
(Kramer, 2017; Holland, 1975) for MDL-based selection of optimal patterns.
Inspired by biological evolution, GAs iteratively refine a population of candi-
date solutions by applying genetic operators such as selection, crossover, and
mutation. Moreover, GA for compression-based pattern mining does not rely
on various costly functions used in traditional MDIL-based pattern compression,

4 M. Zohaib Nawaz et al.

thereby providing an adaptive and efficient way to find a set of frequent itemsets
that offers superior lossless compression of the database.

Leveraging the capability of GA to adeptly navigate through complex solu-
tion spaces, we propose a novel framework called GRIMP (a Genetic algo RIthm
for coMpression-based descriptive Pattern mining). This framework utilizes
the inherent strengths of GAs for effective data compression and pattern dis-
covery. The process begins by generating a random population of patterns,
each representing a potential solution. These patterns are evaluated based on
a compression metric, which assesses their ability to represent data efficiently.
Higher-performing patterns are selected for reproduction, following the prin-
ciple of “survival of the fittest”. Through crossover, pairs of selected patterns
exchange information to create offspring solutions. Mutation introduces random
changes to promote diversity and prevent stagnation in the population. This
iterative process of selection, crossover, and mutation continues for a set num-
ber of generations, allowing the population to evolve towards better solutions.
After a defined number of iterations, the best-performing patterns in the final
population are output.

An early version of this work was published in a workshop paper (Nawaz
et al., 2024). Initially, we focused exclusively on single-point crossover and mu-
tation operators. In the current paper, we also explore multi-point and uniform
crossover techniques, as well as a modified pairwise interchange mutation, to
provide a more detailed exploration of the GA’s capabilities. More extensive ex-
periments are also presented to investigate how these methods can enhance the
handling of large datasets and the reduction of redundancy. The main contribu-
tions of this paper are outlined as follows:

1. GRIMP is presented with six variants resulting from using three crossover op-
erators (single-point, multi-point, and uniform) and two mutation operators
(standard mutation and modified pairwise interchange mutation).

2. An optimization called Dynamic Dataset Reduction (DDR) is devised to
enhance runtime efficiency of GRIMP. DDR reduces the dataset size dynam-
ically during pattern extraction by removing identified patterns from the
dataset as they are added to the final set of solution. This accelerates fu-
ture pattern lookups, streamlining computational processes and improving
overall efficiency.

3. To broaden the investigation into the performance of the proposed frame-
work, this study incorporates 21 datasets, compared to only five in the initial
study. This expanded dataset collection provides a more comprehensive eval-
uation of GRIMP’s efficacy across diverse scenarios and problem instances,
thereby enhancing the understanding of its capabilities.

4. Extensive experiments are performed to evaluate GRIMP across various met-
rics, including compression ratio, runtime, the number of generations re-
quired for achieving compression, the number of patterns needed by GRIMP
to achieve the same compression as previous methods and classification. This
comprehensive analysis offers deeper insights into GRIMP and highlights its
efficiency and effectiveness in real-world applications.

Title Suppressed Due to Excessive Length 5

5. The headless chicken test is conducted to evaluate the effectiveness of the
crossover operators within the GRIMP.

The rest of the paper is organized as follows. Section 2 reviews the exist-
ing research on MDL-based pattern mining algorithms. Section 3 provides an
overview of the fundamentals related to using MDL and GA for selecting item-
sets. Section 4 introduces the GRIMP framework. Section 5 presents extensive
experimental results validating GRIMP, as well as an evaluation of the choices
made in its design. Section 6 summarizes the paper with some final remarks.

2 Related Work

This section is divided into two parts. It first reviews related work on MDL for
pattern mining and then gives a brief introduction to GA.

2.1 MDL for Pattern Mining

Using the MDL for FIM is based on the argument that the best set of itemsets
will provide the most effective compression of the database. KRIMP (Vreeken
et al., 2011), the first MDL-based algorithm for pattern-based compression, fol-
lowed two steps: (1) mining frequent itemsets, and (2) selecting a subset of
the mined frequent patterns that minimize the overall description length for im-
proved compression, by exploring combinations in a static order. Because KRIMP
required that all frequently occurring itemsets be generated and mining itemsets
was costly, it had long runtimes. Moreover, KRIMP achieved poor compression
results when the frequency threshold was increased. Besides, KRIMP sometimes
rejected itemsets that it may have used later since it only evaluated them once
and in a fixed order. SLIM (Smets and Vreeken, 2012), an improved version of
KRIMP, overcame these problems. SLIM discovered optimal itemsets gradually
and was not dependent on generating all frequent itemsets in advance. The en-
coding scheme employed by both algorithms had limitations, including the use
of a static, predefined code table that might not be optimal for compressing
databases with diverse characteristics and distributions. Additionally, the order-
dependent encoding process, where itemsets were encoded in a fixed sequence,
could lead to suboptimal coding sets if certain combinations were initially over-
looked. Similarly, a decision tree in combination with a refined version of the
MDL was used in the PACK (Tatti and Vreeken, 2008) for pattern-based compres-
sion. DIFFNORM (Budhathoki and Vreeken, 2015), an extension of SLIM, used a
better encoding and could be utilized to compare datasets in terms of itemsets.
The SHRIMP algorithm (Hess et al., 2014), built a FP-tree-like data structure to
examine the schema selection impact on a database. This approach allowed the
fast computation of the quality of the mined itemsets. Likewise, Rsco (Sampson
and Berthold, 2014) presented an enhanced version of the KrRIMP that improved
performance by employing diverse parallel processing techniques.

In pattern mining, the MDL principle was initially applied for itemset min-
ing but researchers have also extended its usage to other pattern mining tasks.

6 M. Zohaib Nawaz et al.

These alternative applications indicate that the MDL is flexible and can be
adapted to diverse mining contexts, from sequence and graph mining to real-
valued and numerical datasets. For example, CspM (Liu et al., 2022a) extended
the application of the MDL principle to the domain of graph mining, specifi-
cally focusing on identifying and compressing star structures within attributed
graphs. (Lam et al., 2014) introduced SEQKRIMP and GOKRIMP, extensions of
KRIMP for mining compressing sequential patterns. SEQKRIMP adapted KRIMP
for sequence data using a two-phase approach to reduce redundancy. Whereas,
GOKRIMP increased efficiency by greedily mining patterns and using a depen-
dency test to enhance pattern quality and reduce runtime.

Similarly, KRIMP was extended as REALKRIMP (Witteveen et al., 2014) to
process real-valued data. REALKRIMP required data discretization, relied on
various heuristics, and could not jointly evaluate the set of generated hyper-
rectangles that represented patterns. MINT (Makhalova et al., 2022), also based
on the MDL, was used to find useful patterns in numerical datasets. MINT gen-
erated a small set of non-redundant informative patterns. COMPREX (Akoglu
et al., 2012), also based on the MDL, was proposed to overcome scalability prob-
lems. This algorithm worked on categorical data and was more resistant to the
pattern explosion problem. DRIM (Vanetik and Litvak, 2018) utilized the MDL
principle to generate a diverse summary of itemsets efficiently, optimizing the se-
lection process to capture the most informative patterns rapidly and succinctly.
Additionally, the Vouw algorithm (Faas and van Leeuwen, 2020) applied the
MDL principle to geometric pattern mining, focusing on the extraction of sig-
nificant spatial patterns by minimizing the description length, thus efficiently
encoding spatial data. Moreover, the SWIFT algorithm (Yan et al., 2018) em-
ployed the MDL principle to streamline the extraction of highly representative
patterns from event streams, ensuring that the identified patterns were not only
statistically significant but also offered a compact description of the data, which
was critical for real-time analysis and decision-making processes.

In a related study, (Zhang et al., 2019) explored an innovative approach to
identifying succinct and meaningful patterns within datasets where items were
interconnected through graph structures. This study leveraged the properties
of graph connectivity to enhance the relevance and efficiency of pattern dis-
covery, focusing on extracting concise itemsets that provided clear insights into
the structural and relational dynamics of the data. (Mantuan and Fernandes,
2018) introduced a method that integrated the spatial context into the mining of
closed itemsets, enhancing the discovery process by considering the geographical
or spatial relationships between data points. This approach improved the rele-
vance and applicability of the extracted patterns in spatially oriented datasets.
Furthermore, they utilized the MDL principle to verify the descriptiveness of
the mined patterns. (Liang et al., 2021) utilized the MDL principle to identify
regular patterns and detect anomalies within financial records. By simplifying
complex financial data into more manageable patterns, this study facilitated ac-
curate and efficient anomaly detection and contributed to robust bookkeeping

Title Suppressed Due to Excessive Length 7

audits. A summary of the discussed MDL-based algorithms along with their key
parameters are presented in Table 1.

Table 1: Overview of related work on MDL-based pattern mining algorithms

Algorithm DMT Strengths Limitations
KRrimp M Improved compression efficiency Long runtimes; poor results with high frequency thresholds
SLIM IM Gradual discovery of optimal itemsets Still dependent on the quality of frequent itemsets
Pack IM Effective for pattern-based compression Limited applicability to certain data types

DirrNorMm IM
SHRIMP IM
Rsco IM
Drim IM
SEQKRrRIMP SP
REALKRIMP RvD

Improved itemset comparison
Fast quality computation of itemsets
Enhanced performance
Efficient pattern summary
Redundancy reduction
Handles real-valued data

MINT NP Generates non-redundant patterns
CspMm GM Focus on star structures
Mz! GM Enhances relevance and efficiency
CompreX CD Addresses scalability issues
Vouw GeoM Focuses on spatial patterns
SWIFT ES Real-time pattern extraction
Scim SM Integrates spatial context

TG-sum FR Simplifies complex data

May not generalize well across all datasets
Potential issues with schema selection impact
Complexity of implementation
May miss some less frequent patterns
Requires thorough parameter tuning
Requires data discretization
Limited to specific pattern types
May not generalize to other graph types
Dependent on graph structure
May be less effective for high-dimensional data
Performance may vary with dataset size
May require extensive computational resources
Limited to spatially oriented datasets
May overlook certain anomalies

DMT: Data Mining Technique, IM: Itemset Mining, SP: Sequential Patterns,
RvD: Real-valued Data, NP: Numerical Patterns, GM: Graph

Mining, CD: Categorical Data, GeoM: Geometric Mining, ES: Event Streams,
SM: Spatial Mining, FR: Financial Records

1. Method of (Zhang et al., 2019)

In mining compressing patterns, the focus until now has been to improve
the existing MDL-based approaches by proposing various heuristics, data struc-
tures, and encoding schemes, and extending the existing methods to databases
of various types. However, developed algorithms have many limitations, such
as extensive computational time, requiring scanning all or a major part of the
dataset, their inability to guarantee the identification of the optimal pattern
set, imposing arbitrary restrictions on parameter spaces, and dependency on
statistical assumptions about the data or the model.

2.2 Genetic Algorithm

GA, a stochastic global search method, is inspired by natural evolution and fol-
low Darwin’s principle of “survival of the fittest” to refine potential solutions
iteratively (Gen and Lin, 2023; Kramer, 2017; Holland, 1975). These algorithms
work with a population of potential solutions, termed chromosomes, by apply-
ing genetic operators such as selection, crossover, and mutation (Nawaz et al.,
2021c). During selection, chromosomes are chosen for reproduction based on
their fitness, while crossover combines genetic material from two parent chromo-
somes to create new child chromosomes. Mutation, which typically occurs with
a low probability, alters chromosome values to introduce variability. Over gen-
erations, this process enhances the population’s adaptation to its environment.
This process results in the evolution of populations of individuals (chromosomes)

8 M. Zohaib Nawaz et al.

that are more suited to their environment than the individuals from which they
were derived.

Leveraging this evolutionary nature, this paper addresses two significant limi-
tations of current MDL-based methods for mining compressing patterns: (1) pro-
hibitively long runtimes and (2) the tendency to identify suboptimal patterns,
resulting in low compression efficiency. To overcome these challenges, the pro-
posed framework integrates GA with the MDL principle to optimize the itemset
selection process and reduces the number of itemsets required for achieving high
compression. To the best of our knowledge, this is the first instance of combining
evolutionary algorithm with MDL-based compression, effectively mitigating the
high computational demands and enhancing pattern identification.

3 Preliminaries

This section first provides important preliminaries on FIM and MDL-based ap-
proaches for mining itemsets. It then explains how the GA is tailored for MDL-
based compression, facilitating their integration into the proposed framework.

3.1 Frequent Itemset Mining

The aim of FIM (Agrawal et al., 1993) is to identify all sets of values (items) that
appear in at least a minimum number of records (transactions) in a transactional
database.

Formally, for a transactional database D, let 7 represent the set of all distinct
items (values) that appear in D. A database D, defined over items in Z and
containing n transactions is denoted as {t1,t2,...,t,}. A transactiont € D isa
non-empty set of items (an itemset), i.e. t € P(Z)! and t # (). An itemset X C T
containing a single item is called a singleton itemset.

A transaction ¢ in D is said to support an itemset X C Z, if and only if X’ C ¢.
In D, the support of an itemset X" is computed as the total count of transactions
in D that contain X

3.2 MDL for Itemset Mining

MDL-based itemset mining algorithms are designed with the goal of finding the
model M that best compresses a transactional database D, where a model is a set
of itemsets (Vreeken et al., 2011). To find a good model, MDL-based algorithms
searches the space of possible models, and assess each model that is encountered
during this search to keep the best model.
To assess a model M based on the MDL principle, the following sum is
calculated:
L(D, M) = L(D|M) + L(M) (1)

! The notation P(I) denotes the powerset of I.

Title Suppressed Due to Excessive Length 9

where L(D|M) is the compressed size in bits of the database encoded using the
model M, while L(M) is the size of M in bits. A model with a smaller L(D, M)
is considered a better model.

In the context of FIM with MDL, a structure called code table is utilized by
KriMP and SLIM for representing a compression model. A code table, denoted
as CT, is a dictionary that comprises two columns: the first column contains
the itemsets from the model, and the second column provides a unique code for
each itemset that is used for encoding the database using that itemset. A CT
generally comprises itemsets with non-zero usage, ordered firstly by descending
cardinality, then by decreasing support, and finally in ascending lexicographical
order. This establishes a total order called the Standard Cover Order. This order
is used for encoding the database on the basis that shorter codes are assigned
to itemsets that appear before others according to that order. The lengths of
itemset codes are important as they impact the compression of the database.

A CT is represented as a set of pairs CT C {(X,code(X)) | X € CS}. The
notation code(X) denotes a code assigned to an itemset X € CT'. The coding set
(CS) of a CT is the set of all itemsets X that it contains. Figure 1 presents an
example of a CT'. The first column lists the itemsets included in the CT', while
the second column provides information about their respective codes, visualized
as colored bars whose widths represent their lengths. For illustrative purposes,
a third column called ‘usage’ is also included, which is not an actual part of the
CT, and will be explained subsequently. In this example, the set of items from
the database is Z = {Apple, Banana, Cheese, Date}. It can be observed that all
singleton itemsets are included in the C'T, albeit Date has no code. The number
of itemsets in the CT is 6, denoted as |CT| = 6, while the number of itemsets
from the CT that are not included in 7 is 2, which is denoted as |CT \ Z| = 2.

Code Table Itemsets Code Usage
Apple Banana Date 3
Apple Banana | 2
Apple I 2
Banana [1
Cheese I 1
~ Date _ 0

Fig.1: An example code table for a database where T =
{Apple, Banana, Cheese, Date}. Codes are visually represented as bars,
with the widths of the bars indicating the lengths of the codes. Note that
the usage column is not an actual part of the code table but is included for
illustrative purposes. For optimal compression, shorter codes are assigned to
the itemsets that are more frequently used (have a greater usage count).

10 M. Zohaib Nawaz et al.

To compress a database D with a CT, a cover function is utilized to en-
code each transaction t. The cover function, cover(t), denotes the pattern set
from the C'S that is selected for encoding the transaction ¢. Figure 2 displays
an example database. The dataset contains a total of nine transactions, with
three of them being identical to each other, and two other transactions also
being identical. The figure also illustrates how this database is covered by the
example C'T', referenced in Figure 1. Notably, in this example, each transaction
is represented by exactly one itemset from the C'T. For instance, the first three
transactions of the database are encoded using the code assigned to the itemset
{Apple, Banana, Date} in the CT of Figure 1.

Database Encoded Database

| Apple Banana Date

 Apple Banana Date |
| Apple Banana Date |
[Apple Banana

| Apple Banana

[Apple

[Apple

| Banana

. Cheese

Fig. 2: An example database (left) and its encoding using the code table of Figure
1 and the cover function (right).

To encode a database D using a C'T, each transaction ¢ € D is replaced by
the codes of the itemsets in the cover of ¢:

t — {code(X) | X € cover(t)} (2)

In Figure 3, the encoding of a second database is depicted, illustrating how
some transactions can be encoded using multiple codes from the CT in Figure 1.
For instance, the second transaction { Apple, Banana, Cheese} is encoded using
the codes of both the itemsets { Apple, Banana} and {Cheese} from the CT.

Because the aim of MDL-based pattern mining is to identify the model that
most effectively compresses a database, the codes within the C'T" should be se-
lected such that the more frequently an itemset is used, the shorter its code
should be. Note that, in the context of MDL-based pattern mining, the actual
codes are irrelevant for the MDL calculations; only the lengths of the codes asso-
ciated with the itemsets in the C'T" are needed to calculate the encoded database

Title Suppressed Due to Excessive Length 11

Database Encoded Database

Apple Banana Cheese

Apple Banana Cheese _
- Apple Cheese I
- Banana |

Cheese _

Fig.3: Another example database (left) and and its encoding using the code
table of Figure 1 (right). Some transactions are encoded using multiple codes.

size and model size. As there exists a clear correspondence between code lengths
and probability distributions (Li and Vitanyi, 2019), the optimal code lengths
can be calculated through the Shannon entropy.

The optimality property of code lengths ensures that no bias is introduced
when using the code length. For MDL-based itemset mining, the probability
distribution induced by a cover function is simply given by the relative usage
frequency of each of the itemsets in the CT'. To determine this, the usage count
of an itemset X € CT is defined as the number of transactions ¢ from D where X
is part of the cover. Normally, this frequency represents the probability that the
code is used in the encoding of an arbitrary transaction ¢ € D. The optimal code
length (Li and Vitanyi, 2019) is then the -log of this probability, and a CT is
optimal if all its codes have an optimal length. Fractional lengths, as opposed to
integer-valued lengths of materialized codes, are used to ensure that the length
of a code accurately represents its usage probability. Since materialized codes are
not the focus, only relative lengths are of importance. More formally, we have
the following definition for usage.

Let D be a transaction database over a set of items Z, a cover function cover,
and a code table CT over Z and C'. The usage count of an itemset X € CT is
defined as:

usage(X) = [{t € D | X € cover(t)}] (4)

This defines a probability distribution of X € CT for D, given by:

usage(X)

P(X | D)= S oy wsage(Y)

(5)

The code(X) for X € CT is optimal for D if and only if:

L(code(X)) = |code(X)| = —log(P(X | D)) (6)

A CT is code-optimal for D if and only for each itemset X € CT, the code(X)
is optimal. From now onward, it is assumed that the CT's are code-optimal for
the database they are induced on, unless stated differently.

12 M. Zohaib Nawaz et al.

For instance, from Figure 1, the itemset {Apple, Banana,Cheese} appears
three times in the cover of the database. For X = { Apple, Banana, Cheese}:
3

P(x|D)= >

L(code(X)) = —log <Z> = 1.58
Similarly, for Y = {Cheese}:

PY|D) =

L(code()) = — log (;) 316

Thus, {Apple, Banana, Cheese} is assigned a code length of 1.58 bits, while
{Cheese} is assigned code lengths of 3.16 bits each.

As mentioned earlier in Eq. (1), the total encoded size in bits for compressing
a D with a CT is denoted as L(CT, D) and calculated as:

L(CT,D) = L(CT|D) + L(D|CT) (7)

where L(CT|D) and L(D|CT) respectively represent the size of C'T and the
encoded size of D in bits, and are defined as:

LICTID)= > (L(X|ST) + L(X|CT)) (8)
usa‘j\;g(c‘/g;#o
L(D|CT) =) | L(t|CT) 9)
LlcT)= Y LX|CT) (10)
X ecover(t)

ST represents the most fundamental and valid CT', that is the Standard Code
Table (ST), which is the CT that contains only single items from I in its coding
set, i.e., code(ST) = I. Calculating the size of a CT is done by summing all its
code lengths from its second column.

Based on the above definitions, the task of MDL-based itemset mining can be
formalized as the Minimal Coding Set Problem (Vreeken et al., 2011). The goal
is to optimize coding efficiency for a database by determining the ‘best’ coding
set (model) from a collection of itemsets. This problem seeks to identify the
minimal coding set necessary to efficiently represent the data while minimizing
the total code length. The problem of finding the minimal coding set is defined
as follows:

Problem of Minimal Coding Set: Suppose Z represents the set of items,
D is a database over items from Z, cover is a cover function, and F' C P(Z)
represents candidate itemsets (or patterns). The problem is to determine the
smallest set of itemsets P C F' such that the overall compressed size, denoted as
L(CT, D), is minimal for the corresponding C'T.

Title Suppressed Due to Excessive Length 13

3.3 GA for MDL-based Itemset Mining

In this paper, a framework is presented, which follows the general approach
presented in the previous subsection for MDL-based itemset mining but some
modifications are made to render this approach more appropriate for the inte-
gration with a GA. These changes are explained next.

The proposed framework, which is presented in the next section, first counts
the occurrences of itemsets X' € C'T" within a dataset D. Subsequently, it com-
putes the sizes of the C'T" and dataset D in bits. The approach employs the
Shannon entropy discussed in the previous subsection to assign a minimum bit
size to an X in CT that appears the most frequently in D, optimizing the effi-
ciency of compression based on the frequency of occurrence.

The total encoded size in bits for compressing a database with a D with a
CT, denoted as Lg(CT, D), is calculated in the proposed framework as as:

La(CT, D) = La(CT|D) + La(D|CT) (11)

where Lg(CT|D) and Lg(D|CT) denote the size of the CT and that of the
compressed encoded database D w.r.t. CT, respectively. Those terms are defined
as:

La(CTID)= > (L(X|CT) + L(code(X))) (12)
usage(X)#0
La(D|CT) =Y La(t|CT) (13)
LotlcT)= Y L&x[CT)+ > LEICT) (14)
X €cover(t) i€t\cover(t)

Here, cover(t) represents the set of itemsets from the C'T that are used to
cover transaction ¢, and ¢\ cover(t) is the set of items in ¢ not covered by these
itemsets. For each itemset X', L(X|CT) is the encoded length of X according to
the CT, and L(i|CT) is the encoded length of the non-covered item i according
to the same CT'. In the rest of this paper, the above definition of Ls(CT, D) is
used, which is slightly different from KrRiMP and SLIM. The main difference is
that the standard code table ST is not used in the calculations.

The reason for not using the ST is the following. GRIMP selects itemsets
randomly from the database and then applies crossover and mutation operators
to these selections to generate new itemsets. Then, the compression effectiveness
is calculated relative to those itemsets. More precisely, any items or itemsets
not covered by the CT" remain in the encoded database. Therefore, calculat-
ing the compression size based on the encoded database does not require every
item or itemset to be explicitly covered, enhancing flexibility in our compression
strategy. The decision to deviate from using the ST is well-motivated, as the
minimal hitting set generation problem (Gainer-Dewar and Vera-Licona, 2017),
which is closely related to the minimal coding set problem, does not necessarily
require complete coverage of all items/itemsets. As discussed in (Gainer-Dewar
and Vera-Licona, 2017), the goal is to find the inclusion-minimal “hitting sets”

14 M. Zohaib Nawaz et al.

(analogous to the minimal coding sets in the case of this paper) from a given
collection of sets, without the strict requirement of covering every element.

Additionally, we utilize the count of occurrences to guide GRIMP. Specifically,
if the count of an itemset in the C'T" increases as a result of the evolutionary pro-
cess, GRIMP updates the itemset in the C'T. Conversely, if the count does not
increase, GRIMP keeps the previously evolved itemset, ensuring only beneficial
modifications are preserved. This method strategically uses occurrence metrics to
optimize the evolution of itemsets for more effective compression. In the GRIMP
framework, we have enhanced the diversity of genetic operations by employing
three crossover operators and two mutation operators. This variety allows for a
more dynamic and robust evolution of the randomly selected itemsets, provid-
ing different mechanisms to explore and optimize the solution space effectively.
More details about the proposed GRIMP framework for pattern compression are
presented next.

4 GRIMP

This section presents the proposed GRIMP framework for mining representative
compression-based patterns using a GA. An overview of the algorithm is first
presented and then each step is explained in detail.

The algorithm operates on two primary inputs: a transaction dataset D and
a threshold specifying the maximum size of the CT (mazCodeTableSize), which
serves as the stopping condition. This maxCodeTableSize threshold ensures that
the framework terminates once the CT reaches the specified size, providing a
practical limit to the search space and computation time. Using this threshold
can also be interesting for the user as it allows to limit the number of item-
sets that are output so as to not be overwhelmed by a potentially large number
of patterns, an issue known as pattern explosion in the field of itemset mining
(Luna et al., 2019). The output of GRIMP is a CT, which contains representa-
tive patterns that effectively compress the dataset. Additionally, GRIMP can be
configured to operate without the maxCodeTableSize parameter, making it fully
parameter-free. In such a configuration, the algorithm could terminate based
on the stability of the compression ratio; specifically, if the compression ratio
does not improve for a predefined number of generations, the algorithm would
stop. However, for this study and to facilitate direct comparisons with KRiMP
and SLIM in the experimental evaluation, we employ a fixed threshold size for
the CT. This approach aligns with the comparative framework and provides
consistent benchmarks across different algorithms.

The flowchart of GrRiMP, highlighting its main steps, is shown in Figure 4.
The GrIMP framework first generates an initial population of itemsets, which
represent potential solutions for compressing the dataset. It then enhances these
itemsets through an iterative GA process, encompassing selection, crossover,
mutation, and evaluation:

Title Suppressed Due to Excessive Length 15

Create initial population of
itemsets from D

v

Random generation of set of
itemsets

¥

Crossover and mutation

v

Fitness based on compression
ratio using Eq.(11)

v

Update CT

Fig. 4: Flowchart of GRIMP for pattern compression

1. Selection: Randomly selects itemsets from the current population, based
on their fitness, which is assessed by their dataset compression capability.

2. Crossover: Applies crossover operators to pairs of selected itemsets to com-
bine their features, generating new itemsets. This step simulates genetic
recombination and aims to explore new solution spaces.

3. Mutation: Introduces random changes to the itemsets, altering one or more
elements to enhance population diversity.

4. Evaluation: Computes the fitness of the newly generated itemsets by eval-
uating their compression efficiency on the dataset.

5. Stopping Criteria: GRIMP terminates when a predefined condition is met,
that is adding itemsets in the C'T till achieving a satisfactory compression
ratio.

The process continues until the stopping criterion is satisfied, which is deter-
mined by CT reaching the size specified by the threshold, mazCodeTableSize.
At this moment, GRIMP returns the CT containing the itemsets that optimally
compress the dataset. The implementation of GRIMP includes three variants of
crossover (single, multi, and uniform) and two variants of mutation (single and
modified pairwise interchange), details of which are provided subsequently.

Algorithm 1 provides the pseudo-code of GRIMP. It first initializes a popu-
lation with items from the dataset (line 1) and determines the maximum trans-
action length (MTL) in the dataset (line 2). GRIMP then initializes the CT as
an empty set (line 3). A while loop runs, which continues until the length of CT
is not equal to the specified maxCodeT ableSize threshold. Inside this loop, the
algorithm creates two random parent itemsets (called P; and P») of a length
between 2 and the MTL (line 5), and counts its occurrences w.r.t. the dataset
(lines 6, 7). It then applies the crossover (line 9) and mutation operators (lines
10, and 11), resulting in evolved child itemsets (called C; and Cs). The algo-
rithm then calculates the number of occurrences of C; and Cy in the database
(lines 12, 13). These occurrences are compared with those of the original parent

16 M. Zohaib Nawaz et al.

itemsets. If the updated child itemsets have more occurrences, they replace the
respective original itemsets in the CT along with their occurrences (lines 14-
21). This process is iteratively repeated across a specified number of generations
to refine the result. The output of this algorithm is the CT—a refined set of
itemsets that optimally compresses the database (line 26).

To improve the runtime of the GRIMP algorithm, we propose an optimiza-
tion strategy named Dynamic Dataset Reduction (DDR), which leverages the
dynamic nature of the dataset during pattern extraction to reduce the time re-
quired to calculate the compression ratio. The DDR is implemented by Line 24
in Algorithm 1. During a given iteration, as patterns are identified and added
to the C'T, the DDR consists of replacing the occurrences of these patterns in
the dataset by their corresponding codes from the C'T'. This means that as more
patterns are added to the CT, the dataset becomes increasingly smaller, and
thus the algorithm can scan the dataset more quickly. Consequently, with each
new iteration, the time required for counting pattern occurrences in the dataset
decreases progressively. This optimization has a compounding effect: each suc-
cessful pattern that is added to the C'T not only contributes to the compression
but also reduces the cost of subsequent compression ratio calculations, thereby
enhancing GRIMP’s efficiency. The full extent of DDR’s impact on performance
is thoroughly examined and quantified in the results section (see section 5.3).

A notable characteristic of GRIMP is its behavior regarding solution qual-
ity over iterations. It is designed to either improve the solution or maintain its
current quality, ensuring that it never degrades (see Algorithm 1, lines 14-21).
Because of this, the compression ratio, a key metric in our optimization, either
decreases or remains constant throughout the iterations. GRIMP achieves this
by employing a selective update mechanism. Specifically, if a child itemset pro-
vides a better compression ratio than the current parent itemset, the parent is
updated with this child itemset. Conversely, if the child itemset does not offer
an improvement, the parent itemset remains unchanged. This approach guaran-
tees that the itemset quality does not deteriorate over time. This phenomenon
is discussed further in detail in the result section (see section 5.4).

Algorithms 2, 3 and 4 provide the pseudo-code for the three crossover oper-
ators that are used within GRIMP. The symbol || represents the concatenation
of sub-itemsets. The three crossover operators are explained with simple exam-
ples. Let P, and P, be two itemsets, which are sorted and each represented by
a different color for presentation purposes:

P =
Py = apple, butter, diaper, milk, orange

For the single-point crossover (SPC) (Nawaz et al., 2021b) operator (Algo-
rithm 2), one crossover point (c¢p) is randomly selected and the itemsets to the
left (or right) of ¢p are swapped to obtain two new child itemsets C; and C5 from
parent itemsets. Let n represent the length of the smallest itemset. A random
ep (1 < ¢p < n) is randomly selected. For ¢p = 3, applying SPC on P, and P,
generates the two child itemsets C; and Cs as: For cp = 3, applying SPC on P;
and P, generates the two child itemsets C; and Cs as:

Title Suppressed Due to Excessive Length 17

Algorithm 1 GRIMP

Input: Dataset D, maxCodeT ableSize

Output: C'T that best compresses the dataset
1: population < Z € D
2: MTL < length of the longest transaction from dataset D
3: CT + 0
4: while len(CT) # maxCodeT ableSize do
5: Py, P> < Generate two random unique itemsets (length [2, MTL])
6: Pocer + CountOccurrences(Pr, D)
7 Pocey <+ CountOccurrences(Pz, D)
8: repeat
9: C1,Cs « Crossover(P1, P2)
10: C1 < Mutation(C1, population)
11: C> + Mutation(C4, population)
12: Cocer + CountOccurrences(Ct, D)
13: Cocca <+ CountOccurrences(Cs, D)
14: if Cocci > Pocci then
15: P Cy
16: Poccy + Coccy
17: end if
18: if Cocca > Pocce then
19: Po +— 02
20: Poccy < Cocea
21: end if
22: until (max. number of generations is attained)
23: CT + (CTU{P,, P}
24: Replace patterns from CT with codes in D > DDR
25: end while

26:

return CT

18 M. Zohaib Nawaz et al.

Algorithm 2 Single-point crossover

Input: Pi, P»: Two parent itemsets,
Output: Two child itemsets C; and Cs

1: procedure SPC(P, P,)

2 s < min(len(P), len(P))

3 ¢p < randomlInt(1, s) >(1<ep<s)
4: Ch + Pi[1,¢cp] || Pelep+ 1, len(P2)]

5 Ca <+ Py[1,cp] || Pi[ep + 1, len(Py)]
6 Return C; and Co
7: end procedure

C1 = milk, orange
Cs = apple, butter, diaper,

For the multi-point crossover (MPC) (Nawaz et al., 2021c) operator, shown
in Algorithm 3, two crossover points (¢pl) and (cp2) are randomly selected and
the itemsets to the left (or right) of ¢pl and ¢p2 are swapped to obtain two new
child itemsets C7 and Cs from parent itemsets. Let n represent the length of
the smallest itemset. Two random crossover points cpl and c¢p2 are randomly
selected (¢pl < ¢p2 < n). For ¢pl = 1 and ¢p2 = 3, applying MPC on P; and
P, generates the two child itemsets C; and Cs as:

Cy = butter, diaper,
Cs = apple, milk, orange

Algorithm 3 Multi-point crossover

Input: P, P>: Two parent itemsets,
Output: Two child itemsets C; and Cs

1: procedure MPC(P1, P»)

2 s < min(len(P), len(P2))

3 ¢pl, p2 + randomlInt(1, s), randomInt(cpl + 1, s) > (cpl < cp2 < s)
4: Cy < Pi[1,epl] || Pelepl +1,¢p2] || Pi[cp2 4 1, len(Py)]

5 Ca < Py[1,cpl] || Pilepl +1,¢p2] || Pa[cp2 + 1, len(P,)]

6 Return C; and Cs
7: end procedure

In uniform crossover (UC) (Algorithm 4), each item of the itemsets is assigned
to the child itemsets with a probability value p. UC evaluates each item in the
itemsets and selects the value from one of the itemsets with the probability p. If
p is 0.5, then the child has approximately half of the items from the first parent

Title Suppressed Due to Excessive Length 19

itemset and the other half from the second parent itemset. For P; and P,, two
newly generated itemsets (C; and Cs) after UC with p = 0.5 are:

C = butter, milk
Csy = apple, diaper, orange

Here, the items at positions 2 and 4 within each parent’s itemsets are swapped
to create the child itemsets. UC is stochastic, thus the resulting child itemsets
may vary based on the selection probability.

Algorithm 4 Uniform crossover

Input: Pi, P>: Two parent itemsets, p: crossover probability
Output: Two child itemsets C1 and Cs

1: procedure UC(Pi, P2, p)
2 for i < 1 to min(len(P:), len(P,)) do
3 if random() < p then > {random() generates a value in [0,1]}
4: C1[i] «+ Psli]
5: CQ [7,] — P M
6: else

8 CQ [7,] — P M
9: end if

10: end for

11: return C,Co

12: end procedure

The mutation operation is applied after the crossover operation. Mutation is
applied to the itemsets C7 and C5 separately. In GRIMP, two mutation operators
are implemented, presented in Algorithms 5 and 6. The first operator is known
as the Standard Mutation (SM) operator, which introduces random information
into the search process to prevent convergence to local optima (Nawaz et al.,
2020). In SM, a selected item is altered from its original value to one of the
randomly selected items from the population. To demonstrate how mutation
works, consider the itemsets C7 and Cy after applying the SPC. The mutated
itemsets of Cy and Cq, denoted as Cf and C%, are:

ci = biscuit, milk, orange
Ch = beer, butter, diaper,

In this example, the mutation occurs at position 3 in the first itemset (C7), while
in the second itemset (C3), the mutation takes place at position 1.

The Pairwise Interchange Mutation (PIM) operator selects and swaps two
random items within an itemset. However, in our empirical observations of item-
set searching using a GA, we found that the GA struggled to locate the desired

20 M. Zohaib Nawaz et al.

Algorithm 5 Standard mutation

Input: C: An itemset and population: set of all items
Output: A mutated itemset C’

1: procedure SM(C)

2 ind < randomInt(1, length(C))

3 alter < randomSelect(population, 1) > (singleton itemset)
4: C'lind] < alter > (C'[ind] # alter)
5 Return C’

6: end procedure

Algorithm 6 Modified Pairwise Interchange mutation

Input: C: An itemset, population: set of all items
Output: A mutated itemset C’

1: procedure MPIM(C)

2: indl <+ randomlInt(1, length(C))

3: ind2 + randomlInt(1, length(C)) > indl # ind2
4: alterl, alter2 + randomSelect(population, 1)

5: C'[ind1] « alterl > C'[indl] # alterl
6: C'[ind2] «+ alter2 > C'[ind2] # alter2
7 Return C’
8: end procedure

target items with the traditional PIM approach. This was attributed to the lim-
ited effect of simply exchanging the values between two items in the random
itemset. To overcome this challenge, we enhanced the PIM procedure by modi-
fying it to replace the values of the two selected items with random items from
the population, rather than solely interchanging their values. We refer to this
modified version of PIM as Modified Pairwise Interchange Mutation (MPIM),
which is presented in Algorithm 6. To illustrate the application of MPIM, con-
sider the itemsets C; and Cs previously obtained by applying the SPC operator.
The mutated itemsets produced by MPIM, denoted as Cf and C%, are:

Cr = biscuit, milk, fruit
Ch = beer, butter, pen,

In this example, the mutation occurs at positions 3 and 5 in the C, while in the
Cs, the mutation takes place at positions 1 and 3.

The GRIMP framework terminates when the stopping condition of the GA
is satisfied, that is when the number of itemsets in the CT is equal to the
maxCodeT ableSize threshold. This threshold can be set by the user according
to their needs in terms of result size. In the experimental evaluation presented in
the next section, where GRIMP is compared with KRIMP and SLIM, this threshold

Title Suppressed Due to Excessive Length 21

is set to the smallest number of itemsets found by either KRIMP and SLIM so as
to compare the compression achieved for the same number of patterns.

To analyze the time complexity of the GRIMP algorithm, we first consider the
initialization of the population, which involves collecting all unique items from
the dataset D. This operation requires O(]Z]) time, where |Z| is the number of
unique items in D. Next, the longest transaction length MT'L is determined by
scanning through the dataset, which takes O(|D|) time, where |D| is the number
of transactions. The main While loop continues until the size of the C'T reaches
mazxCodeTableSize. Let n represent the maximum number of iterations in the
outer loop, which is limited by the maxCodeT ableSize. In each iteration, two
random unique itemsets P; and P» are generated, that requires O(1) time.

GRIMP then calls the CountOccurrences function for both P; and P», which
takes O(|D| x |P|) time, where |P| is the average size of the itemsets. This
operation is performed twice, contributing a total of O(2 x |D| x | P|). Next, the
three crossover operations have a complexity of O(min(len(P;),len(P,))). Since
SPC and MPC involve copying elements from the two parent itemsets into the
child itemsets, the time complexity can be considered as O(|P|) in the worst
case. For UC, the complexity is also O(|P|) as it iterates through all elements of
P; and P,. The SM, which replaces a randomly selected element in the itemset,
has a complexity of O(1) for selecting the index and a complexity of O(1) for
replacing the element. Thus, the overall complexity for this mutation is O(1).
Similarly, the MPIM involves selecting two distinct indices and replacing their
values, which also takes O(1) time.

After the mutation operations, the evolved itemsets are added to the CT.
This operation is effectively a constant-time operation since it involves adding a
fixed number of items to a collection, resulting in O(1) time complexity for each
addition. After that, as patterns are identified and added to the CT, they are
simultaneously replaced in the dataset (DDR optimization). Specifically, since
we are replacing only two evolved itemsets from D, the time complexity for
this removal is O(|D|) as it requires scanning through the transactions to elimi-
nate occurrences of these patterns. However, because the dataset is progressively
reduced with each successful extraction, the average time complexity for subse-
quent pattern lookups decreases progressively.

Compiling all these contributions, the overall time complexity of GRIMP is
as follows:

O(IZ| +|D| +n x (2% |D| x |P|+ |P| + |P|+ 1)+ |D]|)

Assuming n is proportional to maxCodeT ableSize, we simplify the above
complexity to:

O(maxCodeTableSize x |D| x |P|+ |Z| + |D|).

Given that maxzCodeTableSize is small (i.e., maxCodeTableSize < |D|),
we can consider this size as a constant, leading to the final simplified worst-case
complexity of:

22 M. Zohaib Nawaz et al.

O(ID| x |P| + [Z1).

5 Experimental evaluation

This section presents the experimental evaluation of the GRiMP. First, the ex-
perimental settings are described, including the compared methods, execution
environment, and datasets. Then, experiments are presented to evaluate the
quality of the resulting itemsets in the CTs, in terms of compression ratios,
runtimes, convergence, headless chicken test and classification.

5.1 Experimental settings

Algorithms: GRIMP is implemented in C++2. The original source code of both
KRIMP and SLIM was acquired from the website of J. Vreeken?, and are also im-
plemented in C++. To ensure a fair comparison of runtimes, the executable
versions of GRIMP, KRIMP, and SLIM were run on the same machine. This
methodological consistency allows for an accurate assessment of the efficiency
of each framework across various datasets.

Environment: Experiments were performed on a machine equipped with
a 13th generation Core i5 processor and 32 GB of RAM, running Windows 11
Professional. The execution of each framework on a dataset was constrained by
a time limit of two hours.

Datasets: We utilized a comprehensive set of 21 publicly available datasets.
This wide-ranging dataset collection ensures that our findings are generalizable
for various real-world scenarios where data have different characteristics. We
analyze a diverse set of benchmark and real datasets. In each dataset, the data is
modeled as transactions (sets of items). We selected some of the largest and dense
databases from the LUCS/KDD dataset repository*. Additionally, we utilized
the Accidents, Chess, and Pumsb datasets from the FIMI® repository. The Chess
(kr-k) dataset is sourced from the UCI repository®. The Heart and Wine datasets
were obtained from the SPMF repository’. For convenience, all the 21 datasets
have also been uploaded to the GitHub repository of GRIMP. These datasets and
their statistical details are presented in Table 2. For each dataset, |D| denotes
the number of transactions, |Z| is the count of unique items, ATL (average
transaction length) is the average count of items in each transaction, and Density
= 4ZL x 100.

A
? github.com/MuhammadzohaibNawaz/GRIMP
3 vrecken.eu/prj/krimp/

* cgi.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN/

® fimi.uantwerpen.be/data/

5 archive.ics.uci.edu/

" philippe-fournier-viger.com /spmf/index.php?link—=datasets.php

Title Suppressed Due to Excessive Length 23

Table 2: Description of datasets and their statistics
Dataset |D| |Z| ATL Density

Accidents 340,183 468 33.80 7.22
BMSWV1 59,602 497 253 0.51
Adult 48,842 97 35.60 15.33
Chess (k-k) 3,196 75 37 49.33
Chess (kr-k) 28,056 58 7.00 12.07
Connect-4 67,557 129 43 33.33

Heart 303 50 13.98 27.96
Tonosphere 351 157 35.01 22.29
Iris 150 19 5.01 26.32
Led7 3,200 24 7.99 33.33

Letter Recognition 20,000 102 17.17 16.67
Mushroom 8,124 119 23.01 19.33
Nursery 12,960 32 9.01 28.13
Page Blocks 5,473 44 11.00 25
Pen Digits 10,992 86 17.00 19.77

Pima 768 38 9.06 23.68
Pumsb 49,046 2,113 73.95 3.50
Pumsbstar 49,046 2,088 50.52 2.42
Retail 88,162 16,470 9.88 0.06
Tic-tac-toe 958 29 999 34.48
Wine 178 68 14.00 20.59

5.2 Compression ratio

In the first experiment, we assess the effectiveness of GRIMP in describing a
dataset by focusing on the key metric, the compression ratio. It is to be noted
that the number of iterations in Algorithm 1 was empirically fixed at five, as
this value consistently yielded optimal compression ratio results on different
datasets. This empirically determined iteration count was maintained through-
out the study to ensure consistency and comparability of results across different
experimental conditions. We analyze six variants of GRIMP, each employing a
combination of one of the three crossover operators with one of the two muta-
tion operators. For each variant, the results are also averaged across all datasets
to provide a comprehensive view of their performance. This allows identifying
the best-performing variant. Lower compression ratio values indicate superior
performance. The relative compression ratio, denoted as L%, is calculated as:

La(D,CT)

La (D, Pop) % (15)

where D is clear from the context and Pop represents the population.

The results are structured to first present the compression performance fol-
lowed by the computational time for each dataset. The details of the result are
presented in Table 3, where the numerator represents the compression achieved,

24 M. Zohaib Nawaz et al.

while the denominator indicates the time taken to achieve this compression. For
example, the first entry % indicates that the GA variant using SPC with
SM achieved 42.70 percent compression in a time span of 6653.60 seconds. The
values highlighted in bold represent the best-performing variant in terms of com-
pression ratios and/or runtime. Any variant that failed to complete within the
time limit of two hours was omitted marked as “”) from the results. By exclud-
ing excessively long runs, we ensure that the evaluation is focused on solutions

that are feasible within reasonable operational parameters.

Table 3: Compression and runtime for all GRIMP variants on all datasets. Each
entry in the table indicates the compression achieved (numerator) by a variant
and the required time to achieve this compression (denominator).

Dataset # of itemsets SM MPIM
SspC MPC UC SpPC MPC UC
- 4270 __6.50 _44.11__20.50 _ 8.80
Accidents 1583 G§35,60 640880 674330 0516,40 643040
Adult 1201 8% 3,50 890° 1540 ~H40° 19.10
133.00 12840 147,80 14850 112.10 163.30
BMSWV1 718 90,10 4840 94.70 9110 33.40 95.80
1276.40 903,40 138240 1426,30 1024,50 1137,90
Breast 30 352107 U390 8160 31700 2480 37.60
0.21 0.17 023 092 0.25 0,28
Chess (k-k) 292 2500 986 2580 2600 1TB0 270
1399 1933 21§ 242 1g3 1ndd
Chess (kr-k) 1060 13 1110 1140 1506 1470 1630
izl 6pal Gphg0 12960 79.54 B5G0ad
Connect-4 1671 : : : : - :
1392,30 112180 1378,40 1146,50 1090,40 125340
Heart 79 39230 43580 137%30 134%3°0 193%4° 138%§
0,28 0.22 030 031 0.29 0,29
Tonosphere 170 5790 24200 5520 5120 3130 5350
p 118 T A N E R | 1.00 105
Iris 13 3450 2960 0.60 3530 28.80 39.00
003 943 002 .0.01 002 001
Led7 152 16.60 90 1950 29070 1050 24.90
LGB 91 A% 3% A
Letter Recognition 1599 040 T7opi 15020 17564 16995 1748l
Mushroom 442 B Vg8 BB 0 B B
Nurser 260 7 230 19:70 0 5300 23
> 5% 28 % P % A%
Page Blocks i 7% &% &B SH k% FND
Pen Digits 1247 o2 56.96 15490 7509 GLlg 1g0.0d
Pima 58 Rl : 57.60 : 6.6 26.10
&% 4% &% & 4% AW
Pumsbstar 331 3765.20 52370 4814.50 1175.80 377,80 1320.30
Retail 6264 — 1095 40 — To69.10
Tic-tac-toe 160 26.30 £8%0° 20.00 2780 “P¥AEC 20.00
&% 4% s A% A% &%
Wine 63 0.11 0.11 0.09 0.09 0.08 0.10

The analysis of compression performance across various datasets reveals that
the MPC/SM variant generally achieves the lowest compression ratios among
the tested variants (with few exceptions like BMSWV1, Iris, Pen Digits, Pums-
bstar, Retail, and Wine), underscoring its superior effectiveness in data com-
pression. Notably, for these exceptions, the differences in compression ratios are
minimal, indicating that the effectiveness of MPC/SM remains consistently high
across diverse datasets. Remarkably, this variant demonstrates exceptional per-
formance, almost two times more than the second-best variant, on datasets such

Title Suppressed Due to Excessive Length 25

as Connect-4, Heart, Led7, Letter Recognition, Mushroom, Nursery, Page Blocks,
Pima, and Tic-tac-toe. After the MPC/SM variant, the second most effective
variant is MPC/MPIM. This variant also shows high compression efficiency, of-
ten closely following the performance of MPC/SM. It consistently secures low
compression ratios on a variety of datasets, making it another reliable choice for
effective data compression across diverse data scenarios. In contrast, the UC/SM
variant consistently produces higher compression ratios, indicating a lower effi-
ciency in data compression compared to the other variants.

Next, we present average results in Table 4. It is important to note that
datasets where all variants of GRIMP could not complete the task within two
hours, such as Accident and Retail, are excluded from this average result analysis.
Specifically, the average is calculated by summing the total compression ratios
and execution times for each variant across all datasets. This sum is then divided
by the number of datasets included in the analysis. Including datasets with
incomplete results would unfairly increase the average time for variants that
completed the task within the allotted time, potentially skewing the efficiency
comparison. This exclusion ensures that the results reflect only those scenarios
where GRIMP successfully completed its compression tasks within the allotted
timeframe, thereby providing a more accurate comparison.

Table 4: Average compression and time for each GRIMP variant

GRIMP variant Avg. Compression Avg. Time (in sec.)

SPC/SM 32.71 313.93
MPC/SM 15.57 159.34
UC/SM 35.28 460.15
SPC/MPIM 31.98 228.74
MPC/MPIM 18.51 156.13
UC/MPIM 34.40 254.06

The analysis of GRIMP’s variants reveals distinct performance characteristics,
with the MPC/SM configuration emerging as the most effective, achieving a sig-
nificantly lower average compression ratio of 15.57, indicating superior compres-
sion efficiency. Conversely, the UC/SM configuration records the highest average
compression ratio of 35.28 and highest average time of 460.15 seconds, highlight-
ing its relative ineffectiveness in compressing data. Moreover, the MPC/MPIM
configuration demonstrates good computational efficiency, requiring an average
time of 156.13, which is among the lowest in the table. Overall, the ranking of
variants based on the average compression achieved is in the order MPC/SM >
MPC/MPIM > SPC/MPIM > SPC/SM > UC/MPIM > UC/SM.

Next, we compare GRIMP with KRIMP and SLiM. For this comparison, we
take the best-performing variant of GRiMP, namely MPC/SM, since this variant
gives the best result for compression ratio. From this point onward, we use this
variant for comparison. Table 5 presents the results of this comparison. The A

symbol indicates the difference between algorithms, with AZRMP representing

26 M. Zohaib Nawaz et al.

Table 5: Comparison of compression ratios and runtimes of GRiMP, KRIMP, and

SLIM, with results presented using the notation fjgg
Dataset GRIMP KRIMP ASRMP Qriv ASRMP
: 6.50 55.10 48.60 31.10 24.60
ACCldentS 6408.80 — I I —_
Adult 3.50 24.40 2090 22.80 19.30
12840 20500 76.60 24045 112,05
BMSWVL 22550 17.00 5.90 B _
Breast 9:58 3003090 200‘2120 1; 70 4;0
Chess (k-k) 1988 6160 soso 22E A
Chess (kr-k) g3l BB % gi6 BI
Connect-4 350 3560 3 9,00
192568° stm0 4570 B _
. ol .
Heart 2% 3% AN w0 2560
Ionosphere 1.17 p— 65.51 64.34
Iris 39.60 48.20 18.60 e -
2'8(2) 208 0660 203' 0740
Led? 389 =R BN 33_40 30_30
Letter Recognition 1290t 238%3' 201807 1sso 1310
Mushroom 3083 - = 521 1469
plrsery ¥ B g
Page Blocks 8% 412'3220 203' 2820 39_40 21_00
Pen Digits 56.96 3370.80 331381 136487 1307.01
Pima 16.76 4.8 81 o o’
3% %0 5% 25.10 11.40
Pumsbstar %5560 9750 31.00 B _
ol RS WG WP
Tic-tac-toe 1,09 2,00 0.91 - -
Wine 44.60 7540 3380 _ _
0.11 2.01 1.90

the difference between GRIMP and KRIMP. Similarly, AS®MF represents the dif-
ference between GRIMP and SLIM. For datasets whose compression results were
not available in the original SLIM paper, we did not include them in comparison
and marked these instances with a “-”. This approach ensures a fair comparison
across all methodologies within practical operational constraints and maintains

consistency in our reporting.

GRIMP demonstrates superior performance in most cases, achieving better
compression ratios often in less time than its counterparts. This advantage is par-
ticularly evident for larger datasets such as Accidents, BMSWV1, and Connect-4.
However, it is important to note that GRIMP’s performance is not uniformly su-
perior across all datasets. In the case of the Breast dataset, KRIMP outperforms
GRIMP, achieving a compression ratio of 17.00 compared to GRIMP’s 22.90.
This exception highlights areas where GRIMP could potentially be improved.
For smaller datasets like Iris, Pima, and Wine, the performance gap between
GRIMP and the other two narrows. While GRIMP still generally performs bet-
ter, the difference in compression ratios is less pronounced compared to larger
datasets. This suggests that GRIMP’s advantages become more significant as
dataset size increases. A notable strength of GRIMP is its consistent ability to
complete the compression task within the two-hour time limit. In several in-

Title Suppressed Due to Excessive Length 27

Table 6: Comparison of C'T" length of GRIMP with KRIMP and SLIM to achieve
equivalent compression ratios

KRrivp :
Dataset GriMP g2 Comparison (%)
i 209 1583 86.80
Accidents 51 2018 8814
Adults 18 130 18
- R
BMSWV1 560 965 a9z
Broast 54 30 8867
N¢ s 61 4
Chesa (k) A
Chess (kr-k) W Bm 50.09
Connect-4 8 2850 S
434 1670 74.01
Heart =5 Ui e
Lo Vi 5854
Tonosphere % 6 6543
Iris 2 LS
e 15 gD 5
ped? M Ba s
Letter Recognition ;7 1599 %1'18
S 169 689 5.47
Mushroom Wik 39.38
Nursery NA Na Iy
Page Blocks Nd NE ry
Pen Digits 11 1347 3229
Pima 2 58 14
e B 670
Pumsbstar 98 17 56
Retail 3200 6264 48.91
e g 675
Tic-tac-toe NA Na N
Wine = 5 o
285%0 odbAs 6885
Average 372.72 1373.45 72.86

stances where KRIMP or SLIM failed to complete within the timeframe, GRIMP
successfully finished the task, often achieving impressive compression ratios.

To further explore Grimp’s capabilities, we now present the results detail-
ing the number of patterns GRIMP required to achieve the same compression
ratios as KRIMP and SLIM. This analysis illustrates the efficiency of GRIMP in
attaining competitive compression ratios, potentially with fewer patterns. Table
6 provides the results for the number of patterns required by GRIMP, KRIMP,
and SLIM to achieve similar levels of data compression. The second column quan-
tifies the number of patterns GRIMP requires, represented as a fraction where
the numerator reflects the number of patterns used to match KRIMP’S compres-
sion ratio and the denominator for SLiM’s. Similarly, the third column shows
the number of patterns needed by KRIMP and SLIM to achieve their respective
compression ratios, also in fractional form. The fourth column quantifies the per-
centage reduction in the number of patterns used by GRIMP compared to KRIMP
(numerator) and SLIM (denominator). For instance, in the Accidents dataset, the
value % indicates that GRIMP used 86.80% fewer patterns than KRIMP and
88.14% fewer than SLIM to achieve a similar compression ratio. With an average

numerator of 68.35% and a denominator of 72.86% in the comparison column,

28 M. Zohaib Nawaz et al.

it is evident that GRIMP requires significantly fewer patterns than both Krimp
and SLIM for all datasets.

5.3 Runtime

In terms of processing speed, as shown in Table 4, GRIMP, particularly with the
MPC/MPIM variant, shows exceptionally low processing times across datasets
including Heart, Ionosphere, Iris, Pima, and Wine. Overall, the ranking of vari-
ants based on the average time is in the order MPC/MPIM > MPC/SM >
SPC/MPIM > UC/MPIM > SPC/SM > UC/SM.

HGRIMP H KRIMP

z
c
S
a
o
3
<

Fig.5: Runtime comparison of GRIMP, KRIMP and SLIM

100%

0t T

90%

80%

70%

60%

8589

50%

40%

Time in Percentage

30%

20%

10%

€0
TE'E9
08°1¢0L
80T
0L°€CS

3°8079
0F €06

0%

auIM

ewid

—
o

Q.
~

uy
o
@
2
-+

SIUBPIIY
TAMSING
(1) ssayd
(34-251) sS9YD
$-109UU0)
aJaydsouo|
wooJysnipn
syo0|g 98ed
su8ig uad
Jeysqswing
901-083-01]

uoiyugooay Ja1e7

The runtime of GRIMP, KRIMP and SLIM as a percentage of the total observed
runtime is presented in Figure 5. GRIMP consistently outperforms both KriMp
and SLIM in terms of speed, with the sole exceptions being the Led7 and Retail
datasets, where it falls short of KRIMP’s performance. It is important to note
that this comparison includes datasets where runtime values for at least one
of KRIMP or SLIM were available. Notably, only GRIMP was able to complete
the compression within the allocated timeframe for the Accidents, BMSWV1,
Connect-4, and Pumsbstar datasets.

Next, we illustrate the impact of DDR on the overall time reduction for the
Accident dataset, analyzed across all six variants of GRIMP. Figure 6 showcases
these effects, where the x-axis represents the length of the C'T, and the y-axis

Title Suppressed Due to Excessive Length 29

indicates the time in milliseconds. These lines exhibit significant fluctuations, a
result of the inherent randomness in the crossover and mutation processes. These
processes interact with itemsets whose lengths vary randomly—larger itemsets
typically take longer to process due to more extensive searches required in the
dataset.

850
———— spc/sm

800

————— MPC/SM

750 \ uc/sm

SPC/MPIM

~N
o
o

—————— MPC/MPIM

————— UC/MPIM

............. SPC/SM

Time (ms)
[<)]
v
o

600
............. MPC/SM
cs0 uc/sm
SPC/MPIM
500
............. MPC/MPIM
450 R uc/MPIM
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
ICT|

Fig. 6: Effect of the DDR optimization on the execution time of GRIMP for the
Accident dataset. Solid and dashed lines represent the performance of variants
without and with the optimization, respectively.

The dotted lines demonstrate the notable reduction in execution times post-
optimization across all variants. The optimization, by systematically decreasing
the size of the dataset as patterns are added to the C'T', reduces the overhead of
searching for patterns. Each successful addition to the CT not only contributes
to compression efficiency but also expedites subsequent operations by reducing
the dataset size. This leads to a smoother and generally lower trajectory in the
graph, indicating a more consistent and reduced processing time.

5.4 Convergence

Another experiment was carried out to observe the convergence behavior of
GRIMP, that is how it systematically refines the compression ratio through suc-
cessive iterations to enhance pattern selection for optimal compression. Conver-
gence of the compression ratio is assessed with respect to two factors, namely
the number of patterns that have been added to the C'T, and the number of
generations that are used to evolve a set of patterns before it is added to the

30 M. Zohaib Nawaz et al.

CT. The results are depicted in Figure 7. The bottom x-axis represents the num-
ber of patterns that have been added to the C'T’, while the top x-axis, indicates
the number of generations that GRIMP utilized to evolve each set of patterns.
The y-axis quantifies the effectiveness of the compression by measuring the com-
pression ratio. To provide concise results as a figure, the number of patterns
and number of generations are respectively observed in the range of [1,20] and
[1,5] but the overall convergence behavior of GRIMP remains the same for other
ranges of values.

Generations
1234512345123451234512345123451234512345123451234512345
100

90

80

I

g
F 60 N

BMSWV1 Breast~ Tk Tl N S O e, T, e
= 8 e N T
£ N e =
£ Chs(kk) oo Chs.(ke-k
% 50 5.(k-K) k)
4 . <
3 Cnet-4 Heart N
E 0 F o —— s \\\

B
© N
--------- Led? — -+ — Lir Rec. <~
30 ~
Mushroom Nursery

20 b — = = PeBlk Pen Digits

0 2 4 6 8 10 12 14 16 18 20
of patterns

Fig. 7: Comparison of compression ratios with respect to number of itemsets and
generations

On most datasets, GRIMP shows a trend where the compression ratio initially
remains high but gradually declines as more patterns are added to the CT'. This
suggests that early additions contribute more significantly to data representation
than subsequent ones. Different datasets exhibit unique convergence behaviors,
which reflects their inherent complexities and the varying effectiveness of GRIMP
in compressing them. Heart, for example, starts with a higher compression ra-
tio that declines sharply as more patterns are added, indicating a quick gain in
compression that stabilizes as the pattern count increases. Similarly, Breast and
Page Blocks show moderate compression efficiencies with a steady decline, high-
lighting a consistent difficulty in achieving optimal compression. Looking at the
example of Pima dataset, we can see that there is no improvement in compres-
sion particularly from patterns 5 to 8 and 14 to 18. This is because GRIMP could
not improve the compression in this period of time. Overall, Pima exhibits an
unusual decline, stabilizing at certain iterations before experiencing sudden de-
creases, a pattern that continues until it reaches optimal compression. A similar
phenomenon is evident in the Iris dataset analysis, where the objective was to

Title Suppressed Due to Excessive Length 31

identify compressing patterns within a limit of 13 patterns. Here too, we observe
periods where GRIMP failed to yield improved compression results, followed by
phases where new patterns were generated, enhancing the compression efficiency.
These observations underscore a common characteristic inherent in evolutionary
framework like GRIMP: periods of stagnation where it is trapped at local optima,
temporarily unable to make further progress. Given the random nature of the
underlying operations, such behavior is to be expected. This randomness can
sometimes hinder continuous improvement, leading to plateaus in performance
until new, effective variations emerge through the evolutionary process.

As discussed in Section 4, GRIMP is strategically engineered to either enhance
the solution or preserve its current quality, thereby ensuring no degradation
over time. Figure 7 clearly illustrates this principle across all datasets. Here,
we observe a consistent pattern where the compression ratios either decrease
or stabilize as the number of generations and itemsets increases. This behavior
underscores GRIMP’s effectiveness in refining or maintaining data compression
efficiency through successive iterations.

5.5 Headless Chicken Test

In GAs, the concept of crossover involves selecting two chromosomes (solutions)
and merging their components to create more robust offspring. (Holland, 1975)
utilized building blocks from schema theory to formalize the concept of crossover.
The crossover mechanics offer a way for the implementation of this concept.
Therefore, while all crossover types share the same underlying principle, the
methods or mechanics employed to execute the principle concept can vary sig-
nificantly. For instance, SPC and MPC utilize a single and two (or more) crossing
points, respectively. Generally, the effectiveness of crossover can be accessed (or
tested) by comparing the performance of a GA with crossover to one without it.
If the GA incorporating crossover demonstrates better performance, it provides
evidence supporting the effectiveness of the crossover operation. To distinguish
between the concept of crossover and its mechanics, (Jones, 1995) proposed the
headless chicken test (HCT) to evaluate the usefulness of the crossover opera-
tion. It was argued that crossover mechanics could effectively drive search and
evolutionary processes independently of the crossover idea.

The HCT is employed to assess the effectiveness of the three crossover op-
erators in GRIMP. In the test, GRIMP with normal SPC, MPC and UC is con-
trasted against a version using randomized SPC, MPC and UC. Rather than
recombining two parents, a random crossover generates two random individu-
als that are used in the crossover process with the original parents (Figure 8).
This replaces the strategic recombination of parents with a mechanical, random-
ized process, removing the fundamental element of crossover - direct interaction
between parents. If a GA does not demonstrate additional benefits from the
crossover concept, it may be equally effective to utilize macromutations instead.
The inferior performance of the GA with standard crossover in comparison to
the GA with random crossover suggests a lack of well-defined building blocks.
Table 7 presents the comparative results between GRIMP with conventional and

32 M. Zohaib Nawaz et al.

-)

Random individual generator
L Crossover child 1
Parent 1 *®
Parent2 | “—* Crossover —& Child 2

Fig. 8: Headless chicken test with random crossover

randomized crossover operators. The ‘X’ sign next to the names of the crossover
operators indicates their randomized versions. When examining the average com-
pression ratio, it is evident that the original GRIMP with normal crossover oper-
ators performs similarly to GRIMP with randomized crossover operators without
any significant differences. This suggests that well-defined building blocks exist
for the crossover operators in GRIMP.

Table 7: Results of the headless chicken test for GRIMP

GA Variant Avg. Compression Avg. Time

SPC/SM 32.71 313.93
MPC/SM 15.57 159.34
UC/SM 35.28 460.15
SPC/MPIM 31.98 228.74
MPC/MPIM 18.51 156.13
UC/MPIM 34.40 254.06
SPCx /SM 32.52 395.35
MPCx /SM 16.41 213.56
UCx /SM 34.31 523.55
SPCx /MPIM 30.12 408.61
MPC x /MPIM 20.62 232.97
UCx /MPIM 33.51 409.71

5.6 Classification

In previous experiments, we observed that GRIMP describes data more succinctly
than KRIMP and SLIM. In a subsequent experiment, we independently validate
how well GRIMP captures data distributions through classification. We employ
a classification scheme similar to KRIMP and SrIM for this evaluation.

For classification, we need to create a CT for each class. This process begins
by splitting the database according to class labels. After splitting, we remove

Title Suppressed Due to Excessive Length 33

the class labels from all transactions within each subset. Next, we apply GRIMP
to each of these class-specific databases, thereby generating a CT for each class.
Once the CTs are constructed, classifying a transaction ¢ becomes straightfor-
ward: we assign the class label associated with the C'T' that yields the minimal
encoded length for t. We measure performance using accuracy, which represents
the percentage of true positives on the test data. All the reported results have
been obtained using 10-fold cross-validation to ensure robust and reliable perfor-
mance estimates. By comparing the results to those of KrRiMP and SLIM, we can
evaluate GRIMP’s relative performance in generating meaningful and discrimi-
native CT's.

Table 8: Comparison of classification accuracy (%).

Dataset GRIMP KRIMP SLIM
Adult 78 79 80
Chess (kr-k) 54 50 56
Connect-4 71 68 69
Tonoshpere 95 91 88
Letter Recognition 95 95 94
Mushroom 94 100 100
Pen Digits 73 93 94
Waveform 89 72 74

The classification results, as presented in Table 8, demonstrate the effective-
ness of GRIMP’s C'T's in capturing meaningful patterns for classification tasks.
While GRIMP was primarily designed for compression rather than classification,
its performance in this domain provides valuable insights into the quality of
the patterns it discovers. GRIMP shows competitive performance across various
datasets, outperforming both KRIMP and SLIM on several datasets. Notably,
GRIMP achieves the highest accuracy for the Connect-4, Ionosphere, and Wave-
form datasets, with a particularly significant improvement in the Waveform
dataset (89% compared to 72% for KRiMP and 74% for SLiM). For the Letter
Recognition dataset, GRIMP matches the best performance, achieving 95% accu-
racy alongside KRIMP. In cases where GRIMP does not surpass KRIMP or SLIM,
such as in the Adult and Chess (kr-k) datasets, its performance remains compa-
rable. For instance, in the Adult dataset, GRIMP’s accuracy (78%) is very close
to KRIMP’s (79%) and SLiM’s (80%).

It is important to note that GRIMP does not always outperform KRiMP and
SLIM in classification. This is not a major issue because the primary objective
of GRIMP is superior compression, and classification is used here merely as a
mean to evaluate the quality of the discovered patterns. The Mushroom dataset
presents an interesting case where both KRIMP and SLIM achieve perfect ac-
curacy, while GRIMP reaches 94%. This slight difference might be attributed
to GRIMP’s more aggressive compression, which could lead to some loss of dis-

34 M. Zohaib Nawaz et al.

criminative information in favor of a more concise representation. Overall, these
results demonstrate that GRIMP, while optimized for compression, generates
CTs that capture meaningful and discriminative patterns in the data. Its ability
to compete with, and often outperform, KrRIMP and SLIM in classification tasks
underscores the effectiveness of GRIMP’s pattern discovery approach.

To summarize the results of the overall experimental evaluation of GRIMP,
it is observed that it distinctly surpasses both KrRIMP and SLIM in several key
aspects of data compression and processing efficiency. Notably, GRIMP’s ability
to deliver the same compression ratio with around 70% fewer patterns than its
competitors highlights its efficiency in pattern representation. GRIMP also ex-
cels in runtime performance, processing data more rapidly than both KRiMP
and SLIM. This efficiency is especially valuable in large-scale data environments
where quick processing is critical. This runtime efficiency is largely attributable
to the DDR optimization technique, which accelerates processing by reducing
the size of the dataset. Additionally, the convergence analysis of GRIMP high-
lights its consistent progression towards optimal compression ratios, confirming
its reliability and effectiveness. While GRIMP is primarily designed to identify
patterns that best capture the characteristics of the data, its applicability in
classification tasks was also explored, where it proved to be competitive. This
indicates that the C'T's generated by GRIMP are not only useful for finding the
best set of patterns that capture the data most effectively but also possess sig-
nificant discriminative properties for classification tasks.

6 Conclusion

This paper introduced GRIMP, a GA for compression-based descriptive itemset
mining. GRIMP addresses the limitations of traditional FIM by integrating the
principles of pattern compression with evolutionary algorithm. It efficiently ex-
plores the search space of potential itemsets, focusing on those that offer the most
significant compression benefits. GRIMP has been evaluated through comprehen-
sive experiments demonstrating its ability to achieve better compression ratios
and runtime performance compared to the KRIMP and SLIM. Moreover, despite
being optimized primarily for compression, GRIMP has also shown promising
results in classification tasks. Obtained results indicated that GRIMP not only
reduced the redundancy in the extracted patterns but also enhanced the inter-
pretability and usefulness of the mining results.

It is important to acknowledge certain limitations of GRIMP. Due to the
inherent randomness in how itemsets are initially generated and the stochastic
nature of GA operators, there can be significant variability in performance. Oc-
casionally, this randomness may lead to suboptimal itemsets, including low com-
pression results. Additionally, some candidate itmesets added to the final code
table may have a limited impact on enhancing compression, and the repetitive
comparison of candidate itemsets against the database contributes significantly
to the computational overhead. Some fututre research directions are: Future re-
search can explore enhancing GRIMP with additional data mining tasks, such

Title Suppressed Due to Excessive Length 35

as sequential, graph, and contrast pattern mining. Potential developments could
also focus on increasing the scalability of GRIMP for handling even larger datasets
and adapting them to dynamic data environments, thereby extending its util-
ity and impact across various real-world applications. Another direction is to
replace GA with alternative evolutionary and heuristic algorithms such as par-
ticle swarm optimization (Wang et al., 2018), ant colony optimization (Dorigo
and Stiitzle, 2019), bat algorithm (Yang and He, 2013), and simulated annealing
(Nikolaev and Jacobson, 2010).

Bibliography

Aggarwal, C. C. (2014). Applications of frequent pattern mining. In Aggarwal,
C. C. and Han, J., editors, Frequent Pattern Mining, pages 443-467, Cham.
Springer International Publishing.

Agrawal, R., Imielinski, T., and Swami, A. (1993). Mining association rules
between sets of items in large databases. In Proccedings of 19th International
Conference on Management of Data (SIGMOD’93), pages 207-216.

Akoglu, L., Tong, H., Vreeken, J., and Faloutsos, C. (2012). Fast and reliable
anomaly detection in categorical data. In Proceedings of the 21st ACM Inter-
national Conference on Information and Knowledge Management (CIKM’12),
pages 415-424.

Belaid, M.-B. and Lazaar, N. (2021). Frequent itemset mining with multiple min-
imum supports: A constraint-based approach. arXiv preprint, abs/2109.07844.

Bonchi, F., Giannotti, F., and Pedreschi, D. (2006). A relational query primitive
for constraint-based pattern mining. In Boulicaut, J.-F., De Raedt, L., and
Mannila, H., editors, Constraint-Based Mining and Inductive Databases, pages
14-37. Springer.

Boulicaut, J.-F., Bykowski, A., and Rigotti, C. (2003). Free-sets: A condensed
representation of boolean data for the approximation of frequency queries.
Data Mining and Knowledge Discovery, 7(1):5-22.

Bouritsas, G., Loukas, A., Karalias, N., and Bronstein, M. (2021). Partition
and code: Learning how to compress graphs. In Proceedings of 35th Annual
Conference on Neural Information Processing Systems (NeurIPS 2021), pages
18603-18619.

Budhathoki, K. and Vreeken, J. (2015). The difference and the norm — char-
acterising similarities and differences between databases. In Proceedings of
European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD 2015), pages 206-223.

Calders, T. and Goethals, B. (2007). Non-derivable itemset mining. Data Mining
and Knowledge Discovery, 14(1):171-206.

Cao, Y., Xu, J., Yang, C., Wang, J., Zhang, Y., Wang, C., Chen, L., and Yang, Y.
(2023). When to pre-train graph neural networks? from data generation per-
spective! In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDE’23), pages 142-153.

Darrab, S., Broneske, D., and Saake, G. (2021). Modern applications and chal-
lenges for rare itemset mining. International Journal of Machine Learning,
11(3):208-218.

Dorigo, M. and Stiitzle, T. (2019). Ant colony optimization: Overview and
recent advances. In Gendreau, M. and Potvin, J.-Y., editors, Handbook of
Metaheuristics, pages 311-351. Springer.

Faas, M. and van Leeuwen, M. (2020). Vouw: geometric pattern mining using the
mdl principle. In Proceedings of 18th International Symposium on Intelligent
Data Analysis (IDA 2020), pages 158-170.

Title Suppressed Due to Excessive Length 37

Farghaly, H. M. and El-Hafeez, T. A. (2022). A new feature selection method
based on frequent and associated itemsets for text classification. Concurrency
and Computation: Practice and Ezperience, 34(25):e7258.

Fournier-Viger, P., Li, X., Yao, J., and Lin, J. C.-W. (2018). Interactive discov-
ery of statistically significant itemsets. In Proceedings of 31st International
Conference on Industrial Engineering and Other Applications of Applied In-
telligent Systems (IEA/AIE 2018), pages 101-113.

Gainer-Dewar, A. and Vera-Licona, P. (2017). The minimal hitting set gen-
eration problem: algorithms and computation. SIAM Journal on Discrete
Mathematics, 31(1):63-100.

Galbrun, E. (2022). The minimum description length principle for pattern min-
ing: A survey. Data Mining and Knowledge Discovery, 36(5):1679-1727.

Gen, M. and Lin, L. (2023). Genetic algorithms and their applications. In
Pham, H., editor, Springer Handbook of Engineering Statistics, pages 635—
674. Springer, London.

Griinwald, P. D. (2007). The Minimum Description Length Principle. MIT
Press.

Hess, S., Piatkowski, N., and Morik, K. (2014). Shrimp: Descriptive patterns in a
tree. In Proceedings of 16th Workshops on Learning, Knowledge, Adaptation,
LWA 2014: Knowledge Discovery, Data Mining and Machine Learning, KDML
2014, Information Retrieval, IR 2014 and Knowledge Management, FGWM
2014, pages 181-192.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. MIT Press.

Jones, T. (1995). Crossover, macromutation, and population-based search. In
Proceedings of 6th International Conference on Genetic Algorithms, pages 73—
80.

Kramer, O. (2017). Genetic Algorithm Essentials. Springer.

Lam, H. T., Morchen, F., Fradkin, D., and Calders, T. (2014). Mining compress-
ing sequential patterns. Statistical Analysis and Data Mining, 7(1):34-52.

Li, M. and Vitanyi, P. (2019). An introduction to Kolmogorov complexity and
its applications, volume 4. Springer.

Liang, P. J., Wang, A., Akoglu, L., and Faloutsos, C. (2021). Pattern recognition
and anomaly detection in bookkeeping data. Asian Bureau of Finance and
Economic Research Working Papers.

Liu, J., Fournier-Viger, P., Zhou, M., He, G., and Nouioua, M. (2022a). Cspm:
Discovering compressing stars in attributed graphs. Information Sciences,
611:126-158.

Liu, J., Ye, Z., Yang, X., Wang, X., Shen, L., and Jiang, X. (2022b). Efficient
strategies for incremental mining of frequent closed itemsets over data streams.
Ezxpert Systems with Applications, 191:116220.

Luna, J. M., Fournier-Viger, P., and Ventura, S. (2019). Frequent itemset mining:
A 25 years review. WIREs Data Mining and Knowledge Discovery, 9(6):e1329.

Makhalova, T., Kuznetsov, S. O., and Napoli, A. (2022). Mint: Mdl-based ap-
proach for mining interesting numerical pattern sets. Data Mining and Knowl-
edge Discovery, 36(1):108-145.

38 M. Zohaib Nawaz et al.

Mantuan, A. and Fernandes, L. (2018). Spatial contextualization for closed
itemset mining. In Proceedings of International Conference on Data Mining
(ICDM 2018), pages 1176-1181.

Nawaz, M. S., Fournier-Viger, P., Yun, U., Wu, Y., and Song, W. (2021a). Min-
ing high utility itemsets with hill climbing and simulated annealing. ACM
Transactions on Management Information System, 13(1).

Nawaz, M. S., Nawaz, M. Z., Hasan, O., Fournier-Viger, P., and Sun, M. (2021b).
An evolutionary /heuristic-based proof searching framework for interactive the-
orem prover. Applied Soft Computing, 104:107200.

Nawaz, M. S., Nawaz, M. Z., Hasan, O., Fournier-Viger, P., and Sun, M. (2021c¢).
Proof searching and prediction in HOL4 with evolutionary /heuristic and deep
learning techniques. Applied Intelligence, 51:1580-1601.

Nawaz, M. Z., Hasan, O., Nawaz, M. S., Fournier-Viger, P., and Sun, M. (2020).
Proof searching in HOL4 with genetic algorithm. In Proceedings of the 35th
Annual ACM Symposium on Applied Computing (SAC’20), page 513-520.

Nawaz, M. Z., Nawaz, M. S., Fournier-Viger, P., and Selmaoui-Folcher, N. (2024).
A genetic algorithm for efficient descriptive pattern mining. In 6th Interna-
tional Workshop on Utility-Driven Mining and Learning (UDML) @ PAKDD.

Ni, L., Luo, W., Lu, N., and Zhu, W. (2020). Mining the local dependency item-
set in a products network. ACM Transactions on Management Information
Systems, 11(1):1-31.

Nikolaev, A. G. and Jacobson, S. H. (2010). Simulated annealing. In Gen-
dreau, M. and Potvin, J.-Y., editors, Handbook of Metaheuristics, pages 1-39.
Springer.

Pasquier, N., Bastide, Y., Taouil, R., and Lakhal, L. (1999). Discovering fre-
quent closed itemsets for association rules. In Proceedings of 7th International
Conference on Database Theory (ICDT’99), pages 398-416.

Proenga, H. M. and van Leeuwen, M. (2020). Interpretable multiclass classifica-
tion by mdl-based rule lists. Information Sciences, 512:1372-1393.

Sampson, O. and Berthold, M. R. (2014). Widened krimp: Better performance
through diverse parallelism. In Proceedings of 13th International Sympo-
stum on Intelligent Data Analysis (IDA 2014), volume 8819, pages 241-252.
Springer.

Seno, G. (2023). Representative itemsets mining: A clustering approach. Mas-
ter’s thesis, University of Padua.

Smets, K. and Vreeken, J. (2012). Slim: Directly mining descriptive patterns. In
Proceedings of t12th SIAM International Conference on Data Mining (SDM
2012), pages 236-247.

Tatti, N. and Vreeken, J. (2008). Finding good itemsets by packing data. In
Proceedings of 8th International Conference on Data Mining (ICDM 2008),
pages 588-597.

Vanetik, N. and Litvak, M. (2018). Drim: Mdl-based approach for fast diverse
summarization. In Proccedings of 17th International Conference on Web In-
telligence (WI 2018), pages 660-663.

Vreeken, J., Van Leeuwen, M., and Siebes, A. (2011). Krimp: mining itemsets
that compress. Data Mining and Knowledge Discovery, 23(1):169-214.

Title Suppressed Due to Excessive Length 39

Wang, D., Tan, D., and Liu, L. (2018). Particle swarm optimization algorithm:
an overview. Soft Computing, 22:387-408.

Witteveen, J., Duivesteijn, W., Knobbe, A., and Griinwald, P. (2014). Realkrimp
- finding hyperintervals that compress with mdl for real-valued data. In Pro-
ceedings of 13th International Symposium on Intelligent Data Analysis (IDA
2014), volume 8819, pages 321-332. Springer.

Yan, Y., Cao, L., Madden, S., and Rundensteiner, E. A. (2018). Swift: Mining
representative patterns from large event streams. Proceedings of the VLDB
Endowment, 12(3):265-277.

Yang, X.-S. and He, X. (2013). Bat algorithm: literature review and applications.
International Journal of Bio-Inspired Computation, 5(3):141-149.

Yu, X. and Gen, M. (2010). Introduction to Fvolutionary Algorithms. Springer.

Zhang, D., Zhang, Y., Niu, Q., and Qiu, X. (2019). Mining concise patterns on
graph-connected itemsets. Neurocomputing, 336:27-35.

