
Efficient Genome Sequence Compression via the Fusion of
MDL-Based Heuristics

M. Zohaib Nawaza,b, M. Saqib Nawaza, Philippe Fournier-Vigera,∗, Shoaib Nawazc, Jerry
Chun-Wei Lind, Vincent S. Tsenge

aCollege of Computer Science and Software Engineering, Shenzhen University, China
bFaculty of Computing and Information Technology, Department of Computer Science, University of Sargodha, Pakistan

cDepartment of Pharmacy, The University of Lahore, Sargodha Campus, Pakistan
dWestern Norway University of Applied Sciences Bergen, Norway

eNational Yang Ming Chiao Tung University Hsinchu, Taiwan

Abstract

Developing novel methods for the efficient and lossless compression of genome sequences has
become a pressing issue in bioinformatics due to the rapidly increasing volume of genomic data.
Although recent reference-free genome compressors have shown potential, they often require
substantial computational resources, lack interpretability, and fail to fully utilize the inherent se-
quential characteristics of genome sequences. To overcome these limitations, this paper presents
HMG (Heuristic-driven MDL-based Genome sequence compressor), a novel compressor based
on the Minimum Description Length (MDL) principle. HMG is designed to identify the op-
timal set of k-mers (patterns) for the maximal compression of a dataset. By fusing heuris-
tic algorithms—specifically the Genetic Algorithm and Simulated Annealing—with the MDL
framework, HMG effectively navigates the extensive search space of k-mer patterns. An ex-
perimental comparison with state-of-the-art genome compressors shows that HMG is fast, and
achieves a low bit-per-base. Furthermore, the optimal k-mers derived by HMG for compression
are employed for genome classification, thereby offering multifunctional advantages over previ-
ous genome compressors. HMG is available at github.com/MuhammadzohaibNawaz/HMG.

Keywords: Genome sequences, Minimum description length, Genetic algorithm, Simulated
annealing, Crossover, Mutation

1. Introduction

Genomes, composed of four nucleotide bases—Adenine (A), Cytosine (C), Thymine (T),
and Guanine (G)—represent an organism’s complete genetic material. Found in diverse envi-
ronments, such as uranium mines [1], marine habitats [2], ancient cadavers [3], and deep subter-
ranean locations [4], genomes adapt to various conditions, resulting in significant diversity [5].
This diversity includes high copy numbers, heterogeneity, substitution mutations, and structural

∗Corresponding author
Email address: philfv@szu.edu.cn (Philippe Fournier-Viger)

Preprint submitted to Information Fusion August 23, 2025

Phil
Text Box
Preprint of:
	Nawaz, M. Z., Nawaz, M. S., Fournier-Viger, P., Nawaz, S., Lin, J. C.-W., Tseng, V.S. (2025). Efficient Genome Sequence Compression via the Fusion of MDL-Based Heuristics. Information Fusion. 120: 103083.

rearrangements like fusions, fissions, and inverted repeats [6]. External factors, such as contami-
nation [7], environmental conditions [8], and pathogenic species [9], further complicate genomic
data, requiring models capable of handling dynamic, heterogeneous, and potentially imperfect
data [10].

Advancements in sequencing technologies like Next-Generation Sequencing (NGS) and Third-
Generation Sequencing (TGS) have enabled rapid genome sequencing [11], generating vast
amounts of data shared through public repositories such as NCBI (ncbi.nlm.nih.gov), NMDC
(nmdc.cn), GISAID (gisaid.org), DDBJ (ddbj.nig.ac.jp), and EBI (ebi.ac.uk). By 2025, genomic
data storage needs are projected to reach 2–40 exabytes (EB) annually [12]. This deluge of ge-
nomics data [13, 14], coupled with its inherent complexity and diversity, poses challenges for ef-
ficient compression, storage, and processing. General-purpose compressors like GZIP (gzip.org),
BZIP2 (sourceware.org/bzip2), or LZMA (7-zip.org) can be applied; however, they fail to exploit
the genomic characteristics effectively [15]. Specialized compressors, on the other hand, achieve
higher compression ratios by leveraging genomic-specific models tailored to features like repeats
and substitutions [16].

Since the introduction of Biocompress [17], the first specialized genome compressor in 1993,
numerous lossless genomic compression methods have been developed, which can be catego-
rized into two types [18]: (1) vertical (reference-based) methods, which identify intra-sequence
similarities by exploiting structural (e.g., palindromes) and statistical properties. Notable exam-
ples include RBFQC [19], LMSRGC [20], ERGC [21], FRESCO [22], and RSS [23]; and (2)
horizontal (reference-free) methods, which focus on inter-sequence similarities between target
and reference sequences. Examples include GraSS [24], JARVIS3 [25], LEC-Codec [26], Gen-
Coder [27], JARVIS2 [15], GeCo3 [16], UHT [28], NUHT [29], DeepDNA [30], and XM [31].
Reference-based methods often achieve superior compression ratios, particularly for genome se-
quences from the same species with long read lengths. However, these methods rely on the
availability of a high-quality reference genome, which is also required for decompression. If the
reference genome is not representative of the sequences being analyzed, it can introduce bias
and lead to inaccuracies. In contrast, reference-free methods are self-contained and not only re-
duce storage requirements but also support advanced genomic and metagenomic analyses. For
instance, studies [32, 33, 34] have demonstrated the utility of compression-based features, such
as Normalized Compression (NC), for taxonomic classification.

The introduction of the FASTA format standardized genomic data representation, combining
sequences with annotations (headers) [15], where nucleotide or amino acid sequences constitute
the majority of the data. Various tools, such as MBGC [35], NAF [36], MFCompress [37], and
Deliminate [38], employ specialized compression algorithms with simple header coding. These
algorithms leverage repeated and inverted regions using techniques like bit encoding, context
modeling, dictionary methods, and statistical approaches, including Markov models, run-length
encoding, and Huffman coding. Recently, there has been a trend toward developing learning-
based genome compression methods that utilize neural networks [25, 26, 27, 30, 39, 40] as well
as well as fusion-based approaches [15, 16] that combine specialized DNA models with neural
networks. While achieving improved results, they face challenges such as high computational
complexity, extended runtimes, limited generalization, interpretability issues, overfitting, and
sensitivity to hyperparameters. Furthermore, the integration of multiple models for efficient
DNA compression remains a complex problem.

In this paper, we take a different approach by introducing HMG (heuristic-driven MDL-based
Genome sequence compressor), a novel genome compressor that integrates tailored heuristic-
based algorithms—specifically Genetic Algorithm (GA) [41] and Simulated Annealing (SA)

2

[42]—with the Minimum Description Length (MDL) principle [43]. The MDL principle posits
that "the best model for a given dataset is the one that most effectively compresses the data
while minimizing the total length of the description of both the model and the encoded data."
For genome sequences, this means identifying an optimal model that efficiently encodes the se-
quences. HMG employs a structure called a k-mer table (KT) to store each model. The KT
stores all the k-mers (also referred to as patterns) that best represent the data and defines the en-
coding scheme for these patterns. However, identifying optimal patterns in genome sequences is
challenging due to the vast search space and the abundance of redundant patterns, which makes
exhaustive exploration computationally infeasible. To overcome these challenges, HMG lever-
ages heuristic approaches using GA and SA for pattern selection. These algorithms, termed as
HMG-GA and HMG-SA, effectively guide the search for optimal patterns while discarding less
promising ones, resulting in improved compression.

In previous work [44], we introduced GMG (GA for MDL-based genome compression) as a
proof-of-concept demonstrating the potential of heuristic search in genome compression. GMG
utilized a GA to direct the search toward promising k-mers, contributing to improved bits-per-
base compression and computational efficiency without exhaustively evaluating all possible com-
binations. Moreover, optimal k-mers identified by GMG can be used for genome classification.
While effective, GMG had three key limitations: (1) it did not save all k-mers required for de-
compression, making reconstruction unfeasible, (2) it employed a basic GA implementation with
limited exploration capabilities, and (3) the classification approach relied on basic classifiers,
which may limit the overall performance. This paper builds upon GMG by proposing HMG,
which achieve better compression and support decompression. To better explore the search space
and select more efficient k-mers for encoding, HMG offers two improved heuristics search meth-
ods: one based on GA and another based on SA. Furthermore, HMG employs a broader range
of crossover and mutation operators to explore their impact on the overall performance of GA
in MDL-based genome compression. By offering the flexibility to choose between SA and GA,
HMG enables a more thorough exploration of the search space, leading to the identification of
truly optimal patterns and improved compression outcomes. Finally, a custom classifier is devel-
oped using the k-mers identified by HMG-GA and HMG-SA, which consider their distributions
in multiple datasets.

The main contributions of this work are:

1. Heuristic-driven discovery of optional k-mers: A GA-based algorithm is introduced
to find optimal k-mers for compressing genome sequences with four variants based on
various crossover (single-point and cycle crossover) and mutation (standard and scramble
mutation) operators. Moreover, a second heuristic approach is proposed, utilizing SA for
MDL-based compression.

2. Optimal k-mers substitution and encoding: For compression, discovered optimal k-
mers are first replaced with unique symbols, and both the optimal k-mers and remaining
nucleotide bases from parts of the sequence(s) are encoded using Huffman encoding based
on their occurrences. The genome sequences are then saved into binary files. For decom-
pression, the binary files are decoded using the Huffman table to recover the substituted
sequence, which are then reconstructed using the optimal k-mers and nucleotides map-
pings to restore the original genome sequences.

3. Custom Classifier: In addition to compression, the derived optimal k-mers are utilized for
classification. They serve not only as features for traditional classifiers but also support the
development of a custom classifier. Training this classifier specifically on the k-mers can

3

effectively distinguish between various classes. This approach provides a more specialized
and potentially more accurate classification model compared to traditional methods.

4. Experiments: Extensive experiments are performed on four diverse datasets to evaluate
the developed framework for various metrics, including compression in terms of bits-per-
base and reduced size, compression and decompression runtime, the number of generations
required by GA and SA to achieve compression and classification. Lastly, the obtained
results are compared with the state-of-the-art genome compressors.

The rest of the paper is organized as follows: Section 2 presents the literature review, pro-
viding an overview of existing methods for genome sequence compression, followed by a brief
introduction to the heuristic algorithms (GA and SA). Section 3 discusses how the MDL prin-
ciple can be applied to genome sequence compression. Section 4 describes the proposed HMG
compressor for genomes. Section 5 presents the experimental evaluation of HMG against state-
of-the-art genome sequence compressors. Finally, Section 6 provides the conclusion.

2. Literature Review

This section contains two parts. Section 2.1 reviews related work on reference-free genome
compression. Then, Section 2.2 presents a brief introduction to GA and SA, to describe the
background of this work.

2.1. Reference-free Genome Compressors
Reference-free methods focus on compressing genome sequences independently, aiming to

utilize algorithms and heuristics to identify and exploit redundancies without relying on external
references. In recent years, efficient methods have been developed that not only improve com-
pression efficiency but also facilitate the analysis of complex genomic variations. This makes
reference-free approaches particularly valuable in fields such as personalized medicine, evolu-
tionary biology, and metagenomics. Biocompress [17] is the first reference-free genome com-
pressor that paved the way for the development of specialized compressors specifically designed
to address the unique challenges associated with compressing genomic sequences. It utilized
Ziv and Lempel algorithms to detect palindromes and repeats in the target genome, which are
then encoded based on the length and position of their earliest occurrences. Next, we discuss
reference-free genome compressors published in the last six years.

DeepDNA [30] achieved effective compression of human genome data using a hybrid deep
learning model. This model combines convolutional layers to capture local features with recur-
rent layers to model long-term dependencies in genomic sequences. NAF [36] is a reference-free
lossless compressor for both FASTA and FASTQ sequences. For Compression, NAF divides
the input into headers, sequences, masks, and qualities, which are processed separately. The
sequences are combined and converted into 4-bit encoding, which is then compressed using the
ZSTD compressor to produce compact data streams. For decompression, NAF reverses this
process by decompressing the separate streams and then reassembling them. GeCo3 [16] im-
plemented a fusion of specialized DNA models (the context and substitution-tolerant context
models) with a neural network to enhance genomic sequence compression. Alyami et al. [29]
improved Huffman encoding by employing a nongreedy unbalanced Huffman tree (NUHT). This
approach achieves superior compression ratios and speed compared to traditional methods like
GZIP, BZIP2, and UHT [28], which employ an unbalanced Huffman tree for encoding. Cui et
al. [40] employed a CNN and an attention-based bidirectional LSTM and arithmetic encoder to

4

compress genome sequences. Cao et al. proposed the XM [31] algorithm for biological sequence
compression. It fuses expert probabilities based on statistical properties and sequence repetitions,
encoding symbols with arithmetic coding.

JARVIS2 [15] provided a fusion of finite-context models, stochastic repeat models, and a neu-
ral network to achieve efficient genomic data compression with reduced computational resources.
Its successor, JARVIS3 [25], enhances compression performance through improved table mem-
ory models and probabilistic lookup tables. GraSS [24] incorporated specific characteristics of
DNA by leveraging grammatical, statistical, and substitution rules. However, it relies on the
general-purpose BSC compressor to perform the final compression on the encoded sequences.
The NanoSpring [45] compressors for nanopore read sequences rely on an approximate-assembly
approach. The LEC-Codec [26], a learning-based genome codec, utilizes deep neural networks
with group of bases compression, multi-stride coding, and bidirectional prediction to achieve ef-
ficient and flexible lossless genomic data compression. Similarly, GenCoder [27] was introduced
as a deep learning-based algorithm that utilizes a convolutional autoencoder for reference-free
lossless compression of genomic sequences. DNACoder [39] employs a CNN-LSTM attention-
based prediction network to compress the genomic data. GeneSqueeze [46] employs the inherent
patterns found in the fundamental elements of FASTQ files, such as quality scores, nucleotide
sequences and read identifiers. It offers numerous advantages, such as an adaptive compres-
sion protocol tailored to the specific distribution of each sample, lossless retention of IUPAC
nucleotides and read identifiers, and compatibility with all FASTQ/A file attributes. A summary
of the discussed genome compressors along with their key parameters is presented in Table 1.

Reference-free methods have emerged as valuable tools for taxonomic classification, offering
efficient and scalable approaches to analyze and organize genomic data without relying on prede-
fined reference genomes. These methods are particularly beneficial for metagenomics, where the
diversity of unknown organisms presents unique challenges. Taxonomic classification is essential
for understanding biodiversity, evolutionary relationships, and the ecological roles of organisms.
One such study [32] introduced a novel reference-free approach for metagenomic identification,
utilizing features from multiple data compressors for taxonomic classification. Similarly, studies
[33, 34] proposed classification approaches for Archaea and viral taxa, respectively. Both studies
employed various features, including NC, sequence length, GC-content, and the percentage of
each nucleotide. Their findings indicated that combining all these features together yielded better
classification results compared to using a single feature or a subset of features. Sukru et al. [47]
proposed a compressor-based and parameter-free method for DNA sequence classification. By
utilizing algorithms such as GZIP, Snappy, Brotli, LZ4. ZSTD, BZ2 and LZMA, this method
achieved high accuracy in species classification while being more resource-efficient than tradi-
tional machine learning approaches. A notable aspect of [32, 33, 34, 47] is the utilization of a
compression-based feature, NC, which measures the similarity between sequences based on their
compressibility. NC provides a quantitative metric for determining the relatedness of different
genomic sequences by analyzing how well sequences compress together. This feature is partic-
ularly useful for taxonomic classification, as it allows a more accurate assessment of sequence
similarity by leveraging the inherent patterns. Consequently, it facilitates the identification of
evolutionary relationships and the clustering of similar organisms based on their genomic con-
tent.

Reference-free genome compressors have made significant progress in recent years. Nonethe-
less, the inherent complexity of identifying an optimal set of k-mers presents additional chal-
lenges. To address these challenges effectively, heuristic algorithms can be employed.

5

Table 1: Overview of related works on reference-free genomic compressors

Study Method Cla Strengths Limitations
Biocompress [17] Using Ziv and Lempel

algorithms to identify
palindromes and repeats.

No First reference-free genome com-
pressor; identifies genomic patterns
based on length and position.

As the first DNA compressor,
it is not as efficient compared
to later methods.

DeepDNA [30] Hybrid deep learning
model combining con-
volutional and recurrent
layers.

No Effective compression of human
genome data; captures both local fea-
tures and long-term dependencies.

Computationally intensive
and requires large datasets.

NAF [36] Splits input into head-
ers, sequences, masks,
and qualities, converts se-
quences into 4-bit encod-
ing.

No Separates input into headers, se-
quences, and qualities for efficient
compression; uses 4-bit encoding
and ZSTD for final compression.

Depends on external com-
pressor, computationally
complex and not suitable for
very small datasets.

GeCo3 [16] Neural networks with
specialized DNA models.

No Enhances genomic sequence com-
pression by mixing multiple contexts
and substitution-tolerant models.

Computationally expensive
and complex to implement.

NUHT [29] Nongreedy unbalanced
Huffman tree.

No Superior compression ratios and
speed compared to GZIP, BZIP2, and
UHT

May not be as effective on all
types of genomic data.

Cui et al. [40] CNN and attention-based
bi-directional LSTM
combined with arithmetic
encoder.

No Combines deep learning models and
encoding techniques for efficient
genome sequence compression.

Neural network-based, so
computationally expensive
and requires large datasets
for training.

XM [31] Expert probabilities and
arithmetic coding.

No Outperforms existing compressors
on DNA and protein datasets.

May not be as effective on
non-biological data or very
large datasets.

JARVIS2 [15] Finite-context models,
stochastic repeat models,
neural networks.

No Efficient compression with reduced
computational resources.

May not scale well for large
datasets.

JARVIS3 [25] Extension of JARVIS2. No Enhanced models for table memory
models as well as lookup-tables in re-
peat models for better optimization.

May not scale well for large
datasets.

NanoSpring [45] Use an approximate as-
sembly approach.

No 3-6x better compression than gzip;
faster decompression with multiple
threads.

Limited to base sequences
in FASTQ, does not process
quality scores or other data.

LEC-Codec [26] Learning-based genome
codec.

No Utilizes deep neural networks, multi-
stride coding, and bidirectional pre-
diction for efficient compression.

May require significant
computational resources for
training the neural networks.

GenCoder [27] Deep learning-based con-
volutional autoencoder.

No Achieves 27% compression gain
over state-of-the-art methods; recon-
structs data from latent code.

Limited to genomic data;
may not generalize to other
biological data.

DNACoder [39] Deep learning-based
CNN and LSTM.

No Achieves 21.1% better compression
than existing compressors

Computationally expensive
and requires large datasets
for training.

GeneSqueeze [46] Use nucleotide se-
quences, quality scores,
and read identifiers.

No Achieves up to 3x better compression
than gzip with auto-tuning for sample
distribution.

Limited to FASTQ/A files;
does not handle other se-
quencing file formats.

Cla: Classification

2.2. Heuristic Algorithms

Heuristic algorithms can find approximate solutions to complex problems within a reason-
able time. These algorithms iteratively refine candidate solutions to optimize a given problem.
While they do not guarantee an optimal solution, they provide a feasible solution that is good
enough for practical purposes. Due to their efficiency and practicality, heuristic algorithms are
not only used in optimization problems but are also widely employed in other areas, including
scheduling problems, robotics, bioinformatics, control engineering and artificial intelligence. We
next discuss the two heuristic algorithms (GA and SA) that are employed in this work.

6

2.2.1. Genetic Algorithms
GAs, a class of heuristic search algorithms, are inspired by the principles of genetics and

natural selection (‘survival of the fittest’). Developed by John Holland [41] in the 1970s, GAs
are designed to solve complex problems by mimicking the evolutionary processes that drive
biological adaptation. They follow the process of evolution, where the fittest individuals are
selected to reproduce and pass their genetic information to the next generation. They work
with a population of potential solutions, termed chromosomes, by applying genetic operators
such as selection, crossover, and mutation [48, 49] . During selection, chromosomes are chosen
for reproduction based on their fitness, while crossover combines genetic material from two
parent chromosomes to create new child chromosomes. Mutation, on the other hand, is a random
alteration of a solution. By iteratively refining the population, GAs explore a large solution
space and converge on high-quality solutions to complex problems. In other words, GA evolves
a population of individuals (chromosomes) that are better adapted to their environment than the
individuals from which they were derived.

One of the key advantages of GAs is their ability to handle large, complex search spaces
without relying on gradient information, making them well-suited for problems that are infea-
sible to solve using traditional methods. Furthermore, GAs are highly adaptable and can be
easily customized to suit the specific requirements of different optimization tasks. Their inher-
ent parallelism allows them to evaluate multiple solutions simultaneously, which enhances their
efficiency and robustness. Furthermore, the flexibility of GAs enables the customization of op-
erators and parameters to suit specific problem domains, leading to improved performance in
specific contexts.

2.3. Simulated Annealing

SA [42, 50], also a heuristic optimization algorithm, mimics the physical process of annealing
in metallurgy, where a metal is heated and then slowly cooled to reduce its defects and achieve
a lower energy state. From an optimization perspective, SA involves several key steps: problem
configuration, neighborhood exploration, objective function evaluation, and the cooling/anneal-
ing process. More specifically, SA starts with an initial solution and iteratively explores the
solution space by making small, random changes to the current solution. Changes are accepted
or rejected based on a probability that depends on the difference in quality between the new and
current solutions, as well as a temperature parameter that gradually decreases over time. This
cooling schedule allows SA to initially explore a wide range of solutions and gradually converge
on a high-quality solution as the temperature decreases.

The ability of SA to escape local minima and to explore a diverse set of solutions makes it
particularly well-suited for problems with complex, non-convex landscapes. Furthermore, SA
is relatively easy to implement and can be applied to both continuous and discrete optimization
problems. SA is very similar to the Hill-Climbing algorithm [51], with one key difference: at
high temperatures, SA allows for the acceptance of worse neighbors, which helps to avoid getting
trapped in local optima [52].

3. Adapting the MDL Principle for Genome Sequence Compression

The proposed compressor is grounded in the MDL principle, which provides a framework for
selecting models that best represent a genome dataset by balancing model complexity and data
fit. In the context of genome compression, MDL helps identify the smallest set of k-mers that

7

effectively capture the sequential patterns of the genome while minimizing the total compressed
size. This section first explains how MDL is adapted for genome compression, followed by
discussing the potential of employing GA and SA as heuristic strategies to enhance compression
performance.

Definition 1 (MDL). For a set of models M, the best model M ∈M for describing a database D
is the one that minimizes the total compressed size of D [43], given by:

L(D,M) = L(D|M) + L(M) (1)

where L(M) is the model’s description size (in bits), and L(D|M) is the compressed size of D
using M.

To employ the MDL principle for genome compression, it is necessary to establish the struc-
ture of a model M ∈ M, its utilization in describing a database, and the encoding of this model
in bits. Key definitions are as follows:

Definition 2 (Nucleotide base set). Let NB = {A,C,G,T } represent the set of nucleotide bases.

Definition 3 (Genome sequence, Database). A genome sequence S is an ordered list of bases
from NB. A database D is a collection of one or more genome sequences [53]. The i-th base of
a genome sequence S is denoted as S [i].

Definition 4 (k-mer). A k-mer kM = (B1, B2, . . . Bk) is a sequence of k bases from NB.

Definition 5 (k-mer occurrence). An occurrence (occ) of a k-mer kM = (B1, B2, . . . , Bk) in a
genome sequence S is a list of consecutive indices (i1, i2, . . . ik) such that:

S [i1] = B1, S [i2] = B2, . . . , S [ik] = Bk

A k-mer can have multiple occurrences in a genome sequence S . Two occurrences are non-
overlapping if their index sets do not intersect.

A model M is a set of k-mers used for compressing a genome sequence database D, and is
represented by a structure called a k-mer table, denoted as KT. The KT is crucial in the pro-
posed approach, as compressing the database is achieved by replacing k-mer occurrences in the
database by their codes from the KT .

Definition 6 (k-mer table). A k-mer table KT is a dictionary where each k-mer kM from KT
is paired with a unique binary code code(kM). Formally, KT ⊆ {(kM, code(kM)) | kM ∈ CS },
where CS = {kM1, kM2, . . . , kMm} is the set of k-mers in KT, called coding set.

The KT only contains k-mers that occur at least once in the database. Because k-mers from
the KT may have overlapping occurrences in sequences, the order that k-mers are used for com-
pressing a database influences the compressed size. To achieve optimal compression, the KT is
ordered first by descending usage (defined next), then by descending k-mer length, and finally
by ascending lexicographical order (for breaking ties). This order called k-Mer Cover Order is
a variation of the Standard Cover Order [54]. The matching of k-mers from KT to a genome
sequence for compression is done through a cover function:

Definition 7 (Cover function). Let D be a database of sequences over NB, and KT be the k-mer
table. The cover function, denoted as cover(KT, S), maps each sequence S ∈ D to a set of non-
overlapping k-mers from KT that fully reconstruct S when concatenated. The cover function
must satisfy two conditions:

8

1. Membership: All k-mers in the cover belong to KT:

kM ∈ cover(KT, S)⇒ kM ∈ KT

2. Completeness: The concatenation of k-mers in the cover can entirely reconstruct S , en-
suring complete coverage:

S =
⊙

kM∈cover(KT,S)

kM

where
⊙

denotes the concatenation of k-mers. This concatenation process is performed
greedily, such that k-mers are concatenated in the k-mer Cover Order to reconstruct S ,
and where k-mers are not allowed to overlap.

Definition 8 (Usage). The usage count of a k-mer kM ∈ KT for a database D is:

usage(kM) =
∑
S∈D

countkM(S) (2)

where countkM(s) is the usage count of kM in S , defined as the number of occurrences of kM
that are utilized for reconstructing the sequence S using the cover function.

To clarify the concept of the KT , cover function and their usage for compression, a small
example is provided in Figure 1. In this example, the genome sequence TTGT ACGTTTTGT
is encoded using a KT containing three k-mers (TT , GT and ACG) and their codes. Codes are
depicted as colored bars, where bar widths represent the relative lengths of codes. The encoded
sequence is obtained by replacing k-mers in the original sequence by their codes. This encoding
is done based on the cover function, which is represented by the arrows, and defines the mapping
of k-mers to the genome sequence. This mapping is such that k-mers do not overlap and cover
the whole sequence.

Figure 1: An example of a genome sequence (bottom left) and its corresponding encoding (bottom right) using the k-mer
table (KT) (top). The KT contains k-mers with their respective codes visually represented as bars, where the widths of
the bars indicate the lengths of the codes. The arrows represent the mapping provided by the cover function.

To optimally compress a database D using the MDL principle (eq. 1), it is necessary to take
into account two components: the encoded size of the database D and the size of the model KT .
The size of the model KT is determined by summing the code lengths of all k-mers in KT that
have a non-zero usage:

L(KT |D) =
∑

kM∈KT
usage(kM),0

L(kM|KT) (3)

9

Frequent k-mers receive shorter codes. The optimal code length L(kM|KT) for a k-mer kM
can be derived from its empirical probability in D based on the Shannon entropy as:

L(kM|D) = −log2(P(kM|D)) (4)

where the probability P(kM|D) reflects the relative usage of kM for encoding D:

P(kM|D) =
usage(kM)∑

kM∈KT usage(kM)
(5)

For any sequence S , its encoded size L(S |KT) is calculated as the sum of the code lengths of
all k-mers kM in its cover multiplied by their respective usage count in S :

L(S |KT) =
∑

kM∈cover(S)

L(kM|KT) · countkM(S) (6)

The encoded size of the entire database D given KT is then the sum of the encoded sizes of
all sequences in D:

L(D|KT) =
∑
S∈D

L(S |KT) (7)

The optimal set of k-mers are the one whose associated KT minimizes the total compressed
size, defined as:

Definition 9 (Total compressed size). The total compressed size of a database (D) and k-mer
table (KT) in bits is:

L(D,KT) = L(D|KT) + L(KT |D) (8)

To effectively compress genome sequences within a database D, we aim to identify the k-mer
set that best describe D. This objective is formalized using L(D,KT) as follows:

Minimal Ordered k-mer Set Problem: Let NB be the set of nucleotide bases and D be a
database of sequences over NB. LetKM denote the collection of all possible k-mers that can be
derived from NB. The minimal ordered k-mer set problem is to identify the smallest subset of
k-mers (or patterns) P ⊆ KM that minimizes the total compressed size L(D,KT), where KT is
the k-mer table containing P.

Utilizing MDL for genome compression necessitates the identification of an optimal set of
k-mers and their corresponding codes to construct a KT . However, the combinatorial explo-
sion of potential k-mer sets makes exhaustive search infeasible. To address this, HMG employs
two heuristic strategies, prioritizing models with lower L(D,KT): GA: Evolves candidate k-
mers through crossover and mutation, SA: Iteratively refines candidate k-mers by exploring their
neighbors using a temperature-based mechanism to escape local minima. Both heuristics aim
to minimize L(D,KT), ensuring a direct trade-off between compression efficiency L(D|KT) and
model complexity L(KT |D).

Practical Relaxation of Coverage: While the described theoretical framework assumes that
the k-mer table KT can fully cover all sequences in D, heuristic searches may fail to find such
a complete set. To handle this, the proposed algorithms allows parts of sequences to remain
uncovered by KT . These uncovered regions are not compressed (remain as raw nucleotide bases
from NB) alongside the encoded k-mers. This relaxation ensures compression remains feasible
even when no perfect k-mer set is found, though it increases L(D|KT). The MDL principle still
guides optimization by explicitly penalizing both residual uncompressed data (through L(D|KT))
and excessive model complexity (through L(KT |D)).

10

4. The HMG compressor

This section introduces the proposed Heuristic-driven MDL-based Genome sequence com-
pressor (HMG), designed to discover a representative set of k-mers that effectively compress a set
of genome sequence(s), and also support both compression and decompression. The schematic
of HMG is shown in Figure 2. The framework is divided into four main phases: (1) initial k-mers
generation and evolution, (2) compression, (3) decompression, and (4) classification. The main
operations performed in each phase are as follows:

1. Initial k-mers Generation and Evolution (highlighted in Yellow): In the first phase,
genome sequence(s) are received as input. Then, an initial random set of k-mers is created
from the four bases A, C, G, and T , for compressing the genome sequence(s). These k-
mers are the starting point to search for a more optimal set of k-mers using heuristics.
HMG employs two heuristic algorithms, GA and SA, to iteratively evolve the k-mers. The
fitness of each generated k-mer is evaluated, with priority given to those that occur more
frequently in the genome(s). High-occurrence k-mers are added to the KT, contributing
significantly to compression. Once the stopping criteria are met, the final KT is passed to
the next phase.

2. Compression (highlighted in Red): In this phase, the representative optimal k-mers in
the KT along with the nucleotide bases from parts of the sequence(s) not covered by KT
are encoded using Huffman encoding to generate a binary output file. This binary file,
along with a dictionary that maps the original sequence(s) to compressed patterns, forms
the compressed representation of the genome(s).

3. Decompression (highlighted in Blue): During decompression, the binary file is decoded
using the dictionary to accurately reconstruct the original sequence(s). This phase ensures
lossless compression.

4. Classification (highlighted in Green): In this phase, the derived k-mers in the KT are
utilized for classification tasks. These patterns demonstrate their utility in distinguishing
between different genome(s) datasets or identifying specific characteristics of the genome.

Section 4.1 and 4.2 explain in details how the HMG-GA and HMG-SA algorithms implement
the phase 1 of HMG. Then, the encoding scheme used for compression (phase 2) and decom-
pression (phase 3) is described in Section 4.3. The phase 4 (classification) is presented in Section
5.3.

4.1. HMG-GA

HMG-GA starts by creating initial k-mers from bases, which serve as potential solutions for
compressing the dataset D. This initial population of k-mers is then refined through an iterative
GA process that comprises the following steps:

1. Selection: Randomly chosen k-mers, referred to as parents, are selected from the initial
k-mers to undergo crossover and mutation operations.

2. Crossover: The selected parents undergo crossover, where sub-sequences from the par-
ents are combined to create new k-mers, known as children. This process mimics genetic
recombination and helps explore new areas of the solution space.

3. Mutation: The child k-mers obtained after crossover undergo random modifications.
These changes increase the diversity within the population.

11

Figure 2: HMG for genome sequence compression contains four main phases: (1) Constructing a KT, that contains
optimal k-mers discovered by combining heuristic algorithms with the MDL principle, k-mers substitution and encoding
(Yellow), (2) Compression (Red), (3) Decompression (Blue), and (4) Using the derived optimal k-mers for genome
classification (Green)

4. Evaluation: The fitness of the k-mers obtained after crossover and mutation is evaluated
by measuring their occurrence frequency in D. The k-mers with higher occurrence fre-
quencies are assigned shorter codes, leading to better compression.

5. Stopping Criteria: HMG-GA terminates when a predefined condition is met, specifically
when adding k-mers to the KT achieves a satisfactory compression ratio.

Algorithm 1 provides the pseudo-code for HMG-GA, which takes two inputs: (1) a genome
sequence dataset D and (2) a threshold parameter, maxKTSize, that defines the maximum size
of the KT . The termination condition is that HMG-GA stops once the KT reaches the specified
size, effectively limiting the search space and reducing computational time. Additionally, the
maxKTSize parameter offers users the flexibility to control the number of output k-mers.

HMG-GA outputs a KT containing representative k-mers that efficiently compress the database
D. Alternatively, HMG-GA can be configured to execute without the maxKTSize, making it fully
parameter-free. In this case, HMG-GA terminates when the compression ratio reaches a stable
point, particularly when the ratio does not improve over a predefined number of generations.

First, a population is initialized with four bases (line 1) and KT is initialized as empty (line
2). A while loop runs till the KT ’s size reaches the maxKTS ize threshold. Two random k-mers
P1 and P2 with k lengths between 2 and 6 are created in each iteration (line 4). Lines 5-6 count
the occurrences of generated k-mers. The k-mers are evolved by applying first the crossover (line
8) and then the mutation (lines 10, 17) operator. Before applying the mutation operator, a random
probability check (line 9) determines which offspring undergoes mutation. If the probability is

12

Algorithm 1 HMG-GA

Input: D: Genome sequence dataset, maxKTSize: Maximum k-mer table size
Output: KT: A k-mer table

1: NB← {A,C,G,T }
2: KT ← ∅
3: while len(KT) , maxKTS ize do
4: P1, P2 ← Two random unique k-mers (length [2,6])
5: Pocc1 ← CountOccurrences(P1,D)
6: Pocc2 ← CountOccurrences(P2,D)
7: repeat
8: C1,C2 ← Crossover(P1, P2)
9: if Random() > 0.5 then

10: C1 ←Mutation(C1)
11: Cocc1 ← CountOccurrences(C1,D)
12: if Cocc1 > Pocc1 then
13: P1 ← C1

14: Pocc1 ← Cocc1

15: end if
16: else
17: C2 ←Mutation(C2)
18: Cocc2 ← CountOccurrences(C2,D)
19: if Cocc2 > Pocc2 then
20: P2 ← C2

21: Pocc2 ← Cocc2

22: end if
23: end if
24: until (maximum number of generations is reached)
25: KT ← KT ∪ {P1, P2}

26: Replace P1, P2 in D with codes
27: end while
28: Return KT

greater than 0.5, C1 is selected for mutation, and its number of occurrences (Cocc1) is counted
(line 11). Otherwise, C2 is mutated, and its number of occurrences (Cooc2) is counted (line
18). The occurrence frequencies (either Cocc1 or Cocc2) are compared with those of their parent
k-mers. The parent k-mers are replaced by the evolved k-mers if the latter occur more (lines
14, 20). The evolution process continues through multiple generations, gradually improving the
results. After a desired number of generations, the evolved k-mers are added to the KT (line 25).
In the KT, unique codes, based on occurrence frequencies, are assigned to the k-mers, which
are then utilized for encoding the database D (line 26). The final output consists of the KT , a
collection of k-mers that efficiently compress the dataset.

Counting the occurrences of C1 and C2 can be particularly time-consuming, especially with
large datasets. To enhance efficiency, we incorporated a probabilistic approach (line 12). Instead
of calculating the occurrences for both k-mers, a 50% probability is assigned to either C1 or
C2 being selected, thereby evaluating only one k-mer per iteration. This approach significantly
decrease the computational cost.

13

A notable characteristic of HMG-GA is its capacity to maintain or enhance solution quality
across iterations. As detailed in Algorithm 1 (lines 12-15 and 19-22), the primary optimization
metric, the compression ratio, either improves or remains stable. This is accomplished through a
selective update process: parent k-mers are replaced with the child (evolved) k-mers if the latter
provides a better compression ratio. Otherwise, the parent remains unchanged. This makes sure
that the quality of the discovered optimal k-mers does not reduce over time. Further discussion
of the process is provided in the results section (see convergence results in section 5.2).

Algorithm 2 Single-Point Crossover

Input: PkM1, PkM2: Two parent k-mers
Output: CkM1, CkM2: Two child k-mers

1: procedure SPC(PkM1, PkM2)
2: s← min(len(PkM1), len(PkM2))
3: cp← randomInt(1, s) // 1 ≤ cp ≤ s
4: CkM1 ← PkM1[1, cp]

⊙
PkM2[cp + 1, len(PkM2)]

5: CkM2 ← PkM2[1, cp]
⊙

PkM1[cp + 1, len(PkM1)]
6: Return CkM1 and CkM2

7: end procedure

In HMG, the crossover operation combines two parent k-mers to generate child k-mers by
exchanging segments of their sequences. The two crossover operators utilized within HMG-GA
are presented in Algorithm 2 and 3, and are explained with simple examples next. Let PkM1 and
PkM2 be two k-mers:

PkM1 = GTCATC
PkM2 = CGATG

For Single-Point Crossover (SPC) (Algorithm 2), one crossover point (cp) is randomly se-
lected and the genes to the left (or right) of cp are swapped to obtain two new child genes CkM1
and CkM2. Let n represent the length of the smallest k-mer. A random cp (1 ≤ cp ≤ n) is
randomly selected. For cp = 3, applying SPC on PkM1 and PkM2 generates the two child k-mers
CkM1 and CkM2 as:

CkM1 = GTCTG
CkM2 = CGAATC

For the Cycle Crossover (CC) operator (Algorithm 3), the process begins by detecting cycles
between the two parent k-mers. The cycle detection starts at the first position (index 0) of PkM1.
The value at this position is recorded from PkM2, and the next position to visit is identified by
finding this value in PkM1. This process continues, moving to the corresponding positions in
both parent k-mers until a cycle is formed, meaning that the process has returned to a previously
visited position.

In the example with PkM1 and PkM2, the cycle detection starts with index 0 of PkM1, where
the value is ‘G’. In PkM2, the value at index 0 is ‘C’. ‘C’ is found at index 2 of PkM1, so the
current index becomes 2. The value at index 2 of PkM2 is ‘A’. ‘A’ is found at index 3 of PkM1,
so the current index becomes 3. The value at index 3 of PkM2 is ‘T’. ‘T’ is found at index 1 of

14

Algorithm 3 Cycle Crossover

Input: PkM1, PkM2: Two parent k-mers
Output: CkM1, CkM2: Two child k-mers

1: procedure CC(PkM1, PkM2)
2: s← min(len(PkM1), len(PkM2))
3: visited,CKM1,CKM2 ← ∅

4: i← 0
5: while i < s do
6: if i is not in visited then
7: current_index← i
8: while current_index not in visited do
9: visited ← visited ∪ {current_index}

10: CkM1[current_index]← PkM1[current_index]
11: CkM2[current_index]← PkM2[current_index]
12: current_index← index of PkM2[current_index] in PkM1

13: end while
14: else // Skip already visited positions
15: i← i + 1
16: end while
17: for each position p in PkM1 do
18: if p is not in visited then
19: CkM1[p]← PkM2[p]
20: CkM2[p]← PkM1[p]
21: Return CkM1 and CkM2

22: end procedure

PkM1, so the current index becomes 1. The value at index 1 of PkM2 is ‘G’. Then, ‘G’ is found
at index 0 of PkM1, completing the cycle as the process returns to index 0. The final child k-mers
are:

CkM1 = GTCAG
CkM2 = CGATTC

The mutation operation [55] then follows the crossover operation and is applied indepen-
dently to k-mers. It introduces diversity into the population by randomly altering k-mers to
explore new areas of the search space. This operation is applied probabilistically, selecting either
CkM1 or CkM2 with a 50/50 probability, as described in Algorithm 1. This introduces ran-
domness into the search process, helping to avoid premature convergence to local optima. Two
mutation operators are considered.

The first mutation operator, referred to as Standard Mutation (SM) in Algorithm 4, modifies
a selected nucleotide base within a k-mer by replacing it with a randomly chosen base from NB.
For example, in the case of CkM1 and CkM2 obtained after SPC, the mutation occurs at index 1

of CkM1 (mutating the value from ‘T’ to ‘A’) and index 3 of CkM2 (mutating the value from ‘A’
to ‘C’). As a result, the mutated k-mers are:

CkM′1 = GACTG
CkM′2 = CGACTC

15

The second mutation operator is Scramble Mutation (ScM) and is presented in Algorithm
5. In this operator, a random subsequence of NBs within the k-mer is selected and scrambled.
First, a subsequence size is chosen randomly, and then a random start position is selected in the
k-mer. The selected subsequence of bases is scrambled (randomly shuffled) using the “scram-
ble()” function, and the altered subsequence is placed back into the k-mer. For example, for the
sequence ‘GATCGT’, a randomly selected subsequence “ATC” could be scrambled to ‘TAC’,
resulting in a mutated k-mer:

CkM′1 = GTACGT

Algorithm 4 Standard Mutation/Get Neighbor

Input: kM: A k-mer
Output: A mutated k-mer

1: procedure SM(kM)
2: i← randomInt(1, len(kM))
3: alter ← randomSelect(NB, 1) // 1-mer
4: kM[i]← alter // kM[i] , alter
5: Return kM
6: end procedure

Algorithm 5 Scramble Mutation

Input: kM: A k-mer
Output: A mutated k-mer

1: procedure ScM(kM)
2: subsetS ize← randomInt(2, len(kM)) // Size of the subset to scramble
3: startPos← randomInt(1, len(kM) - subsetS ize + 1)
4: subset ← kM[startPos, startPos + subsetS ize − 1]
5: scrambledS ubset ← scramble(subset)
6: kM[startPos, startPos + subsetS ize − 1]← scrambledS ubset
7: Return kM
8: end procedure

These operators are designed to optimize the selection of k-mers for compression by bal-
ancing exploration (via mutation) and exploitation (via crossover). The fitness function guides
the process by favoring k-mers that occur frequently and contribute significantly to reducing the
compressed size. HMG-GA terminates when the stopping condition is met, specifically when the
number of k-mers in the KT equals the maxKTSize threshold. A user can adjust this threshold
based on his/her desired output size.

4.2. HMG-SA
HMG-SA involves the following steps:

1. Initial Solution: A random k-mer is selected as the starting solution for compression.
16

2. Neighbor Generation: A neighboring k-mer is generated by making a small change to
the selected k-mer. This can be achieved by altering some part(s) of the k-mer.

3. Evaluation: The fitness of the newly generated neighbor k-mer is assessed by measuring
its occurrence frequency in the dataset. The goal is to find k-mers with high occurrence
frequencies, as these will lead to better compression.

4. Acceptance Criterion: If the new k-mer has a better fitness value (higher occurrence
frequency), it replaces the parent k-mer. If not, the algorithm calculates an acceptance
probability using the temperature parameter. The probability of accepting a child k-mer,
that does not improve compression, decreases as the temperature lowers. This probabilistic
acceptance allows the algorithm to escape local minima and explore different parts of the
search space of k-mers.

5. Cooling Rate: The temperature is gradually decreased by a cooling rate parameter, reduc-
ing the probability of accepting child k-mers, that do not improve compression, over time.
This process helps the algorithm converge to a globally optimal solution as the temperature
approaches zero.

6. Stopping Criteria: HMG-SA terminates when a predefined condition is met, that is
adding k-mers in the KT till achieving a satisfactory compression ratio.

Algorithm 6 presents the proposed pseudocode of HMG-SA that is used to find the k-mers to
effectively compress the genome sequence(s). Similar to HMG-GA, it starts by initializing the
population with the four nucleotide bases (line 1). The KT is initialized as an empty set (line 2)
and the temperature (T) is set to an initial temperature (T0) (line 3). A while loop runs until the
size of KT reaches the specified maxKTSize threshold. In each iteration, a random k-mer called
parent k-mer, PkM (with a length between 2 and 6) is generated (line 5), and its occurrences
in D are counted (line 6). The algorithm then enters a nested while loop where it iteratively
applies the GetNeighbor method (line 8) to create a neighboring k-mer called new k-mer (NkM).
Algorithm 4 outlines the procedure for generating a neighboring k-mer. This function modifies a
given k-mer by replacing one of its bases with a randomly selected base from the population (A,
C, G, T). Specifically, a random index is chosen within the k-mer, and the base at that position
is replaced with a new randomly selected base that is different from the original. This operation
ensures that small perturbations are introduced into the k-mer, allowing the algorithm to escape
local optima and explore alternative k-mer(s). These small changes systematically navigate the
search space of k-mers to find potential improvements in the compression model.

The occurrences of the NkM are then counted (line 9). If the NkM has a higher occurrence
count than PkM (line 10), NkM replaces the PkM (line 11), and the occurrence count is updated
(line 12). If NkM does not improve upon PkM (i.e., Nocc ≤ Pocc), a probabilistic acceptance cri-
terion is applied (line 14). The acceptance probability acPr is computed based on the difference
in occurrences and the current temperature (which simulates the cooling process). If a random
number is less than acPr, the NkM is accepted, allowing the search to escape local minima (lines
15-17). The initial temperature (T0) is set to 100 and is gradually reduced by multiplying it by a
cooling rate of 0.95. The cooling rate controls the pace at which the temperature decreases, and
it plays a crucial role in balancing exploration (searching a wider space) and exploitation (fo-
cusing on better k-mer(s)). As the temperature decreases, the algorithm becomes more selective,
refining the k-mer(s) to achieve optimal compression.

The inner while loop continues until the temperature (T) drops below a threshold (usually
set to 1), signaling the end of the annealing process for that particular k-mer. Once T reaches
the threshold, the solution PkM is added to the KT (line 22), and the k-mer is replaced by a code

17

Algorithm 6 HMG-SA

Input: D: Genome dataset, T0: Initial temperature, r: Cooling rate, maxKTS ize: Maximum k-mer table
size
Output: KT : A k-mer table

1: NB← {A,C,G,T }
2: KT ← ∅
3: T ← T0

4: while len(KT) , maxKTS ize do
5: PkM ← Random unique k-mer (length [2,6])
6: Pocc← CountOccurrences(PkM,D)
7: while temperature > 1 do
8: NkM ← GetNeighbor(PkM)
9: Nocc← CountOccurrences(NkM,D)

10: if Nocc > Pocc then
11: PkM ← NkM
12: Pocc← Nocc
13: else
14: acPr ← exp((Nocc − Pocc)/T)
15: if Random() < acPr then
16: PkM ← NkM
17: Pocc← Nocc
18: end if
19: end if
20: T ← T × r
21: end while
22: KT ← KT ∪ {PkM}
23: Replace PkM in D with codes
24: end while
25: Return KT

in D (line 23). This process continues until the KT reaches the desired size. Finally, the KT,
containing the optimal k-mers that minimize the dataset size, is returned (line 25).

The process that distinguishes SA from GA is the annealing process. Unlike GA, which
focuses on crossover and mutation, SA uses a probabilistic approach to decide whether to ac-
cept a child k-mer. This decision is governed by the acceptance probability, which allows the
algorithm to occasionally accept child k-mer(s) that do not perform well compared to the parent
k-mer(s). This mechanism enables SA to avoid local optima by exploring potentially suboptimal
k-mer(s) that might lead to better global k-mer(s) in the long run. The acceptance probability is
determined using the formula:

acPr = exp
(Nocc − Pocc

T

)
where Nocc is the occurrences of the new (child) k-mer, Pocc is the occurrences of the current
(parent) k-mer, and T is the current temperature. The temperature decreases over time accord-
ing to the cooling rate, reducing the likelihood of accepting child k-mers that do not improve
compression as the algorithm progresses.

18

4.3. Encoding

The encoding method used in the genome compression process is based on substitution en-
coding, followed by Huffman encoding [28] which is a well-known lossless data compression
technique.

First, a substitution encoding is used, where the derived optimal k-mers in the genome(s)
dataset (D) are replaced with unique characters. Next, a Huffman tree is constructed based on
the frequency of k-mers in D, assigning shorter codes to more frequent k-mers and longer codes
to those that are less frequent. Once the Huffman tree is built, a unique binary code is generated
for each k-mer which is then used to replace the k-mers in the dataset to produce the encoded
output. The Huffman tree ensures that each k-mer is represented by a distinct binary string, and
the encoding is prefix-free, meaning no code is a prefix of another. This property is crucial for
efficient decoding, as it prevents ambiguity during the decompression process. This fusion of
substitution encoding with Huffman encoding enhances the overall compression efficiency by
ensuring that the most common patterns are represented in the most compact form possible.

As an example, Figure 3 illustrates the encoding process for a short sequence (a). The process
begins by replacing subsequences with codes of k-mers from the KT (b). Next, a Huffman tree
is constructed (c) to assign shorter binary codes to the most frequently occurring k-mers (d).
Finally, the sequence is encoded by substituting the k-mers and remaining nucleotide bases with
their corresponding binary codes (e).

Figure 3: An example of a genome sequence encoding: (a) A genome sequence, (b) kM substitution, (c) Huffman tree,
(d) Binary code, (e) final encoding and (f) kM substitution and Huffman code assignment

In summary, heuristic algorithms (GA and SA), are utilized in HMG to generate candidate
k-mers. The optimal k-mers identified during this process are assigned unique characters (not
part of the bases). A frequency map of the transformed k-mers is then created, and a Huffman
tree is constructed based on the k-mer frequencies. During compression, the transformed k-mers
are encoded using these Huffman codes, and the compressed data is written to a binary file.
Additionally, a dictionary file is generated, storing the mapping of the original k-mers to their
unique characters and the Huffman codes, ensuring efficient decoding during decompression.
The final output includes the size of the compressed files, demonstrating the efficiency of the
approach while preserving the ability to accurately reconstruct the original genome(s).

5. Experimental Evaluation

In this section, the performance of HMG-GA and HMG-SA is evaluated on 4 datasets and
also benchmarked against four reference-free genome compressors: JARVIS2 [15], GeCo3 [16],

19

JARVIS3 [25] NUHT [29] and the BZIP2 general purpose compressor. The experiments were
conducted on a desktop computer featuring a 12th Gen Intel® CoreTM i7-12700 processor (2.10
GHz), running Windows 11 for Education in performance mode. The machine was equipped
with 32 GB of RAM and 1 TB of disk storage, an adequate configuration for handling the large
datasets involved in the experiments. For evaluation and benchmarking, four datasets are used,
which are:

• Dataset 1 (DS1): A comprehensive balanced dataset [56] composed of 15 genomic se-
quences from a wide array of species, including (1) chromosome 2 of Gallus gallus (GaGa),
(2) chromosome 3 of Danio rerio (DaRe), (3) chromosome 1 of Oryza sativa Japonica
(OrSa), (4) chromosome 2 of Drosophila miranda (DrMe), (5) chromosome 4 of the ref-
erence human genome (HoSA), (6) genome of Entamoeba invadens (EnIn), (7) genome
of Schizosaccharomyces pombe (ScPo), (8) genome of Plasmodium falciparum (PlFa), (9)
genome of Escherichia coli (EsCo), (10) genome of Haloarcula hispanica (HaHi), (11)
genome of Aeropyrum camini (AeCa), (12) genome of Helicobacter pylori (HePy), (13)
genome of Yellowstone Lake mimivirus (YeMi), (14) genome of Aggregatibacter phage
S1249 (AgPh), and (15) genome of Bundibugyo ebolavirus (BuEb). This diverse dataset
ensures a robust evaluation across various organisms, representing a range of genomic
characteristics.

• Dataset 2 (DS2): The human genome T2T sequence (Chm13 version 2.0) [57], which con-
sists of 3,117,292,120 bases. This dataset, representing the concatenated sequence of the
whole human chromosomes, serves as a substantial benchmark to assess compression effi-
ciency on large, real-world data. Assuming a uniform distribution of symbols, the baseline
representation of this sequence without compression is approximately 779,323,030 bytes.

• Dataset 3 (DS3): This dataset contains the first bacterial genome of the Escherichia coli
K-12 substr.MG1655 that was generated by using the MinION sequencer [58]. The whole
genome consists 10,132,567 bases.

• Dataset 4 (DS4): This dataset contains extensively sequenced multidrug-resistant isolates
of Pseudomonas aeruginosa, Citrobacter freundii and Citrobacter werkmanii from a hos-
pital outbreak [59], all of which contain the carbapenemase enzyme blaIMP−8 gene. This
dataset contains 1,798,284,785 bases in total.

5.1. Benchmarking Results

This section presents the results in terms of bits-per-base (BPB), compression ratio (CR),
compression time, and decompression time across the four datasets. BPB is a measure of the
number of bits required to represent each base in the dataset after compression. CR is defined as
the ratio of the original file size to the compressed file size:

CR =
Original File Size

Compressed File Size

A higher CR value indicates more efficient compression, as it reflects greater file size reduction
(more data is stored in fewer bits). For example, if a file originally takes 100 MB and, after com-
pression, it is reduced to 20 MB, the CR would be 5, meaning that the file has been compressed
to one-fifth of its original size. The convergence behavior of HMG-GA and HMG-SA is then

20

analyzed to observe how it systematically refines the compression ratio over successive iterations
for optimal k-mer selection. Finally, the classification results are discussed where first the qual-
ity of the optimal k-mers in the KT is evaluated by utilizing them as features for classification,
followed by the results obtained with the custom classifier developed.

5.1.1. Compression: BPB and CR
The results for compression in terms of BPB and CR obtained with four variants of HMG-GA

and HMG-SA are presented in Table 2. In the table, C&M is used to denote the specific combina-
tion of crossover and mutation variants employed in the compression process. The same notation
is also used in Tables 3 and 4. Overall on average across all datasets, HMG-SA achieves a lower
BPB value on average than the four variants of HMG-GA. HMG-SA provided 3.24%, 2.59%,
2.59% and 1.94% better compression than HMG-GA(SPC/SM), HMG-GA(CC/SM), HMG-
GA(SPC/ScM) and HMG-GA(CC/ScM) respectively. The difference between the average BPB
obtained with the four variants of HMG-GA is very small. Whereas, HMG-GA(CC/SM) vari-
ant achieves better CR than other three variants of HMG-GA and HMG-SA. HMG-GA(CC/SM)
provided 1.96%, 2.21%, 0.97%, and 5.5% better compression than HMG-GA(SPC/SM), HMG-
GA(SPC/ScM), HMG-GA(CC/ScM) and HMG-SA respectively. The difference between the
average CR obtained with the four variants of HMG-GA is very small. For benchmarking and
comparison with previous compressors, HMG-GA(CC/SM) is selected as it performed slightly
better than others for both metric of compression.

Table 2: HMG results for compression in terms of BPB and CR on four datasets

Dataset C&M BPB CR C&M BPB CR

DS1

HoSa S PC/S M
CC/S M (S A) 1.58

1.58 (1.53) 3.99
4.04 (4.01) S PC/S cM

CC/S cM
1.56
1.55

3.97
4.01

GaGa S PC/S M
CC/S M (S A) 1.56

1.57 (1.51) 3.84
3.93 (4.19) S PC/S cM

CC/S cM
1.58
1.61

3.90
3.89

DaRe S PC/S M
CC/S M (S A) 1.48

1.55 (1.49) 4.27
4.47 (4.33) S PC/S cM

CC/S cM
1.56
1.41

4.21
4.48

OrSa S PC/S M
CC/S M (S A) 1.66

1.63 (1.57) 4.12
4.30 (4.12) S PC/S cM

CC/S cM
1.63
1.61

4.03
4.21

DrMe S PC/S M
CC/S M (S A) 1.58

1.61 (1.49) 4.11
3.98 (3.99) S PC/S cM

CC/S cM
1.60
1.55

4.20
3.98

EnIn S PC/S M
CC/S M (S A) 1.55

1.53 (1.48) 3.99
4.14 (3.91) S PC/S cM

CC/S cM
1.58
1.58

4.18
4.13

ScPo S PC/S M
CC/S M (S A) 1.57

1.52 (1.76) 3.88
3.80 (3.85) S PC/S cM

CC/S cM
1.57
1.54

3.81
3.81

PlFa S PC/S M
CC/S M (S A) 1.61

1.59 (1.65) 4.01
4.22 (4.03) S PC/S cM

CC/S cM
1.63
1.55

4.08
4.21

EsCo S PC/S M
CC/S M (S A) 1.73

1.75 (1.50) 3.94
3.99 (3.65) S PC/S cM

CC/S cM
1.65
1.66

3.89
3.97

HaHi S PC/S M
CC/S M (S A) 1.56

1.52 (1.57) 4.02
4.01 (3.73) S PC/S cM

CC/S cM
1.57
1.52

3.99
4.04

AeCa S PC/S M
CC/S M (S A) 1.59

1.56 (1.71) 3.95
3.95 (3.86) S PC/S cM

CC/S cM
1.59
1.50

3.92
3.91

HePy S PC/S M
CC/S M (S A) 1.69

1.72 (1.63) 4.19
4.35 (3.79) S PC/S cM

CC/S cM
1.67
1.66

4.24
4.40

YeMi S PC/S M
CC/S M (S A) 1.55

1.61 (1.54) 4.11
4.28 (3.91) S PC/S cM

CC/S cM
1.53
1.60

4.12
4.33

AgPh S PC/S M
CC/S M (S A) 1.53

1.50 (1.70) 4.04
3.99 (3.81) S PC/S cM

CC/S cM
1.55
1.51

3.97
4.04

BuEb S PC/S M
CC/S M (S A) 1.65

1.61 (1.65) 3.98
4.09 (3.80) S PC/S cM

CC/S cM
1.68
1.56

3.99
4.08

DS2 Human Genome S PC/S M
CC/S M (S A) 1.40

1.41 (1.40) 4.21
4.31 (3.95) S PC/S cM

CC/S cM
1.42
1.39

4.19
4.18

DS3 E.Coli K-12 S PC/S M
CC/S M (S A) 1.75

1.72 (1.81) 4.22
4.24 (3.87) S PC/S cM

CC/S cM
1.79
1.80

4.10
4.03

DS4 Isolates S PC/S M
CC/S M (S A) 1.68

1.69 (1.76) 4.71
4.84 (4.18) S PC/S cM

CC/S cM
1.65
1.71

4.53
4.72

Average of DS1 S PC/S M
CC/S M (S A) 1.59

1.58 (1.55) 4.02
4.10 (3.93) S PC/S cM

CC/S cM
1.58
1.56

4.03
4.09

Overall average S PC/S M
CC/S M (S A) 1.59

1.58 (1.54) 4.08
4.16 (3.94) S PC/S cM

CC/S cM
1.58
1.57

4.07
4.12

The benchmarking results of HMG-GA(CC/SM) and previous compressors are shown in Fig-

21

ure 4. The performance of six compression methods is evaluated across four datasets, based on
two compression metrics: CR and BPB. Higher (lower) CR (BPB) indicates better compression
efficiency. For some compressors, either the CR or BPB values were unavailable. Specifically,
NUHT terminated prematurely on datasets DS2 and DS4 due to runtime issues, while JARVIS3
encountered an “exec format error" during execution, preventing it from processing datasets DS2,
DS3, and DS4. Additionally, NUHT, BZ2, and JARVIS3 did not provide BPB values for certain
datasets, limiting a direct comparison.

Figure 4: Compression benchmark in terms of BPB and CR for six compressors across four datasets. The HMG-
GA(CC/SM) variant is used for benchmarking as it performed slightly better than HMG-SA and other variants of HMG-
GA

HMG-GA(CC/SM) achieves the best BPB results across all datasets compared to other com-
pressors, except for DS2, where its performance is slightly outperformed by JARVIS2. Specifi-
cally, for DS1, HMG-GA(CC/SM) provides 12% better compression than JARVIS2 and 15.8%
better compression than GeCo3. On DS2, however, JARVIS2 achieves slightly better compres-
sion, outperforming HMG-GA(CC/SM) by 1.4%, while HMG-GA(CC/SM) surpasses GeCo3

22

by 0.8%. This highlights that dataset characteristics impact the relative performance of compres-
sion algorithms. For DS3 and DS4, HMG-GA(CC/SM) achieves slightly higher BPB compared
to DS1 and DS2, indicating that these datasets may be more challenging to compress due to
reduced redundancy or unique sequence patterns. Despite this, HMG-GA(CC/SM) still outper-
forms other methods on DS3 and DS4 in terms of BPB. For CR, HMG-GA(CC/SM) performed
better than JARVIS2 (DS3, DS4), GeCo3 (DS3, DS4), BZ2 (DS1, DS3, DS4), NUHT (DS1,
DS3). However, JARVIS3 has better CR than HMG-GA(CC/SM) on DS1.

Table 3: HMG results for compression time (in seconds) on four datasets

Dataset C&M Time C&M Time

DS1

HoSa S PC/S M
CC/S M (S A) 112.40

117.34 (125.00) S PC/S cM
CC/S cM

121.01
120.07

GaGa S PC/S M
CC/S M (S A) 90.65

91.49 (96.11) S PC/S cM
CC/S cM

92.10
93.04

DaRe S PC/S M
CC/S M (S A) 39.41

40.01 (43.40) S PC/S cM
CC/S cM

39.46
40.10

OrSa S PC/S M
CC/S M (S A) 24.80

25.71 (32.30) S PC/S cM
CC/S cM

25.01
25.20

DrMe S PC/S M
CC/S M (S A) 18.10

17.63 (22.30) S PC/S cM
CC/S cM

18.51
18.40

EnIn S PC/S M
CC/S M (S A) 15.90

15.85 (18.20) S PC/S cM
CC/S cM

16.02
15.98

ScPo S PC/S M
CC/S M (S A) 6.19

6.93 (7.50) S PC/S cM
CC/S cM

6.68
6.29

PlFa S PC/S M
CC/S M (S A) 5.36

5.40 (5.01) S PC/S cM
CC/S cM

5.35
5.51

EsCo S PC/S M
CC/S M (S A) 2.88

2.90 (3.80) S PC/S cM
CC/S cM

2.98
3.01

HaHi S PC/S M
CC/S M (S A) 2.10

2.09 (2.40) S PC/S cM
CC/S cM

2.14
2.12

AeCa S PC/S M
CC/S M (S A) 0.92

0.91 (0.99) S PC/S cM
CC/S cM

0.94
0.92

HePy S PC/S M
CC/S M (S A) 0.90

0.93 (0.98) S PC/S cM
CC/S cM

0.90
0.91

YeMi S PC/S M
CC/S M (S A) 0.14

0.13 (0.23) S PC/S cM
CC/S cM

0.16
0.20

AgPh S PC/S M
CC/S M (S A) 0.09

0.08 (0.10) S PC/S cM
CC/S cM

0.09
0.09

BuEb S PC/S M
CC/S M (S A) 0.07

0.06 (0.09) S PC/S cM
CC/S cM

0.07
0.08

DS2 Human Genome S PC/S M
CC/S M (S A) 2330

2452 (2781) S PC/S cM
CC/S cM

2491
2501

DS3 E.Coli K-12 S PC/S M
CC/S M (S A) 9.05

9.81 (8.80) S PC/S cM
CC/S cM

9.10
10.01

DS4 Isolates S PC/S M
CC/S M (S A) 434.65

430.24 (434.65) S PC/S cM
CC/S cM

430.53
441.49

Average of DS1 S PC/S M
CC/S M (S A) 21.32

21.83 (23.89) S PC/S cM
CC/S cM

22.09
22.12

Overall average S PC/S M
CC/S M (S A) 616.74

608.84 (595.01) S PC/S cM
CC/S cM

613.49
625.68

5.1.2. Compression and Decompression Time
The compression and decompression time for HMG-GA variants and HMG-SA are presented

in Tables 3 and 4, respectively. For compression, on DS1, the SPC/SM variant of HMG-GA
takes, on average, 21.32 seconds, while the HMG-GA(SPC/ScM) variant takes about 22.09 sec-
onds. The HMG-GA(CC/SM) variant is reported at 21.83 seconds, with the HMG-GA(CC/ScM)
taking about 22.12 seconds. The differences between these varinats are minimal, with SM meth-
ods generally performing slightly better than ScM with the only exception in HePy sequence of
DS1, where ScM mutation method is quickest. Compression time for specific methods within
DS1 varies, with times ranging from 5.36 seconds (PlFa using HMG-GA(SPC/SM)) to 112.40
seconds (HoSa using HMG-GA(SPC/SM)). The highest compression times tend to occur for
datasets with more complex structures, while smaller datasets result in faster times. For DS2,
the compression time for the HMG-GA(SPC/SM) is 2,330 seconds, which is the quickest among
all the HMG methods. Similarly, for DS3, the HMG-SA method is the quickest, taking 8.80

23

seconds, and for DS4, the HMG-GA(CC/SM) is the fastest, taking 430.24 seconds. Overall, on
average, the HMG-SA method is the quickest, 1.05 times faster than the HMG-GA(CC/ScM).
One possible reason for HMG-SA faster performance is that it involves fewer steps, as there is
no crossover operation in SA.

Table 4: HMG results for decompression time (in seconds) on four datasets

Dataset C&M Time C&M Time

DS1

HoSa S PC/S M
CC/S M (S A) 76.43

75.44 (73.55) S PC/S cM
CC/S cM

74.74
79.51

GaGa S PC/S M
CC/S M (S A) 58.00

57.64 (56.41) S PC/S cM
CC/S cM

60.51
61.56

DaRe S PC/S M
CC/S M (S A) 55.64

56.88 (58.31) S PC/S cM
CC/S cM

54.43
52.09

OrSa S PC/S M
CC/S M (S A) 17.46

18.51 (17.99) S PC/S cM
CC/S cM

17.31
16.88

DrMe S PC/S M
CC/S M (S A) 13.17

14.51 (15.11) S PC/S cM
CC/S cM

13.04
16.84

EnIn S PC/S M
CC/S M (S A) 11.33

11.84 (12.04) S PC/S cM
CC/S cM

10.66
13.51

ScPo S PC/S M
CC/S M (S A) 4.48

5.01 (5.31) S PC/S cM
CC/S cM

5.85
5.95

PlFa S PC/S M
CC/S M (S A) 4.13

4.24 (5.69) S PC/S cM
CC/S cM

3.85
5.33

EsCo S PC/S M
CC/S M (S A) 1.5

1.55 (2.41) S PC/S cM
CC/S cM

1.83
1.79

HaHi S PC/S M
CC/S M (S A) 2.1

2.14 (2.99) S PC/S cM
CC/S cM

3.44
3.5

AeCa S PC/S M
CC/S M (S A) 1.38

1.41 (1.53) S PC/S cM
CC/S cM

1.55
1.65

HePy S PC/S M
CC/S M (S A) 1.15

1.23 (1.29) S PC/S cM
CC/S cM

1.22
1.31

YeMi S PC/S M
CC/S M (S A) 0.15

0.19 (0.21) S PC/S cM
CC/S cM

0.20
0.22

AgPh S PC/S M
CC/S M (S A) 0.1

0.1 (0.15) S PC/S cM
CC/S cM

0.14
0.19

BuEb S PC/S M
CC/S M (S A) 0.03

0.03 (0.05) S PC/S cM
CC/S cM

0.03
0.04

DS2 Human Genome S PC/S M
CC/S M (S A) 605.99

595.63 (611.45) S PC/S cM
CC/S cM

608.88
601.84

DS3 E.Coli K-12 S PC/S M
CC/S M (S A) 10.81

9.84 (10.41) S PC/S cM
CC/S cM

9.15
10.99

DS4 Isolates S PC/S M
CC/S M (S A) 434.65

430.24 (434.65) S PC/S cM
CC/S cM

430.53
441.49

Average of DS1 S PC/S M
CC/S M (S A) 16.47

16.71 (16.86) S PC/S cM
CC/S cM

16.58
17.35

Overall average S PC/S M
CC/S M (S A) 72.13

71.46 (72.75) S PC/S cM
CC/S cM

72.07
73.03

For DS1, the decompression time for the HMG-GA(SPC/SM) is, on average, 16.47 sec-
onds, while the HMG-GA(SPC/ScM) takes about 16.58 seconds. Among the tested variants,
the HMG-GA(CC/SM) takes 16.71 seconds on average, while the HMG-GA(CC/ScM) takes
about 17.35 seconds. The decompression time differences between HMG-GA varinats are min-
imal, with the SM methods generally being slightly faster than ScM. Decompression time for
specific HMG-GA variants within DS1 varies, ranging from 0.03 seconds (BuEb using HMG-
GA(SPC/SM)) to 76.43 seconds (HoSa using HMG-GA(CPC/SM)). The higher decompression
times tend to occur for larger datasets, such as the Human Genome, while smaller datasets result
in faster times. For DS2, the decompression time for the HMG-GA(CC/SM) is 595.63 seconds,
which is the fastest, followed by HMG-GA(CC/ScM) at 601.84 seconds. HMG-GA(SPC/ScM)
takes about 608.88 seconds and HMG-GA(SPC/SM) takes 605.99 seconds. For DS3, the HMG-
GA(SPC/ScM) is the fastest, taking 9.15 seconds, followed by HMG-GA(CC/SM) at 9.84 sec-
onds, while HMG-GA(SPC/SM) takes 10.81 seconds and HMG-GA(CC/ScM) takes 10.99 sec-
onds. For DS4, the decompression time for HMG-GA(CC/SM) is the fastest at 430.24 seconds,
followed closely by HMG-GA(SPC/ScM) at 430.53 seconds. The HMG-GA(SPC/SM) takes
about 434.65 seconds, while HMG-GA(CC/ScM) takes 441.49 seconds. For the overall aver-
age, the HMG-GA(SPC/SM) takes 72.13 seconds, HMG-GA(CC/SM) takes 71.46 seconds and

24

HMG-SA takes 72.75 seconds, with HMG-GA(SPC/ScM) and HMG-GA(CC/ScM) showing
similar performance at 72.07 seconds and 73.03 seconds, respectively.

Figure 5 presents the compression and decompression times (in seconds). The results are split
into two sections: the compressors to the left of the blue vertical line are those that produced com-
pression and decompression times for all four datasets. In contrast, the compressors to the right
of the blue vertical line generated results for a subset of datasets (JARVIS3 and NUHT for DS1
only). It can be observed that the general-purpose compressor, BZ2, is the fastest across all four
datasets, but it delivers less effective compression results. In comparison, HMG-GA(CC/SM)
outperforms JARVIS2 and GeCo3 in both compression and decompression tasks. Specifically,
it is 2.35 and 2.80 times faster in compression and 5.82 and 1.48 times faster in decompression
compared to JARVIS2 and GeCo3, respectively. Among the methods that provide results for a
subset of datasets, JARVIS3 emerges as the fastest, followed by NUHT.

Figure 5: Compression and decompression times (in seconds) benchmarked for six compressors across four datasets.
Note that the y-axis is displayed on a log scale with base 2

5.2. Convergence

An additional experiment is conducted using a sequence from DS1 (HoSa) and DS2 across all
variants of HMG-GA and HMG-SA. This experiment aimed to observe HMG’s convergence be-
havior, specifically how the compression ratio evolves over successive iterations and how k-mer
selection improves during this process. The convergence of the compression ratio was evaluated
based on two key factors: (1) the number of k-mers added to the KT and (2) the number of
generations required to evolve a set of k-mers before they are incorporated into the KT . This
experiment provides valuable insight into how HMG refines its approach to compression by iter-
atively adjusting the k-mer selection, leading to improved compression performance.

The results are presented in Figure 6. The solid lines represent the results of HMG for the
DS1 sequence, while the dotted lines depict the results for DS2. The bottom x-axis illustrates
the cumulative number of k-mers added to the KT , while the top x-axis represents the number
of generations that HMG uses to evolve each k-mer set. The y-axis displays the compression

25

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1.52

1.57

1.62

1.67

1.72

1.77

1.82

1.87

1.92

1.97

1 2 3 4

of generations

C
o

m
p

re
ss

io
n

 (
B

P
B

)

of k-mers

SPC/SM SPC/SM
SPC/ScM SPC/ScM
CC/SM CC/SM
CC/ScM CC/ScM
SA SA

DS1 (HoSa)
DS2

Figure 6: Comparison of compression with respect to number of k-mers and generations

ratio, which indicates the algorithm’s effectiveness in reducing data size. For clarity, the number
of sequences are considered within the ranges of [1, 4]. For the HMG-GA variants, the number
of generations is fixed at 10 for each k-mer. In the case of HMG-SA, the temperature is initially
set to 100 and gradually reduced by multiplying it by a cooling rate of 0.95. The loop terminates
when the temperature drops below 1. For consistency, the temperature decrease from 100 to 1 is
assumed to occur over the same 10 generations as used in HMG-GA.

In the figure, the BPB of HMG-GA variants and HMG-SA exhibit a common pattern: an ini-
tial high BPB that improves as more k-mers are added. This indicates that the initial k-mer added
to the KT has a substantial impact on improving compression, with subsequent k-mers have triv-
ial gains. The HMG-GA variants and HMG-SA obtained better BPB on HoSa as compared to
DS2. HMG-GA(CC/SM) (solid) performance gets better after the eighth generation of the sec-
ond k-mer. HMG-GA(SPC/SM) (solid) achieved very low BPB in the first seven generations of
the first k-mer. After that its performance is steady for the rest of the generations.

It is noteworthy that the Human Genome in DS2 and Isolates in DS4 utilized more k-mers (8
in total) than the other sequences in DS1 and DS3 (4 in total). This means that genome sequences
of DS2 and DS4 required more k-mers for better representation and compression. As discussed
in Section 4.1, HMG is strategically designed to either improve the compression or maintain its
current quality, ensuring no degradation over time. Figure 6 illustrates this behavior for HoSa
of DS1 and DS2, showing that compression ratios consistently decrease or remain stable as
the number of generations and k-mers increases. This trend highlights HMG’s effectiveness in
progressively refining or sustaining data compression efficiency through iterative optimization.

26

5.3. Classification

In another experiment, we assessed the quality of the optimal k-mers from the KT, obtained
with HMG, by employing them as features to train a classification model. The Weka [60] soft-
ware was used for training/testing six classifiers, which are Naive Bayes (NB), Logistic Regres-
sion (LR), Support Vector Machine (SVM), k-nearest Neighbor (kNN), Decision Tree (DT), and
Random Forest (RF). These classifiers were evaluated using their default hyperparameters and
a 10-fold cross-validation. The effectiveness of the classifiers was evaluated using the accuracy
metric, which represents the percentage of correctly classified instances based on the optimal
k-mers. The obtained accuracies by the six classifiers are listed in Table 5.

Table 5: Classifiers accuracy (in %) on optimal k-mers

Dataset↓, Classifier→ NB LR SVM kNN DT RF

DS1

HoSa 91.25 95 95 88.75 95 95
GaGa 60 95 95 87.5 95 90
DaRe 93.75 95 95 90 95 96.25
OrSa 50 95 95 80 95 91.25
DrMe 90 91.25 95 88.75 95 92.5
EnIn 87.5 88.75 95 87.5 95 93.75
ScPo 90 95 95 86.25 95 93.75
PlFa 81.25 92.5 95 88.75 95 92.5
EsCo 92.5 93.75 95 87.25 95 93.75
HaHi 73.75 93.75 95 92.5 95 93.75
AeCa 92.5 92.5 95 90 95 92.5
HePy 92.5 95 95 91.25 95 93.75
YeMi 88.75 92.5 95 88.75 95 92.5
AgPh 70 95 95 87.5 95 90
BuEb 93.75 95 95 90 95 96.25

DS2 Human Genome 83.75 86.25 90 83.75 90 86.25
DS3 E.coli K-12 70 88.75 90 73.75 90 83.75
DS4 Isolates 91.25 95 95 90 95 95

Overall average 82.91 93.05 94.44 87.34 94.44 92.36

SVM and DT performed similarly on all datasets, with an average accuracy of 94.44%, fol-
lowed by LR (93.05)% and RF (92.36%). In contrast, previous studies [32, 33, 34] employed
compression measures like NC, along with other features, for the taxonomic classification of
metagenomic, Archaea and viruses, respectively. XGBoost demonstrated the best performance
on the given features, achieving average accuracies of 95% [32], 92.10% [33] and 82.15% [34].
In this paper, the optimal k-mers enhance the interpretability of HMG by revealing the dis-
tribution and frequency of k-mers that significantly contribute to the compression of genome
sequences.

In addition to the standard classifier, a custom classifier is developed to classify k-mers for
multiple datasets, each stored in separate files. The k-mers are generated using variants of HMG-
GA and HMG-SA, which are employed to explore the search space and identify optimal k-mers.
The classifier first processes these files by counting the occurrences of each k-mer in all datasets.

27

For each k-mer, the classifier then determines how many times it appears in each dataset, ac-
counting for overlapping occurrences within the dataset. To ensure fairness in classification and
prevent larger datasets from having an advantage, the occurrences are normalized with respect
to the size of each dataset. This normalization is achieved by calculating the frequency of each
k-mer as a percentage of the dataset size, which ensures that the frequency count reflects the
proportion of the dataset rather than its absolute size. As a result, larger datasets cannot bias the
classification process simply due to having more entries.

After calculating the normalized occurrences, the classifier assigns a predicted class to each
k-mer based on the dataset with the highest normalized frequency. For instance, if a k-mer occurs
most frequently in DS1, it will be classified as belonging to DS1. Once the predictions are made,
the classifier compares them to the actual class for each k-mer, which is derived from the k-mer
file name (e.g., a file named BuEb corresponds to the class BuEb). The classifier then calculates
the accuracy by determining the percentage of correct classifications. The accuracy of these
predictions serves as the primary measure of the classifier’s performance, providing a useful tool
for classifying genomic or biological sequence data based on optimal k-mer content.

More formally, the process can be described as follows: Let Di represent the i-th dataset,
where i ∈ {1, 2, . . . ,N} and N is the total number of datasets. For a given k-mer, kMm, the
frequency of kMm in dataset Di is denoted as f (kMm,Di). The size of dataset Di, represented
by |Di|, is used to normalize the frequency of kMm within that dataset, giving the normalized
frequency fnorm(kMm,Di), calculated as:

fnorm(kMm,Di) =
f (kMm,Di)
|Di|

The classifier assigns a predicted class Ĉ(kMm) to the kMm by selecting the dataset Di where
the normalized frequency fnorm(kMm,Di) is the highest, expressed as:

Ĉ(kMm) = arg max
i

(fnorm(kMm,Di))

The predicted class Ĉ(kMm) is then compared to the actual class C(kMm), which is derived
from the k-mer’s. The classifier’s accuracy ACC is computed by determining the percentage of
correctly classified k-mers, using the indicator function I(Ĉ(kMm) = C(kMm)), as follows:

ACC =
1
M

M∑
m=1

I(Ĉ(kMm) = C(kMm))

where M is the total number of k-mers, and I(Ĉ(kMm) = C(kMm)) equals 1 if the predicted class
matches the actual class, and 0 otherwise. The final accuracy ACC represents the percentage of
correctly classified k-mers out of the total M evaluated.

The accuracies achieved by each variant of the HMG-GA and HMG-SA are presented in Ta-
ble 6. The results show that the custom classifier with HMG-SA achieved the highest accuracy
(93.22%) on average, followed by HMG-GA(CC/SM) (93.07%). The HMG-GA(SPC/ScM) per-
formed better than HMG-GA(SPC/SM) and HMG-GA(CC/ScM), with an accuracy of 92.80%
compared to 92.37% and 91.45%.

In summary, the results indicate that HMG outperforms in terms of compression (BPB) and
runtime. Additionally, the effectiveness of HMG as a descriptor for data, specifically genome se-
quences, is apparent in two classification scenarios. These findings establish HMG as an optimal
solution for handling genomic data, offering advantages not only in terms of data storage and

28

Table 6: Classification accuracies (in %) of k-mers based on the custom classifier

Dataset SPC/SM SPC/ScM CC/SM CC/ScM SA

DS1

HoSa 94.91 95.10 93.22 88.23 94.11
GaGa 93.17 92.42 94.11 91.23 94.02
DaRe 91.65 94.41 92.67 92.34 93.01
OrSa 92.42 93.89 94.60 90.75 93.59
DrMe 94.11 91.50 93.66 90.83 93.45
EnIn 91.34 93.17 92.56 90.32 94.34
ScPo 92.56 94.34 93.71 91.19 92.87
PlFa 92.11 91.76 93.34 90.89 94.02
EsCo 90.65 93.02 94.13 92.78 91.76
HaHi 94.01 91.23 92.89 90.44 93.65
AeCa 91.49 92.83 94.21 91.08 93.67
HePy 90.89 94.45 93.33 91.65 93.11
YeMi 94.13 92.67 90.98 92.42 93.47
AgPh 90.25 91.77 92.88 94.02 91.34
BuEb 91.55 94.67 91.98 92.65 93.02

DS2 Human Genome 93.51 91.32 94.23 96.47 93.99
DS3 E.Coli 90.33 89.94 91.10 88.01 90.80
DS4 Isoaltes 93.61 92.09 91.78 90.90 93.81

Overall average 92.37 92.80 93.07 91.45 93.22

processing speed but also facilitates genome classification, making it suitable for a wide range of
applications in genomic research and bioinformatics workflows.

6. Conclusion

This paper introduced a novel framework, called HMG, that integrated heuristic algorithms
with the MDL principle for efficient reference-free lossless compression of genomic data. The
two algorithms, named HMG-GA and HMG-SA, are based on fusing the GA and SA, respec-
tivley, with the MDL principle. HMG effectively captured the sequential structure of genome
sequences and derived optimal k-mers played critical part in the compression. Experimental
comparison with state-of-the-art genome compressors has shown that HMG is fast, and provides
a low BPB. The principle of MDL ensures that HMG maintains an optimal balance, neither being
overly complex nor simplistic, by aligning its complexity with its ability to accurately describe
or (represent) the genome data. HMG’s potential extends beyond compression; it offers a multi-
faceted advantage by utilizing the identified k-mers for genome classification, thereby enhancing
interpretability and utility in genome compression research. As genomic data continues to ex-
pand, HMG provides cost-effective storage solutions and enables faster, more streamlined anal-
ysis workflows in both research and clinical settings. HMG is freely available as open-source,
thereby guaranteeing accessibility and promoting collaboration within the scientific community.

Despite HMG’s demonstrated performance improvements, several limitations and areas for
future research remain. Firstly, the effectiveness of the k-mer selection process is highly de-
pendent on the quality of the heuristics, which might not always guarantee global optimality.

29

Secondly, while HMG performs well on the benchmark datasets, its generalizability to a wider
range of genomic and metagenomic datasets has not yet been fully explored, and further valida-
tion across diverse data types is required. Thirdly, the multi-step encoding process introduced,
particularly for large datasets, which could be mitigated by integrating GPU acceleration or par-
allel processing techniques. Fourthly, the employed encoding schemes, such as Huffman and
substitution encoding, may not be optimal for all genomic datasets, and exploring more advanced
techniques like arithmetic encoding or range encoding could further enhance compression effi-
ciency. Fifthly, the effectiveness of HMG could be improved by incorporating more sophisticated
techniques for pattern recognition, such as palindrome matching or sequence alignment, to iden-
tify gaps and further optimize compression. incorporating ’gaps’ between bases during compres-
sion, complemented by techniques such as palindrome matching, repeat detection, and sequence
alignment, to enhance pattern identification and achieve greater compression efficiency. Lastly,
adding more measures, such as NC, to HMG will facilitate more compression-based analysis.

Funding: This research did not receive any specific grant from funding agencies in the pub-
lic, commercial, or not-for-profit sectors.

CRediT author statement
M. Zohaib Nawaz: Software, Data Curation, Methodology, Validation, Visualization, Writing
- Original Draft, Writing - Review & Editing. M. Saqib Nawaz: Formal Analysis, Valida-
tion, Investigation, Visualization, Methodology, Writing - Original Draft, Writing - Review &
Editing. Philippe Fournier-Viger: Supervision, Resources, Conceptualization, Methodology,
Validation, Investigation, Writing - Review & Editing. M. Shoaib Nawaz: Data Curation, Val-
idation, Writing - Review & Editing. Jerry Chun-Wei Lin: Investigation, Writing - Review &
Editing. Vincent S. Tseng: Validation, Writing - Review & Editing.

Conflict of Interest: Authors declare no conflict of interest.

References

[1] Q. Li, Z. Xiong, P. Xiang, L. Zhou, T. Zhang, Q. Wu, C. Zhao, Effects of uranium mining on soil bacterial commu-
nities and functions in the Qinghai-Tibet plateau, Chemosphere, 347 (2024) 140715.

[2] M. J. Van Oppen, M. A. Coleman, Advancing the protection of marine life through genomics, PLoS Biology, 20
(10) (2022) e3001801.

[3] H. L. Huang, S. Yin, H. Zhao, C. Tian, J. Huang, S. Deng, Z. Li, DNA extraction and sequencing of the Mawangdui
ancient cadaver protected by formalin, bioRxiv, (2020).

[4] S. Mammola, I. R. Amorim, M. E. Bichuette, P. A. V. Borges, N. Cheeptham, S. J. B. Cooper, D. C. Culver, et al.,
Fundamental research questions in subterranean biology, Biological Reviews, 95 (6) (2020) 1855-1872.

[5] L. H. Rieseberg, Chromosomal rearrangements and speciation, Trends in Ecology & Evolution, 16 (7) (2001) 351-
358.

[6] G. S. Roeder G. R. Fink, DNA rearrangements associated with a transposable element in yeast, Cell, 21, (1) (1980)
239-249.

[7] G. J. M. Zajac, L. G. Fritsche, J. S. Weinstock, S. L. Dagenais, R. H. Lyons, C. M. Brummett, G. R. Abecasis,
Estimation of DNA contamination and its sources in genotyped samples, Genetic Epidemiology, 43 (8) (2019) 980-
995.

[8] M. A. Barnes, C. R. Turner, C. L. Jerde, M. A. Renshaw, W. L. Chadderton, and D. M. Lodge, Environmental
conditions influence eDNA persistence in aquatic systems, Environmental Science & Technology, 48 (3) (2014)
1819-1827.

[9] A. J. Adams, J. P. LaBonte, M. L. Ball, K. L. Richards-Hrdlicka, M. H. Toothman, C. J. Briggs, DNA extraction

30

method affects the detection of a fungal pathogen in formalin-fixed specimens using qPCR, PLoS One, 10 (8) (2015)
e0135389.

[10] K. Slooten, The analogy between DNA kinship and DNA mixture evaluation, with applications for the interpreta-
tion of likelihood ratios produced by possibly imperfect models, Forensic Science International: Genetics, 52 (2021)
102449.

[11] M. Zitnik, F. Nguyen, B. Wang, J. Leskovec, A. Goldenberg, M. M. Hoffman, Machine learning for integrating
data in biology and medicine: Principles, practice, and opportunities, Information Fusion, 50 (2019), 71-91.

[12] Z. D. Stephens, S. Y. Lee, F. Faghri et al., Big data: astronomical or genomical?, PLoS Biology, 13 (7) (2015)
e1002195

[13] G. Berger, J. Peng, M. Singh, Computational solutions for omics data", Nature Review Genetics, 14 (5) (2013)
333–346.

[14] M. S. Nawaz, M. Z. Nawaz, Z. Junyi, P. Fournier-Viger, J.-F. Qu, Exploiting the sequential nature of genomic data
for improved analysis and identification, Computers in Biology and Medicine, 183 (2024) 109307.

[15] D. Pratas, A. J. Pinho, JARVIS2: a data compressor for large genome sequences, in Proc. of DCC, (2023) 288–297.
[16] M. Silva, D. Pratas, A. J. Pinho, Efficient DNA sequence compression with neural networks, GigaScience, 9 (11)

(2020) giaa119.
[17] S. Grumbach, F. Tahi, Compression of DNA sequences, in Proc. of DCC, (1993) 340–350.
[18] M. Hosseini, D. Pratas, A. J. Pinho, A survey on data compression methods for biological sequences, Information,

7 (4) (2016) 56.
[19] S. Kumar, M. P. Singh, S. R. Nayak, A. U. Khan, A. K. Jain, P. Singh, M. Diwakar, T. Soujanya, A new efficient

referential genome compression technique for FastQ files", Funct. Integr. Genomics. vol. 23, no. 333, 2023.
[20] Z. Lu, L. Guo, J. Chen, Reference-based genome compression using the longest matched substrings with paral-

lelization consideration, BMC Bioinformatics, 24 (369) (2023).
[21] S. Saha, S. Rajasekaran, ERGC: an efficient referential genome compression algorithm, Bioinformatics, 31 (21)

(2015) 3468–3475.
[22] S. Wandelt, U. Leser, FRESCO: referential compression of highly similar sequences, IEEE/ACM Transactions on

Computational Biology and Bioinformatics, 10 (5) (2013) 1275–1288.
[23] K. -O. Cheng, N. -F Law, W. -C Siu, Clustering-based compression for population DNA sequences, IEEE/ACM

Transactions on Computational Biology and Bioinformatics, 16 (1) (2019) 208–221.
[24] S Roy, D. K. Maity, A. Mukhopadhyay, A lossless reference-free sequence compression algorithm leveraging

grammatical, statistical, and substitution rules, Briefings in Functional Genomics, 24 (2025) elae050.
[25] M. J. P. Sousa, A. J. Pinho, D. Pratas, JARVIS3: an efficient encoder for genomic data, Bioinformatics, (2024)

btae725.
[26] Z. Sun, Z., M. Wang, S. Kwong, LEC-Codec: Learning-based genome data compression, IEEE/ACM Transactions

on Computational Biology and Bioinformatics, (2024) 1–12.
[27] S. K. Sheena, M. S. Nair, GenCoder: A novel convolutional neural network based autoencoder for genomic se-

quence, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 21 (3) (2024) 405–415.
[28] A. Al-Okaily, B. Almarri, S. Al Yami, and C. H. Huang, Toward a better compression for DNA sequences using

Huffman encoding, Journal of Computational Biology, 24 (4) (2017) 280-288.
[29] S. Alyami, C. -H Huang, Nongreedy unbalanced Huffman tree compressor for single and multifasta files, Journal

of Computational Biology, 27 (6) (2020) 868–876.
[30] R. Wang., Y. Bai, Y. -S Chu, Z. Wang, V. Wang, M. Sun, DeepDNA: a hybrid convolutional and recurrent neural

network for compressing human mitochondrial genomes, in Proc of BIBM, (2018) 270–274.
[31] M. D. Cao, T. I. Dix, L. Allison, C. Mears, A simple statistical algorithm for biological sequence compression, in:

Proc. of DCC, (2007) 43–52.
[32] J. M. Silva, J. R. Almeida, Enhancing metagenomic classification with compression-based features„ Artificial

Intelligence in Medicien, 156 (2024) 102948.
[33] J. M. Silva, D. Pratas, T. Caetano, S. Matos, Feature-based classification of Archaeal sequences using compression-

based methods, in Proc. of IbPRIA, (2022) 309-320.
[34] J. M. Silva, D. Pratas, T. Caetano, S. Matos, The complexity landscape of viral genomes", GigaScience, 11 (2022)

giac079.
[35] S. Grabowski, T. M. Kowalski, MBGC: multiple bacteria genome compressor, GigaScience, 11 (2020) giab099.
[36] K. Kryukov, M. T. Ueda, S. Nakagawa, T. Imanishi, “Nucleotide archival format (NAF) enables efficient lossless

reference-free compression of DNA sequences, Bioinformatics, 35 (19) (2019) 3826–3828.
[37] A. J. Pinho, D. Pratas, MFCompress: a compression tool for FASTA and multi-FASTA data, Bioinformaics, 30 (1)

(2014) 117–118.
[38] M. H. Mohammed, A. Dutta, T. Bose, S. Chadaram, S. S. Mande, DELIMINATE - A fast and efficient method for

loss-less compression of genomic sequences: Sequence analysis", Bioinformatics, 28 (19) (2012) 2527–2529.
[39] K. S. Sheena, M. S. Nair, DNACoder: a CNN-LSTM attention-based network for genomic sequence data compres-

31

sion, Neural Computing and Applications, 36 (2024) 18363–18376.
[40] W. Cui, Z. Yu, Z., Liu, G. Wang, X. Liu, Compressing genomic sequences by using deep learning, in Proc. ofI-

CANN, (2020), 92–104.
[41] J. H. Holland, Adaptation in natural and artificial systems, (1975), MIT Press.
[42] D. Bertsimas, J. Tsitsiklis, Simulated annealing, Statistical Science, 8 (1) (1993) 10-15.
[43] P. D. Grunwald, The Minimum Description Length Principle, (2007), MIT Press.
[44] M. Z. Nawaz, M. S. Nawaz, P. Fournier-Viger, V. S. Tseng, An MDL-based Genetic Algorithm for genome se-

quence compression, in Proc. of BIBM, (2024) 6724-6731.
[45] Q. Meng, S. Chandak, Y. Zhu, T. Weissman, Reference-free lossless compression of nanopore sequencing reads

using an approximate assembly approach. Scientific Reports, 13 (2023) 2082.
[46] F. Nazari, S. Patel, Melissa LaRocca, Ryan Czarny, Giana Schena, Emma K. Murray. GeneSqueeze: A novel

lossless, reference-Free compression algorithm for FASTQ/A files, bioRxiv, (2024), 2024.03.21.586111;
[47] S. Ozan, DNA sequence classification with compressors, arXiv preprint, (2024), arXiv:2401.14025.
[48] M. Gen, L. Lin, Genetic algorithms and their applications, in Handbook of Engineering Statistics, 674 (2022)

635-674, Springer.
[49] M. S. Nawaz, M. Z. Nawaz, O. Hasan, P. Fournier-Viger, M. Sun, An evolutionary/heuristic-based proof searching

framework for interactive theorem prover, Applied Soft Computing, 104 (2021) 107200.
[50] D. Delahaye, S. Chaimatanan, M. Mongeau, Simulated annealing: From basics to applications, in: Handbook of

Metaheuristics, 272 (2019) 1-35, Springer.
[51] B. Selman, C. P. Gomes, Hill-climbing search, Encyclopedia of Cognitive Science, (2006).
[52] M. S. Nawaz, P. Fournier-Viger, U. Yun, Y. Wu, W. Song, Mining high utility itemsets with Hill Climbing and

Simulated Annealing, ACM Transactions on Management Information System, 13 (1) (2021) 1 - 22.
[53] M. S. Nawaz, P. Fournier-Viger, A. Shojaee, H. Fujita, Using artificial intelligence techniques for COVID-19

genome analysis, Applied Intelligence, 51 (2021) 3086-3103.
[54] J. Vreeken, M. van Leeuwen, A. Siebes, KRIMP: mining itemsets that compress, Data Mining and Knowledge

Discovery, 23 (2011) 169-214.
[55] M. S. Nawaz, M. Z. Nawaz, O. Hasan, P. Fournier-Viger, M. Sun, Proof searching and prediction in HOL4 with

evolutionary/heuristic and deep learning techniques, Applied Intelligence 51 (2021) 1580-1601.
[56] D. Pratas, A. J. Pinho, A DNA sequence corpus for compression benchmark, in Proc. of PACBB, (2018) 208-215.
[57] S. Nurk, S. Koren, A. Rhie, et al., The complete sequence of a human genome, Science, 376 (6588) (2022) 44-53.
[58] J. Quick, N. J. Loman, Bacterial whole-genome read data from the Oxford Nanopore Technologies MinION

nanopore sequencer, GigaScience Database, 2 (2014).
[59] P. S. Peter, M. Bosio, C. Gross, D. Bezdan, J. Gutierrez, P. Oberhettinger, J. Liese, W. Vogel, D. Dorfel, L. Berger,

M. Marschal, Tracking of antibiotic resistance transfer and rapid plasmid evolution in a hospital setting by Nanopore
sequencing, Msphere, 5 (4) (2020) 10-1128.

[60] E. Frank, M. A. Hall, I. H. Witten, The WEKA Workbench, Online Appendix for "Data Mining: Practical Machine
Learning Tools and Techniques", 4th Edition, Morgan Kaufmann, 2016.

32

	Introduction
	Literature Review
	Reference-free Genome Compressors
	Heuristic Algorithms
	Genetic Algorithms

	Simulated Annealing

	Adapting the MDL Principle for Genome Sequence Compression
	The HMG compressor
	HMG-GA
	HMG-SA
	Encoding

	Experimental Evaluation
	Benchmarking Results
	Compression: BPB and CR
	Compression and Decompression Time

	Convergence
	Classification

	Conclusion

