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High-utility itemset mining 
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Input  

      a transaction database                             a unit profit table 

 

 

 

 

 

 

 

minutil: a minimum utility threshold  set by the user   (a positive integer) 



High-utility itemset mining 
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Input  

      a transaction database                             a unit profit table 

 

 

 

 

 

 

 

minutil: a minimum utility threshold  set by the user   (a positive integer) 

Output 

      All high-utility itemsets (itemsets having a utility ≥ 𝑚𝑖𝑛𝑢𝑡𝑖𝑙) 

    For example, if minutil = 33$,  the high-utility itemsets are: 

{b,d,e}     36$    

2 transactions 

{b,c,d}  34$ 

2 transactions 

{b,c,d,e}   40$ 

2 transactions 

{b,c,e}  37 $ 

3 transactions 



Utility calculation 
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The utility of the itemset {b,d,e} is calculated as follows: 

 

           

 

 

u({b,d,e}) = (5x2)+(3x2)+(3x1)  + (4x2)+(2x3)+(1x3)    =  36$ 

utility in 
transaction T1 

utility in 
transaction T2 

Input  

      a transaction database                    a unit profit table 

 



Challenge in Utility Mining 
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The utility measure is not monotonic or anti-monotonic 
 

u({a,b,c,d,e}) = 25 $   

u({b,d,e}) = 36 $ 

 u({b,d}) =  30 $ 
 

           

 

 

Input  

      a transaction database                    a unit profit table 

 

The utility of an itemset can be 
lower, greater or equal to the 
utility of its subsets. 

Previous work uses monotonic upper-bounds to reduce the search space. 



Problem 

  High-utility itemset mining  

– is useful for discovering profitable itemsets. 

– but it can find a large amount of itemsets 

– some itemsets are redundant 

– solution:  

• discover concise representations of HUIs 

• Previous work  

 



Concise representations 

• Maximal HUIs: HUIs not included in another HUI.  
– GUIDE 

• Closed HUIs: HUIs having no supersets appearing 
in the same transactions 
• CHUI-Miner, CHUD… 

• Generators of HUIs: smallest set of itemsets 
common to a set of transactions containing a HUI 
– GHUI-Miner… 

 

 



Limitations of previous work 

• Other algorithms often find many long 
itemsets 

• It is easier to co-promote a small set of items 
targeted at many customers rather than a 
large set of items targeted at few customers. 

• Proposal:  
– Minimal HUIs: smallest sets of items that yield a 

high profit.  

– Not considered in previous work. 

 



What is a minimal high utility itemset? 

A MinHUI is a high-utility itemset that has no proper 
subset that is a high-utility itemset. 
 

For example: 
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{b,d,e}     36$    

2 transactions 

{b,c,d}  34$ 

2 transactions 

{b,c,d,e}   40$ 

2 transactions 

{b,c,e}  37 $ 

3 transactions 



Interesting properties 

Property 2 

• If an itemset X is a MinHUI, then its subsets 
and supersets are not MinHUIs. 

Property 1 

• If minutil is lowered, the number of MinHUIs 
may increase, decrease or stay the same. 

•  If minutil is set to 0, the number of MinHUIs is 
equal to the number of items. 



The MinFHM algorithm 
• An algorithm for mining minimal high utility-itemsets 

• Extends FHM 

• Performs a depth-first search. 
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The MinFHM algorithm 
• Applies Property 2 to prune the search space. 

• If an itemset is a MinHUI, its supsersets are not MinHUIs 
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The MinFHM algorithm 
Calculates an upper bound on the utility of extensions of each 
itemset to decide whether its extensions should be explored. 
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Creating utility-lists of items 

The algorithm scans the database to create a 
utility-list structure for each item 
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TID Utility Remaining Utility 

T1 5 20 

T3 5 3 

T4 10 12 

TID Utility Remaining Utility 

T1 6 3 

T2 6 3 

T3 2 0 

Itemset {a} Itemset {d} 



Calculating their utility 

The utility of each item is calculated to determine 
if it is a high utility itemset 
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TID Utility Remaining Utility 

T1 5 20 

T3 5 3 

T4 10 12 

TID Utility Remaining Utility 

T1 6 3 

T2 6 3 

T3 2 0 

Itemset {a} Itemset {d} 

Utility: 20$ Utility: 14$ 



Calculating their upper-bounds 

An upper-bound is calculated on the utility of extensions 
of each item. 
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Itemset {a} Itemset {d} 

20$       35$ 

 55$ Upper-bound: 

TID Utility Remaining Utility 

T1 5 20 

T3 5 3 

T4 10 12 

TID Utility Remaining Utility 

T1 6 3 

T2 6 3 

T3 2 0 

This indicates that extensions of {a} cannot have a utility higher than 55$ 



Generating a larger itemset 
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Itemset {a} Itemset {d} 

TID Utility Remaining Utility 

T1 5 20 

T3 5 3 

T4 10 12 

TID Utility Remaining Utility 

T1 6 3 

T2 6 3 

T3 2 0 

Itemset {a,d} 
TID Utility Remaining Utility 

T1 11 3 

T3 7 0 

Utility-lists of larger itemsets are generated by joining the utility-lists of 
some of its subsets. No need to scan the database! 



Calculating its utility 

18 

Itemset {a} Itemset {d} 

Itemset {a,d} 

18$ Utility: 

TID Utility Remaining Utility 

T1 5 20 

T3 5 3 

T4 10 12 

TID Utility Remaining Utility 

T1 6 3 

T2 6 3 

T3 2 0 

TID Utility Remaining Utility 

T1 11 3 

T3 7 0 



Calculating its upper-bound 

19 

Itemset {a} Itemset {d} 

Itemset {a,d} 

18$       3$ 

Upper-bound:   21$ 

TID Utility Remaining Utility 

T1 5 20 

T3 5 3 

T4 10 12 

TID Utility Remaining Utility 

T1 6 3 

T2 6 3 

T3 2 0 

TID Utility Remaining Utility 

T1 11 3 

T2 7 0 

Extensions cannot have a 
utility greater than 21$ 
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Pseudocode 

Some details have not been explained in the 
presentation. See the paper for more details. 



Experimental Evaluation 
Datasets’ characterictics 
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Dataset transaction 
count 

distinct item 
count 

average 
transaction 
length 

Mushroom 8,124 119  23.0 

Kosarak 990,000 41,270 8.1 

Retail 16,470 88,162 10.3 

Foodmart 4,141 1,559  4.14 

 

• Foodmart is a real-life transaction datasets from retail stores. 

• External and internal utility values have been generated in the [1, 000] and [1, 5] intervals using a log-normal distribution 



Experimental Evaluation 

• We compared the performance of MinFHM with  
– FHM for mining HUIs 

– CHUD for mining closed HUIs 

– GHUI-Miner for mining generators of HUIs 

 

• We varied the minutil threshold and compared 
execution time, memory usage, number of patterns 

• Computer with 12 GB of RAM, Java, Windows 7,  64 
bit Core i5 Processor 
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Execution times 
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Foodmart 

MinFHM is up to 800 times faster 

Mushroom 

Kosarak 

Retail 



Number of patterns 
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Foodmart 

MinFHM is up to 900,000 times less patterns 

Mushroom 

Kosarak 

Retail 



Conclusion 

• Contribution: 

New task : mining minimal high utility itemsets  

Properties and an algorithm: MinFHM 

Experimental results: 

– up to  800 times faster  

– Very compact: up to 900,000 times less patterns than 
other concise representations of HUIs 

• Source code and datasets available as part of the   
SPMF data mining library (GPL 3). 

Open source Java data mining software, 120 algorithms 
http://www.phillippe-fournier-viger.com/spmf/ 
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http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/
http://www.phillippe-fournier-viger.com/spmf/


Thank you. Questions? 
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Open source Java data mining software, 120 algorithms 
http://www.phillippe-fournier-viger.com/spmf/ 
 

http://www.phillippe-fournier-viger.com/spmf/
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