Preprint of:
Nawaz, M. S., Fournier-Viger, P., Nawaz, S., Gan, W., He, Y. (2024). FSP4HSP: Frequent
sequential patterns for the improved classification of heat shock proteins, their families, and sub-
types. International Journal of Biological Macromolecules (BIOMAC). Elsevier, Volume 277, Part
1, October 2024, article 134147.

FSP4HSP: Frequent sequential patterns for the improved
classification of heat shock proteins, their families, and
sub-types

M. Saqib Nawaz' - Philippe Fournier-Viger'* -
Shoaib Nawaz? - Wensheng Gan® - Yulin He*

Date of receiving / date of acceptance

Abstract Heat shock proteins (HSPs) from different families and sub-types play a
vital role in the folding and unfolding of proteins, in maintaining cellular health, and
in preventing serious disorders. Previous computational methods for HSP classifica-
tion have yielded promising performance. However, most of the existing methods rely
on amino acid composition features and still face challenges related to interpretabil-
ity and accuracy. To overcome these issues, we introduce a novel frequent sequential
pattern-based analysis and classification method, called FSP4HSP (Frequent Sequen-
tial Patterns for HSPs), for the classification of HSPs, their families, and sub-types.
The proposed model finds FSPs of amino acids (FSPAAs) and uses them for analy-
sis and classification. Besides FSPAAs, sequential rules among amino acids are also
discovered. Both binary and multi-class classification scenarios are considered, with
the utilization of eight integer-based and four string-based classifiers. The use of FS-
PAAs in the classification/prediction task enhances the interpretability of FSPAHSPC
and a performance comparison using various evaluation measures demonstrates that
it surpasses existing methods for the classification/recognition of HSPs.

Keywords Heat shock protein - Protein sequence - Frequent sequential patterns -
Sequential pattern mining - Classification
1 Introduction

Heat shock proteins (HSPs), which are present in almost all living organisms, are
molecular chaperones that are produced within cells in reaction to a range of envi-

LCollege of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China E-mail:
msaqibnawaz @szu.edu.cn, philfv @szu.edu.cn

2Department of Pharmacy, The University of Lahore, Sargodha Campus, Pakistan E-mail:
shoaib.nawaz @pharm.uol.edu.pk

3 College of Cyber Security, Jinan University, Guangzhou 510632, China E-mail: wsgan001@gmail.com
4Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen China E-mail:
yulinhe@gml.ac.cn

* Corresponding author

Phil
Text Box
	Preprint of:
Nawaz, M. S., Fournier-Viger, P., Nawaz, S., Gan, W., He, Y. (2024). FSP4HSP: Frequent sequential patterns for the improved classification of heat shock proteins, their families, and sub-types. International Journal of Biological Macromolecules (BIOMAC). Elsevier, Volume 277, Part 1, October 2024, article 134147.

2 M. Saqib Nawaz et al.

ronmental (chemical, biological, and physical) factors [1]. They are also referred to
as "stress proteins" since they can be produced by heavy metals, toxins, oxidants,
viruses, and free radicals. HSPs play a critical role in maintaining protein homeosta-
sis within each cell. They help in the proper folding of partially folded or denatured
proteins, ensuring that these molecules attain their correct three-dimensional con-
formation. Moreover, HSPs actively prevent the irreversible aggregation of damaged
proteins, thereby safeguarding a cell from the deleterious consequences of protein
misfolding and aggregation [2]. Moreover, they participate in a myriad of cellular
functions, including modulation of their own synthesis [3], Ribonucleic acid (RNA)
processing [4], and participation in signal transduction pathways [5]. The wide range
of tasks carried out by HSPs underscores their importance in maintaining cellular
health and preventing serious disorders. Notably, the accumulation of incorrectly
folded proteins, a process that HSPs strive to inhibit, is implicated in various neurode-
generative diseases, such as Parkinson’s and Alzheimer’s disease [6—9]. Additionally,
HSP dysfunction has been linked to cancer [10] and cardiovascular diseases [11].

HSPs are categorized into six primary families according to their core func-
tions molecular weight [12, 13]: (1) HS Pigg, (2) HSPyo, (3) HS Py, (4) HS Py,
(5) HSPyg, and HS Pyy. HS Py are low-molecular-weight HSPs that are essential
for inhibiting protein aggregation and promoting protein folding, particularly under
stress conditions. H S Py also known as J-domain proteins, acts as co-chaperones,
regulating the activity of other HSP families, such as HSP70. J-proteins are further di-
vided into four categories or types: T'ype; (11), Types (1), T'ypes (13), and Typey
(Ty). HS Py are complexes of barrel-shape that help properly fold newly synthe-
sised or misfolded proteins by offering an isolated environment for protein folding.
The highly conserved H .S P family is essential for protein folding, assembly, trans-
port, and degradation, ensuring proteostasis throughout a cell. HS Py mediates the
maturation and activation of various client proteins, including kinases, transcription
factors, and steroid receptors, making them essential for cellular signaling and regu-
lation. HS P are large HSPs that are specialized in disaggregating and solubilizing
protein aggregates, providing a crucial line of defense against the toxic effects of mis-
folded protein accumulation [14]. Due to the large number of cellular functions that
HSPs perform, identifying and classifying them into distinct families and sub-types
is an important and challenging task that has attracted considerable attention.

A reliable and robust classification of HSPs contributes to a thorough compre-
hension of their biological roles and their impacts on both health and disease. Con-
ventional methods for HSP identification depend on experimental methods such as
nuclear magnetic resonance (NMR) spectroscopy. However, this identification pro-
cess is not only time-consuming and resource-intensive but also has high costs. To
overcome these limitations, various computational methods were proposed [15-23]
for the recognition/classification of HSP families and their sub-types. However, the
majority of them depends on various sequence composition non-latent features vec-
tors (such as pseudo amino acid composition (PAAC), split amino acid composi-
tion (SAAC), reduced amino acid alphabet (RAAA), dipeptide composition (DPC),
spaced-DPC (SDPC), coupled amino acid (CAA), composition of k spaced amino
acid pair (CKSAAP), G-spaced amino acid pair composition (GPC), etc. Extract-
ing non-latent features requires expertise. Latent features, on the other hand, can be

Title Suppressed Due to Excessive Length 3

generated automatically by using deep learning (DL) techniques, as done in [16,23]
for HSPs. These features are generally difficult to comprehend. Additionally, cer-
tain feature extraction techniques used in previous studies are expensive, and the
model-learning time, particularly for DL-based models, is long. To our knowledge,
the utilization of frequent sequential patterns (FSPs) as features for the identifica-
tion/classification of HSPs has not been studied.

Sequential patterns [24] can reveal new and significant insights in sequential data
and have been used for the analysis of genomics and proteomics data [25-30]. In
this paper, we extract sequential patterns from HSP sequences in a novel general
model, called FSPAHSP (Frequent Sequential Patterns for HSPs), for the improved
classification of HSPs, their families, and sub-types. Two feature extraction meth-
ods are used in FSP4HSP. First, the whole protein sequences of HSPs are taken as
features. Second, FSPs of amino acids (FSPAAs) are extracted from the protein se-
quences for the classification of HSPs. After feature extraction, eight integer-based
and four string-based classifiers are trained, and experiments are carried out with a
range of evaluation metrics to investigate the effectiveness and generalizability of
the proposed HSP classification model. An evaluation of the proposed model on two
datasets indicates that finding FSPA As and subsequently utilizing them produces bet-
ter classification performance than using all AAs in the whole HSP sequences. The
performance of FSP4HSP is also compared with previous methods for the identifica-
tion/classification of HSPs, and results show that it performs better than them.

This paper’s remaining sections are arranged as follows: Section 2 discusses the
previous computational methods for the classification/detection of HSPs. Section 3
provides the details for the datasets used in this study and the proposed FSPAHSP
method. Section 4 discusses the obtained results and compares FSPAHSP with previ-
ous methods for HSP classification/detection. Lastly, Section 5 provides a conclusion
with some remarks.

2 Related Work

In the last decade, various ML and DL-based methods have been developed to clas-
sify/identify the HSPs vs non-HSPs, HSP families, and their sub-types (Table 1).
iHSP-PseRAAAC [17] used a support vector machine (SVM) on features obtained in
HSP sequences by including the RAAA into the well-known PAAC [31]. The JPRED
model [18] also used the tripeptide composition of RAAA to predict the four types
of HS P,y (J-Protein). Amad et al. [19] used four classification algorithms ((1) K-
nearest neighbor (kNN), (2) Probabilistic neural network (PNN), (3) SVM and (4)
Multi-layer perceptron (MLP)) on features extracted in protein sequences by using
three discrete methods ((1) SAAC, (2) PAAC, and (3) DPC). The obtained results
showed that SVM performed better than the other three classifiers on the DPC fea-
ture space. The JPPRED method [21] identified J-protein types by discovering hybrid
feature vectors obtained with the SAAC, PAAC, and position-specific scoring matrix
(PSSM) that were fed to an ensemble learner (EL). The ES-PredHSP model [15] used
the CKSAAP in HSPs as features and used six ML classifiers for the prediction of
HSPs.

4 M. Saqib Nawaz et al.

The PredHSP model [20] used the CAA compositions as feature vectors that were
fed to two SVMs for the classification of HSPs vs Non-HSPs and HSP families. The
ir-HSP method [22] used the GPC as feature vectors that were fed to SVM. That
framework was used to predict HSPs, their families, as well as their sub-types (J-
protein types). Recently, Min et al. [23] developed DeepHSP and DeeperHSP, based
on convolutional neural networks (CNNs), for the classification of non-HSPs and
HSP families. DeepHSP used one hot encoding (1HE) and convolutional layers,
whereas DeeperHSP used a pre-trained protein language model (LM) along with a
projection layer for improved performance. The MulCNN-HSP method [16] used
multi-scale CNNs on protein sequences encoded with 1HE to classify HSPs. The
early methods in [17-19] only focused on the classification of HSP families or their
sub-types. The methods in [15, 16,20, 22, 23] also take into account the non-HSP
sequences as well.

Table 1: Summary of developed methods for the classification of HSPs

Method Encdoing Model(s) Non-HSPs | HSP Families | J-Protein

iHSP-PseRAAAC [17] RAAA+PAAC SVM No Yes No
JPRED [18] RAAA SVM No No Yes
[19] SAAC, PAAC, | kNN, PNN, No Yes Yes

DPC SVM, MLP
JPPRED [21] SAAC, PAAC, | EL No No Yes

PSSM
PredHSP [20] CAA SVM Yes Yes No
ir-HSP [22] GPC SVM Yes Yes Yes
DeepHSP, DeeperHSP [23] | 1HE, PTL CNN Yes Yes No
MulCNN-HSP [16] 1HE CNNs Yes Yes No
ES-PredHSP [15] CKSAAP LR, LDA, kNN, Yes Yes No
DT, SVM, NB

Five-fold cross-validation was used to evaluate MulCNN-HSP [16], DeepHSP,
DeeperHSP, PredHSP, and irHSP. Ten-fold cross-validation was employed to eval-
uate JPPRED and ES-PredHSP. Whereas leave-one-out cross-validation was used
to evaluate iHSP-PseRAAAC, JPRED and the model of [19]. The aforementioned
methods performed well for the identification of HSPs, their families, and sub-types.
However, they rely heavily on the AA sequence composition features. One-hot en-
coding can encode AAs independently by ignoring their location (order) but cannot
capture high-level information. DL-based methods performed better than traditional
ML-based methods as they use latent features. However, latent features are difficult to
comprehend. The majority of the methods lack interpretability that is important to un-
derstand the underlying biological mechanisms and to use the methods in real-world
applications. In contrast to previous research, this study focuses on finding sequential
frequent patterns in HSP sequences and using them for reliable classification/detec-
tion tasks.

Title Suppressed Due to Excessive Length 5

3 Materials and Methods
3.1 Datasets

We considered two datasets: (1) The first dataset H.S P contains the HSP and Non-
HSP sequences [16,20,22,23]. (2) The second dataset H S Py contains the J-protein
types [18,19,21]. In HSP, the sequences of non-HSPs from SwissProt [32] were
selected at random without reference to homologous proteins. HSP sequences were
derived from HSPIR [12], which served as the source of sequences for HSPs. More-
over, CD-HIT [33] was used to remove the protein sequences in the same family
with pairwise sequence similarity > 40%. The final dataset, formulated by equation
1 was obtained by filtering out those HSP and non-HSP sequences that contained
non-standard AAs.

HSP:HSPQO +HSP40+HSP60+HSP7Q +HSP90+HSP100 (1)

where + represents the union or combination of six HSP families.

The H S Py dataset, formulated in equation 2, contains J-protein sequences orig-
inally sourced from HSPIR [12]. The original dataset was preprocessed by removing
sequences that (1) have non-standard amino acids and (2) that have > 40% pairwise
sequence similarity. The final dataset contains 1,199 sequences, of which 63 belong
to Type-1 (11) J-protein, 55 belong to Type-2 (1%), 1061 to Type-3 (13), and 20 to
Type-4 (T}). Table 2 provides the statistics for the two datasets. A small Python script
was used to count the total amino acids (AA), minimum length (MinLen), maximum
length (MaxLen) and average length (AvgLen) of protein sequences in each class.

HSPy =T +To+ T3+ Ty 2)

Table 2: Summary of the two datasets: HSP and HS P,

HSP
Class Description Samples | Total AAs | MinLen | MaxLen | AvgLen
HS P> sHSP/Small HSP 354 75,114 83 1,214 212.1
HS Py Dnal-proteins 1,257 582,725 62 3,321 463.5
HS Pgo GroEL/ES or chaperonins 159 132,302 80 2,740 832
HSPrg DnaK/chaperones 278 178,970 130 2,725 643.7
HS Py Chaperonines 52 32,833 112 978 631.4
HSPioo | High Molecular Weight HSP 81 60,548 156 1,412 747.5
NonHSP 9,965 4,592,664 51 2,974 473.5
HS Py
Ty Typey 63 30,384 342 1,552 482.2
T Types 55 20,836 205 950 378.8
T3 Types 1,061 505,403 99 4,524 476.3
Ty Types 20 5,529 66 1,049 276.4
Total 13,345 6,229,345 126 2,130.8 510.6

The two datasets are imbalanced. In H.S P, the number of AA sequences belong-
ing to non-HSP significantly exceeds the number of AA sequences found in the six
HSP families. Similarly, in H.S Py, T3 contains many sequences (1,061) while other

6 M. Saqib Nawaz et al.

types contain very few sequences. Meher et al. [22] handled the class imbalance by
creating a balanced dataset that contains an equal number of randomly selected se-
quences (2,180) for HSPs and non-HSPs from the total HSP and non-HSP sequences.
Similarly, Akbar et al. [15] created a balanced dataset of H S P containing the same
number of HSP and non-HSP sequences. Additionally, [15,21] used oversampling
(with the SMOTE algorithm [34]) to overcome the class imbalance in H.S P,y and in
H S P respectively.

3.2 FSP4HSP

The proposed FSP4HSP approach, to classify/identify protein sequences into non-
HSP, HSP families and sub-types as well as multiple classes is illustrated in Figure 1.
It consists of four parts: (1) encoding protein sequences, (2) feature extraction using
pattern mining, (3) using the extracted features in classification by training various
classification models, and (4) benchmark evaluation.

AA sequences

[oniseeJog
MKFTETAEG... 13111311620520157.. = AAfrequencies ! '
_i—) - A\ i H ACC P
- : /28 HsP : AUPRC R
Frequent AAs and 128 20 \
MAHRLIYQV... 1318181292517 22... '—) ' >
their sequential ——P> @; } > HSPy : o

patterns HSPgq

: : 5 i HSPy : Auc mcc
13191216 181227 18, —Jp| Seduential rules Classifiers | HSPe
among AAs I HSPygp V
Input Encoding Feature Classification Models and Benchm.ark
Extraction Stages Evaluation

Fig. 1: Flow chart of FSP4HSP. AA stands for amino acid. The three stages (1S, 2S
and 3S) are for binary classification and the fourth stage is for multi-class classifica-
tion in HSP and H S Py, datasets.

3.2.1 Encoding

In this first part, protein sequences are converted into sequences of items (symbols)
of discrete type. The "AAs fo integers" abstraction is utilized for transformation. The
main aim of that transformation, changing every distinct AA into a unique positive
integer, is to represent the AA information in a protein sequence using integer codes.
This transformation is lossless, reversible, and is required for applying the pattern
mining algorithms discussed in this paper, which are generic tools for analyzing dis-
crete sequences of symbols.

The following is a detailed explanation of the transformation process. Let AA =
{Ala (A), Cys (C), Asp (D), Glu (E), Phe (F'), Gly (G), His (H), Ile (I), Lys (K),
Leu (L), Met (M), Asn (N), Pro (P), Gln (Q),Arg (R), Ser (S), Thr (T"), Val (V),
Trp (W), Tyr (Y)} represents a set of 20 distinct amino acids. A protein sequence
is a list of amino acids, written as PS = (AA;, AA, ..., AA,), such that AA; €

Title Suppressed Due to Excessive Length 7

AA (1 < i < n).Let PSC = (PSq, PSs, ..., PS,) denote a corpus of protein
sequences. The process of transformation involves converting every protein sequence
in PSC. A PS = (AA;,AAy ..., AA,) is transformed as PS" = (f(AA4;), —1,
f(AAy), —1, ..., f(AA,), —1, —2) by a transformation function f (f:AA — N))
that maps each amino acid to a distinct positive integer. Take the sample PSC of four
protein sequences of AAs from Table 3(a) as an example. It is converted into positive
integers, and the result is shown in Table 3(b). Take the protein sequence with ID 1 as
an example. The amino acids N, Y, E, L, G, V are encoded as 14, 25, 5, 12, 7, and 22,
respectively. In this example, -1 is used as a separator between amino acids, and the
code -2 denotes the end of a protein sequence. The two datasets of HS P and H.S Py
and their transformation is available at: github.com/sagibdola/FSP4HSP.

Table 3: The transformation of (a) a PSC corpus into (b) protein sequences where
AAs are encoded as integers.
(a) (b)

—
—

Protein sequences Protein sequences

({.NYYEELGV...})
({..RDYYEILN...})
({..DLYSVLGV...})
({..LGVYRFRE...})

14-125-125-15-15-112-17-122-1-2

18-14-125-125-15-19-112-114-1-2
4-112-125-119-122-112-17-122-1-2
12-17-122-1-125-118-16-118-15-1-2

-bu.)[\)»—c
Aww»—c

3.2.2 Feature Extraction

In the second part, FSP4HSP extracts features from PS’s that will be later used for
building the classification models. Two different approaches are used.

1) Using Entire AA sequences. The first approach, is the most straightforward
one for analysis and classification. It is to use the entire AA sequences (EAASs) of
HSP and non-HSPs as features. This is formulated by the following equation for a
sequence PS:

PS = AALAAs AA3AA,.... . AA,

where A A; represents the first AA of PS, AA, represents the second AA, and so on.

2) Extracting frequent patterns as features. The second approach is more so-
phisticated. It consists of extracting frequent patterns from the HSP and non-HSP
sequences from a protein sequence corpus P.SC, to capture important sequential re-
lationships in these sequences. Pattern mining, particularly SPM, is used to find se-
quential patterns (subsequences of AAs) that occur frequently in protein sequences.
Formally, let there be two protein sequences PS; = (1, T2, ..., ,) and P.S, = (y1,
Y2, ---, Ym)- The protein sequence (PS,) is contained (or present) in another protein
sequence (PS,) (denoted as PS, C PS,), if and only if some integer numbers can
be found 1 < i1 < ig < ... < iy, < m,suchthat 1 = y;1, T2 = Yi2, ..o, T = Yim-
In other words, PSS, is a subsequence of PS,, if PS, contains P.S,. For a protein
sequence PS,, its support in PSC, denoted as sup(PS.,), is the total number of sub-
sequences in PSC containing PS,.: sup(PS,) = |{PS|PS, C PSAPS € PSC}|.

8 M. Saqib Nawaz et al.

Finding all the frequent sub-sequences of AA for a PSC with a minimum support
value (minsup > 0) is the aim of frequent SPM. A sub-sequence P.S, is frequent if
its support is greater than or equal to minsup (sup(PS;) > minsup). For example,
the sub-sequence (LGV') is found in three different P.Ss of the PSC' of Table 3 (a).
Thus, its support is 3, meaning that it occurs in 75% of the sequences. Note that for
protein sequences, the support measure is relevant as it allows identifying frequent
subsequences of AAs and thus uncovers their resemblances.

CM-SPAM [35], an improved version of the SPAM algorithm, is used to find FS-
PAAs. An efficient data structure is used by CM-SPAM to reduce the overall search
space of patterns to find the frequent patterns. CM-SPAM is utilized because it is effi-
cient and it offers multiple input parameters that allows users to obtain more tailored
results such as by specifying the desired number of frequent sequential patterns of
AAs to be extracted from protein sequences.

Besides sequential patterns, some SPM algorithms can be used to find sequential
rules [36]. For protein sequences, a sequential rule (SR) shows a relationship among
two sets of AAs by considering not only the support but also the confidence of the
relationship between AAs represented by the rule. Between two sets of AAs P and @,
where P,Q C AA,s.t. PNQ = 0 and P,Q # (), a SR is written as P — Q. This rule
means that if AAs of P are present in a sequence, then in the same sequence, AAs
of) will appear after. Formally, a protein sequence PS = (AA;, AAs ,...,AA,)
contains P iff P C UZ:l{AAr}~ Moreover, PS contains the rule r (denoted as r =
PS) in the case where an integer d exists suchthat 1 < d < n, P C Uizl {AA,}and
Q C Ul_; 1{AA.}. The support and confidence of a rule 7 in a protein sequence
corpus PSC are defined as:

{PS|r C PS A PS € PSC}|

1PSC])

suppsc(r) =

_ |{PS|rC PS A PS e PSC}|
confpsc(r) = [{PS|PC PSAPSePSC} @

In this work, the ERMiner [36] algorithm is used to discover frequent sequential
rules among AAs in protein sequences. ERMiner is utilized because it is one of the
fastest algorithms for identifying sequential rules, as it uses various data structures
and merging operations for search space reduction and to perform fast calculations.

3.2.3 Classification

In the third part of the proposed FSP4AHSP approach, the EAASs and FSPAAs are
used for the classification of HSPs. HSP sequences are generally long. In Table 2,
the HSP and HS Py, datasets on average contain 473 and 510 AAs respectively.
The majority of the PSs in both datasets consist of repetitive occurrences of the same
AAs, ranging from few to tens of repetitions. This AA repetition can be replaced
with FSPAAs for improved classification. More precisely, FSP4ASPM makes use of
FSPAAs to classify HSPs vs non-HSPs, HSP families, and sub-types.

Some previous models such as HSP-PseRAAAC [17], JPRED [18], the model of
Ahmad et al. [19], JPPRED [21], DeepHSP and DeeperHP [23] take the classification

Title Suppressed Due to Excessive Length 9

task as binary classification, where the identification/classification of HSP/HSP fam-
ilies HS Py types was performed simultaneously. Pred-HSP [20] employed a two-
stage approach where SVM was used for binary classification of HSPs vs non-HSPs
in the first-stage. In the second stage, SVM was used for HSP families classification.
ir-HSP proposed a three-stage approach. The first stage used binary-class SVM to
classify HSPs vs non-HSPs, the second and third stages used SVM for the classifica-
tion of HSP families and H S P, types respectively. MulCNN-HSP [16] also used a
two-stage approach where a CNN was first used for HSP vs NonHSP classification
and then for HSP families classification. HSP families classification is a multi-class
problem, but in Pred-HSP, ir-HSP and MulCNN-HSP, a series of classifiers were de-
veloped.

In this work, both binary and multi-class (MC) classification is performed. A
four-stage classification approach is employed: The first, second, and third stages
(1S, 28, 3S) deal with the classification of HSPs vs non-HSPs, HSP families and
H S Py types. The fourth stage (4S) is for the MC classification: H.S Pyg vs HS Py
vs HSPsy vs HS P7g vs HS Pyy vs HS P in the first dataset and 717 vs T vs T3
vs Ty in the second dataset. The first classification method (binary classification) is
performed to train a classifier for the separate classification of each HSP or non-HSP,
HSP families, or subtypes. In the MC classification method, each protein sequence
is assigned a label corresponding to its respective type name. There is one HSP and
non-HSP type, 6 HSP families, and 4 sub-types of H.S Pyy. Thus there are a total of
12 classes. In the two datasets, MC classification deals with the classification of HSP
families and H S P types.

Most of the previous studies used one classifier, such as SVM [17, 18, 20, 22],
CNN [16,23] and EL [21]. Ahmad et al. [19] and Akbar et al. [15] used four and six
classifiers respectively. In this work, various string-based and integer-based classi-
fiers are used. which are: (1) Naive Bayes Multinomial Text (NBMT), (2) Recurrent
Neural Network Sequence Classifier (RNNSC), (3) Stochastic Gradient Descent Text
(SGDT), (4) ZeroR, (5) Naive Bayes (NB), (6) Logistic Regression (LR), (7) Support
Vector Machine (SVM), (8) k-Nearest Neighbors (kNN), (9) K Star (K*), (10) Deci-
sion Tree (J48), (11) Random Forest (RF), and (12) Multi-Layer Perceptron (MLP).
The first four classifers (NBMT, RNNSC, ZeroR, and SGDT) are string-based clas-
sifiers and the next eighth (NB, LR, J48, kNN, MLP, SVM, RF, and K*) are integer-
based classifiers.

The performance of classifiers is assessed using seven metrics, which are. (1)
Accuracy (ACC), (2) Recall (R), (3) Precision (P), (4) F1 score (F1), (5) MCC
(Matthews correlation coefficient), (6) Area under the curve (AUC) and (7) Area
Under the Precision-Recall Curve (AUPRC). The seven metrics are defined as:

TP+ TN
ACC = +)
TP+TN+ FP+ FN
TP
" TP+ FN
TP
Precision(P) = ————— @)
TP+ FP
PXxXR

P+R

Recall(R) ©)

®)

F — measure = 2 X

10 M. Saqib Nawaz et al.

TPxTN —FP x FN
MCC = ©)
/(TP +FP)(TP+ FN)(TN + FP)(TN + FN)

1
AUC = / R(dFPR) (10)
0

Ri —Ri_1) x (P;+ P;_1)

2 an

AUPRC = (
i=1

where T'P = true positive, TN = true negative, F'P = false positive, and F'N

= false positive. In the context of this work, T'P represents the correctly identified

EAASs or FSPAAs to a specific HSP type. T'N represents the correctly classified

EAASs or FSPAASs as not part of a specific HSP type. F'P represents the incorrectly

identified EAASs or FSPAAs to a specific HSP type. F'N represents the incorrectly

identified EAASs or FSPAAs as not part of a specific HSP type. In equation 10,

dFPR is for the derivative of FPR = zp5. P; and R; in equation 11 represent

the values for precision and recall, respectively, at the i-th decision threshold. Each

classification model performance is assessed through five-fold cross-validation in this

study. The main reason to use five-fold is that it is used in majority of the previous
studies [16,20,22,23] for HSP identification.

4 Results

The experiments performed in this section utilized a computing machine running
Windows 11 and equipped with a RAM of 8 GB and a Core i5-11530H processor. The
open-source library SPMF [37], developed in JAVA, was used to analyze and discover
FSPs and sequential rules in the two datasets (H.SP and HSPyy). Moreover, the
open-source WEKA [38], a JAVA-built software, was utilised for testing and training
of classification models. In all four classification stages, the default hyperparameters
of the models available in WEKA were employed.

4.1 Frequent AAs, FSPAAs and Sequential Rules

In a preliminary experiment, the distribution of AAs in the two datasets was first
analyzed to compare their occurrence or frequency in different HSP families and
sub-types. For this purpose, the Apriori algorithm [39] was used. It can be used to
effectively count the instances of specific values or groups of values in data. Table 4
provides the details for the occurrence frequencies of AAs in two datasets.

The AA Glutamic acid (E) occurred as the top five most frequent AAs in HSP
families and sub-types, as well as in NonHSP protein sequences. The two AAs Ala-
nine (A) and Leucine (L) occurred as the top five most frequent AAs in all, except
H S Py and T1, respectively. The top five AAs, based on occurrence frequency, are L,
A, Serine (5), E, and Lysine (K) (Figure 2). Overall, L occurred more with 8.64%,
followed by A (7.76%), S (1.75%), E (7.52%) and K (7.27%), respectively. We were
able to examine the frequencies of AAs in two datasets through the Apriori analysis
and to find the most frequent AAs on the basis of occurrence frequency. However,

Title Suppressed Due to Excessive Length 11

Table 4: Total occurrence counts of AAs in two datasets. The values outside brackets
are the total occurrence counts of AAs and the values inside brackets are the % of
AAs. For each type, * is used to denote the most frequent AA. Similarly %, o, e and ¢
are used to indicate the second third, fourth and fifth most frequent AA, respectively.

HSP
AA HSP20 HSP40 HSP60 HSP70 HSP90 HSP1000 NonHSP
A | 5,008(6.66) | #51,396(8.81) | ©8,630(6.52) | x14,478(8.08) | 2.179(6.63) | 5,362(8.85) | 0323,358(7.04)
c 643 (0.85) 8,038 (1.37) 2,384 (1.80) 2,028 (1.13) 294 (0.89) 505 (0.83) 73,084 (1.59)
D 4,739 (6.3) 34,737 (5.96) 7,844 (5.92) 10,857 (6.06) 02,252(6.85) 3,540 (5.84) 243,939 (5.31)
E | #6,023(8.01) | 44,357(7.61) | 08,821(6.66) | o13,742(7.67) | %3,000(9.13) | o4,747(7.84) | e307,686(6.69)
F | 2868(3.81) 22,236 (3.81) 4751 (3.59) 6.828 (3.81) 1,388 (4.22) 2,012 (3.32) 178,033 (3.87)
G 4,829 (6.42) 37,166 (6.37) 7,660 (5.78) 11,295 (6.31) 1,660 (5.05) *4,164(6.87) ©281,850(6.13)
H | 1867248 13,521 (2.32) 3,039 (2.29) 3,102 (1.73) 621 (1.89) 1,178 (1.94) 107,365 (2.33)
I 3,742 (4.98) 25,049 (4.29) 7,938 (5.99) 11,504 (6.42) 1,921 (5.85) 3,727 (6.15) 246,947 (5.37)
K 4,735 (6.30) ©041,823(7.17) *8,813(6.66) 12,177 (6.80) 02,661(8.10) 3,758 (6.20) 280,050 (6.09)
L | 05,561(7.40) | %45,965(7.88) | %12,067(9.12) | 15,108(8.44) | %3,105(9.45) | 6,181(10.20) | *435,401(9.48)
M 1,730 (2.30) 11,705 (2) 2,936 (2.21) 3,433 (1.91) 772 (2.35) 1,162 (1.91) 100,201 (2.18)
N | 3314441 25,858 (4.43) 6,850 (5.17) 8,048 (4,49) 1,536 (4.67) 2,554 (4.21) 224,744 (4.89)
P 4,875 (6.49) 28,045 (4.81) 5,813 (4.39) 8,102 (4.52) 1,214 (3.69) 2,499 (4.12) 243,416 (5.30)
Q | 3111414 25,155 (4.31) 5,352 (4.04) 6,979 (3.89) 1,148 (3.49) 2,248 (3.71) 201,561 (4.38)
R | 04,930(6.56) | 38,245 (6.56) 6.823 (5.15) 9,373 (5.23) 1,548 (4.71) 4,083 (6.74) 244,140 (5.31)
S | %5,740(7.64) | o45,485(7.80) | %12,485(9.43) | o12,528(7) | 2,492(7.58) | 4,007 (6.61) | *385,695(8.39)
T | 3871(5.15) 28,186 (4.83) 7,051 (5.34) 10,477 (5.85) 1,698 (5.17) 3,065 (5.06) 251,868 (5.48)
v 5,200 (6.92) 30,987 (5.31) 8,591 (6.49) ©12,681(7.08) 1,989 (6.05) ©4,160(6.87) 276,273 (6.01)
w 694 (0.92) 6,117 (1.04) 968 (0.73) 1,344 (0.75) 320 (0.97) 262 (0.43) 52,202 (1.13)
Y 1,634 (2.17) 18,654 (3.2) 3,486 (2.63) 4,886 (2.72) 1,035 (3.15) 1,334 (2.20) 134,851 (2.93)
HSPyo
AA T-I T-II T-III T-IV
A | o2,018(6.64) | *1,656(7.94) | +4b,326(8.96) | 0495(8.12)
C 707 (2.32) 209 (1) 6,841 (1.35) 68 (1.22)
D 1,880 (6.18) 1,291 (6.19) 30241 (5.98) | 263 (4.75)
E | 02,084(6.85) | ol,362(6.53) | 38,815(7.68) | *450(8.13)
F 1,258 (4.14) 973 (4.66) 19,020 3.76) | 214 (3.87)
G %3,107(10.22) | =2,289(10.98) 30,450 (6.02) 360 (6.51)
H 812 (2.67) 416 (1.99) 11,686 (2.31) 110 (1.98)
1 1,427 (4.69) 971 (4.66) 21,574 (4.26) | 273 (4.93)
K | %2,314(7.61) | 1,401(6.72) | ©36,109(7.14) | 416(7.52)
L 1938 (637) | o1,467(7.04) | +40,289(7.97) | +525(9.49)
M 589 (1.93) 362 (1.73) 10,118 (2) 141 (2.55)
N 1,257 (4.13) 972 (4.66) 22,391 (4.43) 231 (4.17)
P 1,553 (5.11) 1,185 (5.68) 24,159 (4.78) | 225 (4.06)
Q 1,365 (4.49) 781 (3.74) 21,704 (429) | 285(5.15)
R 1,754 (5.77) 1,286 (6.17) 33,562 (6.64) 294 (5.31)
S | 2,047(6.73) 1280 (6.14) | 040,082(7.93) | ©401(7.25)
T 1,612 (5.30) 1,055 (5.06) 24,526 (4.85) 237 (4.28)
v 1,727 (5.68) 1,158 (5.55) 26,714 (5.28) | 346(6.25)
w 139 (0.45) 104 (0.49) 5,544 (1.09) 49 (0.88)
Y 876 (2.88) 618 (2.96) 16,252 (3.21) 146 (2.64)

this initial analysis is restricted because the Apriori algorithm does not take into ac-
count the consecutive arrangement of AAs and does not guarantee that AAs occur
consecutively in a PS. Among the top 5 most frequent AAs, it was observed that
L, A and K, FE have the highest occurrence percentages in HSPjgy and H.S Py,
respectively. S has the highest occurrence frequency in HSPry. In HSPy, L, K, E,
A, and T have the highest occurrence frequency in 73, Ty and T3, T3, respectively.
The occurrence frequency of L increases gradually from 77 to T,. The same behavior
is also observed for L, with little difference, in HSP families.

Efficient SPM algorithms were developed in last two decades that overcomes
the constraints of Apriori. These algorithms can be used to find and discover more
interesting and important sequential patterns, rules and information in the data. One

12 M. Saqib Nawaz et al.

T
I~ [Leucine (L) B T
[Alanine (A)
Serine ()
Glutamic acid (E)
[Lysine (K)

4
HSP20 HSP40 HSP60 HSP70 HSP90 HSP100 NonHSP ™ T2 T3 T4

Fig. 2: Percentages of the top five AAs in the (a) HSP dataset, and (b) HS Py
dataset

simple example (Figure 3) is provided where the obtained results with the CM-SPAM
and ERMiner are explained. Within the figure’s top box, five raw PS’s, containing 30
AAs, are shown. In the figure’s bottom left corner, the FSPAAs discovered in raw
PS's are listed. In the figure’s bottom right corner, the sequential rules of AAs dis-
covered in raw PSs are listed with varying numbers of antecedents and consequent.
For a sequential rule, the values before and after the arrow are for the support and
confidence respectively. The collection of AA patterns identified within a PS can
be interpreted as a description or characterization of that sequence. These FSPAAs
serve as features in the classification procedure of models. Overall, using the SPM
algorithms on two datasets proved to be relatively efficient and quick. Note that SPM
algorithm parameters are adjusted and fine-tuned to obtain the desired patterns and
rules.

MMINYWNPIEEIDTVRRQLDHLFEDAIDTG
MMSIVLRDPFRSFERMYPLGWEPFQELESW
MLSLLNKNRSFFDDFFEDFNVLNPVTTSNL
MALMKWEPLREIDDMFDRYVMSMGWPSRRQ
MANEVSRPVVKSVRQVEPLENLIETVWPGV

P (M)sis—>1(1) L (P)
i M(R) 55—>»10.8)E,L (D, E)

MLLE CLM (L V) 56— E (G)
MEL | P,V +—»05G,R
MPL ! M,P,V4i—»0sG,Q,R
QR | E,M,P 4—>»08G,L, QR
oLV i E,M,P,V4—>03G,QR
i M,P s—»08E,G,L QR
Frequent sequential Frequent sequential
patterns rules

Fig. 3: AA frequent sequential patterns and rules discovered in raw PSs. FSPAAs
discovered in P.Ss of HSPs can be interpreted as their description or characterization,
that are then used in the classification process.

Title Suppressed Due to Excessive Length 13

4.2 Classification Results

The results of twelve classification models on two protein sequence representation
methods (EAASs and FSPAAs) for two datasets i.e. HSP and HS Py is discussed
in this section.

Before classification, discovered FSPAAs are preprocessed to ensure that each
pattern length is at least 9. The binary and MC classification results for models
when trained and tested on EAASs are listed in Table 5. We find that NBMT, Ze-
roR, and SGDT provided the same results for all classes. WordTokenizer is used in
both NBMT and SGDT. SGDT was slow compared to the other three string-based
classifiers. In the HSP and HSPy, datasets, the highest accuracy was achieved
with NBMT, ZeroR and SGDT on binary classification of HS Pyg (97.6%) and T}
(98.3%) respectively. RNNSC performed worst on both datasets. However, its perfor-
mance was better for MC classification in the HS Py and its type T5. Interestingly,
NBMT, ZeroR and SGDT overall results for binary classification are better than the
JPPRED model [21] that combined three feature extraction methods (SAAC, PAAC
and PSSM) and used ensemble classifiers. From the two datasets, we removed the
most frequently occurring AA, that is E, to check whether it has any effect on the
overall accuracy of classifiers. Interestingly, the four classifiers generated the same
accuracy when run on PS’s of HSPs without the AA E. The same behavior of classi-
fiers were found when the second most frequent AA, that is A, is removed from the
sequences.

Table 5: Classifiers accuracy on EAASs

Dataset Stage NBMT | RNNSC | ZeroR | SGDT
1S NonHSP 0.82 0.179 0.82 0.82
2S HS P»g 0.837 0.162 0.837 0.837
2S HSPyo 0.576 0.576 0.576 0.576
o 2S HSPso 0.927 0.072 0.927 0.927
) 2S HSPrg 0.872 0.127 0.872 0.872
= 2S HS Pyo 0.976 0.023 0.976 0.976
2S HSPioo 0.962 0.037 0.962 0.962
Average 0.852 0.168 0.852 0.852
4S MC 0.82 0.013 0.82 -
Dataset Stage NBMT | RNNSC | ZeroR | SGDT
3S Ty 0.947 0.052 0.947 0.947
- 38Ty 0.954 0.045 0.954 0.954
) 3ST3 0.884 0.884 0.884 0.884
% 38Ty 0.983 0.016 0.983 0.983
Average 0.931 0.249 0.931 0.931
4S MC 0.884 0.885 0.884 —

The binary and MC classification results for models when trained and tested on
FSPAAs are listed in Table 6. Eight integer-based classifiers performance on FS-
PAA was better than the four string-based classifiers performance on EAAS. It was
observed that K*, RF and DT performance was better than others for binary classi-
fication in both datasets. K™* also performed better on MC classification in the HSP
dataset, whereas DT performed slightly better than /* and RF on MC classification

14 M. Saqib Nawaz et al.

Table 6: Classifiers accuracy on FSPAAs

Dataset Stage NB LR SVM | kNN K* DT RF MLP
1S NonHSP | 0.726 | 0.987 | 098 | 0.981 099 | 0984 | 0985 | 0.978
2S HS Py 0.981 1 1 1 1 1 1 1
2S HSPyo 0916 | 0995 | 0931 | 0985 | 0.998 | 0.991 | 0.996 | 0.996
a 2S HSPgo 0.835 | 0.996 | 0.983 | 0.991 1 0.996 | 0.996 | 0.996
1) 2S HSPrg 0.995 | 0995 | 0.985 | 0.988 | 0.995 | 0.993 | 0.996 | 0.996
a 2S HS Py 0.991 | 0.898 | 0.906 | 0.995 1 1 1 0.993
2S HSPigo 1 0.998 1 1 1 0.998 1 1
Avg. 092 | 0981 | 0.969 | 0991 | 0.997 | 0.994 | 0.996 | 0.993
4S MC 0965 | 0977 | 0.961 | 0.968 | 0.988 | 0.982 | 0.984 | 0.981
Dataset Stage NB LR SVM | kNN K* DT RF MLP
3STh 0.735 | 0.872 | 0.845 | 0.905 | 0.952 | 0925 | 0952 | 0917
381> 0.867 | 091 0.902 | 0.895 095 | 0937 | 0937 | 0.932
& 3S T3 0912 | 0907 | 0.892 | 095 | 0962 | 097 | 0967 | 0.97
= 3S Ty 0.667 | 0975 | 0.965 | 0.955 | 0.965 | 0.985 | 0.977 | 0.985
Avg. 0.795 | 0916 | 0.901 | 0.926 | 0.957 | 0.945 | 0.958 | 0.951
4S MC 0.837 | 0.867 | 0.961 0.86 | 0.895 090 | 0.892 | 0.862

in the HS Py dataset. All the classifiers were fast and terminated within seconds.
For the HSP dataset, based on average accuracy in binary classification, the models
are ranked as follows: (1) K* (99.7%), (2) RF (99.6%), (3) DT (99.4%), (4) MLP
(99.3%), (5) kNN (99.1%), (6) LR (98.1%), (7) SVM (96.9%) and (8) NB (92%).
Models are ranked as follows based on MC classification is in the order: (1) K*
(98.8%), (2) RF (98.4%), (3) DT (98.2%), (4) MLP (98.1%), (5) LR (97.7%), (6)
kNN (96.8%), (7) NB (96.5%) and (8) SVM (96.1%). For the HS P, dataset, based
on average accuracy in binary classification, the models are ranked as follows: (1) RF
(95.8%), (2) K* (95.7%), (3) MLP (95.1%), (4) DT (94.5%), (5) kNN (92.6%), (6)
LR (91.6%), (7) SVM (90.1%) and (8) NB (79.5%). Classifiers are ranked as follows
based on MC classification: (1) SVM (96.1%), (2) DT (90%), (3) K* (89.5%), (4) RF
(89.2%), (5) LR (86.7%), (6) MLP (86.2%), (7) kNN (86%) and (8) NB (83.7%). The
complete results of K* on both datasets is provided in Table 7. One of the reasons
for the relatively better performance of K™, RF and DT is that that they are non-
parametric models and they appear to have good ability at properly handling various
patterns as features for classification.

HSP Dataset HSP4o Dataset
NB MLP, kNN, LR, SVM, NB
kNN, SVM, NB kNN, LR, SVM, NB
SVM, NB LR, SVM, NB
kNN, SVM NB, DT, MLP
LR, SVM kNN, SVM, NB
kNN, SVM, NB

Fig. 4: t-test ACC results for seven classifiers compared to K*. Red-colored classifiers
performed worst and blue-colored classifiers performed significantly better than K*

Title Suppressed Due to Excessive Length 15

Table 7: K* results on FSPAAs

Dataset Stage ACC | Stage R F1 MCC | AUC | AUPRC
1S 1S NonHSP | 0.99 0.99 0.99 0.99 | 0.959 | 0.999 0.999
2S HS Py 1 1 1 1 1 1 1
o 2S HSPyo 0.998 | 0.998 | 0.998 | 0.998 | 0.994 | 0.999 0.999
2] 2S HS Peo 1 1 1 1 1 1 1
= 2S HSPro 0.995 | 0.995 | 0.995 | 0.995 | 0.982 1 1
2S HS Py 1 1 1 1 1 1 1
2S HSPioo 1 1 1 1 1 1 1
MC 0.988 | 0.989 | 0.989 | 0.989 | 0.987 | 0.999 0.997
Dataset Stage ACC P R F1 MCC | AUC | AUPRC
38Ty 0952 | 0952 | 0.953 | 0.952 | 0.873 | 0.988 0.990
= 38T 0.95 0.95 0.95 | 0949 | 0.864 | 0.981 0.983
& 3ST3 0.962 | 0.963 | 0.963 | 0.963 | 0.902 | 0.984 0.978
= 38Ty 0.965 | 0.966 | 0.965 | 0.964 | 0.906 | 0.987 0.990
MC 0.895 | 0.899 | 0.895 | 0.895 | 0.862 | 0.984 0.957

In WEKA, the paired t-test was run to determine if K* significantly outperformed
the others on FSPAAs. The comparative results based on the accuracy of models are
shown in Figure 4. Classifiers in red indicate those that considerably underperformed
K*. On the other hand, classifiers in blue are those that performed significantly better
than K*. NB did not perform well compared to K* in almost all cases, except for the
HSPygo. DT and RF did not appear as red in any case, that shows that both of them
performed similarly to K*. MLP almost performed well with only one appearance
as red in the 77 of HSPy. For binary classification of HSP,y Ty, DT and MLP
performed significantly better than K*.

t-SNE (t-distributed Stochastic Neighbor Embedding) [40] was used for visual-
ization of EAASs and FSPAAs. This analysis provides important insights into the
structure and relationships of AAs within EAASs and FSPAAs. Moreover, the vi-
sualization offers a more detailed explanation of classifier learning process and also
investigates the ability of FSPAHSP to distinguish AA sequences of HSPs. Figure 5
provides the 2D visualization of EAASs and FSPAAs in HSP and HS Pyg. In both
datasets, EAASs of HSPs are scattered (Figure SA, Figure 5C) and it is hard to distin-
guish between them. There is no clear separation among HSP families, sub-types or
Non-HSPs and they show the same degrees of aggregation or clustering with a high
level of scattering. On the other hand, FSPAAs of HSPs (Figure 5B and Figure 5D)
in both datasets are more separable, but their distinction was not distinct or promi-
nent. The six HSP families showed different levels of clustering, but there is still
some variation among them. Note that H.S P7y and H.S Pyy form two distinct clus-
ters. Similarly, all types of H.S Py form multiple distinct clusters. That is the reason
that integer-based classifiers performed less well on them as compared to FSPAAs of
HSP families.

In summary, the two main findings of this work are:

1. Classifiers achieved better performance, both for binary and MC classification,
on FSPAAs as compared to EAASs. For binary classification, K* on FSPAAs
achieved an improvement of approximately 17.01% and 2.79% in accuracy com-
pared to the NBMT, ZeroR and SGDT on EAASs in the HSP and HSPy

16 M. Saqib Nawaz et al.

o tor
3 HsPa0 * 2.
2 16760 -
= Y
o790 .
HSP10 LAY
NonHSF w" .
20 20 BT Uad
o et
P4
.
§ o H -
£ £ ° 3
a a . i
- ¢
-10
10 - .
. ot S oo
~o
l ., L4
=20 »' U -
e 0t ~
20 “ e .
3 Y-
A
30
-30
30 20 1o 13 0 2 0)
Dimension 1 Dimension 1
on
» C
5
.
0] . 2
. .
»
-])
© © @t al
5 s J .,
§ H . >
E ° E o »" *
s 5 ?
-
° L4
.‘
10 10 °
2 LS .
» -’ o Y
~ * <, - .
. 20 * S *®

Fig. 5: Feature space distribution visualization in differentiating HSPs, their families
and sub-types: (A) EAASs in HSP dataset, (B) FSPAAs in the HSP dataset, (C)
EAASSs in the H S Py dataset, (B) FSPAAs in the H S P,y dataset

datasets, respectively. For MC classification, K* on FSPAAs achieved an im-
provement of approximately 20.48% and 8.13% in accuracy compared to NBMT,
Zero, SGDT and RNNSC on EAASSs in the two datasets, respectively.

2. Instead of using the whole P.S or amino acid composition features, FSPAAs can
be used for improved and interpretable identification of HSPs.

4.3 Comparison

FSP4HSP is compared in this section with previous methods for HSPs classifica-
tion/prediction, that include MulCNN-HSP [16], DeepHSP and DeeperHSP [23],
PredHSP [20], ir-HSP [22], iHSP-PseRAAAC [17], JPRED [18], JPPRED [21], ES-
PredHSP [15] and the prediction method (called PM here) of [19].

MulCNN-HSP [16] used one-hot encoding and multi-scale convolutional neural
networks for latent features. PM [19] used three different feature extraction meth-
ods (SAAC, PAAC and DPC), in which the best classifier SVM performed better
on features extracted with DPC. JPPRED [21] used three feature extraction methods

Title Suppressed Due to Excessive Length

17

Table 8: Comparison of FSP4HSP with previous classification/detection approaches

for HSPs
Model Stage ACC P R F1 MCC | AUC | AUPRC

MulCNN-HSP [16] 1S+ 2S5 0.968 | 0.894 | 0.846 | 0.85 | 0.84.4 | 0.984 0.936
DeepHSP [23] 28 0.968 | 0.961 0.798 | 0.861 0.855 0.977 0.893
DeeperHSP [23] 2S 0.992 | 0974 | 0.966 | 0.969 | 0.966 | 0.994 0.966

PredHSP [20] 15+ 2S5 0.864 - 0.8 - 0.593 | 0919 -
ir-HSP [22] 1S+ 25+ 3S 0.921 0.87 0.801 - 0.683 0.889 0.567

iHSP-PseRAAAC [17] 28 0.878 - 0.750 - 0.695 - -

JPRED [18] 3S 0.94 - 0.635 | 0.642 - - -

JPPRED [21] 3S 0.852 - 0.875 - - - -

PM [19] 25+ 38 0.938 - 0.89 0.765 0.775 - -

ES-PredHSP [15] 15+ 28 - 0.865 | 0.861 - - — -
FSP4HSP(K*) 1S +25+3S 0.982 | 0.983 | 0.983 | 0.974 | 0.952 | 0.994 0.994
FSP4HSP(K*) 4Spgsp +4Sgspao | 0.941 0.944 | 0.942 | 0.942 0.924 0.991 0.9977

1S First Stage; 2S: Second Stage; 3S: Third Stage, 4S: Fourth Stage. the bar over stages represents the average. Binary
classification in 1S, 2S and 3S, MC classification in 4S.

(SAAC, PAAC, and PSSM). SU-IFS is then employed to find the optimal feature set.
ES-PredHSP [15] used the feature extraction method of CKSAAP and used six classi-
fiers, in which SVM performed better. Etchebest et al. [41] determined a new RAAA
type on the basis of Protein Blocks [42], where the 20 AAs can be grouped into five
different cluster profiles (CP): CP(13), CP(11), CP(9), CP(8), and CP(5). SVM in
iHSP-PseRAAAC and JPRED performed best on CP11 and CP8, respectively.

Table 8 compares the performance of FSA4HSP with previous approaches. One
previous method, ir-HSP [22], performed three stages of classification (1S, 2S and
3S). For the two stages (1S, 2S), K* in the proposed method achieved 99.7% ac-
curacy, on average, and achieved an improvement of approximately 3% compared
to the most recent model MulCNN-HSP (average accuracy of 96.8% for 1S and
2S). Compared to ir-HSP (average accuracy of 92.1%), K* (average accuracy of
98.2%), achieved an improvement of approximately 6.62%. The average of MC clas-
sification results in both datasets is listed for K* in Table 8. Not that K* results
are added because it performed better on overall in all the four stages of classifica-
tion. DeeperHSP [23] achieved high performance as it utilized a pre-trained protein
LM to extract features. The obtained results of FSA4HSP are for five-fold cross-
validation. MulCNN-HSP, DeepHSP, DeeperHSP, PredHSP and ir-HSP also used
five-fold cross-validation. Some models such as iHSP-PseRAAAC, JPRED and JP-
PRED, ES-PredHSP employed leave-one-out cross-validation (LOOCYV) and ten-fold
cross-validation respectively.

Independent test dataset was also used in MulCNN-HSP, ir-HSP, DeepHSP, and
DeeperHSP along with cross-validation for the identification of HSPs. We did not
evaluate the performance of FSA4HSP on the independent test dataset since the clas-
sification models in FSP4HSP undergo evaluation through 5-fold cross-validation.
Jackknife of k-fold cross-validation produces results by combining many different in-
dependent dataset tests. Therefore, it is not necessary to partition a benchmark dataset
into training and testing datasets or utilize an independent test dataset.

18 M. Saqib Nawaz et al.

5 Conclusion

An analysis and classification method (called FSA4HSP) was proposed for the iden-
tification/classification of HSPs. Two datasets, containing amino acid sequences of
HSPs, were first formatted appropriately. Then, SPM algorithms were used on the
datasets to extract FSPAAs and sequential rules among AAs. Extracted FSPAAs were
then used in classification. Four string-based classifiers were used on EAASs of PS
and eight integer-based classifiers were used on FSPAAs to perform four stages of
classification including both binary and MC classification. Twelve classifiers were
assessed by using seven performance evaluation measures. Both binary and MC clas-
sification results indicate that classifiers performed much better on FSPAAs as com-
pared to EAASs. The classifier K* performed the best followed by DT and RF. K* in
FSA4HSP outperformed previous methods for HSP identification/classification and
the method allows more interpretability compared to previous methods. The proposed
model is not limited to HSPs and can be used on protein sequences of RNA and DNA.
Some future research directions are:

— Extending the FSP4AHSP method to extract frequent sequential k-mers in AA se-
quence of HSPs and using them for analysis and classification.

— Investigating whether discriminative frequent patterns [43] can be used more ef-
fectively, compared to similar frequent patterns, in the classification process.

CRediT author statement

M. Saqib Nawaz: Data Curation, Methodology, Validation, Visualization, Writing
- Original Draft, Writing - Review & Editing. Philippe Fournier-Viger: Supervi-
sion, Formal analysis, Methodology, Validation, Writing - Review & Editing. Shoaib
Nawaz: Visualization, Investigation. Wensheng Gan: Investigation, Writing - Re-
view & Editing. Yulin He: Writing - Review & Editing

Conflict of Interest: Authors declare no conflict on interest.

Funding: Authors did not receive funding for this work.

References

1. P.Jacob, H. Hirt, and A. Bendahmane, “The heat-shock protein/chaperone network and multiple stress
resistance,” Plant Biotechnology, vol. 15, pp. 405-415, 2017.

2. P. Poulain, J. C. Gelly, and D. Flatters, “Detection and architecture of small heat shock protein
monomers,” PLOS ONE, vol. 5, p. €9990, 2010.

3. A.Blaszczak, C. Georgopoulos, and K. Liberek, “On the mechanism of ftsh-dependent degradation of
the sigma 32 transcriptional regulator of escherichia coli and the role of the dnak chaperone machine,”
Molecular Microbiology, vol. 31, pp. 157-166, 1999.

4. D. Ruggero, A. Ciammaruconi, and P. Londei, “The chaperonin of the archaeon sulfolobus solfatari-
cus is an rna-binding protein that participates in ribosomal rna processing,” EMBO Journal, vol. 17,
pp. 3471-3477, 1998.

5. 1. F. Louvion, T. Abbas-Terki, and D. Picard, “HSP90 is required for pheromone signalling in yeast,”
Molecular Biology of the Cell, vol. 9, pp. 3071-3083, 1998.

Title Suppressed Due to Excessive Length 19

6.

12.

13.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

H. Adachi, M. Katsuno, M. Waza, M. Minamiyama, F. Tanaka, , and G. Sobue, “Heat shock proteins
in neurodegenerative diseases: pathogenic roles and therapeutic implications,” International Journal
of Hyperthermia, vol. 25, pp. 647-654, 2009.

. J. E. Hamos, B. Oblas, D. Pulaski-Salo, W. J. Welch, D. G. Bole, and D. A. Drachman, “Expression

of heat shock proteins in alzheimer’s disease,” Neurology, vol. 41, pp. 345-350, 1991.

. Y. R. Wu, C. K. Wang, C. M. Chen, Y. Hsu, S. J. Lin, Y. Y. Lin, H. C. Fung, K. H. Chang, and

G. J. Lee-Chen, “Analysis of heat-shock protein 70 gene polymorphisms and the risk of parkinson’s
disease,” Human Genetics, vol. 114, pp. 236-241, 2004.

. R.E. Lackie, A. Maciejewski, V. G. Ostapchenko, J. Marques-Lopes, W. Y. Choy, M. L. Duennwald,

V. E. Prado, and M. A. M. Prado, “The HSP70/HSP90 chaperone machinery in neurodegenerative
diseases,” Frontier in Neuroscience, vol. 11, p. 254, 2017.

. M. G. Goldstein and Z. Li, “Heat-shock proteins in infectionmediated inflammation-induced tumori-

genesis,” Journal of Hematology & Oncology volume, vol. 2, p. 5, 2009.

. A. G.Pockley, “Heat shock proteins, inflammation, and cardiovascular disease,” Circulation, vol. 105,

pp. 1012-1017, 2002.

R. K. Rateesh, N. S. Nagarajan, S. P. Arunraj, D. Sinha, V. B. Veedin Rajan, V. K. Esthaki, and
P. D’Silva, “HSPIR: a manually annotated heat shock protein information resource,” Bioinformatics,
vol. 28, no. 21, pp. 2853-2855, 2012.

W. Chen, P. Feng, T. Liu, and D. Jin, “Recent advances in machine learning methods for predicting
heat shock proteins,” Current Drug Metabolism, vol. 20, no. 3, pp. 224-228, 2019.

. R. A. Stetler, Y. Gan, W. Zhang, A. K. Liou, Y. Gao, G. Cao, and J. Chen, “Heat shock proteins:

Cellular and molecular mechanisms in the central nervous system,” Progress in Neurobiology, vol. 92,
no. 2, pp. 184-211, 2010.

M. Y. Akbar, H. Azad, M. Rashid, W. Ajmal, A. A. Ansari, M. M. Salem, R. K. Sahu, M. M. Salem-
Bekhit, and S. Ghazanfarl, “ES-PredHSP: Improved prediction of heat shock proteins using machine
learning by enhanced sampling technique,” Journal of Biological Regulators and Homeostatic Agents,
vol. 38, no. 1, pp. 665-673, 2024.

G. Zhang, M. Li, Q. Tang, F. Meng, P. Feng, and W. Chen, “MulCNN-HSP: A multi-scale convolu-
tional neural networks-based deep learning method for classification of heat shock proteins,” Interna-
tional Journal of Biological Macromolecules, vol. 257, no. 128802, 2024.

P-M. Feng, W. Chen, H. Lin, and K.-C. Chou, “iHSP-PseRAAAC: Identifying the heat shock protein
families using pseudo reduced amino acid alphabet composition,” Analytical Biochemistry, vol. 442,
pp. 118-125, 2013.

P. Feng, H. Lin, W. Chen, and Y. Zuo, “Predicting the Types of J-Proteins Using Clustered Amino
Acids,” BioMed Research International, vol. 935719, 2014.

. S. Ahmad, M. Kabir, and M. Hayat, “Identification of Heat Shock Protein families andJ-protein types

by incorporating DipeptideComposition into Chouds general Pse AACS,” Computer Methods and Pro-
grams in Biomedicine, vol. 122, no. 2, pp. 165-174, 2015.

R. Kumar, B. Kumari, and M. Kumar, “PredHSP: Sequence based proteome-wide heat shock protein
prediction and classification tool to unlock the stress biology,” PLOS ONE, vol. 11, p. e0155872,
2016.

L. Zhang, C. Zhang, R. Gao, and R. Yang, “JPPRED: Prediction of types of j-proteins from imbal-
anced data using an ensemble learning method,” BioMed Research International, vol. 705156, 2015.
P. Meher, T. Sahu, S. Gahoi, and A. Rao, “ir-HSP: improved recognition of heat shock proteins, their
families and sub-types based on g-spaced di-peptide features and support vector machine,” Frontiers
in Genetics, vol. 8, no. 235, 2018.

S. Min, H. Kim, B. Lee, and S. Yoon, “Protein transfer learning improves identification of heat shock
protein families,” PLOS ONE, vol. 16, no. 0251865, 2021.

P. Fournier-Viger, J. C.-W. Lin, R. U. Kiran, Y. S. Koh, and R. Thomas, “A survey of sequential pattern
mining,” Data Science and Pattern Recognition, vol. 1, pp. 54-77, 2017.

M. S. Nawaz, P. Fournier-Viger, A. Shojaee, and H. Fujita, “Using artificial intelligence techniques
for covid-19 genome analysis,” Applied Intelligence, vol. 53, pp. 3086-3103, 2021.

M. S. Nawaz, P. Fournier-Viger, Y. He, and Q. Zhang, “PSAC-PDB: Analysis and classification of
protein structures,” Computers in Biology and Medicine, vol. 158, p. 106814, 2023.

T. P. Exarchos, C. Papaloukas, C. Lampros, and D. I. Fotiadis, “Mining sequential patterns for protein
fold recognition,” Journal of Biomedical Informatics, vol. 41, no. 1, pp. 165-179, 2008.

P. Cellier, T. Charnois, M. Plantevit, C. Rigotti, B. Cremilleux, O. Gandrillon, J. KIA©ma, and J.-L.
Manguin, “Sequential pattern mining for discovering gene interactions and their contextual informa-
tion from biomedical texts,” Journal of Biomedical Semantics, vol. 6, p. 27, 2015.

20 M. Saqib Nawaz et al.

29. S. Dubey, D. K. Verma, and M. Kumar, “Severe acute respiratory syndrome coronavirus-2 genoana-
lyzer and mutagenic anomaly detector using FCMFI and NSCE,” International Journal of Biological
Macromolecules, vol. 258, p. 129051, 2024.

30. M. S. Nawaz, P. Fournier-Viger, S. Nawaz, H. Zhu, and U. Yun, “SPM4GAC: SPM based approach for
genome analysis and classification of macromolecules,” International Journal of Biological Macro-
molecules, vol. 130984, 2024.

31. K.-C. Chou, “Prediction of protein cellular attributes using pseudo-amino acid composition,” Pro-
teins: Structure, Function, and Bioinformatics, vol. 43, no. 3, pp. 246-255, 2001.

32. B. Boeckmann, A. Bairoch, R. Apweiler, M. C. Blatter, A. Estreicher, E. Gasteiger, M. J. Martin,
K. Michoud, C. O’Donovan, I. Phan, S. Pilbout, and M. Schneider, “The swiss-prot protein knowl-
edgebase and its supplement trembl in 2003,” Nucleic acids research, vol. 31, no. 1, pp. 365-370,
2003.

33. W. Liand A. Godzik, “Cd-hit: A fast program for clustering and comparing large sets of protein or
nucleotide sequences,” Bioinformatics, vol. 22, no. 13, pp. 1658-1659, 2006.

34. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic minority over-
sampling technique,” Journal Of Artificial Intelligence Research, vol. 16, pp. 321-357, 2002.

35. P. Fournier-Viger, A. Gomariz, M. Campos, and R. Thomas, “Fast vertical mining of sequential pat-
terns using co-occurrence information,” in Proceedings of 18th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD), pp. 40-52, 2014.

36. P. Fournier-Viger, T. Gueniche, S. Zida, and V. Tseng, “ERMiner: Sequential rule mining using equiv-
alence classes,” in Proceedings of 13th International Symposium on Intelligent Data Analysis (IDA),
pp. 108-119, 2014.

37. P. Fournier-Viger, J. C.-W. Lin, A. Gomariz, T. Gueniche, A. Soltani, Z. Deng, and H. T. Lam, “The
SPMF open-source data mining library version 2,” in Proceedings of European Conference on Ma-
chine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD),
pp. 3640, 2016.

38. E. Frank, M. A. Hall, and 1. H. Witten, “Mining: Practical Machine Learning Tools and Techniques,
fourth edition,” Morgan Kaufmann, 2016.

39. R. Agrawal and R. Srikant, “Fast algorithms for mining association rules in large databases,” in Pro-
ceedings of Very Large Databases (VLDB), pp. 487-499, 1994.

40. L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of Machine Learning
Research, vol. 9, pp. 2657-2605, 2008.

41. C. Etchebest, C. Benros, A. Bornot, A. Camproux, and A. de Brevern, “A reduced amino acid alpha-
bet for understanding and designing protein adaptation to mutation,” European Biophysics Journal,
vol. 36, pp. 1059-1069, 2007.

42. A.deBrevern, C. Etchebest, and S. Hazout, “Bayesian probabilistic approach for predicting backbone
structures in terms of protein blocks,” Proteins: Structure, Function, and Bioinformatics, vol. 41,
pp. 271-287, 2007.

43. S. Ventura and J. Luna, “Supervised Descriptive Pattern Mining,” Springer, 2018.

Comment 17: In what ways do Sequential Pattern Mining (SPM) algorithms vary
in their approaches, such as database structure, search strategy, and support measure,
and how do these differences impact the analysis of genome sequences?

SPM algorithms vary in terms of (1) whether a horizontal or vertical database is
used and specific data structures; (2) the algorithm follows a depth first or breadth
first search approach, and (3) the support measure that is used to count patterns in
datasets. These aspects effects the algorithm efficiency in-terms of computatinal time
and the standard of frequent ptterns discovered by them. In this work, the two most
advanced algorithms (CM-SPAM and ERMiner) are used to find sequential patterns
and rules in genome sequences.

Classification through discovered frequent patterns Comment 18: How are fre-
quent sequential patterns, discovered through Sequential Pattern Mining (SPM) algo-
rithms, utilized in the classification of genomes?

The frequent sequential patterns obtained with CM-SPAM algorithm are fed to
various classifiers for the classification process. Figure 2 provides how some raw

Title Suppressed Due to Excessive Length 21

genome sequences in various forms are transofmered and then frequent sequential
patterns and rules were obtained. The frequent sequential patterns found in genome
sequence indifferent forms can be interpreted as their descriptors or features.

Comment 19: Explain the phases involved in the classification process, including
both the training and testing phases?

Two phases are carried out for classification: (1) First is the training phase, which
is in turn performed in two steps: (a) frequent nucleotides, codons, or amino acids
representation, and (b) classifier training, which is performed sequentially. (2) Then
the testing phase has three steps: (a) frequent nucleotides, codons or amino acids
representation, (b) hypothesis prediction, and (c) evaluation. This is discussed in the
first paragaph of section 3.3. on page 9.

Comment 20: What are the two steps involved in the training phase, and how
do they contribute to the overall classification process? Training phase contains two
steps: (a) frequent nucleotides, codons, or amino acids representation, and (b) classi-
fier training. Both the steps are performed sequentially to train the classifeirs. This is
discussed in the first paragaph of section 3.3. on page 9.

Comment 21: Within the training phase, how are frequent nucleotides, codons, or
amino acids represented, and how does this representation aid in classifier training?

In both training and testing phase, frequent nucleotides, codons or amino acids are
represented as a sequence off integers. With this encoding, the classifier can capture
patterns and relationships in the data that may not be apparent in the raw sequence
data.

Comment 22: What are the steps involved in the testing phase, and how do they
differ from those in the training phase? Three steps are involved in training phase: (a)
frequent nucleotides, codons or amino acids representation, (b) hypothesis prediction,
and (c) evaluation. The step b and c of testing phase is different from step b of training
as these steps evaluate the performance of trained classifers on unseen data.

Comment 23: How does the classification model address the issue of repetitive
occurrences of the same bases or amino acids in genome sequences? Obtained fre-
quent sequential patterns are those that do not have long repetitive occurrence of the
same bases, codons or amino acids. These patterns are those that are common in many
genome sequences and the sequential nature of the patterns allow them to avoid this
repetition. These obtained frequent sequential pattersn are then provided as features
in the classification process. This is discussed in the second paragraph of section 3.3.
on page 9.

Comment 24: How are frequent sequential patterns of nucleotides, codons, and
amino acids utilized to enhance the classification of various RNA virus families? Fre-
quent sequential patterns were able to distinguish various virus families effectively.
And thus the classifiers were able to distinguish effectively with frequent sequential
patterns. In other words, the frequent sequential patterns extracted from the genome
sequences serve as informative features that can help distinguish between different
classes or categories in the classification task

Results

Comment 25: Elaborate on the role of scikit-learn in the classification process
and its significance in model evaluation? In the classification process, scikit-learn
plays important role as a powerful ML library that provides a wide range of tools and

22 M. Saqib Nawaz et al.

algorithms for building and evaluating classification models. Its significance lies in
its user-friendly interface, extensive documentation, and efficient implementation of
various classification algorithms such as SVM, decision trees, and random forests.
Scikit-learn simplifies the process of model training, testing, and evaluation through
its standardized API and built-in functions for model performance metrics, cross-
validation, and hyperparameter tuning.

Comment 26: How were the datasets divided into training and testing subsets,
and what was the rationale behind using an 80The datasets were divided into training
and testing subsets using a common practice known as the 80/20 split. This involves
allocating 80% of the data for training the model and 20% for testing its performance.
The rationale behind this split is to strike a balance between having enough data to
train the model effectively and having a sufficient amount of unseen data to evaluate
its generalization performance. By using an 80/20 split, we aim to ensure that the
model learns from a diverse set of examples during training while also being ade-
quately tested on a separate subset to assess its ability to generalize to new, unseen
data. This approach helps prevent overfitting and provides a reliable estimate of the
model’s performance on real-world data.

Comment 27: Provide more details on the default hyperparameters used for clas-
sifiers during the classification process?

We used default hyperparameters of classifiers to simplify the model training pro-
cess and provide a baseline performance for comparison. The default hyperparame-
ters of each classifier is listed in Table 2.

Comment 28: How did the utilization of SPMF and Python libraries contribute to
the reliability and efficiency of the experimental process?

SPMF library is used to find the frequent sequential patterns and rules. Obtained
frequent sequential pattersn are then fed to classifietrs offered by sciki-learn library
developed in python.

Comment 29: Explain how the Apriori, CM-SPAM, and ERMiner algorithms
were applied to find compositions of nucleotides, codons, or amino acids, frequent
sequences, and sequential rules within genome sequences? SPMF software offers
implementation of more than 230 SPM algorithms, Apriori , CM-SPAM and ER-
miner were run on the developed datasets by using SPMF software. Comment 30: In
the provided example (Figure 2), how are raw genome sequences transformed and
represented for analysis by Apriori, CM-SPAM, and ERMiner Figure 2 also pro-
vides the transformation of raw genome sequences. First a raw genome sequence in
NF/CRF, PF and codons are presented at the top of each box in Figure 2, followed
by nucleotides, amino acids and codons transformations. In the transformation, each
distinct base/amino acid/coodn is replaced with a unique integer. The seperator -1 is
used between bases/amino acids/codons and -2 is used at the end of the sequence to
show that the genome sequence has ended.

Comment 31: Can you describe the significance of the compositions, frequent se-
quential patterns, and sequential rules identified within genome sequences, as illus-
trated in Figure 2? The composition of nucleotide bases and amino acids in genome
sequences provides insights about their occurrence count and their percentage. In this
work, discovered frequent sequential patterns of nucleotides/amino acids and codons
are used as features in the classification process. Sequential frequent patterns are

Title Suppressed Due to Excessive Length 23

those patterns that are present in databases and their support (occurrence count) is
equal to or greater than a support measure, specified by the user. Discovered sequen-
tial rules provides insights about the relationship among nucleotide/amino acids and
codons. Sequential rules can also be used as features in the classification process.

Comment 32: How do the frequent sequential patterns and sequential rules con-
tribute to characterizing and describing the sequences within genome data? Sequen-
tial frequent patterns are those patterns that are present in databases and their sup-
port (occurrence count) is equal to or greater than a support measure, specified by
the user. Whereas, sequential rules are those rules that are present in databases and
their support (occurrence count) and confidence is equal to or greater than the min-
supt and mincof measures, specified by the user. The frequent sequential patterns
of bases/amino acids and codons can be interpreted as their descriptors or features
that characterize or distinguish the genome sequences compared to others. The fre-
quent sequential patterns extracted from the genome sequences serve as informative
features that can help distinguish between different classes or categories in the clas-
sification task

