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Abstract

Accurate classification and forecasting of renewable energy, such as wind and photovoltaic (PV)
power, are critical for effective grid management and stable integration of renewable energy
sources. However, existing computational methods—particularly time-series-based approaches—
often fail to capture complex, latent relationships in renewable energy data and offer limited in-
terpretability. To address these challenges, we propose HUF4WP (High-Utility Framework for
Wind/PV power), a high-utility data fusion framework designed to extract and leverage predic-
tive patterns from wind/PV data. HUF4WP transforms continuous energy data into a discretized
format and applies high-utility pattern mining algorithms to discover both ordered and unordered
patterns, along with high-utility association rules. These patterns are then utilized for wind and
solar power classification/prediction by fusing informative feature interactions across various
conditions. We evaluate HUF4WP on eight PV and six wind datasets using seven classification
models and seven evaluation metrics. Experimental results demonstrate that HUF4WP achieves
better classification performance compared to baseline models trained on the raw features. It
also provides faster computational performance than baseline and regression-based forecasting
approaches. Moreover, the discovered patterns and rules provide interpretable insights into key
features and their contributions to renewable energy dynamics.

Keywords: Wind and PV power, High-utility pattern mining, Feature weighting, Renewable
energy classification, Discretization

1. Introduction

The global shift toward sustainable energy systems [1] has led to the widespread adoption of
renewable sources—particularly wind and photovoltaic (PV) power. These are supported by ad-
vanced storage technologies (e.g., batteries, pumped hydro) and smart grids. Renewable energy
provides promising alternatives to fossil fuels by providing clean, decentralized, and increasingly
cost-effective energy. Recent statistics indicate that renewable sources have supplied a record
32% of global electricity in 2024, up from 30% in 2023, with solar and wind driving the majority
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of this growth [2]. Furthermore, the International Energy Agency (IEA) projects that renew-
able energy generation will overtake coal-fired generation by 2025 [3]. Modern energy systems
produce large volumes of heterogeneous data from various sources, such as sensors, Internet
of Things (IoT) devices, and weather forecasting services. The effective fusion and integration
of this multi-source data are critical for computing key grid performance indicators, which are
essential for monitoring stability and supporting operational decisions. At the same time, the
inherent variability and intermittency of wind/PV power introduce significant challenges for grid
stability, operational planning, and energy market operations. This rapid expansion has intro-
duced new complexities in managing and forecasting renewable energy generation.

Addressing these challenges requires sophisticated data-driven methods that can process,
fuse, and interpret complex information from diverse renewable energy datasets. Various predic-
tive approaches have been introduced that can be broadly categorized into four frameworks: (1)
physical models [4, 5, 6], which rely on meteorological inputs, atmospheric dynamics, and phys-
ical principles to simulate wind/PV generation processes; (2) statistical, machine learning (ML),
and deep learning (DL) techniques [7, 8, 9, 10, 11, 12, 13], which leverage large amounts of his-
torical data to identify patterns and construct predictive models; (3) meta-heuristic optimization
methods, employed to optimize feature selection, model parameters, and ensemble strategies to
enhance predictive accuracy and optimize model complexity; and (4) fusion or hybrid methods
[14, 15], which combine the strengths of physical, statistical, and heuristic techniques to improve
prediction performance (more details are presented in Section 2).

While effective, each of the aforementioned predictive frameworks presents notable limita-
tions in the context of wind/PV power forecasting. Physical models require extensive domain
expertise, significant computational resources and often lack robustness [16], making them un-
suitable for real-time or large-scale applications. Statistical, ML, and DL methods depend on
large volumes of clean historical data. They often struggle to generalize under dynamic weather
conditions or when exposed to unseen patterns-especially when trained on imbalanced or noisy
datasets [8, 9, 10, 11, 12, 13]. Meta-heuristic methods are useful for optimizing feature selection
and model parameters, but they can be computationally intensive, sensitive to hyperparameters
and require expert intervention for reliable results [17, 18, 19]. Hybrid and fusion methods often
result in overly complex models that are difficult to deploy and maintain in real-world energy
systems [14, 15, 20]. Across all four categories, challenges remain in terms of accuracy, general-
izability, and scalability, mainly because most methods are evaluated on limited datasets—often
confined to a single case study or location.

Pattern discovery techniques—such as frequent itemset mining (FIM) [21] and sequential
pattern mining (SPM) [22]—provide a complementary approach to enhance the interpretability
of predictive models by identifying frequent patterns and rules in renewable energy datasets.
These methods have been applied to uncover recurring sets of features or events in renewable
energy data, such as frequent patterns in spatio-temporal wind [23, 24] and solar [25] datasets.
However, these methods assume that all features contribute equally to the outcome, neglecting
the fact that some features may carry greater importance or relevance than others. For renew-
able energy forecasting, variables such as wind speed, irradiance, and pressure may vary in
significance depending on the operational scenario or forecasting objective. To the best of our
knowledge, there is a notable gap in the literature regarding approaches that explicitly incorpo-
rate feature utility—the relative importance or contribution of individual energy features—into
the pattern mining process, particularly for subsequence analysis and classification.

We propose HUF4WP (High-Utility Framework for Wind/PV), a high-utility data fusion
framework for interpretable analysis and classification of wind/PV power. Unlike traditional
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frequent pattern mining methods, high-utility itemset mining (HUIM) techniques [26] prioritize
patterns with higher operational or predictive significance. For example, they emphasize high-
impact features like wind speed or irradiance fluctuations. In contrast, high-utility sequential
pattern mining (HUSPM) techniques capture ordered patterns. Both ensure that the discovered
rules and associations are more relevant for site-specific renewable energy prediction. Further-
more, we incorporate correlated HUIM to identify strongly associated feature value sets that
play a critical role in operational decision-making for renewable energy systems. HUF4WP first
transforms continuous power data into a discretized format. Then, the importance of each feature
is determined using a game theoretic approach. The features with high (low) SHAP (SHapley
Additive exPlanations) [27] values are assigned proportional weights. The transformed data,
containing features, their values, and assigned utilities, are then processed using various utility
mining algorithms to discover high-utility itemsets, high-utility sequential patterns, rules and
correlated high-utility itemsets. These frequent high-utility itemsets and sequential patterns are
subsequently used to build predictive models that classify/predict wind/PV power. Unlike pre-
vious related studies that treat forecasting as a regression problem using continuous outputs,
HUF4WP reformulates it as a classification task by discretizing both input features and target
variables. This shift enables interpretable, utility-aware modeling and aligns with real-world op-
erational needs where categorical feature levels are often more actionable than precise numerical
forecasts. The main contributions of this work are as follows:

• Discretization of continuous energy data: A systematic approach is introduced to trans-
form continuous wind/PV data (e.g., wind speed, solar irradiance, temperature, and power
output) into categorical representations. This is achieved through binning techniques,
where continuous variables are segmented into meaningful intervals based on domain-
informed thresholds. The discretized format enhances interpretability, reduces noise sen-
sitivity, and facilitates the application of high-utility pattern mining algorithms.

• High-Utility Driven Pattern Discovery Framework: A data fusion framework is devel-
oped that integrates multiple high-utility pattern mining techniques to extract interpretable
and operationally relevant knowledge from discretized energy datasets. By incorporating
utility scores derived from SHAP values, the framework prioritizes feature-value combi-
nations that hold the highest influence on energy outcomes. HUIM identifies co-occurring
feature sets with high cumulative utility, while HUSPM captures ordered dependencies
critical for understanding energy behavior over time. Correlated HUIM further refines
these insights by isolating strongly associated feature-value subsets. Overall, these meth-
ods ensure that the discovered patterns are frequent and highly impactful, supporting the
development of robust and explainable predictive models for wind/PV power.

• Discovered Patterns in Classification: The obtained frequent and high-utility patterns
are employed as features for supervised learning tasks. It is found that embedding the
patterns into the seven classification models yields improved results while maintaining
model interpretability.

• Experimental Evaluation: Extensive experiments are performed on eight PV and six
wind datasets to evaluate the developed framework using various standard evaluation met-
rics. The performance of HUF4WP is compared against baseline classification mod-
els trained on raw features. Its computational efficiency is also contrasted with that of
regression-based forecasting approaches.
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The rest of this paper is organized as follows: Section 2 provides a literature review on meth-
ods for wind/PV power prediction. Section 3 describes the HUF4WP framework in detail, in-
cluding the eight PV and six wind datasets, the data preprocessing pipeline, utility-driven pattern
mining techniques, and classification strategy. Section 4 presents and discusses the experimental
results, including comparative evaluations of HUF4WP. Finally, Section 5 concludes the paper
with a summary of findings and directions for future research.

2. Literature Review

Numerous studies have focused on developing computational models for wind/PV power
prediction/forecasting. These approaches can be broadly classified into four categories: phys-
ical model-based approaches, (2) statistical, ML and DL-based methods, (3) meta-heuristic/
optimization-based techniques, and (4) hybrid approaches. Each category is discussed next.

Physical-based approaches utilize theoretical simulation models to estimate the output power
based on well-established physical principles and numerical weather prediction (NWP) data
[5, 6]. These methods typically involve multi-step model chains that reflect the physical char-
acteristics of energy systems. For instance, Yang et al. [28] employed a multi-step model
chain including irradiance decomposition, transposition from horizontal to tilted surfaces, and
PV module performance modeling. Similarly, Lorenz et al. [29] incorporated various models—
PEREZ for irradiance transposition, LINEAR for temperature, BEYER for PV performance, and
QUADRATIC for inverter behavior. Subsequent studies have refined these pipelines with addi-
tional modeling components. For example, Wolff et al. [30] proposed a five-step simulation
pipeline combining SKARTVEIT-OLSETH for irradiance separation, KLUCHER for transpo-
sition, LINEAR for temperature, BEYER for performance, and QUADRATIC for inverter be-
havior modeling. Saint-Drenan et al. [31] added the MARTIN-RUIZ angular loss model to the
previously outlined steps. Other configurations included DIRINT separation with in-house PV
simulations [32] and ENGERER separation with MARTIN-RUIZ loss modeling [33]. A detailed
physical model presented in [34] considered spectral, shading, and inverter losses using a com-
bination of ERBS, FAIMAN, EVANS, and QUADRATIC models. A large-scale benchmarking
study [4] compared the forecasting accuracy of 32,400 model configurations. These involved
various combinations of transposition, separation, temperature, reflection, inverter, and shading
models using NWP data. Despite their theoretical rigor, physical models often exhibit rigidity
and dependency on accurate input data. To address some of these limitations, statistical models
have been introduced as more flexible alternatives that leverage historical data patterns.

Statistical approaches are used due to their simplicity, adaptability, and relatively low compu-
tational cost. They rely on historical data to capture the stochastic relationships between meteoro-
logical inputs (such as wind speed, solar irradiance, temperature) and power output. Traditional
time series forecasting techniques—such as autoregressive integrated moving average (ARIMA)
and its variant (ARIMA-GARCH)—were used for power forecasting [35, 36, 37]. Methods like
Holt-Winters exponential smoothing [38, 39] are also used to model seasonality and trend in
solar/wind generation. Probabilistic models, including probability mass bias [40], probabilistic
auto-regression [41], probabilistic forecasting method [11] and Bayesian framework [42] are de-
signed to model uncertainty. ML techniques go a step further by learning complex, non-linear
patterns from historical data without relying on explicit physical formulations. Standard ML clas-
sifiers such as Support Vector Machines (SVM) [43], Random Forests (RF) and Gradient Boost-
ing Machines (GBMs) [44], k-Nearest Neighbors (k-NN) [45], Decision tree (DT) [46], Extreme
Gradient Boosting (XGBoost) [46] and Gradient Boosted Regression Trees (GBRT) [46] were
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used in forecasting. Several studies [47, 48, 49] have shown that ML models generally outper-
form physical and statistical approaches in wind/PV power forecasting. For example, Biswas
et al. [49] demonstrated that RF consistently outperformed ARIMA across multiple forecasting
scenarios and datasets. However, both statistical and ML models face several limitations. They
rely heavily on large volumes of cleaned historical data and often struggle to generalize under
rapidly changing or chaotic weather conditions. These models also have limited interpretability,
especially in the case of complex ML architectures. Additionally, they typically perform less
effectively when fusing multi-source or heterogeneous datasets.

On the other hand, DL approaches can effectively capture complex, nonlinear temporal and
spatial patterns in energy datasets. Recurrent Neural Networks (RNNs), particularly Long Short-
Term Memory (LSTM) networks [50] and Convolutional Neural Networks (CNNs) [51, 52],
were used for modeling sequential dependencies in wind/PV forecasting. Gated Recurrent Units
(GRUs) [53] offer comparable performance but with reduced computational overhead. CNN-
LSTM architectures [54, 55] leverage the strengths of both models, CNNs for feature extraction
and LSTMs for sequence modeling. Conv-ELSTM [13] is a convolutional ensemble LSTM net-
work for wind energy prediction. Recently, transformer models [12, 56], which rely on attention
mechanisms, have gained attention for their scalability and ability to model long-range depen-
dencies in time-series data. Additionally, autoencoders [57] and variational autoencoders (VAEs)
[58] have been employed for wind power prediction. Graph-based DL methods—such as CGAE
(Convolutional Graph Autoencoder network) [59], GCLSTM (Graph-Convolutional LSTM) and
GCTrafo (Graph-Convolutional Transformer) [60]—were proposed for solar irradiance and PV
power forecasting. Despite their high accuracy, DL models face several challenges. They require
large amounts of high-quality training data, demand significant computational resources and lack
interpretability, which can hinder their deployment in real-world operational environments.

Meta-heuristic and optimization algorithms have been widely applied to enhance forecast-
ing models for wind/PV power prediction. Genetic Algorithms (GA) [61] have been used to
optimize feature selection in wind speed forecasting models, improving neural network perfor-
mance. Particle Swarm Optimization (PSO) [62] has been combined with SVM for short-term
solar power prediction, yielding better accuracy when integrated with wavelet transforms. Ant
Colony Optimization (ACO) [63] has been applied for input selection in solar radiation models,
leading to more effective forecasting. Simulated Annealing (SA) [64] has been used for parame-
ter tuning in PV systems, improving simulation fidelity. More recently, the Grey Wolf Optimizer
(GWO) [65] has been adopted to fine-tune the hyperparameters of LSTM networks for wind en-
ergy forecasting. Yu et al. [18] employed a multi-scale clustering ensemble, similarity matching,
and an improved whale optimization algorithm for wind power prediction. They offer flexible
and powerful optimization capabilities that significantly enhance the performance of traditional
and DL-based forecasting models [19, 17, 66]. Meta-heuristic-based approaches face several
limitations. These include high computational cost, sensitivity to selecting hyperparameters and
a risk of overfitting due to excessive optimization on training data. They may also suffer from
poor generalization to unseen scenarios, face scalability issues as the feature space expands,
and often lack inherent interpretability—an increasingly important factor in energy forecasting
applications.

Hybrid models have emerged as an effective strategy for wind/PV power forecasting by com-
bining the strengths of the aforementioned approaches. For instance, physical-statistical hybrid
models integrated meteorological simulations with statistical corrections for more precise day-
ahead PV predictions [67]. Other hybrid methods use meta-heuristic algorithms such as im-
proved whale optimization to fine-tune ML parameters, improving convergence and reducing
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forecasting error [68]. Ensemble learning approaches further enhance robustness by integrating
DL architectures such as LSTM, BiLSTM, and GRU, often optimized using advanced algorithms
[69]. Additional hybrid studies for wind/PV forecasting include the following: Li et al. [10] pro-
posed a model that integrated the capture optimization algorithm (CFOA), CNN, BiLSTM, and
attention mechanism. A hybrid DL-based neural network [15] comprised a CNN followed by
a RBFNN with a double Gaussian function (DGF) as its activation function. The forecasting
model [16] was based on weather type, AHA-VMD-MPE decomposition reconstruction, and an
improved informer combination. MF-NBEA [9] introduced a multilevel data fusion and neural
basis analysis. The model [8] fused sky condition and feature-source information using a multi-
task DL architecture based on RNN. Khan et al. [20] employed a hybrid DL model, consisting of
CNN, LSTM and a Bi-LSTM. Mirza et al. [14] proposed IEDN-RNET, an inception-embedded
deep neural network with ResNet for short/medium-term wind/PV forecasting. While hybrid
models demonstrate superior performance across various forecasting tasks, they often entail in-
creased system complexity and reduced model transparency.

Pattern-based approaches have also been developed in the past. For example, an SPM-based
approach [23] simultaneously analyzed wind speed and direction, combining it with novel vi-
sualizations to better understand wind behavior over time. The approach of [24] identified and
mapped frequent wind profile patterns across space, time and height using multi-dimensional
SPM, with a focus on optimizing wind energy harvesting. The Stcop-Miner framework [25]
discovered spatiotemporal co-occurrence patterns in large-scale solar event datasets using spe-
cialized indexing techniques. Previous works—ranging from statistical techniques to advanced
ML, DL and hybrid—focused largely on time-series forecasting using regression-based models
to predict continuous values for the dependent features, which is power in wind/PV studies. The
performance of models was evaluated through metrics such as Mean Absolute Error (MAE),
Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). This study adopts a fun-
damentally different approach by reframing the forecasting problem into a classification task by
discretizing the features. This transformation enables not only pattern-based modeling through
high-utility pattern mining but also shifts the objective from predicting exact numeric values
to identifying characteristic patterns across wind/PV features. Consequently, our evaluation is
based on classification metrics such as the Accuracy, Precision, Recall, F1-score, etc.

3. Framework

The HUF4WP framework (Figure 1) consists of five stages: (1) Energy data acquisition—
collection and curation of wind/PV records. (2) Discretization and feature weighting—continuous
wind/PV features and their values are transformed into an appropriate categorical representa-
tion, and the importance (weight) of each feature is determined to quantify its influence. (3)
Pattern extraction—mining of (a) high-utility-based co-occurring patterns of wind/PV feature
values (unordered) and sequential (ordered) patterns, (b) high-utility association rules for both
ordered and unordered wind/PV feature values, and (c) correlated wind/PV feature value sets.
(4) Classification—training interpretable models using the extracted co-occurring and sequential
patterns as discriminative feature values. (5) Evaluation—performance assessment using stan-
dard metrics.

3.1. Wind/PV Datasets
The proposed HUF4WP framework is evaluated on eight PV datasets—abbreviated as PVD1

through PVD8—and six wind datasets—abbreviated as WD1 through WD6. These datasets were
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Figure 1: Overview of the HUF4WP framework for wind/PV data analysis and classification. It includes five stages:
(1) Datasets collection, (2) Feature discretization and weighting, (3) Discovery of (a) high-utility wind/PV feature value
sets and sequential patterns of wind/PV feature values, (b) high-utility association rules, and (c) correlated high-utility
wind/PV feature sets, (4) Classification by models training using the discovered high-utility feature value sets and se-
quential patterns along with their associated values, and (5) Framework evaluation using multiple metrics.

obtained from the Chinese State Grid [71]. They include weather-related and power-generation
data gathered at 15-minute intervals over a two-year period (2019-2020). The PV and wind
datasets contain 8 and 13 features, respectively (Table 1). Dataset characteristics including miss-
ing values, mean, maximum and standard deviation for each feature are provided in [71]. All six
wind datasets contain 70,176 samples each (total 421,056), while six PV datasets (PVD1, PVD2,
PVD4, PVD5, PVD6, and PVD7) contain 70,176 samples and PVD3 and PVD8 contain 52,608
and 69,408 samples, respectively (total 516,072 samples).

Table 1: Features in the wind/PV datasets, with the target features underlined

PV datasets (PVDs)
(1) Time (year-month-day h:m:s), (2) Total Solar Irradiance (W/m2), (3) Direct Normal
Irradiance (W/m2), (4) Global Horizontal Irradiance (W/m2), (5) Air Temperature (◦C),

(6) Atmospheric Pressure (hPa), (7) Relative Humidity (%), (8) Power (MW)
Wind datasets (WDs)

(1) Time (year-month-day h:m:s), (2) Wind Speed at 10 m Height (m/s),
(3) Wind Direction at 10 m Height (◦), (4) Wind Speed at 30 m Height (m/s),
(5) Wind Direction at 30 m Height (◦), (6) Wind Speed at 50 m Height (m/s),

(7) Wind Direction at 50 m Height (◦), (8) Wind Speed at Wheel Hub Height (m/s),
(9) Wind Direction at Wheel Hub Height (◦), (10) Air Temperature (◦C), (11) Atmospheric

Pressure (hPa), (12) Relative Humidity (%), (13) Power (MW)

To better capture temporal patterns relevant to energy generation, the original Time feature—
recorded as a date and 15-minute timestamp—was transformed into two categorical variables,
namely Season and Day/Night. This transformation enhances model interpretability and ro-
bustness by encoding essential periodic dynamics. For instance, seasonality captures recurring
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trends, such as higher PV output in summer and peak wind production in winter, while day/night
segmentation reflects the binary nature of solar generation. This process reduces dimensional-
ity, mitigates overfitting risks associated with high-cardinality timestamps, and inherently ad-
dresses periodicity, thereby improving generalization across regions/years. Although some tem-
poral granularity is sacrificed, the transformation enhances interpretability and facilitates intu-
itive modeling of interactions. It is important to point out here that some works such as [15] and
[46] divided the datasets into sub-datasets based on seasons and weather conditions, respectively.

The datasets contain various forms of missing or invalid entries (zero, null, ‘NA’, ‘0.001’,
‘-99’, and ‘-’), which were handled using a multi-step cleaning pipeline. This pipeline includes
time-based interpolation, median imputation grouped by month and hour, and forward/backward
filling. Additional domain-specific logic was also applied, such as replacing negative values, han-
dling zero irradiance during daylight, and clipping outliers to stay within valid physical bounds.

To discover interpretable patterns and reduce sensitivity to noise, all continuous features in
the wind/PV datasets were transformed into categories (bins) based on domain-informed dis-
cretization rules. Table 2 details the discretization categories and ranges applied to each feature
in the wind/PV datasets. For instance, solar irradiance was discretized into levels such as Low,
Medium, High, and Very High, while wind speed at multiple sensor heights were mapped to
qualitative ranges (e.g., Calm, Moderate, Strong). This transformation enables the application of
high-utility pattern mining algorithms, which require symbolic inputs. Moreover, discretization
also improves model robustness, reduces the risk of overfitting, and enhances the interpretability
of discovered rules for renewable energy forecasting.

Table 2: Discretization categories and corresponding ranges for features in WDs and PVDs
Dataset(s) Feature Category Range Dataset(s) Feature Category Range

PV Solar Irradiance

Low v ≤ 400

PV/Wind Season

Winter Dec, Jan, Feb
Medium 400 < v ≤ 700 Spring Mar, Apr, May

High 700 < v ≤ 1000 Summer Jun, Jul, Aug
Very High v > 1000 Autumn Sep, Oct, Nov

PV/Wind Pressure

Low v ≤ 950

PV/Wind Humidity

Dry v ≤ 30
Medium 950 < v ≤ 980 Comfortable 30 < v ≤ 60

High 980 < v ≤ 1000 Humid 60 < v ≤ 80
Very High v > 1000 Very Humid v > 80

PV/Wind Power

Low v ≤ 5
Medium 5 < v ≤ 15

High 15 < v ≤ 25
Very High v > 25

Wind Wind Direction

N-E v ≤ 90

PV/Wind Day/Night

Day 06:00 ≤ v < 18:00
E-S 90 < v ≤ 180
S-W 180 < v ≤ 270 Night 18:00 ≤ v < 06:00
W-N 270 < v ≤ 360

PV/Wind Temperature

Freezing v ≤ 0

Wind Wind Speed

Calm v ≤ 2
Cold 0 < v ≤ 10 Breeze 2 < v ≤ 5
Mild 10 < v ≤ 20 Moderate 5 < v ≤ 8
Warm 20 < v ≤ 30 Strong 8 < v ≤ 12
High v > 30 Gale 8 < v ≤ 12

The discretization categories were designed to be consistent for semantically similar features.
For instance, the solar irradiance label covers three distinct but related variables—Total Solar
Irradiance, Direct Normal Irradiance, and Global Horizontal Irradiance—as they all measure
radiative solar input and exhibit comparable physical behavior and value ranges. Similarly, wind
speed and wind direction measurements, recorded at multiple altitudes (10 m, 30 m, 50 m, and
hub height), were discretized using the same binning strategy due to their consistent semantics
and magnitude scales. This uniform categorization enables the application of unified pattern
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mining models and facilitates interpretability across different sensor heights. The distribution
of the discretized power feature (the dependent variable) across six wind and eight PV datasets
is presented in Table 3. This distribution highlights the presence of class imbalance in several
datasets, particularly the underrepresentation of the Very High power class in some PVDs.

Table 3: Distribution of discretized power output classes for the PV and Wind datasets
Dataset Low Medium High Very High
PVD1 42,844 7,212 7,018 13,102
PVD2 17,722 17,386 17,524 17,544
PVD3 36,452 7,526 7,033 1,597
PVD4 42,828 6,949 3,835 16,564
PVD5 43,309 7,234 3,963 15,670
PVD6 45,573 9,832 9,958 4,813
PVD7 47,059 10,995 10,878 1,244
PVD8 49,332 12,484 7,454 138
WD1 17,545 17,544 17,543 17,544
WD2 17,544 17,544 17,544 17,544
WD3 17,558 17,530 17,546 17,542
WD4 17,545 17,543 17,544 17,544
WD5 46,794 11,310 4,764 7,308
WD6 17,539 17,539 17,535 17,538

3.2. Feature Encoding and Weighting
In this step, the features of PVDs and WDs are transformed into a standardized integer-based

format [70]. During this transformation, we observed that some discretized feature values—such
as Low or High—could appear among multiple features (e.g., irradiance, temperature, power),
leading to ambiguity. To avoid this, each feature is encoded such that its values are mapped to
unique, disjoint integers.

This encoding ensures that identical categorical labels from different features do not overlap
during the pattern mining process. For example, the label Low from the temperature feature
and Low from the solar irradiance feature are assigned distinct integer representations. Fig. 2(a)
shows a sample of the original PV dataset, while Fig. 2(b) and (c) represent its discretized and
encoded versions, respectively. This example will serve as a running example throughout the
paper.

Formally, let F = { f1, f2, . . . , fn} denote the set of features in PVDs and WDs. Each feature
fi is associated with a value set VS ( fi) representing its discretized categories. These value sets
are mapped to unique integers satisfying the following condition:

∀ fi, f j ∈ F , fi , f j ⇒ VS ( fi) ∩ VS ( f j) = ∅

The union of all encoded values forms the domainV =
⋃

f∈F VS ( f ).
An encoded dataset is denoted by D = {R1,R2, . . . ,Rm}, where each record Rx is a total

function Rx : F → V mapping every feature to one of its valid encoded values. For any record
Rx, the set of its values is:

values(Rx) = {v j | ( f j, v j) ∈ Rx}

The ordered sequence of values is denoted as Rx = ⟨x1, x2, ..., xn⟩. For a subset X ⊆ V, the set of
contributing features is features(X) = { f | v ∈ X ∩ VS ( f )}.

To measure feature importance for forecasting renewable energy, we use SHAP values, which
are derived using a linear regression model. SHAP provides a unified framework for quantifying
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each feature’s contribution to the output of a predictive model. The choice of a linear model is
motivated by the goals of interpretability and computational efficiency. Since SHAP values are
not used for direct prediction but rather for assigning utility scores to discretized feature values,
a linear model offers consistent and transparent importance estimates. This facilitates a clear
mapping between feature relevance and utility-based pattern discovery, thereby enhancing the
interpretability of extracted patterns. Furthermore, linear models reduce the risk of overfitting
and keep computational overhead low, which is especially important given the symbolic and
pattern-based nature of the downstream analysis.

Let ϕi denote the mean absolute SHAP value of feature fi, which quantifies its global con-
tribution to model performance. A normalized utility score u( fi) ∈ [1,K] is assigned to each
feature fi based on a scaling factor K (e.g., K = 10):

u( fi) =
⌈
K ·

ϕi

max(ϕ1, . . . , ϕn)

⌉
(1)

Fig. 2(d) displays SHAP-derived utility scores for all features from the PV dataset. Based on
this weighting, the local utility of a value set X ⊆ V for a record Rx, such that X ⊆ values(Rx) is:

u(X,Rx) =
∑

f j∈features(X)

u( f j) (2)

The global utility of a value set X in a datasetD is defined as:

u(X) =
∑

Rx∈D
X⊆values(Rx)

u(X,Rx) (3)

This global utility score u(X) quantifies the predictive relevance of X in the context of wind
and solar energy forecasting, by combining both the frequency and utility of the associated fea-
tures.

3.3. Pattern Extraction

After transforming and encoding the WDs and PVDs into a standardized format, we proceed
to extract multiple types of high-utility patterns.

High-utility itemsets. We apply HUIM to identify sets of meteorological and power-related
features that exhibit high predictive utility. Each 15-minute observation from a wind or PV sta-
tion is treated as a “transaction" containing discretized feature values such as temperature levels,
wind speed categories, irradiance bins, and corresponding power outputs. Utilities are assigned
to features according to Equation 3. For a user-defined minimum utility threshold (minutil), a
feature value set (FVS ) is considered a high-utility itemset if u(FVS ) ≥ minutil. Fig. 2(e)
illustrates sample high-utility itemsets extracted from the PVD with minutil = 60.

High-utility association rules. We also extract association rules from the high-utility item-
sets. An association rule R : X → Y indicates that the presence of a set of feature val-
ues X (e.g., Summer, High irradiance) strongly suggests the presence of another disjoint set
Y (e.g., Very High power). The support and confidence of a rule are defined in standard form:
sup(R) = sup(X ∪Y) and con f (R) = sup(X∪Y)

sup(X) . In addition, the utility confidence is calculated us-

ing SHAP-derived weights as ucon f (R) = u(X∪Y)
u(X) . A rule is considered a high-utility association

rule if both X and X ∪ Y are high-utility itemsets and ucon f (R) ≥ mincon f .
10



(b) Discretization

Season Day/Night Total Solar
    Irradiance

Air
Temperature Atmosphere Humidity Power

Winter Night Low Freezing Low Comfortable Low

Winter Day High Freezing Low Comfortable High

Spring Day Very High Mild Low Dry Very High

Spring Night Low Mild Low Dry Low

Summer Night Medium High Low Dry Medium

(a) A sample of PVD

Time Total Solar
    Irradiance

Air
Temperature Atmosphere Humidity Power

01/01/2019 0:15 0 -11.7 930.5 39.1 0

01/01/2019 10:15 823 -7.1 925.9 31.8 23.82

04/03/2019 13:15 1028 13.5 912.7 5.3 39.34

09/03/2020 1:45 0 17.6 915.2 20.8 0

04/07/2020 19:45 425 31.5 905.4 20.5 10.48

(c) Encoded Dataset

Season Day/Night Total Solar
    Irradiance

Air
Temperature Atmosphere Humidity Power

111 222 331 661 771 882 991

111 221 333 661 771 882 993

112 221 334 663 771 881 994

112 222 331 663 771 881 991

113 222 332 665 771 881 992

(d) Utility associated with each feature

Season Day/Night Total Solar
    Irradiance

Air
Temperature Atmosphere Humidity Power

1 19 19 5 4 8 0

(e)

Extracted Pattern Overall Utility
331 991 222

Total Solar Irradiance: Low Power: Low Day/Night: Night 76

331 991 222 771
Total Solar Irradiance: Low Power: Low Day/Night: Night Pressure: Low 84

222 881 771
Day/Night Night Humidity: Dry Pressure: Low 62

331 222 771
Total Solar Irradiance: Low  Day/Night: Night Pressure: Low 84

Figure 2: The process of discretizing, transforming, and discovering high-utility itemsets from wind/PV records. (a) A
sample of a PVD, (b) its discretization, (c) its encoding, (d) SHAP-based feature utilities, and (e) extracted patterns from
the sample PVD for a minutil threshold of 60.

High-utility sequential patterns and sequential rules. Given the temporally ordered nature
of the datasets, we also extract high-utility sequential patterns. A pattern P = ⟨y1, y2, ..., yn⟩ is
a time-ordered sequence of feature values (e.g., Night→ Strong wind→ Very High power). A
pattern P is considered high-utility if u(P) ≥ minutil.

A sequential rule r : Y ⇒ Z is an implication between two disjoint feature value sets where
Z occurs after Y within the same observation sequence. For example, the rule Winter ⇒ High
wind may capture seasonal wind dynamics. Formally, the rule r occurs in a record Cx if there
exists an index k such that Y appears in the prefix and Z in the suffix of the sequence. Support
and confidence are computed over the ordered sequences, and the utility of r is:

u(R) =
∑

Cx∈CD

R⊑Cx

u(X,Cx)

Correlated high-utility itemsets. We additionally extract correlated high-utility itemsets
to discover frequent, informative combinations with strong internal coherence. An itemset is
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considered correlated if it satisfies both high-utility and correlation constraints. The correlation
is quantified using the bond measure:

bond(FVS ) =
sup(FVS )

dissup(FVS )

where dissup(FVS ) is the disjunctive support—the fraction of records containing at least one
item from the set.

To mine these patterns, we employ the EFIM [72] and HGB [73] algorithms for discovering
high-utility itemsets and association rules, and USPAN [74] and HUSRM [75] for sequential
patterns and rules. Correlated high-utility itemsets are extracted using the FCHM algorithm
[76], all adapted for use in renewable energy datasets.

3.4. Classifier Training and Evaluation
In this stage, the frequently occurring patterns extracted in discretized PVDs and WDs are

employed for the classification/prediction of power (denoted as P), which consist of four cate-
gories: P ∈ { Low, Medium, High, Very High} (see Table 2). Five classification tasks are defined
to comprehensively analyze the predictive models: four binary classification problems—one for
each power category—and one multiclass classification encompassing all categories.

Binary classification is used to individually predict each power category. For a given power
level l ∈ { Low, Medium, High, Very High}, a binary classification task is formulated by labeling
records as belonging to the specific level l or to other categories. This is mathematically defined
as:

Pl =

1, if P = l
0, if P ∈ {Low,Medium,High,VeryHigh} \ {l}

(4)

In this formulation, the positive class (Pl = 1) includes all records corresponding to the power
level l, while the negative class (Pl = 0) includes records from the remaining power categories.
For example, when focusing on the Low power level, records labeled as Low are considered
positive, and records from Medium, High, and Very High are considered as Others and labeled
negative.

In the multiclass (MC) classification setting, each record is labeled with its respective power
category from the four possible levels. The objective here is to develop a model that can accu-
rately classify each record into one of the four categories: Low, Medium, High, or Very High.
This task evaluates the model’s ability to distinguish between all levels simultaneously. The
whole approach allows for a detailed evaluation of each class through binary classification while
also assessing the model’s ability to handle the complexity of MC prediction.

For classification tasks, seven widely used ML models are evaluated: (1) Gaussian Naive
Bayes (GNB), (2) Decision Tree (DT), (3) Random Forest (RF), (4) Multi Layer Perceptron
(MLP), (5) Support Vector Machine (SVM), (6) k-Nearest Neighbors (kNN), and (7) Logistic
Regression (LR). Seven performance metrics are employed to assess classifiers effectiveness,
which are: (1) Accuracy (ACC), the ratio of correctly predicted instances to the total instances;
(2) Recall (R), the model’s ability to identify all relevant positive instances; (3) Precision (P), the
proportion of correctly predicted positive instances among all predicted positives, (4) F1-Score
(F1), the harmonic mean of precision and recall; (5) Matthews Correlation Coefficient (MCC),
accounts for true and false positives and negatives; (6) Area Under the Curve (AUC), reflects
the model’s ability to distinguish between classes across different classification thresholds; and
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(7) Area Under the Precision-Recall Curve (AUPRC) evaluates the trade-off between precision
and recall for different classification thresholds,. These metrics are used because they offer a
comprehensive evaluation of classifier performance, and are defined as:

ACC =
T P + T N

T P + T N + FP + FN
(5)

Recall(R) =
T P

T P + FN
(6)

Precision(P) =
T P

T P + FP
(7)

F − measure = 2 ×
P × R
P + R

(8)

MCC =
T P × T N − FP × FN

√
(T P + FP)(T P + FN)(T N + FP)(T N + FN)

(9)

AUC =
∫ 1

0
R(dFPR) (10)

AUPRC =
n∑

i=1

(Ri − Ri−1) × (Pi + Pi−1)
2

(11)

The terms T P, FP, T N, and FN stand for true positive, false positive, true negative and
false negative, respectively. dFPR is for the derivative of FPR = FP

FP+T N . Pi and Ri in equation
11 represent the values for P and R, respectively, at the i-th decision threshold. The following
section details the application of the methodology and the obtained results.

4. Experimental Evaluation

A computing system with 16 GB of RAM and an Intel Core i5-11320H 3.20 GHz processor
was utilized to conduct experiments. The SPMF library [77], developed in Java, was employed
to extract patterns from the abstracted PVDs and WDs. Several algorithms have been used for
the analysis and discovery of patterns, including EFIM, HGB, USPAN, HUSRM, and FCHM. To
perform classification, Python was used, employing a variety of libraries, including scikit-learn
[78] for ML algorithms, NumPy for numerical computations, and Pandas for data manipulation.

4.1. Important Features

SHAP [27] was first utilized to identify the most influential features for wind/PV power
prediction. A linear regression model was first trained on PVDs and WDs, after which SHAP was
applied to interpret its predictions. SHAP offers a unified framework to measure the contribution
of each feature to the model’s output, providing both local and global interpretability.

Figure 3 presents the SHAP summary plots for the combined PVDs and WDs. For the PVDs,
the three most influential features were Day/Night, Total Irradiance, and Humidity. Among these
features, Day/Night emerged as the single most important predictor. This result aligns with the
physical properties of solar energy generation, which only occurs during daylight. The binary
nature of this feature enables the model to sharply distinguish between energy-producing (day)
and non-producing (night) periods. Compared to irradiance values—which may vary even during
the day due to cloud cover or angle of incidence—the Day/Night feature provides a stable and
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Figure 3: SHAP feature importance for (a) PVDs and (b) WDs. WS and WiD denote wind speed and wind direction,
respectively.

highly informative signal, contributing significantly to the model’s accuracy. Similarly, for the
WDs, the three influential features that contribute significantly to wind power are Wind Speed at
the Height of 30 Meters, Wind Speed at the Height of Wheel Hub and Wind Speed at 50 Meters.
These results are intuitive, as wind power generation depends directly on wind velocity, particu-
larly at turbine-relevant altitudes. The dominance of wind speed measurements at various heights
also underscores the importance of multi-level wind profiling for accurate power prediction. The
close SHAP values among these wind speed features indicate some redundancy, yet also reflect
the robustness of wind data collected across turbine-relevant altitudes. Interestingly, the Season
feature showed the lowest SHAP value among all PV features and was ranked 10th out of 13
features in the WDs. This suggests that while seasonality may capture broader trends in weather
conditions, it does not provide sufficiently granular information for short-interval (15-minute or
30-minute) forecasting.

SHAP values also not only highlight individual feature contributions but also uncover valu-
able insights into the intricate interactions between features. For example, while Day/Night
was identified as a highly influential individual feature, interactions involving Total Irradiance
and Humidity often exhibit synergistic effects that enhance model predictions when considered
jointly. This synergy suggests that during the daytime, the level of irradiance influences the ex-
pected power output, with cloudy or clear conditions making a significant difference. Previously,
a DT model using MSE was used in [46] for feature importance. The most important feature
in one WD was Wind speed at Wheel Hub, followed by the Wind speed at 50 m. Pearson cor-
relation coefficient (PCC) was used in [20] to find the most important feature, and it was found
that Total Solar Irradiance contributed more to the PV power. Both results align well with our
SHAP-based findings for the PVDs and WDs.

4.2. Discovered Patterns

Table 4 and Table 5 present a range of patterns, including high-utility itemsets, high-utility se-
quential patterns, and correlated high-utility itemsets identified from the PVD1 and WD1 datasets
using the EFIM, USPAN, and FCHM algorithms. These patterns capture frequent feature combi-
nations with high predictive utility. They offer insights into prevalent environmental conditions
associated with wind/PV power generation.
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Table 4: High-Utility patterns found in the PVD1
EFIM

Itemsets U
Day/Night: Day, Total Solar Irradiance: Low, Direct Normal Irradiance: Low, Global Horizontal Irradiance:
Low, Pressure: Low

665567

Day/Night: Night, Power: Low, Humidity: Low, Total Solar Irradiance: Low, Direct Normal Irradiance:
Low, Global Horizontal Irradiance: Low, Pressure: Low

1132340

Total Solar Irradiance: Low, Direct Normal Irradiance: Low, Global Horizontal Irradiance: Low, Pressure:
Low

1369564

Temperature: Warm, Day/Night: Night, Total Solar Irradiance: Low, Direct Normal Irradiance: Low,
Global Horizontal Irradiance: Low, Pressure: Low

502008

Humidity: Low, Total Solar Irradiance: Low, Direct Normal Irradiance: Low, Global Horizontal Irradiance:
Low, Pressure: Low

1046628

Power: Low, Humidity: Low, Total Solar Irradiance: Low, Direct Normal Irradiance: Low, Global Hori-
zontal Irradiance: Low, Pressure: Low

900936

USPAN
Itemsets U
Total Solar Irradiance: Low, Global Horizontal Irradiance: Low, Temperature: Freezing, Pressure: Low,
Humidity: Comfortable

338618

Direct Normal Irradiance: Low, Global Horizontal Irradiance: Low, Pressure: Low, Humidity: Low 630649
Day/Night: Night, Total Solar Irradiance: Low, Global Horizontal Irradiance: Low, Temperature: Freezing,
Pressure: Low, Humidity: Comfortable

331797

Season: Winter, Day/Night: Night, Total Solar Irradiance: Low, Direct Normal Irradiance: Low, Global
Horizontal Irradiance: Low, Temperature: Freezing, Pressure: Low, Humidity: Comfortable

327265

Season: Autumn, Day/Night: Night, Total Solar Irradiance: Low, Direct Normal Irradiance: Low, Global
Horizontal Irradiance: Low, Pressure: Low, Humidity: Low

378784

Total Solar Irradiance: Low, Global Horizontal Irradiance: Low, Temperature: Warm, Pressure: Low,
Humidity: Low

411882

FCHM
Itemsets U, B
Season: Winter, Temperature: Freezing, Direct Normal Irradiance: Low, Global Horizontal Irradiance:
Low, Pressure: Low

212535, 0.20

Day/Night: Night, Power: Low, Humidity: Low, Total Solar Irradiance: Low, Direct Normal Irradiance:
Low, Global Horizontal Irradiance: Low, Pressure: Low

1132340, 0.29

Total Solar Irradiance: High, Day/Night: Day, 347434, 0.26
Temperature: Freezing, Total Solar Irradiance: Low, Direct Normal Irradiance: Low, Global Horizontal
Irradiance: Low, Pressure: Low

469227, 0.20

Humidity: Comfortable, Total Solar Irradiance: Low, Global Horizontal Irradiance: Low, Pressure: Low 465102, 0.20
Power: Low, Humidity: Low, Total Solar Irradiance: Low, Direct Normal Irradiance: Low, Global Hori-
zontal Irradiance: Low, Pressure: Low

900936, 0.35

U: Utility, B: Bond.

The EFIM results highlight that the most frequent and high-utility patterns are character-
ized by low solar irradiance levels across all irradiance types (total, direct normal, and global
horizontal), combined with low atmospheric pressure and the daytime temporal feature. No-
tably, patterns such as Day/Night: Day, Total Solar Irradiance: Low, Direct Normal Irradiance:
Low, Global Horizontal Irradiance: Low, Pressure: Low have a utility value of 665,567. Sim-
ilar high-utility combinations also include Power: Low and Humidity: Low, indicating a strong
relationship between irradiance conditions and power output during nighttime.

SPM via USPAN reveals ordered sequences of feature values, such as Total Solar Irradiance:
Low→ Global Horizontal Irradiance: Low→ Temperature: Freezing→ Pressure: Low→ Hu-
midity: Comfortable with a utility of 338,618. This reflects cold, low-pressure periods that still
maintain moderate humidity, often observed during winter mornings. These patterns indicate not
just co-occurrence, but order, offering predictive cues about how environmental states progress,
leading to specific power outputs. Seasonal distinctions emerge as well—for example, Season:
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Table 5: High-Utility patterns found in the WD1
EFIM

Itemsets U
Power: High, Wind Speed (Wheel Hub): Moderate, Wind Speed (50 m): Moderate, Wind Speed (30 m):
Moderate, Wind Speed (10 m): Moderate, Wind Direction (50 m): S-W, Wind Direction (Wheel Hub):
S-W, Wind Direction (30 m): S-W, Wind Direction (10 m): S-W, Pressure: Low

401720

Wind Speed (10 m): Strong, Wind Speed (30 m): Strong, Wind Speed (50 m): Strong, Wind Speed (Wheel
Hub): Strong, Power: Very High, Pressure: Low

411810

Wind Speed (30 m): Moderate, Wind Direction (50 m): S-W, Wind Direction (Wheel Hub): S-W, Wind
Direction (30 m): S-W, Wind Direction (10 m): S-W, Pressure: Low

562455

Wind Speed (50 m): Moderate, Wind Speed (30 m): Moderate, Wind Speed (10 m): Moderate, Wind
Direction (50 m): S-W, Wind Direction (Wheel Hub): S-W, Wind Direction (30 m): S-W, Wind Direction
(10 m): S-W, Pressure: Low

534656

Wind Speed (Wheel Hub): Moderate, Wind Speed (50 m): Moderate, Wind Speed (30 m): Moderate, Wind
Speed (10 m): Moderate, Wind Direction (50 m): S-W, Wind Direction (Wheel Hub): S-W, Wind Direction
(30 m): S-W, Wind Direction (10 m): S-W, Pressure: Low

606066

Wind Direction (50 m): S-W, Wind Direction (Wheel Hub): S-W, Humidity: Comfort, Wind Direction (30
m): S-W, Wind Direction (10 m): S-W, Pressure: Low

350220

USPAN
Itemsets U
Season: Autumn, Wind Speed (10 m): Moderate, Wind Speed (30 m): Moderate, Wind Speed (50 m):
Moderate, Wind Speed (Wheel Hub): Moderate, Pressure: Low

250682

Day/Night: Day, Wind Direction (10 m): S-W, Wind Speed (30 m): Moderate, Wind Direction (30 m):
S-W, Wind Speed (50 m): Moderate, Wind Direction (50 m): S-W, Wind Speed (Wheel Hub): Moderate,
Wind Direction (Wheel Hub): S-W, Pressure: Low

448983

Wind Speed (10 m): Moderate, Wind Direction (10 m): S-W, Wind Speed (30 m): Moderate, Wind Direc-
tion (30 m): S-W, Wind Speed (50 m): Moderate, Wind Direction (50 m): S-W, Wind Speed (Wheel Hub):
Moderate, Wind Direction (Wheel Hub): S-W, Pressure: Low

606066

Wind Direction (10 m): S-W, Wind Speed (30 m): Moderate, Wind Direction (30 m): S-W, Wind Speed (50
m): Moderate, Wind Direction (50 m): S-W, Wind Speed (Wheel Hub): Moderate, Wind Direction (Wheel
Hub): S-W, Pressure: Low, Humidity: Comfortable

405729

Wind Speed (30 m): Moderate, Wind Direction (30 m): S-W, Wind Speed (50 m): Moderate, Wind Di-
rection (50 m): S-W, Wind Speed (Wheel Hub): Moderate, Wind Direction (Wheel Hub): S-W, Pressure:
Low, Humidity: Comfortable

402160

Wind Direction (30 m): S-W, Wind Speed (50 m): Moderate, Wind Direction (50 m): S-W, Wind Speed
(Wheel Hub): Moderate, Wind Direction (Wheel Hub): S-W, Pressure: Low

496383

FCHM
Itemsets U, B
Power: High, Wind Speed (Wheel Hub): Moderate, Wind Speed (50 m): Moderate, Wind Speed (30 m):
Moderate, Wind Speed (10 m): Moderate

592658, 0.28

Wind Speed (10 m): Moderate, Wind Direction (50 m): S-W, Wind Direction (Wheel Hub): S-W, Wind
Direction (10 m): S-W, Pressure: Low

365800, 0.20

Wind Speed (30 m): Moderate, Wind Speed (10 m): Moderate, Wind Direction (50 m): S-W, Wind Direc-
tion (Wheel Hub): S-W, Wind Direction (30 m): S-W, Wind Direction (10 m): S-W

451000, 0.21

Wind Speed (50 m): Moderate, Wind Speed (30 m): Moderate, Wind Direction (50 m): S-W, Wind Direc-
tion (Wheel Hub): S-W, Wind Direction (30 m): S-W, Wind direction (10 m): S-W

507346, 0.21

Wind Direction (50 m): S-W, Wind Direction (Wheel Hub): S-W, Wind direction (30 m): S-W, Day/Night:
Night, Wind Direction (10 m): S-W, Pressure: Low

368368, 0.20

Wind Speed (Wheel Hub): Moderate, Wind Speed (50 m): Moderate, Wind Speed (30 m): Moderate, Wind
Direction (50 m): S-W, Wind Direction (Wheel Hub): S-W, Wind Direction (30 m): S-W

615462, 0.21

U: Utility, B: Bond.

Winter → Day/Night: Night→ Total Solar Irradiance: Low→ Direct Normal Irradiance: Low
→Global Horizontal Irradiance: Low→ Temperature: Freezing→ Pressure: Low→Humidity:
Comfortable—indicating that such combinations are not only predictive but temporally ordered.
FCHM further identifies patterns that are both high in utility and strongly correlated, as indicated
by their bond values. The pattern Season: Winter, Temperature: Freezing, Direct Normal Irra-
diance: Low, Global Horizontal Irradiance: Low, Pressure: Low exhibits a utility of 212,535
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with a bond of 0.20, highlighting its strong co-occurrence in the dataset. The highest utility and
bond are found in the pattern Power: Low, Humidity: Low, Total Solar Irradiance: Low, Di-
rect Normal Irradiance: Low, Global Horizontal Irradiance: Low, Pressure: Low with a utility
900,936 and a bond of 0.35, further reinforcing the key role of low irradiance and low pressure
in determining PV performance under specific environmental conditions.

Results for WD1 highlight the role of wind dynamics across vertical profiles. Synchronized
wind speed and direction at different heights influence wind power output. For WD1, EFIM
findings reveal that moderate wind speeds—observed at 10 m, 30 m, 50 m, and hub height—
combined with southern-to-western (S-W) wind directions form patterns with high utility. For
example, the itemset Wind speed (at all heights): Moderate, Wind direction (at all heights): S-W,
Pressure: Low achieves a utility of 606,066, underlining how aligned wind flows across heights
leads to a stable power generation, particularly under low-pressure systems. This also reflects
the aerodynamic efficiency achieved when wind flows steadily across the turbine-relevant vertical
profile.

USPAN-generated sequential patterns add a temporal dimension. Notably, the appearance of
Season: Autumn and Day/Night: Day in high-utility sequences, alongside S-W wind directions
and moderate speeds, indicates that seasonal and diurnal factors modulate the effectiveness of
wind flow. These temporal markers enhance the understanding of when consistent wind regimes
are most productive.

FCHM reveals high-utility itemsets with strong internal correlation, such as Wind speed (30
m, 50 m, Wheel Hub): Moderate, Wind direction (30 m, 50 m, Wheel Hub): S-W, which scores
a utility of 615,462 and a bond of 0.21. These correlated configurations reflect real-world aero-
dynamic consistency, where wind alignment across altitudes leads to high and stable power out-
puts. For PV systems, the interplay of irradiance, pressure, and temperature directly determines
generation potential. Notably, factors like humidity and temperature show non-linear effects,
modulating power output even under similar irradiance levels. For wind energy, the vertical
synchronization of wind speeds and consistent directions indicates optimal turbine performance
scenarios. This provides actionable insights for real-time turbine control and predictive mainte-
nance.

4.3. Discovered Rules
Table 6 summarizes the high-utility rules mined from the PVD1 dataset using both the HGB

(association rules) and HUSRM (sequential rules) algorithms, revealing conditional dependen-
cies among PV-related features. For example, an HGB rule reveals that when the conditions
Day/Night: Day and Total Solar Irradiance: Low are satisfied, it is highly likely that Pressure:
Low will also occur, with perfect utility confidence of 1. Other notable patterns indicate that
combinations of low irradiance and low humidity are strong predictors of nighttime conditions,
low pressure, and low power outputs—consistent with physical expectations for solar perfor-
mance. Sequential rules extracted via HUSRM further reinforce these relationships, capturing
ordered transitions in environmental states. For example, the sequence starting with Season:
Winter, Day/Night: Day, Low Irradiance, Freezing Temperature leads to Low Pressure with a
confidence of 1 and a utility of 215,763, illustrating how seasonal and temporal dependencies
influence power generation dynamics. The high-utility rules highlights the dominant influence
of irradiance levels, atmospheric pressure, and temporal factors (such as Day/Night and Season)
on solar power generation. Moreover, the sequential rules capture dynamic transitions in envi-
ronmental states. For example, freezing temperatures and low irradiance during winter daytime
often precede low atmospheric pressure, which is associated with reduced PV power output.
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These temporal insights could be used for real-time forecasting or scheduling maintenance dur-
ing expected low-generation periods.

Similarly, high-utility rules from the WD1 dataset (Table 7) demonstrate strong relationships
among wind speed, direction, and power output. Association rules generated by HGB show
that moderate or breezy wind speeds at various altitudes are frequently associated with low at-
mospheric pressure and consistent wind direction (predominantly S-W). For example, the rule
Pressure: Low, Wind Speed (30 m): Breeze → Wind Speed (10 m): Breeze yields a high utility
and a utility confidence of 0.844. Sequential rules from HUSRM reveal time-ordered transitions
among features such as wind speeds and directions at various heights, leading to outcomes such
as Pressure: Low or changes in wind speed at the wheel hub. Notably, the strongest sequen-
tial rule—with utility 730,485—shows that breezy conditions at 30 meters often precede similar
wind conditions at 50 meters and the hub level, underscoring the consistent vertical wind struc-
ture in productive scenarios. These results reflect the temporal and spatial coherence of wind
patterns, which is crucial for wind power forecasting. It should be noted that the high-utility
results reported in Table 7 for the WD1 dataset were obtained using a subset of 50,000 sam-
ples. This subset was selected to ensure efficient processing within the available computational
constraints while preserving the representative characteristics of the full dataset.

Table 6: High-Utility rules found in the PVD1
HGB

Antecedents Consequents U AU UC
Day/Night: Day, Total Solar Irradiance: Low Pressure: Low 807024 666672 1
Total Solar Irradiance: Low, Humidity: Low Day/Night: Night, Direct Normal

Irradiance: Low, Global Horizontal
Irradiance: Low, Pressure: Low

1189925 797850 0.73

Total Solar Irradiance: Low, Humidity: Low Day/Night: Night, Direct Normal
Irradiance: Low, Global Horizon-
tal Irradiance: Low, Pressure: Low,
Power: Low

1132340 797850 0.69

Direct Normal Irradiance: Low, Global Horizon-
tal Irradiance: Low, Pressure: Low

Day/Night: Night, Total Solar Irra-
diance: Low, Power: Low

1556217 555345 0.53

Global Horizontal Irradiance: Low, Pressure:
Low, Humidity: Low

Day/Night: Night, Total Solar Irra-
diance: Low, Direct Normal Irradi-
ance: Low

1189925 591892 0.51

Pressure: Low, Humidity: Low Day/Night: Night, Global Horizon-
tal Irradiance: Low

720159 520884 0.50

HUSRM
Antecedents Consequents SUP C U
Season: Winter, Day/Night: Day, Total Solar Ir-
radiance: Low, Direct Normal Irradiance: Low,
Global Horizontal Irradiance: Low, Temperature:
Freezing

Pressure: Low 4071 1 215763

Day/Night: Day, Total Solar Irradiance: High Pressure: Low, Humidity: Low,
Power: Very High

4980 0.54 249000

Total Solar Irradiance: Low, Direct Normal Irra-
diance: Low, Temperature: Comfortable

Pressure: Low, Humidity: Low,
Power: Low

5422 0.67 211458

Direct Normal Irradiance: Low, Global Horizon-
tal Irradiance: Low, Temperature: Warm

Pressure: Low, Humidity: Low 13071 0.79 287562

Global Horizontal Irradiance: Low, Temperature:
Mild, Pressure: Low

Humidity: Low 10755 0.77 204345

Pressure: Low Humidity: Low 43407 0.62 520884

U: Utility, AU: Antecedent Utility, UC: Utility Confidence, SUP: Support, C: Confidence.

To gain more insights, the high-utility sequential patterns and rules are visualized in Figure 4.
Blue nodes in Figure 4(a) denote discretized PV feature values, with arrows indicating the flow
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Table 7: High-Utility rules found in the WD1
HGB

Antecedents Consequents U AU UC
Pressure: Low, Wind Speed (30 m): Breeze Wind Speed (10 m): Breeze 648258 630112 0.84
Wind Speed (10 m): Breeze, Wind Speed (30 m):
Breeze

Pressure: Low, Wind Speed (Wheel
Hub): Breeze

794774 515282 0.82

Wind Speed (10 m): Moderate, Wind Speed (30
m): Moderate, Wind Speed (50 m): Moderate,

Wind Direction (Wheel Hub): S-W,
Pressure: Low, Wind Direction (30
m): S-W, Wind Direction (50 m): S-
W, Wind Speed (Wheel Hub): Mod-
erate

602126 692472 0.45

Wind Speed (30 m): Breeze, Wind Speed (Wheel
Hub): Breeze

Pressure: Low, Wind Speed (50 m):
Breeze

512992 694665 0.46

Wind Speed (50 m): Moderate, Wind Speed
(Wheel Hub): Moderate

Pressure: Low, Wind Direction (10
m): S-W, Wind Speed (30 m): Mod-
erate, Wind Direction (30 m): S-W,
Wind Direction (50 m): S-W

670140 585466 0.48

Wind Speed (50 m): Breeze, Wind Speed (Wheel
Hub): Breeze

Pressure: Low, Wind Speed (30 m):
Breeze

542367 564231 0.47

HUSRM
Antecedents Consequents SUP C U
Wind Speed (50 m): Breeze Wind Speed (Wheel Hub): Breeze 13390 0.91 415090
Wind Speed (10 m): Breeze, Wind Speed (30 m):
Breeze

Wind Speed (50 m): Breeze, Wind
Speed (Wheel Hub): Breeze

9814 0.81 608468

Wind Speed (10 m): Breeze Pressure: Low, Wind Speed (30 m):
Breeze, Wind Speed (50 m): Breeze

10739 0.61 547689

Wind Speed (30 m): Breeze Pressure: Low, Wind Speed (50 m):
Breeze, Wind Speed (Wheel Hub):
Breeze

11595 0.80 730485

Wind Direction (Wheel Hub): S-W, Wind Speed
(10 m): Moderate, Wind Direction (10 m): S-
W, Wind Speed (30 m): Moderate, Wind Direc-
tion (30 m): S-W, Wind Speed (50 m): Moderate,
Wind Direction (50 m): S-W, Wind Speed (Wheel
Hub): S-W

Pressure: Low 5081 1 421723

Wind Direction (10 m): S-W, Wind Speed (30
m): Moderate, Wind Direction (30 m): S-W, Wind
Speed (50 m): S-W

Wind Direction (50 m): S-W, Wind
Speed (Wheel Hub): Moderate

6325 0.82 411125

U: Utility, AU: Antecedent Utility, UC: Utility Confidence, SUP: Support, C: Confidence.

of sequential patterns. Node sizes reflect the number of connections (IC: Incoming connections,
OG: Outgoing connections), while arrow thicknesses indicate support values. Each distinct color
represents a separate high-utility sequential pattern. Red nodes in Figure 4(b) represent feature-
value pairs involved in high-utility sequential rules, and yellow nodes indicate the Low power
class. Rule nodes (R1–R6) connect antecedent features (via outgoing arrows to the rule node)
to consequent features (via arrows from the rule node). The size of yellow nodes is proportional
to their support values. One frequent sequential pattern, Total Solar Irradiance: Low→ Global
horizontal irradiance: Low→ Temperature: Freezing→ Pressure: Low→ Humidity: Comfort-
able, is illustrated in (Figure 4(a)) by a sequence of four black arrows connecting blue nodes
representing the respective PV features and their values. The direction and thickness of the ar-
rows indicate the order and strength (support) of the pattern. For high-utility sequential rules,
consider rule five, represented by R5 (Figure 4(b)). The rule involves four red nodes—Pressure:
Low, Temperature: Cold, Global Horizontal irradiance and Humidity: Low—and a yellow node
representing the target class Power: Low. In this rule, the antecedents are Pressure: Low, Tem-
perature: Cold and Global Horizontal irradiance and the consequents are Humidity: Low and
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Power: Low. The antecedent nodes have outgoing arrows toward the R5 node. Similarly there
is an outgoing arrow from R5 towards the consequent node Humidity: Low. In this example, the
most important PV features are Humidity: Comfortable and Pressure: Low, followed by Temper-
ature: Freezing, Global Horizontal Irradiance: Low, Global Solar Irradiance: Low, and Direct
Normal Irradiance, respectively.

It is important to note that all the high-utility pattern mining algorithms exhibited fast per-
formance, with each completing execution within a few minutes per dataset. This demonstrates
the practical viability of the HUF4WP framework for medium-sized renewable energy datasets.
While runtime was not a limiting factor in our experiments, we acknowledge that scalability
to very large datasets may require further optimization, such as through parallel or distributed
implementations. Moreover, the discovery of high-utility patterns and rules is influenced by
the choice of algorithm parameters. To ensure that the results were both meaningful and com-
putationally feasible, the parameters for each algorithm were empirically tuned based on the
characteristics of each dataset. Consequently, applying HUF4WP to other datasets or domains
may require re-tuning to accommodate differences in data distribution or operational conditions.

Power: Low

Total Solar
irradiance:  Low

(OG: 3, IC: 2)Global horizontal
irradiance:  Low

(OG: 4, IC: 3)
Temperature: Warm

(OG: 1, IC: 1)
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(OG: 4, IC: 5)
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Direct normal
irradiance:  Low

(OG: 3, IC: 2)

Humidity: Dry
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Figure 4: Visual representation of high-utility sequential patterns and rules extracted from PVD1 (Low).

4.4. Classification Results

Before classification, the extracted high-utility patterns from the PVDs and WDs were filtered
to retain only those with a minimum length of three elements. To ensure consistency in model
training and establish a performance baseline, all classifiers were applied using their default
settings.

The classification results for the seven models are summarized in Table 8, where each en-
try are displayed using the notation Low(Medium)

High(VeryHigh) MC. For instance, the GNB result for PVD1,
0.86(0.778)
0.702(0.748) 0.41, indicates that the model achieved 86%, 77.8%, 70.2%, 74.8%, and 41% accuracy
for predicting the Low, Medium, High, Very High, and MC categories, respectively. The best
results for each row are shown in bold in the table. To ensure a thorough evaluation, three differ-
ent validation methods were tested: (1) 5-fold cross-validation, (2) 10-fold cross-validation, and
(3) 80:20 train-test split. Because the 80:20 split consistently yielded superior performance, the
reported results are therefore based on this approach. Among the various combinations of classi-
fiers and pattern mining methods (EFIM, USPAN, and FCHM), DT and RF models demonstrated
the highest and most consistent accuracies across datasets. Patterns extracted by EFIM generally
produced the best classification performance, particularly when paired with tree-based models.
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FCHM patterns outperformed those from USPAN in most cases. RF achieved the highest av-
erage accuracy with EFIM patterns, while DT slightly outperformed RF when using USPAN
and FCHM patterns. GNB consistently showed the lowest performance among all classifiers.
When averaging results across all datasets and pattern types, the classifiers ranked as follows:
DT (81.7%), RF (81.4%), SVM (72.2%), kNN (71.9%), LR (68.8%), MLP (67%), and GNB
(51.9%).

The detailed DT results using EFIM patterns can be found in Table 9. Notably, DT achieved
the highest classification accuracy on datasets PVD2 and WD2 using EFIM-derived patterns,
indicating strong model alignment with high-utility features in these cases. In contrast, perfor-
mance on PVD5 and WD5 showed significant variability, highlighting the sensitivity of certain
datasets to the quality and structure of the mined patterns. The strong performance of DT and RF
can be attributed to their ability to effectively model non-linear relationships and complex feature
interactions, which are common in high-utility pattern-based datasets. RF, being an ensemble of
multiple DTs, further enhances generalization and reduces overfitting by averaging across many
trees, each trained on random data subsets. The ability of tree-based models to generalize well
and mitigate overfitting, by aggregating predictions from multiple trees, makes them especially
effective for datasets containing complex feature combinations with diverse utility values. On
the other hand, simpler models like GNB assume feature independence, which does not align
well with the interdependent patterns mined in this study.

While sequential high-utility patterns provided better interpretability, the unordered patterns
led to slightly improved classification performance, indicating that for wind/PV power forecast-
ing, the presence of specific feature combinations is more predictive than the sequence in which
they occur. The key finding from the classification results is that (1) frequent high- utility-based
patterns extracted from wind/PV datasets can be effectively utilized for identification or detection
tasks and (2) unordered high-utility features led to superior classification performance compared
to sequential high-utility patterns, indicating that in energy-related datasets, the specific order of
features holds less significance.

4.5. Comparison

Previous studies–particularly recent DL-based [12, 13, 51, 52, 53, 55, 56, 58, 60], meta-
heuristic-based [17, 18, 19, 63, 65, 66] and hybrid-approaches [8, 9, 10, 14, 15, 16, 20]–primarily
approached this problem through regression-based time series forecasting, aiming to predict con-
tinuous power values. These models are evaluated using metrics such as MAE, MSE, and RMSE.
In contrast, our framework redefines the task as a classification problem by discretizing wind/PV
features into categorical levels. This problem reformulation shifts the focus from predicting
precise numerical values to classifying power output into predefined ranges, with performance
assessed using classification metrics such as ACC, P, R F1, etc. To provide a fair comparison
and establish a baseline, we trained classification models using all discretized features from the
wind/PV datasets. This baseline performance is then compared to models trained on high-utility
frequent patterns, enabling an evaluation of the effectiveness of pattern-based feature selection.

Several wind/PV datasets exhibit clear class imbalance (Table 3), with some classes, partic-
ularly Very High in PVD3 and PVD8, being underrepresented. Class imbalance can potentially
skew classification performance by causing models to favor majority classes while underperform-
ing on minority ones. To mitigate this, we applied SMOTE (Synthetic Minority Over-sampling
Technique) [79], which generates synthetic examples for minority classes to balance the dataset.
The accuracy of classification models on PVDs and WDs, with and without SMOTE, is presented
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Table 8: Classification results on high-utility patterns across wind/PV datasets. OA = Overall Average
EFIM

Dataset GNB DT RF MLP SVM kNN LR
PVD1 0.86(0.778)

0.702(0.748) 0.41 0.975(0.94)
0.912(0.955) 0.882 0.98(0.938)

0.932(0.962) 0.86 0.83(0.732)
0.688(0.772) 0.505 0.902(0.772)

0.745(0.775) 0.595 0.888(0.822)
0.732(0.842) 0.615 0.872(0.75)

0.75(0.75) 0.375
PVD2 0.832(0.75)

0.788(0.692) 0.562 1(1)
0.952(0.94) 0.94 1(0.995)

0.948(0.945) 0.938 0.87(0.75)
0.77(0.832) 0.548 0.84(0.765)

0.8(0.815) 0.61 0.865(0.748)
0.782(0.838) 0.572 0.75(0.75)

0.74(0.745) 0.532
PVD3 0.902(0.612)

0.548(0.648) 0.502 1(0.788)
0.76(0.925) 0.67 0.998(0.785)

0.755(0.898) 0.642 0.92(0.772)
0.745(0.625) 0.45 0.942(0.75)

0.758(0.75) 0.515 0.98(0.732)
0.738(0.755) 0.495 0.912(0.76)

0.748(0.742) 0.507
PVD4 0.808(0.745)

0.602(0.81) 0.27 0.952(0.932)
0.87(0.922) 0.838 0.962(0.945)

0.895(0.932) 0.878 0.805(0.808)
0.805(0.815) 0.52 0.805(0.818)

0.838(0.86) 0.59 0.83(0.822)
0.852(0.868) 0.638 0.718(0.75)

0.745(0.792) 0.378
PVD5 0.662(0.792)

0.702(0.69) 0.36 0.538(0.888)
0.91(0.58) 0.428 0.538(0.892)

0.918(0.57) 0.432 0.71(0.79)
0.842(0.645) 0.432 0.742(0.818)

0.805(0.73) 0.425 0.618(0.828)
0.875(0.65) 0.4 0.74(0.77)

0.74(0.75) 0.352
PVD6 0.758(0.74)

0.678(0.87) 0.53 0.988(0.942)
0.928(0.972) 0.928 0.985(0.922)

0.908(0.968) 0.92 0.802(0.64)
0.67(0.838) 0.485 0.785(0.755)

0.75(0.865) 0.545 0.828(0.702)
0.74(0.858) 0.552 0.75(0.75)

0.758(0.825) 0.488
PVD7 0.778(0.772)

0.748(0.735) 0.44 0.97(1)
0.988(0.98) 0.988 0.972(0.975)

0.985(0.978) 0.942 0.835(0.688)
0.735(0.762) 0.46 0.838(0.782)

0.758(0.77) 0.54 0.872(0.768)
0.735(0.785) 0.572 0.73(0.75)

0.75(0.722) 0.342
PVD8 0.765(0.408)

0.71(0.715) 0.328 0.905(0.905)
0.892(0.882) 0.808 0.94(0.908)

0.88(0.862) 0.812 0.832(0.775)
0.752(0.66) 0.498 0.82(0.755)

0.738(0.755) 0.51 0.895(0.768)
0.748(0.698) 0.562 0.768(0.742)

0.742(0.75) 0.398
WD1 0.375(0.3)

0.748(0.732) 0.325 0.945(0.97)
0.982(0.99) 0.942 0.978(0.988)

0.99(0.998) 0.97 0.815(0.895)
0.928(0.858) 0.715 0.848(0.848)

0.93(0.882) 0.74 0.888(0.922)
0.96(0.932) 0.798 0.78(0.76)

0.805(0.752) 0.507
WD2 0.355(0.758)

0.33(0.415) 0.298 1(0.99)
0.962(0.962) 0.94 1(0.995)

0.965(0.968) 0.958 0.895(0.9)
0.875(0.872) 0.74 0.88(0.865)

0.888(0.84) 0.728 0.935(0.925)
0.91(0.882) 0.818 0.808(0.808)

0.828(0.75) 0.592
WD3 0.35(0.358)

0.25(0.778) 0.395 0.9(0.918)
0.988(0.995) 0.89 0.915(0.918)

1(0.995) 0.902 0.852(0.73)
0.808(0.875) 0.615 0.848(0.755)

0.795(0.84) 0.585 0.86(0.805)
0.818(0.882) 0.672 0.772(0.742)

0.758(0.768) 0.468
WD4 0.765(0.96)

0.31(0.405) 0.415 0.985(0.995)
1(0.998) 0.992 0.995(0.995)

1(1) 0.995 0.825(0.95)
0.818(0.89) 0.728 0.875(0.975)

0.84(0.888) 0.778 0.872(0.97)
0.865(0.89) 0.785 0.835(0.978)

0.795(0.792) 0.695
WD5 0.782(0.628)

0.628(0.838) 0.502 1(0.575)
0.575(0.948) 0.495 1(0.565)

0.565(0.945) 0.498 0.918(0.682)
0.682(0.865) 0.538 0.91(0.742)

0.742(0.87) 0.542 0.955(0.612)
0.612(0.878) 0.495 0.79(0.74)

0.74(0.858) 0.475
WD6 0.4(0.308)

0.258(0.775) 0.385 0.94(0.935)
0.992(1) 0.915 0.948(0.94)

0.998(1) 0.94 0.88(0.85)
0.905(0.895) 0.742 0.915(0.885)

0.908(0.915) 0.812 0.908(0.9)
0.955(0.938) 0.848 0.87(0.83)

0.785(0.775) 0.62
OA 0.671(0.636)

0.571(0.704) 0.409 0.936(0.913)
0.908(0.932) 0.833 0.944(0.911)

0.91(0.93) 0.835 0.842(0.783)
0.787(0.8) 0.57 0.854(0.806)

0.807(0.825) 0.608 0.871(0.809)
0.809(0.835) 0.63 0.793(0.777)

0.763(0.769) 0.481
USPAN

Dataset GNB DT RF MLP SVM kNN LR
PVD1 0.748(0.728)

0.72(0.282) 0.28 0.772(0.742)
0.78(0.835) 0.47 0.78(0.73)

0.762(0.818) 0.492 0.625(0.722)
0.682(0.695) 0.278 0.75(0.75)

0.75(0.75) 0.315 0.74(0.69)
0.705(0.832) 0.388 0.75(0.75)

0.75(0.725) 0.3
PVD2 0.722(0.66)

0.712(0.658) 0.312 0.77(0.755)
0.672(0.892) 0.462 0.748(0.75)

0.652(0.888) 0.452 0.672(0.732)
0.7(0.622) 0.285 0.75(0.752)

0.75(0.75) 0.34 0.722(0.765)
0.708(0.738) 0.298 0.75(0.742)

0.75(0.75) 0.378
PVD3 0.725(0.715)

0.722(0.638) 0.298 0.785(0.638)
0.658(0.782) 0.262 0.752(0.612)

0.612(0.765) 0.305 0.38(0.638)
0.535(0.75) 0.265 0.75(0.75)

0.75(0.75) 0.285 0.73(0.672)
0.705(0.742) 0.212 0.75(0.75)

0.75(0.74) 0.27
PVD4 0.728(0.738)

0.688(0.342) 0.285 0.748(0.732)
0.812(0.858) 0.46 0.742(0.7)

0.795(0.858) 0.455 0.742(0.648)
0.698(0.722) 0.402 0.75(0.75)

0.75(0.735) 0.475 0.72(0.725)
0.762(0.858) 0.402 0.75(0.75)

0.752(0.725) 0.395
PVD5 0.248(0.755)

0.772(0.38) 0.325 0.688(0.688)
0.805(0.952) 0.45 0.66(0.66)

0.78(0.948) 0.458 0.68(0.678)
0.782(0.765) 0.312 0.755(0.75)

0.752(0.805) 0.475 0.73(0.688)
0.772(0.942) 0.435 0.75(0.75)

0.752(0.712) 0.438
PVD6 0.67(0.67)

0.65(0.73) 0.282 0.87(0.7)
0.758(0.85) 0.562 0.87(0.7)

0.748(0.83) 0.555 0.745(0.695)
0.62(0.648) 0.238 0.75(0.75)

0.75(0.75) 0.292 0.778(0.698)
0.7(0.762) 0.385 0.75(0.75)

0.75(0.75) 0.315
PVD7 0.718(0.572)

0.73(0.738) 0.258 0.75(0.735)
0.805(0.832) 0.502 0.758(0.72)

0.805(0.815) 0.505 0.608(0.622)
0.668(0.745) 0.245 0.75(0.75)

0.75(0.75) 0.278 0.738(0.715)
0.708(0.745) 0.398 0.75(0.75)

0.75(0.75) 0.305
PVD8 0.66(0.66)

0.56(0.712) 0.345 0.588(0.588)
0.695(0.792) 0.295 0.565(0.565)

0.68(0.812) 0.295 0.38(0.38)
0.66(0.702) 0.24 0.75(0.75)

0.75(0.75) 0.32 0.635(0.635)
0.618(0.768) 0.295 0.74(0.74)

0.75(0.745) 0.328
WD1 0.318(0.335)

0.308(0.748) 0.318 0.925(0.828)
0.915(0.995) 0.83 0.922(0.862)

0.942(0.995) 0.865 0.835(0.745)
0.735(0.705) 0.338 0.915(0.75)

0.762(0.75) 0.482 0.908(0.762)
0.75(0.745) 0.488 0.735(0.742)

0.755(0.748) 0.39
WD2 0.268(0.692)

0.742(0.72) 0.28 0.995(0.79)
0.582(0.775) 0.555 0.995(0.8)

0.582(0.778) 0.568 0.67(0.718)
0.738(0.72) 0.288 0.75(0.758)

0.75(0.75) 0.302 0.798(0.75)
0.69(0.698) 0.348 0.75(0.742)

0.75(0.75) 0.245
WD3 0.268(0.252)

0.252(0.748) 0.258 0.86(0.602)
0.602(0.998) 0.422 0.842(0.575)

0.575(1) 0.42 0.74(0.748)
0.748(0.748) 0.262 0.75(0.75)

0.75(0.748) 0.282 0.74(0.695)
0.695(0.77) 0.255 0.75(0.75)

0.75(0.75) 0.292
WD4 0.318(0.272)

0.25(0.742) 0.285 0.975(0.91)
0.862(0.94) 0.795 0.975(0.928)

0.875(0.942) 0.84 0.7(0.722)
0.75(0.742) 0.288 0.75(0.75)

0.755(0.75) 0.335 0.725(0.652)
0.728(0.74) 0.358 0.75(0.75)

0.75(0.752) 0.278
WD5 0.738(0.305)

0.305(0.728) 0.25 0.89(0.825)
0.612(0.66) 0.442 0.882(0.835)

0.612(0.64) 0.435 0.718(0.56)
0.702(0.662) 0.282 0.74(0.75)

0.75(0.75) 0.332 0.725(0.74)
0.655(0.702) 0.222 0.74(0.75)

0.75(0.75) 0.252
WD6 0.305(0.25)

0.258(0.74) 0.288 0.998(0.888)
0.812(0.892) 0.828 0.995(0.898)

0.82(0.89) 0.825 0.95(0.665)
0.67(0.725) 0.468 0.89(0.75)

0.75(0.74) 0.452 0.962(0.762)
0.678(0.7) 0.475 0.885(0.748)

0.75(0.745) 0.405
OA 0.531(0.543)

0.548(0.636) 0.29 0.829(0.744)
0.741(0.861) 0.524 0.821(0.738)

0.732(0.856) 0.534 0.675(0.662)
0.692(0.711) 0.299 0.771(0.751)

0.751(0.752) 0.355 0.761(0.711)
0.705(0.767) 0.354 0.757(0.747)

0.751(0.742) 0.328
FCHM

Dataset GNB DT RF MLP SVM kNN LR
PVD1 0.745(0.25)

0.255(0.272) 0.295 0.915(0.85)
0.832(0.915) 0.695 0.902(0.832)

0.82(0.912) 0.69 0.698(0.698)
0.725(0.752) 0.385 0.755(0.75)

0.755(0.785) 0.46 0.76(0.738)
0.755(0.81) 0.388 0.775(0.75)

0.75(0.742) 0.398
PVD2 0.755(0.742)

0.262(0.338) 0.302 0.845(0.775)
0.765(0.922) 0.6 0.822(0.75)

0.735(0.915) 0.598 0.675(0.715)
0.512(0.775) 0.408 0.77(0.755)

0.75(0.81) 0.448 0.788(0.708)
0.682(0.885) 0.37 0.748(0.75)

0.75(0.75) 0.36
PVD3 0.765(0.525)

0.562(0.605) 0.385 0.92(0.73)
0.805(0.838) 0.612 0.91(0.725)

0.788(0.83) 0.622 0.762(0.625)
0.748(0.688) 0.402 0.805(0.75)

0.755(0.8) 0.5 0.85(0.688)
0.735(0.762) 0.468 0.758(0.75)

0.75(0.752) 0.405
PVD4 0.752(0.748)

0.27(0.31) 0.318 0.945(0.775)
0.778(0.87) 0.58 0.93(0.75)

0.768(0.845) 0.59 0.74(0.702)
0.622(0.802) 0.41 0.792(0.76)

0.75(0.812) 0.43 0.8(0.745)
0.72(0.795) 0.472 0.755(0.75)

0.745(0.738) 0.435
PVD5 0.732(0.75)

0.25(0.328) 0.278 0.83(0.812)
0.808(0.962) 0.602 0.818(0.8)

0.798(0.965) 0.628 0.748(0.768)
0.695(0.845) 0.482 0.765(0.755)

0.78(0.888) 0.54 0.728(0.78)
0.768(0.922) 0.522 0.75(0.75)

0.75(0.77) 0.39
PVD6 0.26(0.265)

0.252(0.762) 0.272 0.928(0.825)
0.828(0.9) 0.705 0.915(0.815)

0.798(0.885) 0.67 0.705(0.732)
0.598(0.698) 0.295 0.755(0.75)

0.75(0.792) 0.372 0.798(0.742)
0.685(0.782) 0.428 0.75(0.758)

0.75(0.772) 0.325
PVD7 0.25(0.272)

0.258(0.755) 0.335 0.882(0.815)
0.842(0.902) 0.735 0.895(0.788)

0.812(0.892) 0.685 0.805(0.695)
0.622(0.74) 0.395 0.792(0.75)

0.75(0.805) 0.432 0.83(0.722)
0.698(0.792) 0.475 0.752(0.748)

0.75(0.79) 0.392
PVD8 0.74(0.28)

0.272(0.752) 0.385 0.922(0.792)
0.842(0.868) 0.668 0.91(0.798)

0.818(0.828) 0.642 0.838(0.752)
0.718(0.752) 0.4

0.798(0.75)
0.745(0.765) 0.478 0.858(0.722)

0.712(0.758) 0.442 0.77(0.75)
0.742(0.752) 0.385

WD1 0.265(0.755)
0.255(0.298) 0.258 0.898(0.925)

0.872(0.875) 0.792 0.915(0.922)
0.868(0.875) 0.795 0.75(0.682)

0.658(0.738) 0.42 0.75(0.808)
0.772(0.762) 0.502 0.765(0.858)

0.755(0.772) 0.507 0.75(0.76)
0.75(0.735) 0.428

WD2 0.305(0.258)
0.728(0.75) 0.268 0.96(0.91)

0.76(0.778) 0.712 0.965(0.902)
0.752(0.8) 0.7 0.718(0.755)

0.68(0.685) 0.432 0.762(0.858)
0.738(0.768) 0.548 0.838(0.855)

0.702(0.738) 0.555 0.762(0.862)
0.748(0.778) 0.52

WD3 0.335(0.758)
0.268(0.255) 0.288 0.858(0.788)

0.822(0.86) 0.652 0.845(0.805)
0.825(0.875) 0.685 0.732(0.712)

0.66(0.61) 0.338 0.758(0.76)
0.752(0.762) 0.425 0.775(0.752)

0.73(0.798) 0.445 0.755(0.758)
0.75(0.748) 0.35

WD4 0.282(0.725)
0.745(0.585) 0.26 0.922(0.86)

0.855(0.932) 0.768 0.928(0.868)
0.872(0.945) 0.82 0.775(0.802)

0.615(0.745) 0.472 0.792(0.808)
0.782(0.782) 0.53 0.782(0.82)

0.792(0.802) 0.565 0.75(0.758)
0.76(0.758) 0.375

WD5 0.738(0.712)
0.43(0.43) 0.26 0.845(0.838)

0.618(0.618) 0.28 0.812(0.82)
0.595(0.595) 0.275 0.748(0.75)

0.505(0.505) 0.352 0.772(0.798)
0.75(0.75) 0.39 0.8(0.772)

0.678(0.678) 0.222 0.75(0.785)
0.75(0.75) 0.298

WD6 0.28(0.265)
0.75(0.738) 0.322 0.872(0.815)

0.875(0.892) 0.645 0.86(0.822)
0.872(0.9) 0.67 0.745(0.762)

0.775(0.735) 0.395 0.76(0.785)
0.76(0.775) 0.472 0.795(0.77)

0.825(0.748) 0.555 0.752(0.745)
0.75(0.752) 0.38

OA 0.515(0.522)
0.397(0.513) 0.302 0.896(0.822)

0.807(0.867) 0.646 0.888(0.814)
0.794(0.862) 0.648 0.746(0.725)

0.652(0.719) 0.399 0.773(0.774)
0.756(0.79) 0.466 0.798(0.762)

0.731(0.789) 0.458 0.756(0.762)
0.75(0.756) 0.389

in Table 10. Contrary to expectations, the results indicate that SMOTE did not consistently im-
prove accuracy across the datasets. In fact, in several cases, accuracy slightly declined after
applying SMOTE. In datasets such as PVD3 and PVD8, where class imbalance was most severe,
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Table 9: DT results for all metrics on EFIM-derived high-utility patterns
Dataset ACC P R F1 MCC AUC AUPRC
PVD1 0.975(0.94)

0.912(0.955) 0.882 0.941(0.896)
0.822(0.918) 0.885 0.96(0.86)

0.83(0.9) 0.882 0.95(0.878)
0.826(0.909) 0.883 0.934(0.838)

0.767(0.879) 0.844 0.97(0.917)
0.903(0.945) 0.931 0.914(0.811)

0.747(0.864) 0.91
PVD2 1(1)

0.952(0.94) 0.94 1(1)
0.893(0.852) 0.94 1(1)

0.92(0.92) 0.94 1(1)
0.906(0.885) 0.94 1(1)

0.875(0.845) 0.92 1(1)
0.946(0.938) 0.961 1(1)

0.848(0.81) 0.949
PVD3 1(0.788)

0.76(0.925) 0.67 1(0.59)
0.523(0.898) 0.689 1(0.49)

0.45(0.79) 0.67 1(0.536)
0.484(0.84) 0.675 1(0.402)

0.33(0.794) 0.563 1(0.715)
0.657(0.88) 0.79 1(0.447)

0.381(0.767) 0.721
PVD4 0.952(0.932)

0.87(0.922) 0.838 0.909(0.892)
0.75(0.835) 0.842 0.9(0.83)

0.72(0.86) 0.838 0.905(0.86)
0.735(0.847) 0.838 0.873(0.817)

0.649(0.796) 0.784 0.949(0.921)
0.845(0.921) 0.9

0.862(0.813)
0.639(0.777) 0.87

PVD5 0.538(0.888)
0.91(0.58) 0.428 0.062(0.802)

0.881(0.041) 0.43 0.06(0.73)
0.74(0.03) 0.428 0.061(0.764)

0.804(0.034) 0.429 −0.246(0.692)
0.751(−0.23) 0.237 0.392(0.836)

0.869(0.388) 0.619 0.224(0.662)
0.74(0.231) 0.493

PVD6 0.988(0.942)
0.928(0.972) 0.928 0.99(0.881)

0.845(0.959) 0.931 0.96(0.89)
0.87(0.93) 0.928 0.975(0.886)

0.857(0.944) 0.928 0.967(0.847)
0.809(0.926) 0.904 0.978(0.925)

0.908(0.958) 0.957 0.96(0.812)
0.767(0.909) 0.944

PVD7 0.97(1)
0.988(0.98) 0.988 0.958(1)

0.97(0.951) 0.988 0.92(1)
0.98(0.97) 0.988 0.939(1)

0.975(0.96) 0.988 0.919(1)
0.967(0.947) 0.983 0.953(1)

0.985(0.981) 0.992 0.902(1)
0.956(0.937) 0.989

PVD8 0.905(0.905)
0.892(0.882) 0.808 0.804(0.798)

0.794(0.762) 0.807 0.82(0.83)
0.77(0.77) 0.808 0.812(0.814)

0.782(0.766) 0.807 0.748(0.75)
0.711(0.688) 0.744 0.885(0.892)

0.867(0.847) 0.882 0.715(0.72)
0.689(0.649) 0.839

WD1 0.945(0.97)
0.982(0.99) 0.942 0.882(0.915)

0.96(1) 0.943 0.9(0.97)
0.97(0.96) 0.942 0.891(0.942)

0.965(0.98) 0.942 0.854(0.922)
0.954(0.973) 0.924 0.93(0.975)

0.978(0.98) 0.962 0.819(0.902)
0.939(0.97) 0.95

WD2 1(0.99)
0.962(0.962) 0.94 1(0.98)

0.929(0.929) 0.94 1(0.98)
0.92(0.92) 0.94 1(0.98)

0.925(0.925) 0.94 1(0.973)
0.9(0.9) 0.92 1(0.987)

0.948(0.958) 0.966 1(0.965)
0.875(0.888) 0.955

WD3 0.9(0.918)
0.988(0.995) 0.89 0.783(0.832)

0.99(1) 0.891 0.83(0.84)
0.96(0.98) 0.89 0.806(0.836)

0.975(0.99) 0.89 0.739(0.781)
0.967(0.987) 0.853 0.884(0.915)

0.978(0.99) 0.933 0.702(0.768)
0.96(0.985) 0.91

WD4 0.985(0.995)
1(0.998) 0.992 0.952(0.98)

1(1) 0.993 0.99(1)
1(0.99) 0.992 0.971(0.99)

1(0.995) 0.993 0.961(0.987)
1(0.993) 0.99 0.987(0.997)

1(0.995) 0.995 0.945(0.98)
1(0.992) 0.994

WD5 1(0.575)
0.575(0.948) 0.495 1(0.039)

0.039(0.934) 0.497 1(0.03)
0.03(0.85) 0.495 1(0.034)

0.034(0.89) 0.496 1(−0.235)
−0.235(0.857) 0.327 1(0.391)

0.391(0.926) 0.663 1(0.228)
0.228(0.848) 0.553

WD6 0.94(0.935)
0.992(1) 0.915 0.896(0.878)

1(1) 0.917 0.86(0.86)
0.97(1) 0.915 0.878(0.869)

0.985(1) 0.915 0.838(0.826)
0.98(1) 0.887 0.912(0.909)

0.985(1) 0.944 0.805(0.79)
0.978(1) 0.926

OA 0.936(0.913)
0.908(0.932) 0.833 0.87(0.82)

0.814(0.863) 0.835 0.871(0.808)
0.795(0.848) 0.833 0.87(0.813)

0.804(0.855) 0.833 0.828(0.757)
0.744(0.811) 0.777 0.917(0.884)

0.876(0.908) 0.892 0.846(0.778)
0.768(0.831) 0.857

applying SMOTE did not result in any significant accuracy improvement. Despite generating
synthetic samples to balance the minority classes, the overall model accuracy either remained
unchanged or even decreased slightly. SMOTE works best when minority class examples lie
close to each other in feature space. However, if the dataset has complex structures or high-
dimensional interactions (such as those involving high-utility patterns), SMOTE might generate
synthetic samples that do not reflect true data distributions, leading to lower accuracy. Moreover,
some classifers such as RF and DT are inherently robust to moderate class imbalance. In such
cases, oversampling may offer little benefit, while possibly making the model more prone to
overfitting.

One interesting observation is that DT and RF achieved superior performance (90.4% and
90.6% accuracy) when trained on high-utility pattern features obtained with EFIM compared to
training on all features (DT (87.6%), RF(87.8%)) without SMOTE. However, this trend did not
extend uniformly to all classifiers. For other models, their accuracy results are higher when using
the complete feature set. This again suggests that tree-based models are particularly well-suited
to pattern-based feature sets, likely due to their ability to handle discrete, interpretable features
and to effectively exploit the hierarchical structure of patterns. In contrast, non-tree-based models
appear to benefit from the broader information available in the full feature set. The diversity and
richness of data provide more continuous or high-dimensional cues necessary for these models
to perform better. Therefore, the choice between pattern-based and full feature-based modeling
should consider both the classifier type and computational constraints. For scenarios prioritizing
interpretability and efficiency, pattern-based models–especially with DT and RF–are advanta-
geous. However, for maximizing raw predictive power with models like SVM or LR, full feature
sets, potentially augmented with techniques like SMOTE, may still offer better results.

In addition to the limited improvements in accuracy, applying SMOTE introduced a substan-
tial increase in computational time. When trained on the original datasets without SMOTE, the
classifiers completed execution on all features in approximately 5 hours. However, with SMOTE
applied, the execution time increased significantly, requiring more than 17 hours to process the
same datasets. This notable rise in computational cost, without clear performance gains, sug-
gests that SMOTE may not be a practical solution for high-dimensional, pattern-rich renewable
energy datasets. Particularly when computational efficiency is a priority. In contrast, the pro-
posed HUF4WP framework—which involves first mining high-utility patterns and then using
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Table 10: Comparison of classification accuracy when classifiers are trained on the complete set of original features
Without SMOTE

Dataset GNB DT RF MLP SVM kNN LR
PVD1 0.902(0.222)

0.695(0.905) 0.803 0.917(0.904)
0.933(0.95) 0.849 0.917(0.904)

0.932(0.95) 0.849 0.916(0.903)
0.931(0.95) 0.849 0.917(0.902)

0.933(0.949) 0.849 0.887(0.893)
0.923(0.937) 0.826 0.914(0.9)

0.929(0.948) 0.843
PVD2 0.487(0.478)

0.363(0.924) 0.395 0.82(0.84)
0.783(0.927) 0.668 0.821(0.84)

0.783(0.927) 0.668 0.821(0.84)
0.784(0.928) 0.667 0.821(0.84)

0.784(0.927) 0.667 0.803(0.839)
0.761(0.921) 0.64 0.818(0.84)

0.777(0.926) 0.659
PVD3 0.858(0.681)

0.701(1) 0.733 0.873(0.859)
0.903(1) 0.808 0.873(0.858)

0.903(1) 0.808 0.873(0.857)
0.901(1) 0.808 0.872(0.857)

0.903(1) 0.808 0.857(0.841)
0.892(0.999) 0.793 0.87(0.856)

0.895(1) 0.8
PVD4 0.85(0.307)

0.769(0.967) 0.798 0.899(0.901)
0.945(0.969) 0.842 0.899(0.901)

0.944(0.969) 0.842 0.899(0.902)
0.944(0.969) 0.84 0.898(0.903)

0.946(0.969) 0.842 0.884(0.894)
0.935(0.963) 0.82 0.901(0.901)

0.946(0.97) 0.842
PVD5 0.837(0.316)

0.775(0.994) 0.838 0.895(0.896)
0.943(0.994) 0.848 0.896(0.896)

0.943(0.994) 0.847 0.895(0.896)
0.943(0.994) 0.849 0.895(0.896)

0.944(0.994) 0.848 0.872(0.884)
0.942(0.992) 0.843 0.894(0.896)

0.944(0.994) 0.846
PVD6 0.922(0.319)

0.932(0.916) 0.796 0.928(0.898)
0.949(0.984) 0.879 0.929(0.898)

0.949(0.984) 0.879 0.928(0.899)
0.949(0.984) 0.88 0.929(0.898)

0.949(0.984) 0.879 0.927(0.888)
0.945(0.978) 0.868 0.927(0.869)

0.944(0.984) 0.872
PVD7 0.898(0.27)

0.9(0.88) 0.774 0.921(0.902)
0.957(0.993) 0.884 0.921(0.902)

0.957(0.993) 0.885 0.92(0.9)
0.957(0.992) 0.884 0.921(0.903)

0.957(0.993) 0.884 0.907(0.893)
0.954(0.992) 0.872 0.914(0.873)

0.957(0.993) 0.874
PVD8 0.866(0.682)

0.619(0.885) 0.668 0.876(0.84)
0.933(0.999) 0.822 0.876(0.839)

0.932(0.998) 0.822 0.877(0.84)
0.933(0.999) 0.822 0.876(0.841)

0.933(0.998) 0.825 0.859(0.815)
0.927(0.998) 0.803 0.878(0.831)

0.931(0.998) 0.821
WD1 0.846(0.671)

0.708(0.764) 0.683 0.895(0.818)
0.845(0.923) 0.74 0.9(0.821)

0.845(0.924) 0.744 0.9(0.818)
0.847(0.926) 0.747 0.902(0.824)

0.846(0.925) 0.75 0.882(0.801)
0.821(0.921) 0.718 0.897(0.786)

0.837(0.924) 0.74
WD2 0.878(0.727)

0.592(0.651) 0.561 0.926(0.814)
0.778(0.826) 0.663 0.932(0.817)

0.777(0.828) 0.669 0.934(0.818)
0.777(0.824) 0.67 0.933(0.818)

0.776(0.826) 0.673 0.929(0.791)
0.754(0.811) 0.635 0.93(0.793)

0.758(0.8) 0.642
WD3 0.76(0.473)

0.476(0.875) 0.585 0.873(0.789)
0.813(0.901) 0.682 0.882(0.799)

0.824(0.912) 0.701 0.882(0.797)
0.823(0.913) 0.697 0.877(0.792)

0.825(0.914) 0.701 0.868(0.786)
0.809(0.907) 0.678 0.852(0.764)

0.806(0.905) 0.667
WD4 0.707(0.59)

0.593(0.919) 0.717 0.888(0.815)
0.855(0.943) 0.754 0.893(0.818)

0.859(0.946) 0.761 0.892(0.821)
0.857(0.946) 0.759 0.896(0.819)

0.863(0.947) 0.759 0.879(0.806)
0.844(0.942) 0.726 0.887(0.809)

0.85(0.94) 0.744
WD5 0.876(0.376)

0.789(0.911) 0.618 0.948(0.915)
0.934(0.956) 0.876 0.952(0.92)

0.936(0.958) 0.884 0.953(0.921)
0.936(0.958) 0.881 0.954(0.922)

0.939(0.958) 0.885 0.951(0.913)
0.932(0.955) 0.868 0.954(0.919)

0.932(0.956) 0.882
WD6 0.698(0.551)

0.655(1) 0.669 0.858(0.783)
0.844(1) 0.734 0.861(0.785)

0.842(1) 0.738 0.86(0.781)
0.843(1) 0.735 0.859(0.779)

0.843(1) 0.734 0.842(0.761)
0.819(0.998) 0.7

0.84(0.755)
0.834(1) 0.715

OA 0.813(0.476)
0.683(0.899) 0.688 0.894(0.855)

0.887(0.955) 0.789 0.896(0.857)
0.888(0.956) 0.793 0.896(0.857)

0.888(0.956) 0.792 0.896(0.857)
0.889(0.956) 0.793 0.882(0.843)

0.875(0.951) 0.771 0.891(0.842)
0.881(0.953) 0.782

With SMOTE
Dataset GNB DT RF MLP SVM kNN LR
PVD1 0.902(0.207)

0.658(0.905) 0.803 0.916(0.718)
0.868(0.915) 0.751 0.916(0.718)

0.869(0.915) 0.751 0.916(0.713)
0.873(0.913) 0.752 0.916(0.717)

0.863(0.912) 0.753 0.887(0.892)
0.922(0.937) 0.827 0.907(0.748)

0.878(0.905) 0.756
PVD2 0.487(0.478)

0.363(0.924) 0.395 0.742(0.774)
0.677(0.92) 0.668 0.742(0.774)

0.677(0.92) 0.668 0.742(0.748)
0.677(0.92) 0.666 0.752(0.748)

0.677(0.921) 0.668 0.803(0.839)
0.76(0.921) 0.64 0.761(0.766)

0.687(0.92) 0.659
PVD3 0.858(0.681)

0.701(1) 0.732 0.851(0.731)
0.833(0.999) 0.767 0.851(0.731)

0.833(0.999) 0.767 0.856(0.741)
0.832(0.999) 0.768 0.851(0.724)

0.822(0.999) 0.766 0.857(0.84)
0.892(1) 0.793 0.849(0.706)

0.799(0.999) 0.757
PVD4 0.85(0.307)

0.769(0.967) 0.798 0.888(0.794)
0.784(0.955) 0.79 0.888(0.794)

0.784(0.955) 0.79 0.888(0.791)
0.784(0.956) 0.791 0.889(0.789)

0.776(0.953) 0.79 0.884(0.892)
0.934(0.963) 0.819 0.89(0.797)

0.77(0.957) 0.786
PVD5 0.837(0.323)

0.776(0.994) 0.815 0.895(0.804)
0.786(0.985) 0.803 0.895(0.804)

0.786(0.985) 0.803 0.894(0.803)
0.785(0.989) 0.802 0.894(0.803)

0.784(0.985) 0.802 0.872(0.884)
0.941(0.992) 0.843 0.893(0.81)

0.775(0.99) 0.801
PVD6 0.922(0.319)

0.931(0.916) 0.796 0.925(0.801)
0.943(0.92) 0.81 0.925(0.801)

0.943(0.92) 0.82 0.92(0.801)
0.943(0.914) 0.811 0.927(0.797)

0.943(0.913) 0.81 0.927(0.888)
0.945(0.978) 0.868 0.915(0.799)

0.931(0.913) 0.818
PVD7 0.898(0.271)

0.9(0.895) 0.725 0.916(0.82)
0.939(0.961) 0.828 0.916(0.82)

0.938(0.961) 0.829 0.911(0.837)
0.941(0.969) 0.83 0.91(0.818)

0.939(0.961) 0.822 0.908(0.892)
0.953(0.992) 0.873 0.904(0.782)

0.934(0.968) 0.79
PVD8 0.866(0.682)

0.614(0.9) 0.668 0.843(0.746)
0.91(0.981) 0.765 0.847(0.746)

0.91(0.981) 0.765 0.844(0.737)
0.912(0.972) 0.762 0.849(0.741)

0.912(0.956) 0.76 0.859(0.815)
0.927(0.997) 0.802 0.843(0.718)

0.9(0.928) 0.739
WD1 0.846(0.671)

0.703(0.764) 0.683 0.87(0.783)
0.829(0.919) 0.74 0.875(0.788)

0.831(0.921) 0.744 0.863(0.764)
0.833(0.923) 0.747 0.864(0.779)

0.835(0.917) 0.75 0.879(0.793)
0.813(0.917) 0.718 0.852(0.722)

0.808(0.915) 0.741
WD2 0.881(0.713)

0.59(0.652) 0.561 0.924(0.785)
0.699(0.789) 0.663 0.928(0.789)

0.698(0.788) 0.669 0.929(0.79)
0.704(0.793) 0.667 0.926(0.783)

0.685(0.778) 0.673 0.927(0.783)
0.748(0.809) 0.635 0.917(0.729)

0.604(0.759) 0.642
WD3 0.761(0.473)

0.473(0.87) 0.585 0.854(0.78)
0.805(0.891) 0.682 0.862(0.789)

0.813(0.901) 0.701 0.843(0.761)
0.816(0.893) 0.695 0.843(0.765)

0.809(0.897) 0.701 0.863(0.765)
0.792(0.899) 0.678 0.798(0.711)

0.793(0.875) 0.667
WD4 0.709(0.59)

0.592(0.915) 0.717 0.869(0.801)
0.829(0.939) 0.754 0.875(0.805)

0.831(0.94) 0.761 0.87(0.797)
0.831(0.941) 0.76 0.873(0.802)

0.829(0.939) 0.759 0.874(0.797)
0.839(0.94) 0.726 0.865(0.79)

0.812(0.934) 0.744
WD5 0.886(0.383)

0.791(0.934) 0.562 0.948(0.912)
0.885(0.955) 0.869 0.952(0.917)

0.886(0.956) 0.875 0.951(0.907)
0.887(0.956) 0.872 0.953(0.917)

0.856(0.952) 0.876 0.948(0.901)
0.917(0.951) 0.861 0.952(0.911)

0.81(0.947) 0.874
WD6 0.684(0.551)

0.652(1) 0.669 0.837(0.722)
0.805(1) 0.734 0.839(0.724)

0.804(1) 0.737 0.819(0.74)
0.81(1) 0.734 0.837(0.714)

0.8(1) 0.734 0.842(0.757)
0.816(0.999) 0.7

0.81(0.669)
0.788(1) 0.713

OA 0.813(0.475)
0.68(0.903) 0.679 0.877(0.784)

0.828(0.938) 0.759 0.879(0.786)
0.829(0.939) 0.763 0.875(0.781)

0.831(0.938) 0.761 0.877(0.778)
0.824(0.935) 0.762 0.881(0.839)

0.872(0.95) 0.77 0.868(0.761)
0.806(0.929) 0.749

these patterns as features for classification—proved to be computationally efficient. The pattern
discovery and subsequent use in classification typically require only a few minutes per dataset.
This highlights both the interpretability and practical advantages of the pattern-based method.
It offers a substantial reduction in processing time while maintaining competitive classification
performance. Some previous works also reported the computational time for their proposed
methods. For example, IEDN-RNET [14] and QT-MARF [12] took more than one hour and 2
hour on average on WDs, and Santa Vitoria and Natal datasets. The method [66] took approxi-
mately 45 s on four wind datasets containing 11,520 samples only.

Figure 5 presents the best average values of the classification metrics for three cases: (1)
DT trained on EFIM-derived pattern features, (2) RF trained on all features without SMOTE,
and (3) RF trained on all features with SMOTE. DT with EFIM achieves superior average per-
formance across several metrics—including ACC, P, F1, MCC and AUPRC—compared to RF
when trained on all features, both with and without SMOTE. Case 1 demonstrates a balanced
trade-off between interpretability, efficiency, and classification effectiveness, confirming that
pattern-based features can lead to robust and high-performing models, especially for tree-based
classifiers. Although RF performs reasonably well in bot full-feature cases, the marginal gains
observed with SMOTE—particularly in R for minority classes—do not outweigh the previously
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Figure 5: Comparison of the best average classification metrics for three cases: (1) DT with EFIM-derived features (red
line), (2) RF with original features without SMOTE (blue line), and (3) RF with original features with SMOTE (green
line).

noted computational cost. Notably, DT with EFIM (case 1) achieved approximately a 2.96% im-
provement in accuracy over RF on all features without SMOTE (case 2) and 7.72% improvement
over the RF on all features with SMOTE (case 3).

5. Conclusion

This study introduced HUF4WP, a novel high-utility data fusion framework designed for the
analysis and efficient classification/prediction of wind/PV power. Unlike traditional regression-
based forecasting models, HUF4WP reformulates the prediction of wind/PV power as a classi-
fication problem, enabling more actionable insights through categorical levels. By integrating
high-utility pattern mining algorithms and feature weighting, HUF4WP effectively identified
not only frequent but operationally significant patterns in renewable energy datasets. Exten-
sive experimental results across multiple wind/PV datasets demonstrated that HUF4WP achieves
superior classification performance compared to baseline classifiers trained directly on the raw
features, while also offering faster computational performance than both baseline and regression-
based forecasting approaches. Moreover, the discovered high-utility patterns and rules provide
transparent and interpretable insights into key environmental and temporal drivers of renew-
able energy generation. These insights expose meaningful dependencies among features such as
irradiance, wind speed, atmospheric pressure, and diurnal cycles. This provides valuable guid-
ance for energy management, grid stability, and predictive maintenance. The adaptability of
the HUF4WP framework allows it to be extended to other domains where interpretability and
high-utility pattern discovery are essential.

While HUF4WP demonstrated strong classification performance and interpretability, certain
limitations remain. Firstly, HUF4WP relies on the discretization of continuous features, which—
while improving interpretability—may lead to a loss of fine-grained information. Secondly, the
discretization thresholds for features are statically defined based on domain knowledge and may
require adaptation when applied to different regions or evolving operational conditions. Thirdly,
although HUF4WP is computationally efficient for the studied datasets, its scalability to ultra-
large energy data streams requires further investigation. Fourthly, the performance of classifica-
tion models was partially dependent on the accuracy of SHAP-based feature importance estima-
tions. Future work will focus on (1) dynamic thresholds adjustment to accommodate changing
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environmental conditions; (2) integration with real-time data streams for continuous learning; (3)
extending HUF4WP to multi-source heterogeneous energy systems; (4) incorporating domain-
specific constraints and exploring multi-objective optimization in high-utility pattern mining to
further enhance the operational relevance of discovered insights; (5) using non-linear models
such as RF or XGBoost for SHAP value estimation to capture more complex feature interactions
and improve the granularity of importance assessments; and (6) discovering negative or contrast-
ing patterns in energy data and integrating them into the classification framework.
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