Mining Minimal High-Utility Itemsets

<u>Philippe Fournier-Viger</u>^{1(⊠)}, Jerry Chun-Wei Lin², Cheng-Wei Wu³, Vincent S. Tseng³, and Usef Faghihi⁴

- ¹ Harbin Institute of Technology Shenzhen, China
- ² National Chiao Tung University, Taiwan
- ³ University of Indianapolis, Indianapolis, USA

High-utility itemset mining

Input

a transaction database

TID	Transaction
T_1	(a, 1), (b, 5), (c, 1), (d, 3), (e, 1), (f, 5)
T_2	(b, 4), (c, 3), (d, 3), (e, 1)
	(a, 1), (c, 1), (d, 1)
T_4	(a, 2), (c, 6), (e, 2), (g, 5)
	(b, 2), (c, 2), (e, 1), (g, 2)

a unit profit table

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

minutil: a minimum utility threshold set by the user (a positive integer)

High-utility itemset mining

Input

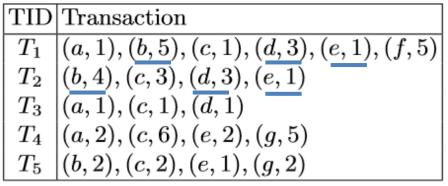
a transaction database

TID	Transaction
T_1	(a, 1), (b, 5), (c, 1), (d, 3), (e, 1), (f, 5)
T_2	(a, 1), (b, 5), (c, 1), (d, 3), (e, 1), (f, 5) (b, 4), (c, 3), (d, 3), (e, 1)
T_3	(a, 1), (c, 1), (d, 1)
	(a, 2), (c, 6), (e, 2), (g, 5)
	(b, 2), (c, 2), (e, 1), (g, 2)

a unit profit table

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

minutil: a minimum utility threshold set by the user (a positive integer)


Output

All high-utility itemsets (itemsets having a utility \geq *minutil*) For example, if *minutil* = 33\$, the high-utility itemsets are:

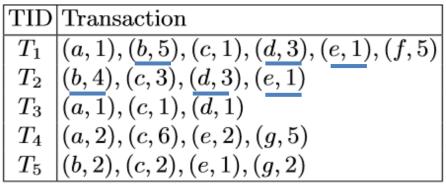
	<pre>{b,c,d} 34\$ 2 transactions</pre>
{b,c,d,e} 40\$	{b,c,e} 37 \$
2 transactions	3 transactions

Utility calculation

a transaction database

a unit profit table

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1


The **utility** of the itemset {b,d,e} is calculated as follows:

 $u({b,d,e}) = (5x2)+(3x2)+(3x1) + (4x2)+(2x3)+(1x3) = 36$

utility inutility intransaction T_1 transaction T_2

Challenge in Utility Mining

a transaction database

a unit profit table

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

The utility measure is not monotonic or anti-monotonic

 $u(\{a,b,c,d,e\}) = 25$ $u(\{b,d,e\}) = 36$ $u(\{b,d\}) = 30$

The utility of an itemset can be lower, greater or equal to the utility of its subsets.

Previous work uses monotonic upper-bounds to reduce the search space.

Problem

High-utility itemset mining

- is **useful** for discovering **profitable itemsets**.
- but it can find a large amount of itemsets
- some itemsets are redundant
- solution:
 - discover concise representations of HUIs
 - Previous work \rightarrow

Concise representations

- Maximal HUIs: HUIs not included in another HUI.
 GUIDE
- **Closed HUIs:** HUIs having no supersets appearing in the same transactions
 - CHUI-Miner, CHUD...
- Generators of HUIs: smallest set of itemsets common to a set of transactions containing a HUI
 - GHUI-Miner...

Limitations of previous work

- Other algorithms often find many long itemsets
- It is easier to co-promote a small set of items targeted at many customers rather than a large set of items targeted at few customers.
- Proposal:
 - Minimal HUIs: smallest sets of items that yield a high profit.
 - Not considered in previous work.

What is a minimal high utility itemset?

A **MinHUI** is a **high-utility itemset** that has no proper subset that is a high-utility itemset.

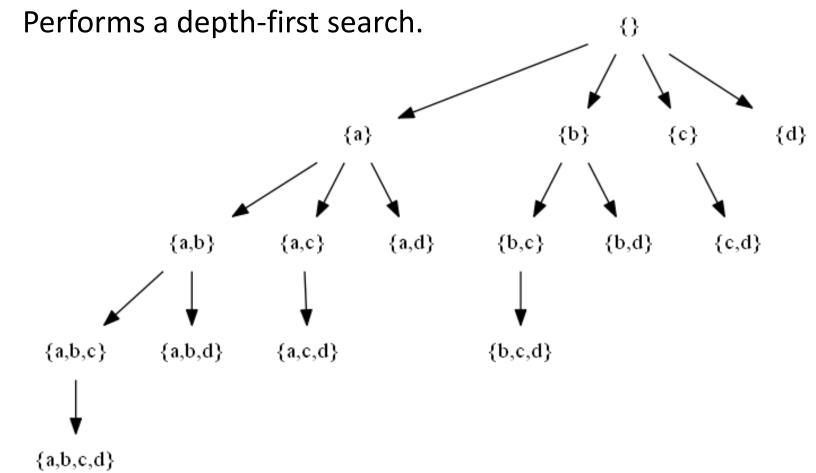
For example:

{b,d,e} 36\$	{b,c,d} 34\$
2 transactions	2 transactions
{b,s,d,e} 40\$	{b,c,e} 37 \$
2 transactions	3 transactions

Interesting properties

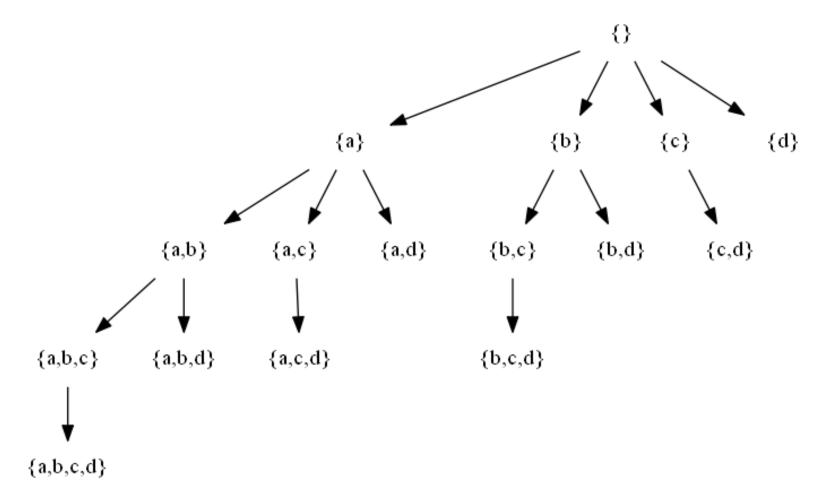
Property 2

• If an itemset X is a MinHUI, then its subsets and supersets are not MinHUIs.

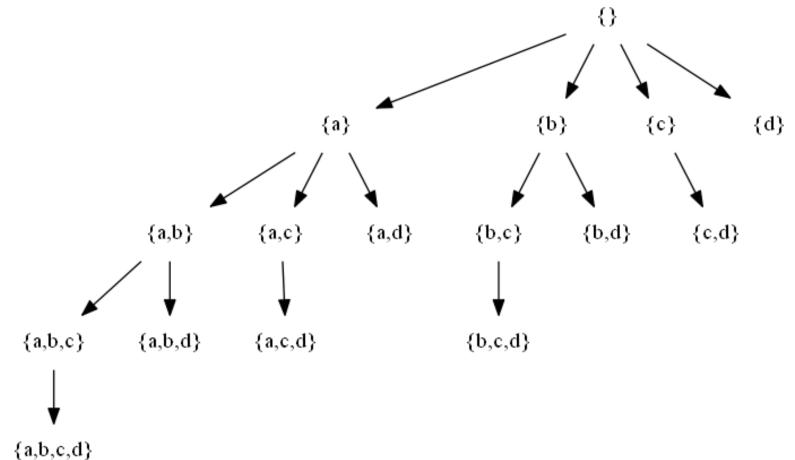

Property 1

- If *minutil* is lowered, the number of MinHUIs may increase, decrease or stay the same.
- If *minutil* is set to 0, the number of MinHUIs is equal to the number of items.

The MinFHM algorithm


- An algorithm for mining minimal high utility-itemsets
- Extends FHM

ullet


The MinFHM algorithm

- Applies Property 2 to prune the search space.
- If an itemset is a MinHUI, its supsersets are not MinHUIs

The MinFHM algorithm

Calculates an upper bound on the utility of extensions of each itemset to decide whether its extensions should be explored.

Creating utility-lists of items

The algorithm scans the database to create a *utility-list* structure for each item

Itemset {a}

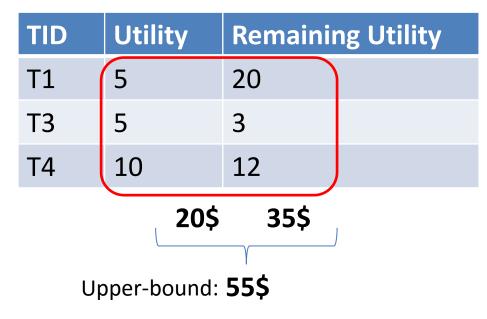
TID	Utility	Remaining Utility
T1	5	20
Т3	5	3
T4	10	12

TID	Utility	Remaining Utility
T1	6	3
T2	6	3
Т3	2	0

Calculating their utility

The utility of each item is calculated to determine if it is a high utility itemset

Itemset {a}


TID	Utility	Remaining Utility
T1	5	20
Т3	5	3
T4	10	12
Utility:	20\$	

	TID	Utility	Remaining Utility
	T1	6	3
	T2	6	3
	Т3	2	0
ι	Itility:	14\$	

Calculating their upper-bounds

An upper-bound is calculated on the utility of extensions of each item.

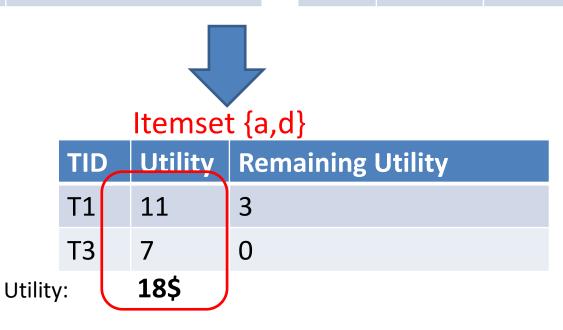
Itemset {a}

TID	Utility	Remaining Utility
T1	6	3
T2	6	3
Т3	2	0

Generating a larger itemset

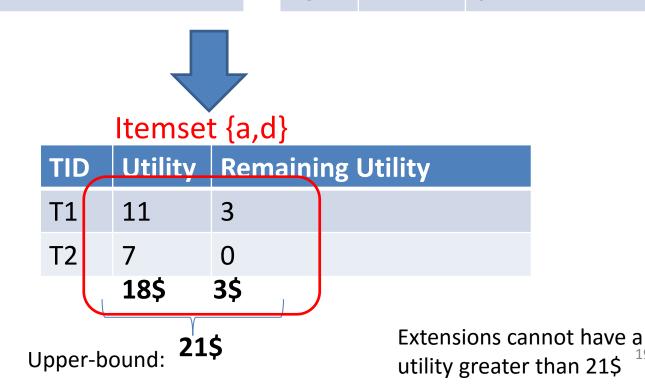
Itemset {a}

Itemset {d}


TID	Utility	Remaining Utility				TID	Utility	Rem	aining Utility
T1	5	20				T1	6	3	
Т3	5	3				T2	6	3	
T4	10	12				Т3	2	0	
Itemset {a,d}									
TID Utility Remaining Utility									
		T1 11 3							
	T3 7 0								

Utility-lists of larger itemsets are generated by joining the utility-lists of some of its subsets. No need to scan the database!

Calculating its utility


Itemset {a}

TID	Utility	Remaining Utility	TID	Utility	Remaining Utility
T1	5	20	T1	6	3
Т3	5	3	Т2	6	3
T4	10	12	Т3	2	0

Calculating its upper-bound Itemset {d} Itemset {a}

TID	Utility	Remaining Utility	TID	Utility	Remaining Utility
T1	5	20	T1	6	3
Т3	5	3	T2	6	3
Т4	10	12	Т3	2	0

19

Pseudocode

Algorithm 1. The MinFHM algorithm

input : *D*: a transaction database, *minutil*: a user-specified threshold **output**: the set of high-utility itemsets

- 1 Scan D to calculate the TWU of single items;
- 2 $I^* \leftarrow$ each item *i* such that TWU(*i*) \geq minutil;
- **3** Let \succ be the total order of TWU ascending values on I^* ;
- **4** Scan D to build the utility-list of each item $i \in I^*$ and build the EUCS;
- **5** Output each item $i \in I^*$ such that SUM($\{i\}$.utilitylist.iutils) \geq minutil;
- 6 Search (\emptyset , I^* , minutil, EUCS);

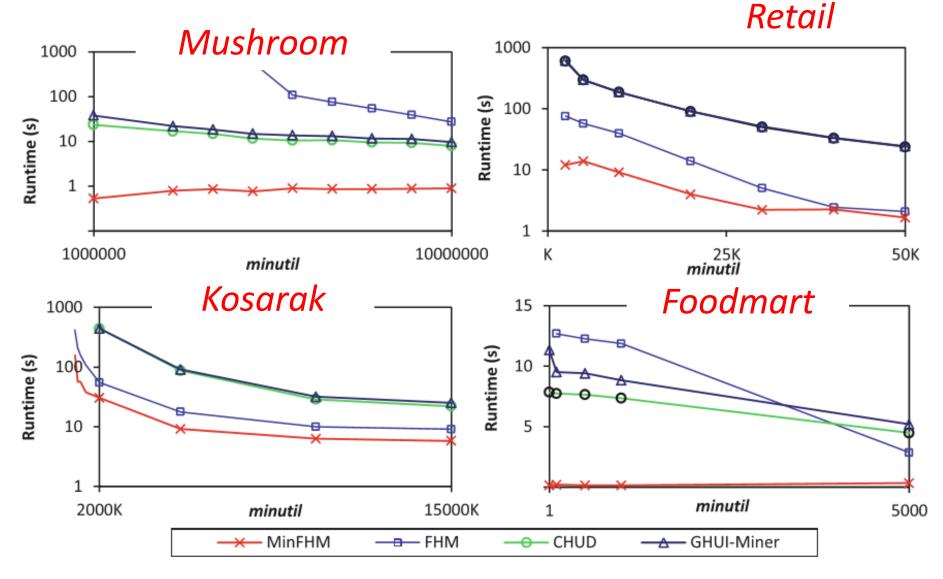
Algorithm 2. The Search procedureinput : P: an itemset, ExtensionsOfP: a set of extensions of P, , minutil: a user-specified threshold, EUCS: the EUCS output: the set of high-utility itemsets1 foreach itemset $Px \in ExtensionsOfP$ do2if $SUM(Px.utilitylist.iutils) + SUM(Px.utilitylist.rutils) \ge minutil then3ExtensionsOfPx \leftarrow \emptyset;4foreach itemset Py \in ExtensionsOfP such that y \succ x do5if \exists (x, y, c) \in EUCS such that c \ge minutil then6Pxy \leftarrow Px \cup Py;7Pxy.utilitylist \leftarrow Construct (P, Px, Py);8ExtensionsOfPx \leftarrow ExtensionsOfPx \cup \{Pxy\};9if SUM(Pxy.utilitylist.iutils) \ge minutil then output Px;10end11end12Search (Px, ExtensionsOfPx, minutil);13end$	Algorithm 3. The Construct procedureinput : P: an itemset, Px: the extension of P with an item x, Py: the extension of P with an item youtput: the utility-list of Pxy1 UtilityListOfPxy $\leftarrow \emptyset$;2 foreach tuple $ex \in Px.utilitylist$ do3 if $\exists ey \in Py.utilitylist$ and $ex.tid = exy.tid$ then4 if P.utilitylist $\neq \emptyset$ then5 Search element $e \in P.utilitylist$ such that $e.tid = ex.tid.$;6 exy $\leftarrow (ex.tid, ex.iutil + ey.iutil - e.iutil, ey.rutil)$;7 end8 else9 exy $\leftarrow (ex.tid, ex.iutil + ey.iutil, ey.rutil)$;10 end11 UtilityListOfPxy $\leftarrow UtilityListOfPxy \cup \{exy\}$;12 end13 end14 return UtilityListPxy;
14 end	

Some details have not been explained in the presentation. See the paper for more details.

Experimental Evaluation

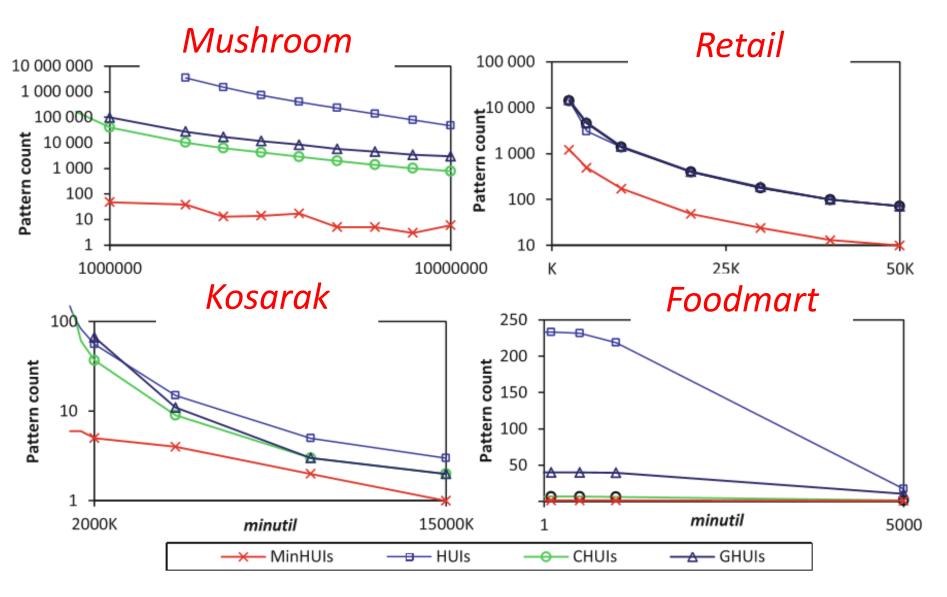
Datasets' characterictics

Dataset	transaction count	distinct item count	average transaction length
Mushroom	8,124	119	23.0
Kosarak	990,000	41,270	8.1
Retail	16,470	88,162	10.3
Foodmart	4,141	1,559	4.14


• **Foodmart** is a real-life transaction datasets from retail stores.

• External and internal utility values have been generated in the [1, 000] and [1, 5] intervals using a log-normal distribution

Experimental Evaluation


- We compared the performance of MinFHM with
 - FHM for mining HUIs
 - CHUD for mining closed HUIs
 - GHUI-Miner for mining generators of HUIs
- We varied the *minutil* threshold and compared execution time, memory usage, number of patterns
- Computer with 12 GB of RAM, Java, Windows 7, 64 bit Core i5 Processor

Execution times

MinFHM is up to 800 times faster

Number of patterns

MinFHM is up to 900,000 times less patterns

Conclusion

- Contribution:
 - > New task : mining **minimal high utility itemsets**
 - Properties and an algorithm: MinFHM
- > Experimental results:
 - up to 800 times faster
 - Very compact: up to 900,000 times less patterns than other concise representations of HUIs
- Source code and datasets available as part of the SPMF data mining library (GPL 3).

Open source Java data mining software, 120 algorithms http://www.phillippe-fournier-viger.com/spmf/

Thank you. Questions?

Open source Java data mining software, 120 algorithms http://www.phillippe-fournier-viger.com/spmf/