
Measuring Drift Severity by Tree Structure
Classifiers

Di Zhao
School of Computer Science
The University of Auckland
Auckland, New Zealand

dzha866@aucklanduni.ac.nz

Yun Sing Koh
School of Computer Science
The University of Auckland
Auckland, New Zealand

y.koh@auckland.ac.nz

Philippe Fournier-Viger
College of Computer Science and

Software Engineering
Shenzhen University

Shenzhen, China
philfv@szu.edu.cn

Abstract—Streaming data has become more common as our
ability to collect data in real-time increases. A primary concern
in dealing with data streams is concept drift, which describes
changes in the underlying distribution of streaming data. Mea-
suring drift severity is crucial for model adaptation. Drift
severity can be a proxy in choosing concept drift adaptation
strategies. Current methods measure drift severity by monitoring
the changes in the learner performance or measuring the differ-
ence between data distributions. However, these methods cannot
measure the drift severity if the ground truth labels are unavail-
able. Specifically, performance-based methods cannot measure
marginal drift, and distribution-based methods cannot measure
conditional drift. We propose a novel framework named Tree-
based Drift Measurement (TDM) that measures both marginal
and conditional drift without revisiting historical data. TDM
measures the difference between tree classifiers by transforming
them into sets of binary vectors. An experiment shows that TDM
achieves similar performance to the state-of-the-art methods and
provides the best trade-off between runtime and memory usage.
A case study shows that the online learner performance can be
improved by adapting different drift adaptation strategies based
on the drift severity.

Index Terms—Data Stream, Concept Drift, Drift Severity

I. INTRODUCTION

Concept drift is recognized as the root cause of decreased
effectiveness in many data-driven information systems [1], [2].
A concept drift renders an old classifier irrelevant for new
data; thus, the classifier’s performance deteriorates. Increasing
attention has been paid to approaches that perform concept
drift detection in an unsupervised manner, i.e., without access
to the ground truth labels [3]. To tackle this, current research
on concept drifts measures drift severity [2] as a proxy to
indicate whether a drift needs to be adapted.

To solve this problem, we present a post-hoc drift severity
measurement framework called Tree-based Drift Measurement
(TDM). TDM measures a drift’s severity by calculating the
difference between the trees built before and after a concept
drift. TDM assumes that regardless of the type of concept
drift, it will cause changes in the model structure. TDM is
based on the Drift Detection Method (DDM) framework [4].
It measures the drift severity when the DDM detects a concept
drift. Since our framework works in an online environment,
we choose the Hoeffding Tree (HT) [5] as online classifier.

Figure 1 shows the four components of TDM: Input, Mod-
elling, Vectorization and Measurement. The Input component
receives the data stream and stores the data in two windows,
the reference window and the current window. The reference
window stores the data from the past concept, and the current
window stores the data from the most recent concept. If a
concept drift is detected, the Modelling component creates
two Hoeffding Trees, that is, for the reference window and the
current window. The Vectorization component then transforms
the two Hoeffding Trees into two sets of vectors, and the
Measurement component measures the difference between the
two sets of vectors.

VectorizationModelling

(0,3) 0,1,0,1,0,1

(0,1) 0,1,0,1,0,1

Ouput

Set of Vectors B

(0,3) 0,1,0,1,0,1

(0,1) 0,1,0,1,0,1

Set of Vectors AHoeffding Tree A

Input

C
on

ce
pt

 B
C

on
ce

pt
 A

Hoeffding Tree B

D
ifference M

easurem
ent

Fig. 1. Framework of TDM

The major contribution of this paper is three-fold:

• The TDM framework and implementation. TDM mea-
sures the drift severity of each concept drift identified in
a stream.

• We propose a feature dictionary to transform any tree-
based classifier into a set of vectors and indicate the
difference between trees’ structures by measuring the
similarity between two sets of vectors. We use Opera-
tional Taxonomic Units Expression to reduce the cost of
calculating similarities.

• Our experiment shows that TDM is able to measure the
drift severity without access to the data and provides the
best trade-off between runtime and memory usage. A case
study demonstrates how the online learner performance

Phil
Text Box
Preprint of:
	Zhao, D., Koh, Y. S., Fournier-Viger, P. Measuring Drift Severity by Tree Structure Classifiers (2022). International Joint Conference on Neural Networks (IJCNN 2022),

improves by adapting different drift adaptation strategies
according to the drift severities.

The rest of the paper is organized as follows. Section
II reviews related work. Section III introduces preliminaries
about concept drift and drift severity measurement. Section IV
describes implementation details of the TDM and discusses
its complexity. Section V presents the datasets evaluation
results of TDM and describes a case study. Lastly, Section
VII concludes the paper, discusses the limitations of TDM
and plans for future work.

II. RELATED WORK

Performance-based drift detection algorithms form the
largest category of drift detection algorithms. Performance-
based algorithms focus on tracking changes in the online
error rate of base classifiers. If an increase or decrease of
the error rate is proven to be statistically significant, a drift
alarm and upgrade process will be triggered [2]. For example,
the CUMulative SUM (CUSUM) [6] method is a sequential
analysis technique that detects changes by using the residual
of the learner, and there are different variations of that meth-
ods [7]. The FLOating Rough Approximation (FLORA) family
of algorithms use the overall accuracy and coverage of the
learner as a measure of change [8], [9]. Drift Detection Method
(DDM) [4] is the first algorithm that defines the warning level
and drift level for concept drift detection. Currently, most
of the state-of-the-art drift detection methods are based on
DDM [10]–[14].

Distribution-based drift detection algorithms use a distance
function to quantify the dissimilarity between historical and
new data distribution. If the dissimilarity is statistically sig-
nificant, the system will trigger a learning model up-gradation
process. They are able to provide location information about
the drift but also have higher computational costs than the
performance-based algorithms. The first formal treatment of
distribution-based drift detection in data streams proposed
by Kifer et al. [15] is based on a two-window paradigm.
Statistical Change Detection [16], PCA-based Change Detec-
tion Framework [17], and Least Squares Density Difference
Change Detection Test [18] were proposed to detect changes
in multidimensional data streams. Feature Drift Detection [19]
was proposed to detect changes in the feature distribution
individually. BDDM [20] uses Bhattacharyya distance to iden-
tify gradual or abrupt concept drifts in the data distribution.
CURIE [21] detects concept drift by representing the distri-
bution of the data stream in the grid of cellular automata.
Approaches such as pattern-based change detection work on
an abstract form of the data, preventing the search for changes
on the raw data [22]. ERICS [23] shows that the concept drift
corresponds to a change in the distribution of optimal model
parameters.

In general, performance-based drift detection techniques
cannot directly measure the drift severity because they mainly
focus on monitoring the performance of the learning system,
not the changes in the concept itself. The degree of decrease in
learning performance can be used as an indirect measurement

to assess the severity of concept drift. Still, the meaning
of these decreases are not discussed in prior studies [2].
Distribution-based drift detection methods are able to directly
quantify the severity of a concept drift since the measurement
used to compare two data samples already reflects the differ-
ence.

III. PRELIMINARIES

We consider a data stream classification problem where a
sequence of observations (X, y) is received over time, where
X is a d-dimensional vector that represents the feature space,
and y represents a single discrete class label. A concept
drift is a period over which the joint distribution of obser-
vations changes, i.e., a concept drift from time t1 and tn
implies pt1(X, y) ̸= ptn(X, y) [24]. Since the joint probability
Pt(X, y) can be decomposed into Pt(X)× Pt(y|X), concept
drift can be categorized into three types: (1) The drift in
marginal distribution while conditional distribution remains
unchanged. This drift is called marginal drift or virtual drift;
it will not affect the real decision boundary. (2) The drift
in conditional distribution while marginal distribution remains
unchanged. This drift will change the real decision boundary
and decrease learning performance; it is called conditional drift
or real drift. (3) The drift in both marginal and conditional
distribution. It is a mixture of the previous two types of drifts.
Table I shows the formal definition of each type of concept
drift.

TABLE I
DIFFERENT TYPES OF CONCEPT DRIFT

Drift Type Marginal Distribution Conditional Distribution

Marginal Drift Pt(X) ̸= Pt+1(X) Pt(y|X) = Pt+1(y|X)
Conditional Drift Pt(X) = Pt+1(X) Pt(y|X) ̸= Pt+1(y|X)
Mixed Drift Pt(X) ̸= Pt+1(X) Pt(y|X) ̸= Pt+1(y|X)

Unlike the drift regions, which focus on the conflict regions
between a new concept and the previous concept, i.e., local
drift and global drift, drift severity refers to the magnitude
of difference between the new concept and the previous
concept [2]. Formally, the drift severity can be represented
as ψ = Ψ(Pt(X, y), Pt+1(X, y)), where Ψ(·, ·) is a function
to measure the difference between two concepts and the
range of ψ depends on the measurement functions. Current
methods measure the drift severity by monitoring changes in
the learner performance or the difference between data distri-
butions. However, it is hard to measure marginal drift using
performance-based methods since a marginal drift does not
change the actual decision boundary of the data. On the other
hand, it is hard to measure conditional drift with distribution-
based approaches because most of them are unsupervised.
Another limitation is that distribution-based methods need
knowledge about the data, increasing storage consumption
and the risk of data leaks. To overcome the limitations of
the current methods, we propose TDM, a Tree-based Drift
Severity Measurement framework.

IV. TREE BASED DRIFT MEASUREMENT (TDM)

This section introduces the proposed framework, TDM,
which is able to measure drift severity without access to the
data. Instead, TDM measures the difference between the tree-
based classifiers’ structures. TDM is a post-hoc framework
based on the DDM framework and is compatible with any
tree-based classifier. Our experiments use the Hoeffding tree
as a baseline implementation, and it can be extended to other
tree-based models such as VFDT. TDM is applied when DDM
detects a concept drift. The assumption is that regardless of
the type of concept drift, it will cause changes in the tree
structure. TDM builds two Hoeffding Trees (HT) for the new
concept and the previous concept [5]. Then it transforms the
two HTs into two sets of vectors by Feature Dictionary (FD)
and uses Operational Taxonomic Units (OTUs) to measure the
difference between the two sets of vectors. This section first
briefly explains why we choose the Hoeffding Tree as the base
classifier. Then we demonstrate how TDM transforms HT into
a set of vectors by FD. After that, we discuss why we use
the binary similarity measures instead of tree-edit distance to
measure the difference between trees. Lastly, we discuss the
time and memory complexity of TDM.

Hoeffding Tree When the generation process of tree clas-
sifiers is deterministic, the structural difference between them
provides additional information on the severity of changes
in the data distribution. We choose Hoeffding Tree as the
classifier because it is a deterministic tree-based classifier,
which always chooses the feature with the highest information
gain and is designed for the online environment.

Feature Dictionary We proposed an approach called the
Feature Dictionary (FD) to transform each path of a tree into
a vector. A tree path consists of a set of internal nodes and a
leaf node, where each internal node represents a feature value
test for a feature fi and the leaf node represents a classification
result. We one-hot encoded categorical features and binned
the numeric features; therefore, we can use binary similarity
measures to measure their difference. The feature dictionary
maps feature fi into a two-digit binary vector with three
possible values [0, 1], [1, 0] and [0, 0], where [0, 1] represents
that fi appears in the path and satisfies the feature value test,
[1, 0] indicates that fi appears in the path but does not satisfy
the feature value test, and [0, 0] represents that fi is absent
in the path. Figure 2 shows how FD transforms each path of
a tree into binary vectors. As shown in Figure 2, the vector
of a path consists of two parts: a sequence of binary vectors
to represent the feature value tests and a pair of values to
represent the classification result.

Feature Dictionary Vector Leaf Value
Yes

Yes

No

No

(0,3)

(0,2)

(3,0)

[1, 0, 0, 0, (0, 3)]

[0, 1, 1, 0, (0, 2)]

[0, 1, 0, 1, (3, 0)]

Fig. 2. Example of Feature Dictionary

Binary Similarity and Distance Measures Most ap-
proaches measure the difference between the structure of trees
by Tree Edit Distance (TED). However, the TED problems are
generally NP-hard. The high computational complexity makes
the tree edit distance infeasible for data stream mining. By
transforming trees into a set of vectors and incorporating with
Operational Taxonomic Units (OTUs) expression, TDM is able
to use the binary similarity measures to measure the difference
between trees efficiently.

TABLE II
OTUS EXPRESSION OF BINARY EXAMPLES vi AND vj

PPPPPPvj

vi 1 (Presence) 0 (Absence) Sum

1 (Presence) a = vi · vj b = v̄i · vj a+ b
0 (Absence) c = vi · v̄j d = v̄i · v̄j c+ d
Sum a+ c b+ d vn = a+ b+ c+ d

Operational Taxonomic Units Expression Table II shows
how two binary vectors vi and vj are represented by OTUs
expression. In our cases, vi and vj are the vectors transformed
from paths of trees. By transforming binary vectors into
a, b, c, d, vn, we are able to compute different similarity mea-
sures efficiently. As shown in Table II, the “positive matches”,
a, is the number of features present in both vi and vj ; the
“vi absence mismatches”, b, is the number of features present
in vj but absent from vi; the “vj absence mismatches”, c is
the number of features present in vi but absent in vj ; and the
“negative matches”, d, is the number of features absent in both
vi and vj . The total number of matches between vi and vj is
the diagonal sum, a+ d; and the total number of mismatches
between vi and vj is another diagonal sum b+c. The total sum
of contingency table, a+ b+ c+d, is always equal to vn [25].
Table III shows an example of how different similarity and
distance measures are computed by the OTUs.

TABLE III
EXAMPLE OF HOW OTUS REPRESENT SIMILARITY AND DISTANCE

FUNCTIONS

Measurement OTU Expression Measurement OTU Expression

Innerproduct a+ d Hamming b+ c

Jaccard
a

a+ b+ c
Cosine

a√
(a+ b)(a+ c)

Algorithm 1 shows how TDM measures the difference
between two trees. As shown in Lines 4-10, TDM measures
the similarity between the vectors that exist in both TreeA and
TreeB . Then Lines 16-18 and 22-25 show that TDM assigns
similarity 0 to the vectors that only exist in one of the two
trees. The vector with similarity 0 indicates no vector similar to
it. Lastly, TDM normalizes and summarises these similarities
to get the similarity between the two trees. The only difference
using distance measurement is that TDM assigns distance 1 to
the vectors that only exist in one of the two trees, representing
no vector similar to these vectors.

Time and Memory Complexity The time complexity
for constructing a feature dictionary is O(Tn), where Tn is
the number of nodes of two trees since creating a feature
dictionary requires traversing both trees. After constructing
the feature dictionary, TDM transforms each path of trees
into binary vectors. In the worst case, the time complexity for
transforming a tree into a set of vectors is O(TpPn), where
Tp is the number of paths and Pn is the number of nodes
in the longest path. By using OTUs, the time complexity
for calculating the similarity between each pair of paths is
O(1); thus, the time complexity for calculating the similarity
between two sets of vectors are O(TApTBp) in the worst
case, where TAp and TBp are the number of paths for TreeA
and TreeB , respectively. The overall time complexity of TDM
is O(Tn + TApPAn + TBpPBn + TApTBp).

TDM stores a feature dictionary and two sets of vectors. The
storage complexity of a feature dictionary is O(nf) where
nf is the number of features used to build the TreeA and
TreeB . Each vector requires O(nd) memory, where nd is
the length of the vector; thus, in the worst case, we need
O(nd(TAp +TBp)) memory to store all vectors. The overall
memory complexity of TDM is O(2nf + nd(TAp + TBp).

V. EXPERIMENTS

This section evaluates the performance of TDM in three sets
of experiments. The first experiment investigates how TDM
performs on different similarity measures by comparing the
performance of each similarity measure against the ground
truth. The second experiment compares the performance of
TDM against three state-of-the-art baselines. The last experi-
ment compares the time and memory usage of TDM against
the baselines. We begin by reviewing the benchmark datasets,
baselines, evaluation metrics and experiment setting. We then
report and analyze the results to validate our approach. Finally,
we present a case study to validate whether the online learner
performance can be improved by adapting different drift
adaptation strategies according to the drift severity.

Datasets To evaluate our approach, we used eight well-
known datasets from UCI Machine Learning Repository [26],
Massive Online Analysis (MOA) [27], and Kaggle1. We inject
three types of concept drift: conditional drift, marginal drift for
the majority class, and marginal drift for the minority class.
We inject conditional drift by reversing the labels of examples
and inject marginal drift by swapping the values of important
features [19]. We one-hot encoded categorical features and
binned the numeric features using equal-quantiles binning.

Experimental Setting For all datasets, we create five
variants with drift severity 0%, 12.5%, 25%, 50%, 100%. All
experiments are carried out on Intel Xeon E3-12xx vs (Ivy
Bridge, IBRS) 2.70 GHz (16 processors), 64 GB RAM,
Windows Server 2012 R2 Standard. Due to the page limitation,
we only show part of the results here; the complete results and

1https://www.kaggle.com/sulianova/cardiovascular-disease-dataset

Algorithm 1: Measure Difference Between Two Trees

1 Input: TVi: A set of vectors of Treei, i ∈ {A,B};
Gi: A group of vectors with same key in TVi,
i ∈ {A,B}; M(·, ·): Difference measurement
function, either Similarity or Distance; DG Difference
measurement results of each vector pair in a specific
group; DT Difference measurement results of each
group;

2 Output: ψ: Difference between TVA and TVB
3 foreach GA in TVA do
4 if TVB .hasGroupWithSameKey(GA) then
5 GB ← TVB .findGroupWithSameKey(GA);
6 foreach vector vA in GA do
7 foreach vector vB in GB do
8 Dv ←M(vA, vB);
9 DG.append(Dv);

10 if M is Similarity Measurement Function then
11 DT .append(Max(DG) / (GA.Size +

GB .Size));
12 else
13 DT .append(Min(DG) / (GA.Size +

GB .Size));

14 else
15 if M is Similarity Measurement Function then
16 DT .append(0/GA.Size);
17 else
18 DT .append(1/GA.Size);

19 foreach Group GB in TVB do
20 if TVA.NoGroupWithSameKey(GB) then
21 if M is Similarity Measurement Function then
22 DT .append(0 / GB .Size);
23 else
24 DT .append(1 / GB .Size);

25 ψ ← Sum(DT);

code are available in here. All experiments are averaged over
50 runs using different random seeds.

Baselines We compare the designed approach with different
state-of-the-art baselines. To investigate whether TDM is able
to measure the drift severity of conditional drift, we compare
TDM against the Classification Accuracy, which is the most
straightforward way to monitor the model performance. To
investigate whether TDM is able to measure the drift severity
of marginal drift, we compare TDM against the Wasserstein
Distance [19], which is one of the state-of-the-art distribution-
based drift detection methods. To investigate how TDM per-
forms against the machine learning interpretation techniques,
we compare TDM against Permutation Importance [28],
which is a popular machine learning interpretation technique
that measures the decrease in model performance when a
single feature value is randomly shuffled.

https://www.kaggle.com/sulianova/cardiovascular-disease-dataset
https://github.com/VirtueZhao/TDM

Evaluation Metrics We proposed a metric called quan-
tification score (QS) to evaluate how TDM and baselines
perform against the ground truth. Equations 1 2 present the
QS score, where Ψ is the difference measure that returns the
difference ψi between M0 and Mδi , M0 is the dataset without
concept drift and Mδi is the dataset with concept drift and
the drift severity is δi. We normalized the results of each
difference measure and transformed the results of distance
measures ψD to the corresponding similarity measures ψS by
the function ψS = 1 − ψD, which allows us to evaluate the
distance measures without changing the function of QS. After
calculating the QS score, we use the Friedman-Nemenyi test
to compare the performance of TDM and baselines.

QS =

n∑
i=1

I(Ψ(M0,Mδi)) (1)

I(Ψ(M0,Mδi)) :=

{
0 ∃j(ψi > ψj , δi < δj)

1 Otherwise
(2)

A. Similarity Measures Comparison using QS

This section presents experiments that use quantification
scores to evaluate how TDM performs with different similarity
measures. We compared 76 similarity measures discussed by
Choi et al. [29]. Figure 3 shows the comparison of some pop-
ular similarity measures: Cosine Similarity, Fager&McGowan
Similarity, Dispersion, Inner Product, Euclidean Distance,
Chord Distance, Hamming Distance and Hellinger Distance.
The x axis shows the experimented datasets with different drift
severities, and the y axis shows the similarity measures. The
value in each cell represents the similarity between M0 and
Mδi by the similarity measure shown in the y axis. Table IV
shows the QS score for each similarity measure.

From the results in Figure 3, we observe the following (1)
The dataset with 100% conditional drift is hard to measure. (2)
The performance of TDM depends on the choice of similarity
measures. For example, the Fager&McGowan Similarity per-
forms poorly for most of the datasets. The Fager&McGowan
Similarity does not always increase when the drift severity
decreases. On the other hand, after transforming into similarity,
the Chord Distance always increases as the drift severity
decreases. From Table IV, we observe that Chord Distance
gets the highest QS score among all similarity measures.

For Observation 1, we reason that reversing all dataset
labels will not change the inner nodes of tree paths but
only the classification result of leaf nodes. As the size of
the dataset increases, it deteriorates the performance of TDM
because the increase in the variety of classification results
leads to the increase in the overlap between two trees, which
confuses TDM. For Observation 2, we reason that different
similarity measures focus on different points. For example,
some similarity measures may focus on the features present
in both vi and vj , but others may focus on the features present
in vi but absent in vj . Thus, the choice of similarity measures
should be considered task by task.

B. Quantification Score Comparison against Baselines

This section presents experiments to compare the quantifi-
cation score of TDM against the baselines. The similarity
measure used here is Chord Distance since the results of
Section V-A show it has the highest quantification score among
the 76 similarity measures. From the results in Figure 4, we
have the following observations: (1) Overall, TDM performs
slightly better than Classification Accuracy and Wasserstein
Distance but not significant enough. (2) TDM outperforms
Permutation Importance.

For Observation 1, we reason that regardless of the concept
drift type, it will change the structure of the tree, and the
magnitude of change can be reflected by measuring the dif-
ference between trees. For Observation 2, we reason that the
Permutation Importance is designed to interpret the feature
importance changes during the concept drift. This information
may not be able to reveal the magnitude of drift severity.
Overall, we conclude that TDM is able to measure the drift
severity by measuring the difference between tree classifiers
and outperforms the baselines.

C. Time and Memory Usage Comparison

Lastly, we present experiments to compare the runtime
and memory usage against baselines. Table V shows the
runtime and memory usage for each algorithm, where NaN
represents that the Wasserstein Distance cannot measure the
conditional drift. Table V shows the following observations:
(1) TDM takes up the second-least storage space and runs in
an acceptable time. (2) The runtime of Permutation Importance
is much higher than the others, which makes Permutation
Importance infeasible for the online environment.

Overall, by evaluating TDM on eight datasets and com-
paring it to the state-of-the-art methods, we have shown that
TDM is able to measure the drift severity of different types of
concept drifts and provides the best trade-off in runtime and
memory usage.

VI. CASE STUDY

This section demonstrates a case study to show how the
online leaner performance improves when adapting different
drift adaptation strategies according to the drift severities.

Datasets We used three famous synthetic concept drift
data generator: AGRAWAL [30], RandomRBF, and SEA [31].
AGRAWAL generator produces a stream containing nine fea-
tures, six numeric and three categorical. AGRAWAL defines
ten functions to generate binary class labels from the fea-
tures. The features and functions are provided in the original
paper [30]. RandomRBF generator produces a radial basis
function stream. It generates several centroids with a random
central position, a standard deviation, a class label and weight.
RandomRBF generator creates a new sample by choosing
one of the centroids at random, taking into account their
weights, and offsetting the features at a random direction
from the centroid’s centre. The SEA generator generates three
numerical features that vary from 0 to 10, where only two of
them are relevant to the classification task. SEA provides four

Cosine
Fager

Disperson
Inner Product

Euclidean
Chord

Hamming
Hellinger

0.07 0.02 0.04 0.05 1.00
0.52 0.22 0.18 0.33 0.00
0.06 0.01 0.04 0.06 1.00
0.12 0.30 0.32 0.26 0.85
0.61 0.45 0.44 0.51 1.00
0.52 0.48 0.49 0.50 1.00
0.76 0.38 0.39 0.56 1.00
0.54 0.48 0.48 0.50 1.00

Adult Conditional Drift
0.02 0.05 0.06 0.09 0.99
0.53 0.43 0.49 0.43 0.00
0.00 0.04 0.05 0.08 0.99
0.19 0.28 0.23 0.26 0.87
0.51 0.47 0.51 0.51 1.00
0.49 0.49 0.50 0.52 1.00
0.51 0.44 0.53 0.53 1.00
0.49 0.48 0.51 0.52 1.00

Adult Marginal Drift Majority
0.00 0.11 0.07 0.07 0.99
0.46 0.43 0.45 0.39 0.00
-0.02 0.07 0.07 0.07 0.99
0.18 0.29 0.24 0.27 0.87
0.48 0.50 0.52 0.50 1.00
0.47 0.51 0.51 0.51 1.00
0.42 0.52 0.57 0.51 1.00
0.48 0.50 0.51 0.51 1.00

Adult Marginal Drift Minority
0.08 0.05 0.06 0.08 0.99
0.56 0.34 0.37 0.42 0.00
0.12 0.09 0.08 0.08 0.98
0.14 0.24 0.21 0.21 0.92
0.63 0.43 0.46 0.49 1.00
0.54 0.48 0.49 0.49 1.00
0.76 0.38 0.44 0.51 1.00
0.56 0.47 0.48 0.49 1.00

Bank Conditional Drift
0.00 0.05 0.06 0.06 1.00
0.76 0.43 0.40 0.43 0.00
-0.00 0.05 0.08 0.07 0.99
0.09 0.27 0.26 0.23 0.89
0.63 0.46 0.46 0.48 1.00
0.49 0.49 0.51 0.51 1.00
0.80 0.42 0.42 0.46 1.00
0.52 0.48 0.50 0.50 1.00

Bank Marginal Drift Majority
0.07 0.13 0.20 0.24 0.94
0.70 0.51 0.51 0.51 0.00
0.02 0.08 0.11 0.11 0.99
0.20 0.27 0.30 0.31 0.84
0.52 0.47 0.50 0.52 1.00
0.46 0.49 0.52 0.53 1.00
0.58 0.43 0.49 0.51 1.00
0.47 0.48 0.52 0.54 1.00

Bank Marginal Drift Minority

Cosine
Fager

Disperson
Inner Product

Euclidean
Chord

Hamming
Hellinger

0.20 0.09 0.08 0.13 0.96
0.47 0.39 0.45 0.36 0.00
0.09 0.07 0.05 0.13 0.98
0.17 0.20 0.18 0.25 0.92
0.54 0.47 0.49 0.50 1.00
0.52 0.49 0.48 0.51 1.00
0.58 0.44 0.49 0.50 1.00
0.53 0.48 0.48 0.51 1.00

Cardio Conditional Drift
0.07 0.11 0.06 0.08 0.99
0.34 0.29 0.40 0.38 0.00
0.01 0.08 0.05 0.05 0.99
0.20 0.24 0.17 0.19 0.92
0.47 0.49 0.52 0.51 1.00
0.49 0.51 0.50 0.50 1.00
0.44 0.49 0.55 0.53 1.00
0.48 0.50 0.51 0.51 1.00

Cardio Marginal Drift Majority
0.05 0.12 0.16 0.15 0.97
0.42 0.41 0.35 0.42 0.00
0.00 0.09 0.11 0.12 0.98
0.16 0.21 0.27 0.23 0.90
0.47 0.51 0.49 0.53 1.00
0.47 0.51 0.51 0.52 1.00
0.43 0.53 0.49 0.57 1.00
0.46 0.51 0.50 0.53 1.00

Cardio Marginal Drift Minority
0.03 0.02 0.02 0.06 1.00
0.33 0.68 0.69 0.60 0.00
0.04 0.01 0.02 0.06 1.00
0.14 0.09 0.07 0.15 0.97
0.43 0.52 0.54 0.52 1.00
0.49 0.50 0.50 0.51 1.00
0.32 0.56 0.62 0.57 1.00
0.47 0.50 0.52 0.51 1.00

Chess Conditional Drift
0.15 0.20 0.04 0.04 0.97
0.59 0.65 0.69 0.48 0.00
0.06 0.07 0.02 0.07 0.99
0.44 0.24 0.12 0.17 0.84
0.46 0.54 0.52 0.48 1.00
0.47 0.53 0.49 0.51 1.00
0.47 0.57 0.55 0.43 1.00
0.43 0.54 0.51 0.52 1.00

Chess Marginal Drift Majority
0.19 0.33 0.36 0.47 0.71
0.26 0.49 0.55 0.35 0.00
0.08 0.23 0.22 0.36 0.87
0.40 0.32 0.29 0.44 0.68
0.25 0.55 0.61 0.69 1.00
0.33 0.53 0.54 0.66 1.00
0.14 0.64 0.72 0.76 1.00
0.28 0.55 0.58 0.68 1.00

Chess Marginal Drift Minority

Cosine
Fager

Disperson
Inner Product

Euclidean
Chord

Hamming
Hellinger

0.10 0.06 0.06 0.08 0.99
0.19 0.23 0.30 0.24 0.00
0.13 0.04 0.04 0.07 0.99
0.21 0.29 0.22 0.25 0.87
0.52 0.48 0.51 0.49 1.00
0.52 0.49 0.49 0.50 1.00
0.57 0.44 0.52 0.49 1.00
0.52 0.48 0.50 0.50 1.00

Credit Conditional Drift
0.00 0.06 0.27 0.34 0.90
0.39 0.30 0.37 0.45 0.00
-0.02 0.04 0.06 0.09 0.99
0.29 0.25 0.27 0.28 0.84
0.46 0.46 0.53 0.57 1.00
0.44 0.48 0.53 0.55 1.00
0.42 0.44 0.54 0.63 1.00
0.43 0.48 0.54 0.56 1.00

Credit Marginal Drift Majority
0.04 0.05 0.26 0.39 0.88
0.26 0.34 0.39 0.36 0.00
-0.01 0.04 0.08 0.14 0.99
0.32 0.20 0.27 0.29 0.84
0.39 0.48 0.54 0.60 1.00
0.43 0.47 0.53 0.59 1.00
0.32 0.50 0.59 0.65 1.00
0.40 0.48 0.54 0.60 1.00

Credit Marginal Drift Minority
0.13 0.09 0.12 0.16 0.97
0.49 0.34 0.36 0.37 0.00
0.17 0.08 0.11 0.14 0.97
0.20 0.28 0.28 0.29 0.85
0.61 0.44 0.47 0.50 1.00
0.53 0.47 0.49 0.51 1.00
0.72 0.37 0.47 0.50 1.00
0.55 0.46 0.48 0.51 1.00

Diamonds Conditional Drift
0.09 0.11 0.26 0.27 0.91
0.19 0.31 0.40 0.34 0.00
0.09 0.11 0.11 0.11 0.98
0.32 0.32 0.29 0.34 0.77
0.41 0.48 0.58 0.54 1.00
0.46 0.48 0.54 0.53 1.00
0.35 0.50 0.64 0.55 1.00
0.44 0.48 0.56 0.53 1.00

Diamonds Marginal Drift Majority
0.08 0.09 0.12 0.17 0.97
0.42 0.47 0.46 0.50 0.00
0.07 0.07 0.08 0.09 0.99
0.24 0.23 0.27 0.27 0.86
0.47 0.50 0.50 0.53 1.00
0.49 0.49 0.50 0.52 1.00
0.43 0.51 0.50 0.57 1.00
0.49 0.50 0.49 0.52 1.00

Diamonds Marginal Drift Minority

100% 50% 25% 12.5% 0%

Cosine
Fager

Disperson
Inner Product

Euclidean
Chord

Hamming
Hellinger

0.11 0.01 0.04 0.02 0.99
0.30 0.65 0.66 0.67 0.00
0.09 -0.00 0.02 0.01 1.00
0.22 0.06 0.08 0.06 0.97
0.47 0.50 0.51 0.51 1.00
0.52 0.49 0.50 0.49 1.00
0.37 0.53 0.57 0.56 1.00
0.50 0.50 0.50 0.50 1.00

Gamma Conditional Drift

100% 50% 25% 12.5% 0%

0.02 0.02 0.05 0.07 1.00
0.62 0.66 0.55 0.56 0.00
0.00 0.00 0.02 0.05 1.00
0.07 0.07 0.13 0.14 0.98
0.50 0.51 0.49 0.50 1.00
0.50 0.50 0.50 0.51 1.00
0.49 0.53 0.48 0.51 1.00
0.50 0.51 0.49 0.50 1.00

Gamma Marginal Drift Majority

100% 50% 25% 12.5% 0%

0.09 0.06 0.11 0.25 0.96
0.05 0.46 0.49 0.37 0.00
0.01 0.03 0.05 0.13 0.99
0.23 0.10 0.14 0.27 0.92
0.37 0.53 0.56 0.56 1.00
0.45 0.49 0.51 0.55 1.00
0.26 0.60 0.63 0.60 1.00
0.42 0.51 0.53 0.55 1.00

Gamma Marginal Drift Minority

100% 50% 25% 12.5% 0%

0.06 0.02 0.03 0.03 1.00
0.17 0.10 0.07 0.00 0.05
0.17 0.01 0.02 0.03 0.98
0.21 0.35 0.38 0.38 0.74
0.63 0.48 0.47 0.44 1.00
0.56 0.48 0.48 0.48 1.00
0.75 0.47 0.46 0.40 1.00
0.59 0.47 0.47 0.47 1.00

Poker Conditional Drift

100% 50% 25% 12.5% 0%

0.06 0.08 0.12 0.43 0.89
0.13 0.00 0.11 0.22 0.09
0.02 0.07 0.10 0.16 0.98
0.42 0.46 0.41 0.42 0.51
0.48 0.43 0.48 0.64 1.00
0.43 0.47 0.49 0.63 1.00
0.50 0.39 0.49 0.65 1.00
0.43 0.46 0.49 0.64 1.00

Poker Marginal Drift Majority

100% 50% 25% 12.5% 0%

0.07 0.14 0.18 0.49 0.84
0.18 0.15 0.13 0.22 0.00
0.05 0.10 0.15 0.22 0.96
0.39 0.49 0.43 0.43 0.50
0.48 0.44 0.44 0.68 1.00
0.41 0.46 0.48 0.70 1.00
0.50 0.44 0.44 0.65 1.00
0.42 0.45 0.47 0.71 1.00

Poker Marginal Drift Minority

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3. Similarity Measures Comparison on Eight Datasets

TABLE IV
EVALUATION OF 59 SIMILARITY AND 17 DISTANCE MEASUREMENTS

Similarity Score Similarity Score Similarity Score Distance Score

Jaccard 0.825 Mounford 0.883 Sokal&Sneath-V 0.817 Hamming 0.775
Dice 0.817 Otsuka 0.817 Cole 0.867 Euclid 0.767
Czekanowski 0.817 Mc Connaughey 0.883 Stlies 0.775 Squared-Euclid 0.775
3w-Jaccard 0.817 Tarwid 0.833 Ochiai-Ii 0.817 Canberra 0.775
Nei&Li 0.817 Kulczynski-Ii 0.817 Yuleq 0.825 Manhattan 0.775
Sokal&Sneath-I 0.825 Driver&Kroeber 0.817 Yulew 0.842 Mean-Manhattan 0.758
Sokal&Michener 0.758 Johson 0.817 Kulczynski-I 0.858 Cityblock 0.775
Sokal&Sneath-Ii 0.758 Dennis 0.850 Tanimoto 0.825 Minkowski 0.775
Roger&Tanmoto 0.767 Simpson 0.817 Disperson 0.842 Vari 0.767
Faith 0.767 Braun&Banquet 0.817 Hamann 0.800 Sizedifference 0.767
Gower&Legendre 0.758 Fager&Mcgowan 0.517 Michael 0.825 Shape difference 0.758
Intersection 0.792 Forbes-Ii 0.858 Goodman&Kruskal 0.858 Patterndifference 0.758
Innerproduct 0.742 Sokal&Sneath-Iv 0.792 Anderberg 0.858 Lance&Williams 0.817
Russell&Rao 0.792 Gower 0.758 Baroni-Urbani&Buser-I 0.817 Bray&Curtis 0.817
Cosine 0.825 Pearson-I 0.850 Baroni-Urbani&Buser-Ii 0.858 Hellinger 0.817
Gilbert&Wells 0.792 Pearson-II 0.817 Peirce 0.708 Chord 0.892
Ochai-I 0.817 Pearson-III 0.808 Eyraud 0.850 Yule Q 0.825
Forbesi 0.817 Pearson&Heron-I 0.842 Tarantule 0.842
Fossum 0.842 Pearson&Heron 0.833 Ample 0.842
Sorgenfrei 0.850 Sokal&Sneath-III 0.800

1 2 3 4

TDM(2.04±0.62)
Acc(2.12±1.17) WD(2.48±1.12)

PI(3.35±0.48)

CD(0.79)

Fig. 4. Evaluation of All Datasets
Note: Acc for Classification Accuracy, WD for Wasserstein

Distance, PI for Permutation Importance.

classification functions to generate the data. These functions
compare the sum of the two relevant features with a threshold
value, unique for each classification function. The classifica-
tion functions are provided in the original paper [31].

Experimental Setting We generate a large data stream with
5000 examples and a small data stream with 1000 examples
in each concept for each generator. We generate two types of
concept drift for each data stream, abrupt and gradual drift.
The drift width of abrupt and gradual drift is set to 1 and
10% of the examples in the single concept, respectively. Each

TABLE V
RUNTIME AND MEMORY USAGE ANALYSIS (ACCURACY FOR CLASSIFICATION ACCURACY, WD FOR WASSERSTEIN DISTANCE, PI FOR PERMUTATION

IMPORTANCE, NAN REPRESENTS THAT THE WASSERSTEIN DISTANCE CANNOT MEASURE THE CONDITIONAL DRIFT)

Dataset Drift Type TDM Accuracy WD PI

R
un

tim
e

(s
)

Adult Conditional 286.69± 0.31 84.01± 0.20 NaN ≥ 8 hours
Bank Conditional 193.26± 0.88 23.78± 0.08 NaN ≥ 8 hours
Chess Conditional 116.44± 0.43 28.26± 0.12 NaN ≥ 8 hours
Diamonds Conditional 116.20± 0.42 37.56± 0.19 NaN ≥ 8 hours
Adult Majority 266.40± 0.49 86.50± 0.21 1.22± 0.02 ≥ 8 hours
Bank Majority 169.30± 0.84 30.28± 0.30 0.79± 0.01 ≥ 8 hours
Chess Majority 111.98± 0.06 23.89± 0.23 0.45± 0.01 ≥ 8 hours
Diamonds Majority 114.34± 1.07 36.27± 0.26 0.45± 0.02 ≥ 8 hours
Adult Minority 262.40± 0.64 77.78± 0.35 1.12± 0.04 ≥ 8 hours
Bank Minority 173.23± 1.38 23.93± 0.03 0.75± 0.02 ≥ 8 hours
Chess Minority 108.50± 0.45 28.66± 0.07 0.43± 0.01 ≥ 8 hours
Diamonds Minority 114.95± 0.56 36.34± 0.15 0.45± 0.01 ≥ 8 hours

M
em

or
y

U
sa

ge
(M

B
)

Adult Conditional 4.10± 0.00 2.04± 0.00 NaN 93.89± 0.00
Bank Conditional 2.54± 0.00 1.23± 0.00 NaN 60.71± 0.00
Chess Conditional 1.61± 0.00 0.80± 0.00 NaN 36.91± 0.00
Diamonds Conditional 1.12± 0.00 0.55± 0.00 NaN 35.79± 0.00
Adult Majority 3.23± 0.00 2.04± 0.00 134.34± 0.00 93.92± 0.00
Bank Majority 1.93± 0.00 1.23± 0.00 87.05± 0.00 60.07± 0.00
Chess Majority 1.54± 0.00 0.80± 0.00 52.79± 0.00 36.82± 0.00
Diamonds Majority 1.36± 0.00 0.55± 0.00 51.92± 0.00 36.04± 0.00
Adult Minority 3.29± 0.00 2.04± 0.00 134.34± 0.00 93.03± 0.00
Bank Minority 1.99± 0.00 1.23± 0.00 87.05± 0.00 60.14± 0.00
Chess Minority 1.57± 0.00 0.80± 0.00 52.79± 0.00 36.85± 0.00
Diamonds Minority 1.32± 0.00 0.55± 0.00 51.92± 0.00 36.00± 0.00

data stream consists of three concepts where the drift severity
between conceptA and conceptB is less than the drift severity
between conceptB and conceptC . Table VI shows the functions
used to generate the case study data. The labels of datasets are
balanced.

TABLE VI
CASE STUDY DATA GENERATION FUNCTIONS

ConceptA ConceptB ConceptC
AGRAWAL Function 1 Function 3 Function 4
RandomRBF 4 Drift Centroids 5 Drift Centroids 10 Drift Centroids
SEA Function 1 Function 3 Function 2

Baselines and Evaluation Metrics We choose the Hoeffd-
ing Tree as our base classifier and the remove-and-retrain
framework as the baseline. Each time drift is detected, the
baseline retrains a Hoeffding Tree. We use Classification
Accuracy as the evaluation metric since the labels of datasets
are balanced.

Evaluation From the results in Figure 5, we make two
observations: (1) In conceptB , TDM gets higher accuracy
than the baseline because it does not retrain the model when
the drift occurs between conceptA and conceptB . (2) Both
TDM and baseline improve the online learner performance by
retraining the model when the drift occurs between conceptB
and conceptC .

For Observation 1, we reason that a small drift severity
indicates that the previously learned knowledge is helpful in
the new concept. Thus, transferring the previous model to the
current concept may increase performance instead of retraining
a new model. For Observation 2, we reason that a large drift

severity indicates that previously learned knowledge cannot
benefit the new concept. Thus, we need to retrain a new model
for the new concept.

Overall, we conclude that the online learner performance
can be improved by adapting different drift adaptation strate-
gies based on the drift severity.

VII. CONCLUSION

This paper presents a post-hoc drift severity measurement
framework called Tree-based Drift Measurement. The high-
light of TDM is that it measures the drift severity by measuring
the difference between tree classifiers, which reduces the
time and memory complexity of measuring drift severity and
preserves data privacy. The evaluations show that TDM is
time and memory efficient and outperforms the baselines. The
case study shows that the online learner performance can
be improved by adapting different drift adaptation strategies
based on the drift severity. One future work for TDM is
finding a better way to deal with the numeric features since
the splitting strategy of numeric features may violate the
robustness of TDM.

REFERENCES

[1] Ł. Korycki and B. Krawczyk, “Concept drift detection from multi-
class imbalanced data streams,” in International Conference on Data
Engineering. IEEE, 2021.

[2] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under
concept drift: A review,” IEEE Transactions on Knowledge and Data
Engineering, 2018.

[3] V. Cerqueira, H. M. Gomes, and A. Bifet, “Unsupervised concept drift
detection using a student–teacher approach,” in International Conference
on Discovery Science. Springer, 2020.

0 2500 5000 7500 10000 12500 15000

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

AGRAWAL_Large_Abrupt
Retrain
TDM

0 2500 5000 7500 10000 12500 15000

0.50

0.55

0.60

0.65

0.70

0.75

AGRAWAL_Large_Gradual
Retrain
TDM

0 500 1000 1500 2000 2500 3000

0.50

0.55

0.60

0.65

AGRAWAL_Small_Abrupt
Retrain
TDM

0 500 1000 1500 2000 2500 3000

0.50

0.55

0.60

0.65

AGRAWAL_Small_Gradual
Retrain
TDM

0 2500 5000 7500 10000 12500 15000

0.600

0.625

0.650

0.675

0.700

0.725

0.750

Ac
cu

ra
cy

RandomRBF_Large_Abrupt
Retrain
TDM

0 2500 5000 7500 10000 12500 15000

0.600

0.625

0.650

0.675

0.700

0.725

0.750

RandomRBF_Large_Gradual
Retrain
TDM

0 500 1000 1500 2000 2500 3000

0.60

0.62

0.64

0.66

0.68

0.70

0.72
RandomRBF_Small_Abrupt

Retrain
TDM

0 500 1000 1500 2000 2500 3000

0.60

0.62

0.64

0.66

0.68

0.70

0.72
RandomRBF_Small_Gradual

Retrain
TDM

0 2500 5000 7500 10000 12500 15000
Number of Instances

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Ac
cu

ra
cy

SEA_Large_Abrupt

Retrain
TDM

0 2500 5000 7500 10000 12500 15000
Number of Instances

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96
SEA_Large_Gradual

Retrain
TDM

0 500 1000 1500 2000 2500 3000
Number of Instances

0.82

0.84

0.86

0.88

0.90

0.92

0.94

SEA_Small_Abrupt

Retrain
TDM

0 500 1000 1500 2000 2500 3000
Number of Instances

0.82

0.84

0.86

0.88

0.90

0.92

0.94

SEA_Small_Gradual

Retrain
TDM

Fig. 5. Case Study for the Performance of TDM against the Baseline Framework

[4] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift
detection,” in Advances in Artificial Intelligence - SBIA. Springer, 2004.

[5] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data
streams,” in International Conference on Knowledge Discovery and Data
Mining. ACM, 2001.

[6] E. S. Page, “Continuous inspection schemes,” Biometrika, 1954.
[7] A. Bifet, J. Read, B. Pfahringer, G. Holmes, and I. Žliobaitė, “Cd-

moa: Change detection framework for massive online analysis,” in
Internatonal Symposium on Intelligent Data Analysis. Springer, 2013.

[8] G. Widmer and M. Kubat, “Learning in the presence of concept drift
and hidden contexts,” Machine learning, 1996.

[9] G. Widmer, “Combining robustness and flexibility in learning drifting
concepts,” in European Conference on Artificial Intelligence. Citeseer,
1994.

[10] J. Gama and G. Castillo, “Learning with local drift detection,” in
International Conference on Advanced Data Mining and Applications.
Springer, 2006.

[11] M. Baena-Garcıa, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavalda,
and R. Morales-Bueno, “Early drift detection method,” in Workshop on
Knowledge Discovery from Data Streams, 2006.

[12] I. Frias-Blanco, J. del Campo-Ávila, G. Ramos-Jimenez, R. Morales-
Bueno, A. Ortiz-Diaz, and Y. Caballero-Mota, “Online and non-
parametric drift detection methods based on hoeffding’s bounds,” IEEE
Transactions on Knowledge and Data Engineering, 2014.

[13] A. Liu, G. Zhang, and J. Lu, “Fuzzy time windowing for gradual concept
drift adaptation,” in International Conference on Fuzzy Systems. IEEE,
2017.

[14] S. Xu and J. Wang, “Dynamic extreme learning machine for data stream
classification,” Neurocomputing, 2017.

[15] D. Kifer, S. Ben-David, and J. Gehrke, “Detecting change in data
streams,” in International Conference on Very Large Data Bases.
Toronto, Canada, 2004.

[16] X. Song, M. Wu, C. Jermaine, and S. Ranka, “Statistical change
detection for multi-dimensional data,” in International Conference on
Knowledge Discovery and Data Mining. ACM, 2007.

[17] A. A. Qahtan, B. Alharbi, S. Wang, and X. Zhang, “A pca-based
change detection framework for multidimensional data streams: Change
detection in multidimensional data streams,” in International Conference
on Knowledge Discovery and Data Mining. ACM, 2015.

[18] L. Bu, C. Alippi, and D. Zhao, “A pdf-free change detection test based on
density difference estimation,” IEEE Transactions on Neural Networks
and Learning Systems, 2016.

[19] D. Zhao and Y. S. Koh, “Feature drift detection in evolving data
streams,” in International Conference on Database and Expert Systems
Applications. Springer, 2020.

[20] I. Baidari and N. Honnikoll, “Bhattacharyya distance based concept
drift detection method for evolving data stream,” Expert Systems with
Applications, 2021.

[21] J. L. Lobo, J. Del Ser, E. Osaba, A. Bifet, and F. Herrera, “Curie:
a cellular automaton for concept drift detection,” Data Mining and
Knowledge Discovery, 2021.

[22] A. Impedovo, C. Loglisci, M. Ceci, and D. Malerba, “jkarma: A highly-
modular framework for pattern-based change detection on evolving
data,” Knowledge-Based Systems, 2020.

[23] J. Haug and G. Kasneci, “Learning parameter distributions to detect
concept drift in data streams,” in International Conference on Pattern
Recognition. IEEE, 2021.

[24] B. Halstead, Y. S. Koh, P. Riddle, M. Pechenizkiy, A. Bifet, and
R. Pears, “Fingerprinting concepts in data streams with supervised and
unsupervised meta-information,” in International Conference on Data
Engineering. IEEE, 2021.

[25] P. Bille, “A survey on tree edit distance and related problems,” Theoret-
ical Computer Science, 2005.

[26] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[27] A. Bifet, G. Holmes, B. Pfahringer, P. Kranen, H. Kremer, T. Jansen,
and T. Seidl, “Moa: Massive online analysis, a framework for stream
classification and clustering,” in Workshop on Applications of Pattern
Analysis. PMLR, 2010.

[28] L. Breiman, “Random forests,” Machine Learning, 2001.
[29] S.-S. Choi, S.-H. Cha, and C. C. Tappert, “A survey of binary sim-

ilarity and distance measures,” Journal of Systemics, Cybernetics and
Informatics, 2010.

[30] R. Agrawal, T. Imielinski, and A. Swami, “Database mining: A per-
formance perspective,” IEEE Transactions on Knowledge and Data
Engineering, 1993.

[31] W. N. Street and Y. Kim, “A streaming ensemble algorithm (sea) for
large-scale classification,” in International Conference on Knowledge
Discovery and Data Mining. ACM, 2001.

http://archive.ics.uci.edu/ml

	Introduction
	Related Work
	Preliminaries
	Tree Based Drift Measurement (TDM)
	Experiments
	Similarity Measures Comparison using QS
	Quantification Score Comparison against Baselines
	Time and Memory Usage Comparison

	Case Study
	Conclusion
	References

