
FHM+: Faster High-Utility Itemset Mining using 
Length Upper-Bound Reduction 
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High-utility itemset mining 

2 

Input  

      a transaction database                             a unit profit table 

 

 

 

 

 

 

 

minutil: a minimum utility threshold  set by the user   (a positive integer) 



High-utility itemset mining 
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Input  

      a transaction database                             a unit profit table 

 

 

 

 

 

 

 

minutil: a minimum utility threshold  set by the user   (a positive integer) 

Output 

      All high-utility itemsets (itemsets having a utility ≥ 𝑚𝑖𝑛𝑢𝑡𝑖𝑙) 
    For example, if minutil = 33$,  the high-utility itemsets are: 

{b,d,e}     36$    

2 transactions 

{b,c,d}  34$ 

2 transactions 

{b,c,d,e}   40$ 

2 transactions 

{b,c,e}  37 $ 

3 transactions 



Utility calculation 
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The utility of the itemset {b,d,e} is calculated as follows: 

 

           

 

 

u({b,d,e}) = (5x2)+(3x2)+(3x1)  + (4x2)+(2x3)+(1x3)    =  36$ 

utility in 

transaction T1 
utility in 

transaction T2 

Input  

      a transaction database                    a unit profit table 

 



A difficult task! 

Why? the utility measure is neither monotonic nor 
anti-monotonic. 
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Input  

      a transaction database                    a unit profit table 

 

u({b,d,e}) =  36$ 

u({b,c,d,e}) =  40$ 

u({a,b,c,d,e,f}) = 30 $ 

 

 



Previous work 

• Several algorithms: 

• EFIM, FHM, BAHUI, IHUP, Two-phase, Umining…) 

• Key idea: 

• calculate an upper-bound on the utility of 
itemsets (e.g. the TWU) that is monotonic to be 
able to prune the search space. 
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The TWU upper-bound 

TWU of an itemset: the sum of the utility of 
transactions containing the itemset. 
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  a transaction database                    a unit profit table 

 

TWU({c,d}) = TU(T1)+TU(T2)+TU(T3)  

                   = 30 + 20 + 8 = 58 

Property: The TWU of an itemset is an upper bound on its utility, and all its supersets. 



Problem 

– Current algorithms are useful for discovering 
profitable itemsets.  

– But can find a large amount of itemsets 

– Long itemsets are often infrequent or too 
specific 
{mapleSyrup, pancake,orange,cheese,cereal} 
{mapleSyrup, pancake} 

– A solution:  use a length constraint 
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Naïve approach 

• Introduce a parameter maxlength 

• Modify an algorithm to not extend an itemset 
with an item if its number of items is equal to 
maxlength 

• Drawback: 

– does not reduce upper-bounds on the utilities of 
itemsets to prune the search space. 

– having tight upper-bounds is crucial for pruning 
the search space efficiently. 
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Contribution 

• We introduce the idea of reducing upper-bounds 
on the utilities of itemsets using length constraints. 

• Two novel upper-bounds 

– RTWU 

– Revised Remaining Utility 

• A modified algorithm called FHM+ 

10 



Largest utilities of a transaction 

The maxLength largest utility values in each 
transaction: 

 

11 

maxLength = 3 

L(T1) = 10, 6, 5 RTU(T1) =  21  



Largest utilities of a transaction 

Find the maxLength largest utility values in each 
transaction: 
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maxLength = 3 

L(T1) = 10, 6, 5 

L(T2) = 8, 6, 3 

L(T3) = 5, 2, 1 

L(T4) = 10,6,6  

L(T5) =  4, 3, 2 

 

 

RTU(T2) =  17 

RTU(T3) =  8 

RTU(T4) = 22 

RTU(T5) =  9  

RTU(T1) =  21  



The RTWU upper-bound 

• RTWU of an itemset X : The sum of the RTU values of 
transactions containing X  

• It is  an upper-bound on its utility and the utility of its supersets 
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X = {c,d}        maxLength = 3 

 

RTWU( {c,d}) =  RTU(T1) + RTU(T2) + RTU(T3) 

                       =  21 + 17 + 8 = 48  

 

RTU(T2) =  17 

RTU(T3) =  8 

RTU(T4) = 22 

RTU(T5) =  9  

RTU(T1) =  21  



Largest utilities w.r.t an itemset in a 
transaction  

Given an itemset X, find the maxLength - |X|largest 
utility values in the transaction that can extend X: 
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X = {a}        maxLength = 3 

RRU(T1) = 10, 6 

 

RRU(T3) = 2, 1 

RRU(T4) = 6,6 

 

  



The Revised Remaining Utility 

• RREU of an itemset X: The sum of the utilities of the itemset + 
the largest remaining utilities w.r.t that itemset 

• An upper-bound on the utility of X and the utility of its 
supersets 
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X = {a}        maxLength = 3 

RRU(T1) = 10, 6 
 

RRU(T3) = 2, 1 

RRU(T4) = 6,6 

 

U(T1) = 5 
 

U(T3) = 5 

U(T4) = 10 

 



The Revised Remaining Utility 

• RREU of an itemset X: The sum of the utilities of the itemset + 
the largest remaining utilities w.r.t that itemset 

• An upper-bound on the utility of X and the utility of its 
supersets 
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RREU({a}) =  RRU(T1)  + U(T1) + RTU(T2) +U(T2) + RRU(T3) + U(T3) 

                       =  (16 + 5) + (3 + 5) + (12 + 10) = 52 

X = {a}        maxLength = 3 

RRU(T1) = 10, 6 
 

RRU(T3) = 2, 1 

RRU(T4) = 6,6 

 

U(T1) = 5 
 

U(T3) = 5 

U(T4) = 10 

 



The FHM+ algorithm 
• An algorithm for mining high utility-itemsets with length 

constraint 

• It performs a depth-first search. 

 

 

 

 

 

 

 

 

• It applies pruning strategies to prune the search space 
based on upper-bounds on the utility. 
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Creating utility-lists 

Scan the database to create a utility-list for each 
itemset 
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TID Utility Largest utilities 

T1 5 {10,6] 

T3 5 {2, 1} 

T4 10 {6, 6} 

TID Utility Largest utilities 

T1 10 {6, 3] 

T2 8 {6, 3} 

T5 4 {3, 2} 

Itemset {a} Itemset {b} 



Creating utility-lists 

Scan the database to create a utility-list for each 
itemset 

19 

TID Utility Largest utilities 

T1 5 {10,6] 

T3 5 {2, 1} 

T4 10 {6, 6} 

TID Utility Largest utilities 

T1 10 {6, 3] 

T2 8 {6, 3} 

T5 4 {3, 2} 

Itemset {a} Itemset {b} 

20$       32$ 

 52$ Upper-bound: 



Generating larger itemsets 
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TID Utility Largest utilities 

T1 5 {10,6] 

T3 5 {2, 1} 

T4 10 {6, 6} 

TID Utility Largest utilities 

T1 10 {6, 3] 

T2 8 {6, 3} 

T5 4 {3, 2} 

Itemset {a} Itemset {b} 

TID Utility Largest utilities 

T1 15 {10} 

Itemset {a,b} 



Generating larger itemsets 
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TID Utility Largest utilities 

T1 5 {10,6] 

T3 5 {2, 1} 

T4 10 {6, 6} 

TID Utility Largest utilities 

T1 10 {6, 3] 

T2 8 {6, 3} 

T5 4 {3, 2} 

Itemset {a} Itemset {b} 

TID Utility Largest utilities 

T1 15 {10} 

Itemset {a,b} 

15$       10$ 

Upper-bound:   25$ 
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Pseudocode 



Experimental Evaluation 
Datasets’ characterictics 
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Dataset transaction 
count 

distinct item 
count 

average 
transaction 
length 

Chainstore 1,112,949 46,086 7.2 

Retail 88,162 16,470 10.3 

Mushroom 8,124 119 23 

 

Retail and Chainstore are real-life transaction datasets from retail 
stores. 

 

Mushroom is a dense dataset with long transactions 



Experimental Evaluation 

• We compared the performance: 

– FHM 

– FHM+ with maxLength varied from 1 to 5 

• We varied the minutil threshold and measured 

– execution time 

– number of patterns 

– memory usage 

• Java, 12 GB of RAM, Windows 7,  64 bit Core i5 CPU 
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Chainstore 

Retail 

Execution Time Number of patterns 

Execution Time Number of patterns 

3 to 10 times 

faster 

2 to 17 times 

faster 

up to 50% 

less patterns 

up to 13 

times less 

patterns 
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Mushroom 

Execution Time Number of patterns 
15 to 1400 

times faster 

up to 2,700 

times less 

patterns 



Maximum Memory usage (MB) 
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Dataset Reduction 

Chainstore 5% to 50% 

Retail 5% to 50% 

Mushroom 25 % to 50 % 

Efficiency vs Naïve approach 
Dataset FHM+ 

Chainstore up to 4 times faster 

Retail up to 2 times faster 

Mushroom up to 2 times faster 



Conclusion 

• Contribution: 

 Novel algorithm for mining high utility itemsets while considering 
the length constraint named FHM+ 

 Novel concept of Length upper-bound reduction 

 Two new upper-bounds: revised TWU and revised remaining utility 

• Experimental results: 

– FHM+ can greatly reduce execution time, memory usage, and the 
number of patterns founds 

• Source code and datasets available as part of the   
SPMF data mining library (GPL 3). 

Open source Java data mining software, 120 algorithms 
http://www.phillippe-fournier-viger.com/spmf/ 
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http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/


Thank you. Questions? 
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Open source Java data mining software, 120 algorithms 
http://www.phillippe-fournier-viger.com/spmf/ 
 

http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
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