Metamorphic Malware Behavior Analysis using Sequential Pattern

M. Saqib Nawaz¹, P. Fournier-Viger¹, M. Zohaib Nawaz², Guoting Chen¹, Youxi Wu³

¹Harbin Institute of Technology (Shenzhen), China ²University of Sargodha, Pakistan ³Hebei University of Technology, Tianjin, China

MLISE @ ECML PKDD 2021

17 September, 2021

Malware: a malicious software that gets installed on a computing device and perform unwanted tasks.

Types of malware

Some recent statistics:

- 87% increase in malware infections in last ten years.
- Malware attacks in 2019 have costed the average US company an avg. of \$2.4 million per year.
- Appx. 77 Million new malicious activities were detected in Q1 2021 (McAfee Report).
- As malware can cause enormous loss and adverse effects, its analysis and detection is an important research topic in cybersecurity.

 Anti-malware software that provides protection against malware mainly use signature-based method for malware detection. However,

- Extracting signature is a tedious and time consuming activity and requires funds and expertise.
- These method looks for already known malicious patterns.
- To overcome aforementioned drawbacks, data mining and machine learning techniques are now used.

• In this study, we focus on Windows-based malware.

• On Windows OS, a malware needs to use some of the OS's services.

• The entire set of requests made by malware to get OS services through API calls creates malicious behavior.

• Sequential pattern mining (SPM) is well suited to analyze sequences of API calls made by malware.

SPM: discover meaningful and hidden knowledge in large sequential datasets.

Contribution

An SPM-based approach is presented for the analysis of API calls sequences made by malware.

Basic idea

- 1. First convert the API calls sequences into a corpus that is suitable for learning, where each API call is converted into an integer.
- 2. SPM techniques are then used on the corpus to find:
 - Frequent API calls and their patterns,
 - Sequential rules between API calls patterns
 - Maximal and closed frequent API calls

Dataset

- The benchmark dataset [1] contains Windows API calls of various metamorphic malware.
- Appx. 20,000 malware were collected from GitHub.
- Checking the behavior of malware using Cuckoo Sandbox Environment.
- The dataset contains all Windows API call requests made by the malware on Windows 7 OS.
- The hash values of malware were searched with the VirusTotal service.
- Each malware's families was identified by using each analysis result that was obtained with VirusTotal.

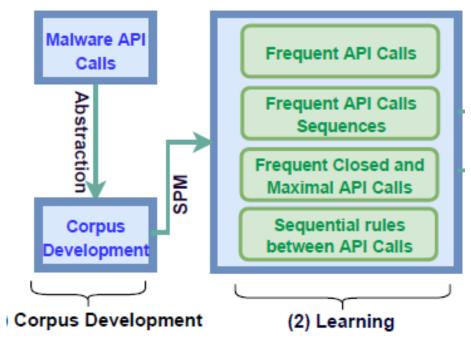
Dataset

The final dataset contains 8 different leading malware families

Distribution of malicious software according to their families

Malware Family	Samples	Description	
Adware	379	Hides on your device and serves you advertisements	
Backdoor	1001	bypass the system security mechanism undetectably to access a computer or its data	
Downloader	1001	share the primary functionality of downloading content	
Dropper	891	Surreptitiously carries viruses, backdoors and other malicious software so they can be executed on the compromised machine	
Virus	1001	spread from host to host and has the ability to replicate itself	
Worms	1001	spreads copies of itself from computer to computer	
Trojan	1001	misleads users of its true intent	
Spyware	832	enables a user to obtain covert information about another's computer activities	
<u>Total</u>	7107		

Proposed Methodology



Proposed SPM-based approach

Corpus Development

Converting different malware API calls dataset into a suitable format

A sample of an API calls corpus

ID	API calls sequence
1	$\langle \{LdrLoadDll, RegOpenKeyExA, NtOpenKey, NtQueryValueKey\} \rangle$
2	$ \langle \{NtClose, DeviceIoControl, NtClose, NtClose, NtReadFile, WSAStartup\} \rangle $
3	\langle \{\NtCreateFile, GetFileSize, NtClose, NtReadFile, DrawTextExA, NtDe-
	$ layExecution, NtClose, GetKeyState\}\rangle$
4	$\Big \langle \{FindWindowExW, FindFirstFileExA, OpenKey, NtClose, NtClose, \\$
	$\label{lem:ntcreate} NtCreateFile,\ LdrGetProcedureAddress,\ GetAsyncKeyState,\ GetKeyState,$
	$ DeviceIoControl, NtClose, NtDelayExecution\}\rangle$

Conversion of API calls sequences into integer sequences

ID	API call sequence
1	1 -1 3 -1 4 -1 5 -1 -2
2	6 -1 12 -1 6 -1 6 -1 32 -1 23 -1 -2
3	7 -1 11 -1 6 -1 32 -1 15 -1 18 -1 6 -1 22 -1 -2
4	19 -1 22 -1 14 -1 6 -1 6 -1 7 -1 19 -1 31 -1 22 -1 12 -1 6 -1 18 -1 -2

Learning through SPM

- Various SPM algorithms are used:
 - **Apriori**: Discover frequent API calls
 - **TKS**: Discover Top-k most frequent sequential API Calls patterns
 - CM-SPAM: Discover frequent sequential API calls patterns
 - **ERMiner**: Discover sequential rules between frequent API calls
 - CloFast: Discover closed sequential API calls patterns
 - VMSP: Discover maximal sequential API calls patterns
- SPMF¹ data mining library, implements more than 180 data mining algorithms, is used to analyze the API calls corpus.

¹ http://www.philippe-fournier-viger.com/spmf/

Results

Stats about the dataset

Malware Type	Samples	API calls	Avg. Sequence Length
Adware	379	212	6867
Backdoor	1001	227	11293
Downloader	1001	232	6522
Dropper	891	226	16008
Virus	1001	241	18370
Worms	1001	236	33614
Trojan	1001	255	13818
Spyware	832	229	46951

- The first 1000 sequences contain 254 distinct API calls
- On average, each sequence contains approximately 11,502 API calls.

Apriori Results

Frequent API Calls extracted by Apriori

Frequent API Calls Count	Min. Sup
117	100%
118	90%
120	80%
123	70%
127	60%
135	50%
141	40%
155	30%
170	20%
274	10%

- The top five frequent API calls in 1000 sequences were:
 - *GetAsyncKeyState* (1,103,492)
 - *GetKeyState* (1,103,492)
 - DeviceloControl (800,088)
 - NtClose (680,206)
 - NtDelayExecution (573,625)
- Frequent API calls sets obtained with Apriori are uninteresting, because:
 - 1. They are unordered.
 - 2. Apriori fails to discover important sequential patterns and also ignore the sequential relationship between API calls.

TKS Results

Frequent API Calls extracted with TKS

Pattern	Sup
$NtClose,\ NtQueryValueKey,\ NtClose$	919
$LdrLoadDll,\ LdrGetProcedureAddress,\ NtClose$	904
$NtClose,\ NtOpenKey\ NtQueryValueKey,\ NtClose$	915
$NtClose,\ NtOpenKey,\ NtClose,\ NtClose,\ NtClose$	916
$NtClose,\ NtOpenKey,\ NtClose,\ NtClose,\ NtClose,\ NtClose$	916
$NtAllocate Virtual Memory,\ NtClose,\ NtClose$	882
$6 \times NtClose$	920
$10 \times LdrGetProcedureAddress$	880

Sup indicates the occurrence count of each pattern in the corpus.

$$Sup = \frac{number of sequences where the pattern occurs}{total number of sequences in the database}$$

CM-SPAM Results

Frequent API Calls extracted with CM-SPAM

Pattern	Min. Sup	Sup
$NtClose,\ NtQueryvalue Key,\ NtClose$	0.9	919
$NtClose,\ NtQuery Value Key,\ Ntquery Value Key,\ NtClose$	0.9	915
$NtOpenKey,\ NtClose,\ NtClose,\ NtClose$	0.9	934
$7 \times NtClose$	0.9	900
$NtCreateFile,\ NtClose,\ NtClose$	0.8	803
$LdrGetDllHandle,\ LdrGetDllHandle,\ NtClose,\ NtClose$	0.8	841
$NtFree\ Virtual Memory,\ NtClose,\ NtClose$	0.8	803
$12 \times NtClose$	0.8	816

- Unlike TKS, the CM-SPAM algorithm offers the minsup threshold.
- Discovered patterns with the CM-SPAM algorithm are almost similar to the results obtained with the TKS algorithm.

ER-Miner Results

<u>Discovered sequential rules</u>

Rule	Sup	Conf
$LdrGetProcedureAddress \rightarrow LLdrLoadDll$	898	0.945
LdrLoadDll ightarrow LdrGetProcedureAddress	917	0.989
NtClose ightarrow LdrLoadDll	859	0.86
LdrLoadDll ightarrow NtClose	913	0.98
$LdrLoadDll,\ NtAllocateVirtualMemory ightarrow LdrGetProcedureAddress$	859	0.97
$LdrLoadDll,\ LdrGetProcedureAddress ightarrow NtAllocateVirtualMemory$	841	0.91
$LdrLoadDll,\ NtAllocateVirtualMemory ightarrow NtClose$	871	0.98
$LdrLoadDll,\ NtClose \rightarrow\ NtAllocateVirtualMemory$	810	0.88
$LdrLoadDll,\ LdrGetProcedureAddress,\ NtQueryValueKey ightarrow NtClose$	855	0.99
$NtClose \rightarrow LdrLoadDll,\ LdrGetProcedureAddress,\ NtQueryValueKey$	808	0.81
$LdrGetProcedureAddress,\ NtClose \rightarrow NtOpenKey,\ NtQueryValueKey$	834	0.88
$LdrGetProcedureAddress,\ NtOpenKey \rightarrow\ NtQueryValueKey,\ NtClose$	840	0.93
$LdrLoadDll,\ NtOpenKey,\ NtQueryValueKey,\ LdrGetDllHandle ightarrow\ NtClose$	808	0.991

• First rule: **94.5% (confidence) of the time**, the API *callLdrLoadDll* is followed after *LdrGetProcedureAddress* and this **rule has occurred 898 (support) times** in the corpus.

CloFast and VMSP Results

Closed (C) and Maximal (M) frequent sequential API patterns

Closed	Sup
$NtAllocate Virtual Memory,\ NtAllocate Virtual Memory$	729
$NtClose,\ NtOpenKey,\ NtQueryValueKey$	755
NtFreeVirtualMemory, NtClose, NtClose	803
NtOpenKey, NtQueryValueKey, NtClose, NtClose	700
$LdrGetDllHandle, 4 \times LdrGetProcedureAddress$	702
$16 \times LdrGetProcedureAddress$	702

Maximal	Sup
$LdrLoadDll,\ LdrGetDllHandle$	842
$LdrLoadDll,\ LdrLoadDll,\ LdrGetDllHandle$	814
$LdrGetDllHandle,\ LdrGetProcedureAddress,\ NtOpenKey$	806
$LdrLoadDll,\ NtClose,\ NtOpenKey$	817
$3 \times LdrGetProcedureAddress, LdrLoadDll, LdrGetDllHandle$	807
$36 \times LdrGetProcedureAddress$	801

- In maximal sequential API patterns, the max gap is set to1.
- The closed sequential patterns <u>provide a lossless representation of all sequential patterns</u> and they represent the largest subsequences common to sets of sequences.
- The maximal API calls patterns are **not loseless** and is always not larger than the set of closed sequential patterns and all sequential patterns.

Conclusion

Summary

- All the algorithms worked efficiently on the corpus
- Results indicated that the total number of API calls in each (abstraction simplicity) has a direct correlation on the efficiency of SPM algorithms.

Future Work

- Predicting the next API calls in a sequence using prediction models offered by SPMF.
- Using contrast set mining on the API calls of various malware to discover emerging (or contrasting) trends that show a clear and useful difference (or contrast) between various malware behavior.
- Taking the frequent patterns obtained with SPM algorithms as features for the development of malware samples classification and detection.

THANKS!