
FHM+: Faster High-Utility Itemset Mining using
Length Upper-Bound Reduction

1

High-utility itemset mining

2

Input

 a transaction database a unit profit table

minutil: a minimum utility threshold set by the user (a positive integer)

High-utility itemset mining

3

Input

 a transaction database a unit profit table

minutil: a minimum utility threshold set by the user (a positive integer)

Output

 All high-utility itemsets (itemsets having a utility ≥ 𝑚𝑖𝑛𝑢𝑡𝑖𝑙)
 For example, if minutil = 33$, the high-utility itemsets are:

{b,d,e} 36$

2 transactions

{b,c,d} 34$

2 transactions

{b,c,d,e} 40$

2 transactions

{b,c,e} 37 $

3 transactions

Utility calculation

4

The utility of the itemset {b,d,e} is calculated as follows:

u({b,d,e}) = (5x2)+(3x2)+(3x1) + (4x2)+(2x3)+(1x3) = 36$

utility in

transaction T1
utility in

transaction T2

Input

 a transaction database a unit profit table

A difficult task!

Why? the utility measure is neither monotonic nor
anti-monotonic.

5

Input

 a transaction database a unit profit table

u({b,d,e}) = 36$

u({b,c,d,e}) = 40$

u({a,b,c,d,e,f}) = 30 $

Previous work

• Several algorithms:

• EFIM, FHM, BAHUI, IHUP, Two-phase, Umining…)

• Key idea:

• calculate an upper-bound on the utility of
itemsets (e.g. the TWU) that is monotonic to be
able to prune the search space.

6

The TWU upper-bound

TWU of an itemset: the sum of the utility of
transactions containing the itemset.

7

 a transaction database a unit profit table

TWU({c,d}) = TU(T1)+TU(T2)+TU(T3)

 = 30 + 20 + 8 = 58

Property: The TWU of an itemset is an upper bound on its utility, and all its supersets.

Problem

– Current algorithms are useful for discovering
profitable itemsets.

– But can find a large amount of itemsets

– Long itemsets are often infrequent or too
specific
{mapleSyrup, pancake,orange,cheese,cereal}
{mapleSyrup, pancake}

– A solution: use a length constraint

8

Naïve approach

• Introduce a parameter maxlength

• Modify an algorithm to not extend an itemset
with an item if its number of items is equal to
maxlength

• Drawback:

– does not reduce upper-bounds on the utilities of
itemsets to prune the search space.

– having tight upper-bounds is crucial for pruning
the search space efficiently.

9

Contribution

• We introduce the idea of reducing upper-bounds
on the utilities of itemsets using length constraints.

• Two novel upper-bounds

– RTWU

– Revised Remaining Utility

• A modified algorithm called FHM+

10

Largest utilities of a transaction

The maxLength largest utility values in each
transaction:

11

maxLength = 3

L(T1) = 10, 6, 5 RTU(T1) = 21

Largest utilities of a transaction

Find the maxLength largest utility values in each
transaction:

12

maxLength = 3

L(T1) = 10, 6, 5

L(T2) = 8, 6, 3

L(T3) = 5, 2, 1

L(T4) = 10,6,6

L(T5) = 4, 3, 2

RTU(T2) = 17

RTU(T3) = 8

RTU(T4) = 22

RTU(T5) = 9

RTU(T1) = 21

The RTWU upper-bound

• RTWU of an itemset X : The sum of the RTU values of
transactions containing X

• It is an upper-bound on its utility and the utility of its supersets

13

X = {c,d} maxLength = 3

RTWU({c,d}) = RTU(T1) + RTU(T2) + RTU(T3)

 = 21 + 17 + 8 = 48

RTU(T2) = 17

RTU(T3) = 8

RTU(T4) = 22

RTU(T5) = 9

RTU(T1) = 21

Largest utilities w.r.t an itemset in a
transaction

Given an itemset X, find the maxLength - |X|largest
utility values in the transaction that can extend X:

14

X = {a} maxLength = 3

RRU(T1) = 10, 6

RRU(T3) = 2, 1

RRU(T4) = 6,6

The Revised Remaining Utility

• RREU of an itemset X: The sum of the utilities of the itemset +
the largest remaining utilities w.r.t that itemset

• An upper-bound on the utility of X and the utility of its
supersets

15

X = {a} maxLength = 3

RRU(T1) = 10, 6

RRU(T3) = 2, 1

RRU(T4) = 6,6

U(T1) = 5

U(T3) = 5

U(T4) = 10

The Revised Remaining Utility

• RREU of an itemset X: The sum of the utilities of the itemset +
the largest remaining utilities w.r.t that itemset

• An upper-bound on the utility of X and the utility of its
supersets

16

RREU({a}) = RRU(T1) + U(T1) + RTU(T2) +U(T2) + RRU(T3) + U(T3)

 = (16 + 5) + (3 + 5) + (12 + 10) = 52

X = {a} maxLength = 3

RRU(T1) = 10, 6

RRU(T3) = 2, 1

RRU(T4) = 6,6

U(T1) = 5

U(T3) = 5

U(T4) = 10

The FHM+ algorithm
• An algorithm for mining high utility-itemsets with length

constraint

• It performs a depth-first search.

• It applies pruning strategies to prune the search space
based on upper-bounds on the utility.

17

Creating utility-lists

Scan the database to create a utility-list for each
itemset

18

TID Utility Largest utilities

T1 5 {10,6]

T3 5 {2, 1}

T4 10 {6, 6}

TID Utility Largest utilities

T1 10 {6, 3]

T2 8 {6, 3}

T5 4 {3, 2}

Itemset {a} Itemset {b}

Creating utility-lists

Scan the database to create a utility-list for each
itemset

19

TID Utility Largest utilities

T1 5 {10,6]

T3 5 {2, 1}

T4 10 {6, 6}

TID Utility Largest utilities

T1 10 {6, 3]

T2 8 {6, 3}

T5 4 {3, 2}

Itemset {a} Itemset {b}

20$ 32$

 52$ Upper-bound:

Generating larger itemsets

20

TID Utility Largest utilities

T1 5 {10,6]

T3 5 {2, 1}

T4 10 {6, 6}

TID Utility Largest utilities

T1 10 {6, 3]

T2 8 {6, 3}

T5 4 {3, 2}

Itemset {a} Itemset {b}

TID Utility Largest utilities

T1 15 {10}

Itemset {a,b}

Generating larger itemsets

21

TID Utility Largest utilities

T1 5 {10,6]

T3 5 {2, 1}

T4 10 {6, 6}

TID Utility Largest utilities

T1 10 {6, 3]

T2 8 {6, 3}

T5 4 {3, 2}

Itemset {a} Itemset {b}

TID Utility Largest utilities

T1 15 {10}

Itemset {a,b}

15$ 10$

Upper-bound: 25$

22

Pseudocode

Experimental Evaluation
Datasets’ characterictics

23

Dataset transaction
count

distinct item
count

average
transaction
length

Chainstore 1,112,949 46,086 7.2

Retail 88,162 16,470 10.3

Mushroom 8,124 119 23

Retail and Chainstore are real-life transaction datasets from retail
stores.

Mushroom is a dense dataset with long transactions

Experimental Evaluation

• We compared the performance:

– FHM

– FHM+ with maxLength varied from 1 to 5

• We varied the minutil threshold and measured

– execution time

– number of patterns

– memory usage

• Java, 12 GB of RAM, Windows 7, 64 bit Core i5 CPU

24

25

Chainstore

Retail

Execution Time Number of patterns

Execution Time Number of patterns

3 to 10 times

faster

2 to 17 times

faster

up to 50%

less patterns

up to 13

times less

patterns

26

Mushroom

Execution Time Number of patterns
15 to 1400

times faster

up to 2,700

times less

patterns

Maximum Memory usage (MB)

27

Dataset Reduction

Chainstore 5% to 50%

Retail 5% to 50%

Mushroom 25 % to 50 %

Efficiency vs Naïve approach
Dataset FHM+

Chainstore up to 4 times faster

Retail up to 2 times faster

Mushroom up to 2 times faster

Conclusion

• Contribution:

 Novel algorithm for mining high utility itemsets while considering
the length constraint named FHM+

 Novel concept of Length upper-bound reduction

 Two new upper-bounds: revised TWU and revised remaining utility

• Experimental results:

– FHM+ can greatly reduce execution time, memory usage, and the
number of patterns founds

• Source code and datasets available as part of the
SPMF data mining library (GPL 3).

Open source Java data mining software, 120 algorithms
http://www.phillippe-fournier-viger.com/spmf/

28

http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/

Thank you. Questions?

29

Open source Java data mining software, 120 algorithms
http://www.phillippe-fournier-viger.com/spmf/

http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/

References

• Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of the International Conference on Very Large
Databases, pp. 487–499 (1994)

• Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V.S.: FHM: faster high-utility itemset
mining using estimated utility co-occurrence pruning. In: Andreasen, T.,
Christiansen, H., Cubero, J.-C., Ra´s, Z.W. (eds.) ISMIS 2014. LNCS, vol. 8502, pp.
83–92. Springer, Heidelberg (2014)

• Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C., Tseng, V.S.: SPMF:
a Java open-source pattern mining library. J. Mach. Learn. Res. (JMLR) 15, 3389–
3393 (2014)

• Pei, J., Han, J.: Constrained frequent pattern mining: a pattern-growth view. ACM
SIGKDD Explor. Newsl. 4(1), 31–39 (2012)

• Lan, G.C., Hong, T.P., Tseng, V.S.: An efficient projection-based indexing approach
for mining high utility itemsets. Knowl. Inf. Syst. 38(1), 85–107 (2014)

• Krishnamoorthy, S.: Pruning strategies for mining high utility itemsets. Expert Syst.
Appl. 42(5), 2371–2381 (2015)

30

References (cont’d)
• Lin, J.C.-W., Gan, W., Hong, T.-P., Pan, J.-S.: Incrementally updating high-utility itemsets with

transaction insertion. In: Luo, X., Yu, J.X., Li, Z. (eds.) ADMA 2014. LNCS, vol. 8933, pp. 44–
56. Springer, Heidelberg (2014)

• Song, W., Liu, Y., Li, J.: BAHUI: fast and memory efficient mining of high utility itemsets
based on bitmap. Int. J. Data Warehous. Min. 10(1), 1–15 (2014)

• Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In: Proceedings of
the 22nd ACM International Conference on Information and Knowledge Management, pp.
55–64 (2012)

• Liu, Y., Liao, W., Choudhary, A.K.: A two-phase algorithm for fast discovery of high utility
itemsets. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp.
689–695. Springer, Heidelberg (2005)

• Tseng, V.S., Shie, B.-E., Wu, C.-W., Yu, P.S.: Efficient algorithms for mining high utility
itemsets from transactional databases. IEEE Trans. Knowl. Data Eng. 25(8), 1772–1786
(2013)

• Zida, S., Fournier-Viger, P., Wu, C.-W., Lin, J.C.W., Tseng, V.S.: Efficient mining of high utility
sequential rules. In: Proceedings of the 11th International Conference on Machine Learning
and Data Mining, pp. 1–15 (2015)

• Zida, S., Fournier-Viger, P., Lin, J.C.-W., Wu, C.-W., Tseng, V.S.: EFIM: a highly efficient
algorithm for high-utility itemset mining. In: Sidorov, G., Galicia-Haro, S.N. (eds.) MICAI
2015. LNCS, vol. 9413, pp. 530–546. Springer, Heidelberg (2015). doi:10.1007/978-3-319-
27060-9 44

31

