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Abstract

Periodic pattern mining is the task of discovering sets of items that periodically appear in
transactions. Several algorithms have been proposed for mining periodic patterns. Most of
them discover periodic patterns based on a measure called the maximum periodicity, which
measures the largest amount of time or number of transactions between two occurrences of
a pattern. Typically, periodic pattern mining algorithms will discard a pattern as being non
periodic if it has a single period greater than a maximal periodicity threshold, defined by
the user. A major drawback of this approach is that it is not flexible, as a pattern can be
discarded based on only one of its periods. In this paper, we present a solution to this issue by
proposing to discover periodic patterns using three measures: the minimum periodicity, the
maximum periodicity, and the average periodicity. The combination of these measures has
the advantage of being more flexible. Properties of these measures are studied. Moreover, an
efficient algorithm named PFPM (Periodic Frequent Pattern Miner) is proposed to discover
all frequent periodic patterns using these measures. An experimental evaluation on real
datasets shows that the proposed PFPM algorithm is efficient, and can filter a huge number
of non periodic patterns to reveal only the desired periodic patterns.
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1. Introduction

In the field of data mining, frequent itemset mining (FIM) [1, 2, 3, 4, 5] is widely-
viewed as a fundamental task for discovering knowledge in databases. Given a transaction
database, it consists of discovering sets of items frequently purchased by customers. Besides
market basket analysis, FIM has many applications in other fields [5]. Although numerous
algorithms have been proposed for FIM [1, 2, 3, 4, 5], an inherent limitation of traditional
FIM algorithms is that they are not designed to discover patterns that periodically appear
in a database. Discovering periodic patterns has many applications such as to discover
recurring customer purchase behavior. For example, customers of retails stores may buy
some products on a periodical basis. Analyzing this kind of periodic purchase patterns is
desirable to design appropriate marketing strategies.

Several algorithms have been proposed to discover periodic frequent patterns (PFP) [6,
7, 8, 9, 10, 11] in a transaction database (a sequence of transactions). Most of these algo-
rithms discover periodic patterns based on a measure called the maximum periodicity, which
measures the largest amount of time or number of transactions between two occurrences of
a pattern. Typically, periodic pattern mining algorithms will discard a pattern as being
non periodic if it has a single period greater than a maximal periodicity threshold, defined
by the user. A major drawback of this approach is that it is not flexible, as a pattern can
be discarded based on only one of its periods. In this paper, we propose a solution to this
problem by discovering periodic patterns using three measures: the minimum periodicity,
the maximum periodicity, and the average periodicity.

This paper has three main contributions. First, novel measures named average periodicity
and minimum periodicity are proposed to assess the periodicity of patterns. Second, a
fast algorithm named PFPM (Periodic Frequent Pattern Miner) is proposed to efficiently
discover frequent periodic patterns using these measures. Third, we have conducted several
experiments on real-life datasets to evaluate the efficiency of PFPM, and the usage of the
novel periodicity measures. Experimental results show that the PFPM algorithm is efficient,
and can filter a huge number of non periodic patterns to reveal only the desired periodic
itemsets.

The rest of this paper is organized as follows. Section 2, 3, 4, 5, 6 and 7 respectively
present preliminaries related to FIM, related work, the novel periodicity measures, the PFPM
algorithm, the experimental evaluation, and the conclusion.

2. Related work

The problem of frequent itemset mining is defined as follows. Let I be a set of items
(symbols). A transaction database is a set of transactions D = {T1, T2, ..., Tn} such that for
each transaction Tc, Tc ∈ I, and Tc has a unique identifier c called its Tid. For example,
consider the database of Table 1, which will be used as running example. This database
contains seven transactions (T1, T2, . . . , T7). Transaction T3 indicates that items a, b, c, d,
and e appear in this transaction. The support of an itemset X in a database D is denoted
as s(X) and defined as |{t|t ∈ D ∧X ⊆ t}|. In other words, s(X) = |g(X)|, where g(X) is
defined as the set of transactions containing X.
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Table 1: A transaction database

TID Transaction
T1 {a, c}
T2 {e}
T3 {a, b, c, d, e}
T4 {b, c, d, e}
T5 {a, c, d}
T6 {a, c, e}
T7 {b, c, e}

Let there be any total order � on items in I. The extensions of an itemset X are the
itemsets that can be obtained by appending an item y to X such that y � i, ∀i ∈ X.

Definition 1 (frequent itemset mining). The problem of frequent itemset mining con-
sists of discovering the frequent itemsets [1]. An itemset X is a frequent itemset if its support
s(X) is no less than a user-specified minimum support threshold minsup given by the user.

For example, consider that minsup = 4 transactions. The set of frequent itemsets is {a},
{a, c}, {e}, {c, e}, {c}, having respectively a support of 4, 4, 5, 4, and 6.

To discover frequent itemsets, various algorithms have been proposed such as Apriori
[1], FP-Growth [12], LCM [3], and Eclat [4]. However, these algorithms are not designed to
discover periodic patterns.

Inspired by the work on FIM, researchers have designed several algorithms to discover
periodic frequent patterns (PFP) in transaction databases [6, 7, 8, 9, 10, 11]. Several ap-
plications of mining periodic frequent patterns have been reported in previous work [11]. A
periodic frequent pattern is defined as follows [11].

Definition 2 (Periods of an itemset). Let there be a database D = {T1, T2, ..., Tn}
containing n transactions, and an itemset X. The set of transactions containing X is
denoted as g(X) = {Tg1 , Tg2 ..., Tgk}, where 1 ≤ g1 < g2 < ... < gk ≤ n. Two transactions
Tx ⊃ X and Ty ⊃ X are said to be consecutive with respect to X if there does not exist a
transaction Tw ∈ g(X) such that x < w < y. The period of two consecutive transactions
Tx and Ty in g(X) is defined as pe(Tx, Ty) = (y − x), that is the number of transactions
between Tx and Ty. The periods of an itemset X is a list of periods defined as ps(X) =
{g1 − g0, g2 − g1, g3 − g2, ...gk − gk−1, gk+1 − gk}, where g0 and gk + 1 are constants defined
as g0 = 0 and gk + 1 = n. Thus, ps(X) =

⋃
1≤z≤k+1 (gz − gz−1).

For example, consider the itemset {a, c}. This itemset appears in transactions T1, T3, T5,
and T6, and thus g({a, c}) = {T1, T3, T5, T6}. The periods of this itemset are ps({a, c}) =
{1, 2, 2, 1, 1}.

Definition 3 (Periodic Frequent Pattern). The maximum periodicity of an itemset X
is defined as maxper(X) = max(ps(X)) [11]. An itemset X is a periodic frequent pattern
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(PFP) if |g(X)| ≥ minsup and maxper(X) < maxPer, where minsup and maxPer are
user-defined thresholds [11].

The PFP-tree algorithm is the first algorithm that has been proposed for mining PFPs [11].
It utilizes a tree-based and pattern-growth approach for discovering PFPs, inspired by the
FP-Growth algorithm [12]. Thereafter, an algorithm called MTKPP [6] was designed. It
relies on a depth-first search and a vertical database representation. To use this algorithm, a
user needs to set a parameter k. The algorithm then outputs the k most frequent PFPs in a
database. Approximate algorithms for mining periodic patterns have also been developped.
For example, the ITL-tree algorithm [7] mines PFPs by considering an approximation of
the periodicities of patterns. Another approximate algorithm for PFP mining was recently
proposed [10]. Other extensions of the PF-Tree algorithm named MIS-PF-tree [8] and
MaxCPF [9] were respectively proposed to mine PFPs using multiple minsup thresholds,
and multiple minsup and minper thresholds. A drawback of the maximum periodicity
measure used by most PFP algorithms is that an itemset is automatically discarded if it has
a single period of length greater than the maxPer threshold. Thus, this measure may be
viewed as too strict.

3. Novel Periodicity Measures

To address the above limitation of traditional PFP mining algorithms, and provide a more
flexible way of evaluating the periodicity of patterns, the concept of average periodicity is
proposed, which is defined as follows.

Definition 4 (Average periodicity of an itemset). Let there be an itemset X’. The
average periodicity of X is denoted and defined as avgper(X) =

∑
g∈ps(X) /|ps(X)|.

For example, consider the itemsets {a, c} and {e}. Their periods are ps({a, c}) =
{1, 2, 2, 1, 1} and ps({e}) = {2, 1, 1, 2, 1, 0}, and their average periodicities are avgper({a, c}) =
1.4 and avgper({e}) = 1.16.

Lemma 1 (Relationship between average periodicity and support). Let there be an
itemset X that appears in the database D. An alternative and equivalent way of calculating
the average periodicity of X is avgper(X) = |D|/(|g(X)|+ 1).

Proof 1. Let g(X) = {Tg1 , Tg2 , . . . , Tgk} be the set of transactions containing X, such that
g1 < g2 < . . . < gk. By definition, avgper(X) =

∑
g∈ps(X) /|ps(X)|. To prove that the

lemma holds, we need to show that
∑

g∈ps(X) /|ps(X)| = |D|/(|g(X)|+ 1).

(1) We first show that
∑

g∈ps(X) = |D|, as follows:∑
g∈ps(X) = (g1 − g0) + (g2 − g1) + . . . (gk − gk−1) + (gk+1 − gk)}

=
∑

g∈ps(X) = g0 + (g1 − g1) + (g2 − g2) + . . . (gk − gk) + (gk+1)

= gk+1 − g0= |D|.
(2) We then show that |ps(X)| = |g(X)|+ 1, as follows:
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By definition, ps(X) =
⋃

1≤z≤k+1 (gz − gz−1). Thus, the set ps(X) contains k + 1 elements.
Since X appears in k transactions, sup(X) = k, and thus |ps(X)| = |g(X)|+ 1.
Since (1) and (2) holds, the lemma holds. �

The above lemma is important as it provides an efficient way of calculating the average
periodicity of itemsets in a database D. The term |D| can be calculated once, and thereafter
the average periodicity of any itemset X can be obtained by only calculating |g(X)| + 1,
and then dividing |D| by the result. This is more efficient than calculating the average
periodicity using Definition 4. Besides, this lemma is important as it shows that there is a
relationship between the support used in FIM and the average periodicity of a pattern.

Although the average periodicity is useful as it measures what is the typical period length
of an itemset, it should not be used as the sole measure for evaluating the periodicity of a
pattern because it does not consider whether an itemset has periods that vary widely or not.
For example, the itemset {b, d} has an average periodicity of 2.33. However, this is misleading
since this itemset only appears in transaction T3 and T4, and its periods ps({T3, T4}) =
{3, 1, 4} vary widely. Intuitively, this pattern should not be a periodic pattern. To avoid
finding patterns having periods that vary widely, our solution is to combine the average
periodicity measure with other periodicity measure(s). The following measures are combined
with the average periodicity to achieve this goal.

First, we define the minimum periodicity of an itemset as minper(X) = min(ps(X)) to
avoid discovering itemsets having some very short periods. But this measure is not reliable
since the first and last period of an itemset are respectively equal to 1 or 0 if the itemset
respectively appears in the first or the last transaction of the database. For example, the
last period of itemset {e} is 0, because it appears in the last transaction (T7), and thus its
minimum periodicity is 0. Our solution to this issue is to exclude the first and last periods of
an itemset from the calculation of the minimum periodicity. Moreover, if the set of periods
is empty as a result of this exclusion, the minimum periodicity is defined as ∞. In the rest
of this paper, we consider this definition.

Second, we consider the maximum periodicity of an itemset maxper(X) as defined in
the previous section. The rationale for using this measure in combination with the average
periodicity is that it can avoid discovering periodical patterns that do not occur for long
periods of time. In terms of calculation costs, a reason for choosing the minimum periodicity,
maximum periodicity and average periodicity as measure is that they can be calculated very
efficiently for an itemset X by scanning the list of transactions g(X) only once. That is,
calculating these measures do not require to store the set of periods ps(X) in memory.

Thus, we define the concept of periodic frequent itemsets by considering the minimum
periodicity, maximum periodicity, and average periodicity measures as follows.

Definition 5 (Periodic Frequent Itemsets with novel measures). Let minAvg,
maxAvg, minPer, and maxPer be positive numbers, provided by the user. An itemset X
is a periodic frequent itemset if and only if minAvg ≤ avgper(X) ≤ maxAvg, minper(X) ≥
minPer, and maxper(X) ≤ maxPer.

5



Table 2: The set of PFPs for the running example

Itemset support s(X) minper(X) maxper(X) avgper(X)
{b} 3 1 3 1.75
{b, e} 3 1 3 1.75
{b, c, e} 3 1 3 1.75
{b, c} 3 1 3 1.75
{d} 3 1 3 1.75
{c, d} 3 1 3 1.75
{a} 4 1 2 1.4
{a, c} 4 1 2 1.4
{e} 5 1 2 1.17
{c, e} 4 1 3 1.4
{c} 6 1 2 1.0

For example, if minPer = 1, maxPer = 3, minAvg = 1, and maxAvg = 2, the 11 PFPs
are found (shown in table 2).

To develop an efficient algorithm for mining PFPs, it is important to design efficient
pruning strategies. To use the periodicity measures for pruning the search space, the fol-
lowing theorems are presented.

Lemma 2 (Monotonicity of the average periodicity). Let X and Y be itemsets such
that X ⊂ Y . It follows that avgper(Y ) ≥ avgper(X).

Proof 2. The average periodicities of X and Y are respectively avgper(X) = |D|/(|g(X)|+
1) and avgper(Y ) = |D|/(|g(Y )|+ 1). Because X ⊂ Y , it follows that g(Y ) ⊆ g(X). Hence,
avgper(Y ) ≥ avgper(X). �

Lemma 3 (Monotonicity of the minimum periodicity). Let X and Y be itemsets
such that X ⊂ Y . It follows that minper(Y ) ≥ minper(X).

Proof 3. Since X ⊂ Y , g(Y ) ⊆ g(X). If g(Y ) = g(X), then X and Y have the same
periods, and thus minper(Y ) = minper(X). If g(Y ) ⊂ g(X), then for each transaction
Tx ∈ g(X) \ g(Y ), the corresponding periods in ps(X) will be replaced by a larger period
in ps(Y ). Thus, any period in ps(Y ) cannot be smaller than a period in ps(X). Hence,
minper(Y ) ≥ minper(X). �

Lemma 4 (Monotonicity of the maximum periodicity). Let X and Y be itemsets
such that X ⊂ Y . It follows that maxper(Y ) ≥ maxper(X) [11].

Theorem 1 (Maximum periodicity pruning). Let X be an itemset appearing in a
database D. X and its supersets are not PFPs if maxper(X) > maxPer. Thus, if this
condition is met, the search space consisting of X and all its supersets can be discarded.
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Proof 4. By definition, if maxper(X) > maxPer, X is not a PFP. By Lemma 4, supersets
of X are also not PFPs.

Theorem 2 (Average periodicity pruning). LetX be an itemset appearing in a database
D. X is not a PFP as well as all of its supersets if avgper(X) > maxAvg, or equivalently
if |g(X)| < (|D|/maxAvg)− 1. Thus, if this condition is met, the search space consisting of
X and all its supersets can be discarded.

Proof 5. By definition, if avgper(X) > maxAvg, X is not a PFP. By Lemma 2, supersets
of X are also not PFPs. The pruning condition avgper(X) > maxAvg is rewritten as:
|D|/(|g(X)| + 1) > maxAvg. Thus, 1/(|g(X)| + 1) > maxAvg/|D|, which can be further
rewritten as |g(X)|+ 1 < |D|/maxAvg, and as |g(X)| < (|D|/maxAvg)− 1. �

4. The PFPM algorithm

Based on the novel periodicity measures introduced in the previous sections, an efficient
algorithm named PFPM (Periodic Frequent Pattern Miner) is proposed to efficiently discover
periodic patterns using these measures.

The proposed PFPM algorithm is a tid-list based algorithm, inspired by the Eclat algo-
rithm [4]. The tid-list of an itemset X in a database D is defined as the set of transactions
g(X) that contains the itemset X. In the proposed algorithm, the tid-list of an itemset X
is further annotated with two values: minper(X) and maxper(X).

The PFPM (Algorithm 1) takes as input a transaction database, and the minAvg,
maxAvg, minPer and maxPer thresholds. The algorithm first scans the database to cal-
culate minper({i}), maxper({i}), and s({i}) for each item i ∈ I. Then, the algorithm
calculates the value γ = (|D|/maxAvg)− 1 to be later used for pruning itemsets using The-
orem 2. Then, the algorithm identifies the set I∗ of all items having a periodicity no greater
than maxPer, and appearing in no less than γ transactions (other items are ignored since
they cannot be part of a PFP by Theorem 1 and 2. Items in I∗ are then sorted according
to the order � of ascending support values, as suggested in [4]. A database scan is then
performed. During this database scan, items in transactions are reordered according to the
total order �, and the tid-list of each item i ∈ I∗ is built. Then, the depth-first search ex-
ploration of itemsets starts by calling the recursive procedure Search with the set of single
items I∗, γ, minutil, minAvg, minPer, maxPer, the EUCS structure, and |D|.

The PFPMSearch procedure (Algorithm 2) takes as input extensions of an itemset
P (initially assumed that P = ∅) having the form Pz meaning that Pz was previously
obtained by appending an item z to P , γ, minAvg, minPer, maxPer, and |D|. The search
procedure performs a loop on each extension Px of P . In this loop, the average periodicity
of Px is calculated by dividing |D| by the number of elements in the tid-list of Px plus one
(by Lemma 1). Then, if the average periodicity of Px is in the [minAvg,maxAvg] interval,
the minimum/maximum periodicity of Px is no less/not greater than minPer/maxPer
according to the values stored in its tid-list, then Px is a PFP and it is output. Then, if the
number of elements in the tid-list of Px is no less than γ, and maxper(Px) is no greater than
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Algorithm 1: The PFPM algorithm

input : D: a transaction database,
minAvg, maxAvg, minPer and maxPer: the thresholds

output: the set of periodic high-utility itemsets

1 Scan D once to calculate minper({i}), maxper({i}), and s({i}) for each item i ∈ I;
2 γ ← (|D|/maxAvg)− 1;
3 I∗ ← each item i such that s({i}) ≥ γ and maxper({i}) ≤ maxPer;
4 Let � be the total order of support ascending values on I∗;
5 Scan D to build the tid-list of each item i ∈ I∗;
6 PFPMSearch ( I∗, γ, minAvg, minPer, maxPer, |D|);

maxPer, it means that extensions of Px should be explored (by Theorem 1 and 2). This is
performed by merging Px with all extensions Py of P such that y � x to form extensions of
the form Pxy containing |Px|+ 1 items. The tid-list of Pxy is then constructed by calling
the Intersect procedure (cf. Algorithm 3), to join the tid-lists of P , Px and Py. This latter
procedure is similar to the join of utility-list described in the Eclat algorithm [4], with the
exception that periods are calculated during tid-list intersection to obtain maxPer(Pxy)
and minPer(Pxy) (not shown). Then, a recursive call to the PFPMSearch procedure
with Pxy to explore its extension(s). The PFPMSearch procedure starts from single items,
recursively explores the search space of itemsets by appending single items, and only prunes
the search space using Theorem 1 and 2. Thus, it can be easily seen that this procedure is
correct and complete to discover all PFPs.

Furthermore, in the implementation of PFPM, two additional optimizations are included,
which are briefly described next.

Optimization 1. Estimated Average Periodicity Pruning (EAPP). This opti-
mization consists of creating a structure called ESCS (Estimated Support Co-occurrence
Structure) to store the support of all pairs of items occurring in the database. The ESCS
is defined as a set of triples of the form (a, b, c) ∈ I∗ × I∗ × R. A triple (a,b,c) indicates
that s({a, b}) = c. The ESCS can be implemented as a triangular matrix (as shown in Fig.
1 for the running example), or as a hash map of hash maps where only tuples of the form
(a, b, c) such that c 6= 0 are kept. The strategy EAPP is a novel strategy that prune itemsets
using the average periodicity. During the second database scan, the ESCS is created to store
s({x, y}) for each pair of items {x,y} (as shown in Figure 1). Then, Line 7 of the search
procedure is modified to prune itemset Pxy if s({x, y}) is less than γ by Theorem 2.

Optimization 2. Abandoning List Construction early (ALC). Another strategy
introduced in PFPM is to stop constructing the utility-list of an itemset if a specific condition
is met, indicating that the itemset cannot be a PFP. By Theorem 2, an itemset Pxy cannot
be a PFP, if it appears in less than γ = (|D|/maxAvg)− 1 transactions. The strategy ALC
consists of modifying the Intersect procedure (Algorithm 3) as follows. The first modification
is to initialize a variable max with the value γ in Line 1. The second modification is to the
following lines, where the tid-list of Pxy is constructed by checking if each tuple in the
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Algorithm 2: The PFPMSearch procedure

input : ExtensionsOfP: a set of extensions of an itemset P , γ, minAvg, minPer,
maxPer, |D|

output: the set of periodic frequent itemsets

1 foreach itemset Px ∈ ExtensionsOfP do
2 avgperPx← |D|/(|Px.tidlist|+ 1);
3 if minAvg ≤ avgperPx ≤ maxAvg ∧ Px.tidlist.minp ≥

minPer ∧ Px.tidlist.maxp ≤ maxPer∧ then output Px;
4 if avgperPx ≥ γ and Px.tidlist.maxp ≤ maxPer then
5 ExtensionsOfPx← ∅;
6 foreach itemset Py ∈ ExtensionsOfP such that y � x do
7 Pxy ← Px ∪ Py;
8 Pxy.tidlist← Intersect (Px, Py);
9 ExtensionsOfPx← ExtensionsOfPx ∪ {Pxy};

10 end
11 PFPMSearch (ExtensionsOfPx, γ, minAvg, minPer, maxPer, |D|);
12 end

13 end

 
TID Transactions  Item a b c d e f g 

T1 (a,1)(c,1)(d,1)  Profit 5 2 1 2 3 1 1 

T2 (a,2)(c,6)(e,2)(g,5)        

T3 (a,1)(b,2)(c,1)(d,6),(e,1),(f,5)         

T4 (b,4)(c,3)(d,3)(e,1)         

T5 (b,2)(c,2)(e,1)(g,2)         

 

TU(T_1) = 7   TU(T_2) = 27     TU(T_3) =  30    TU(T_4) = 20    TU(T_5) = 11 

TWU(a) = 65    TWU(b)= 61  TWU(c)= 96    TWU(d)=58    TWU(e)=88   

TWU(f)= 30   TWU(g) = 38 

 

TID TU  Item TWU  Item a b c d e f 

T1 8  a 65  b 30      

T2 27  b 61  c 65 61     

T3 30  c 96  d 38 50 58    

T4 20  d 58  e 57 61 77 50   

T5 11  e 88  f 30 30 30 30 30  

   f 30  g 27 38 38 0 38 0 

   g 38        

 

support 

Item a b c d 

b 1    

c 4 3   

d 2 2 3  

e 2 3 4 2 

 
 

TW
U 
 

 

    

Item a b c d 

b 25    

c 61 54   

d 33 45 53  

e 47 54 76 45 

 

 

Figure 1: The ESCS

tid-lists of Px appears in the tid-list of Py (Line 2). For each tuple not appearing in Py,
the variable max is decremented by 1. If max is smaller than γ, the construction of the
tid-list of Pxy can be stopped because |g(Pxy)| will not be higher than γ. Thus Pxy is not
a PFP by Theorem 2, and its extensions can also be ignored.

5. Experimental Study

To evaluate the performance of the proposed PFPM algorithm, we compared its per-
formance with Eclat, a state-of-the-art algorithm for frequent itemset mining. The Eclat
algorithm was chosen for comparison as the PFPM algorithm is based on Eclat. The PFPM
and Eclat algorithms are implemented in Java. The experiment was carried out on a sixth
generation 64 bit Core i5 processor running Windows 10, and equipped with 12 GB of free
RAM. Four benchmark datasets were utilized in the experiment, which are commonly used
in the FIM litterature. The retail, chainstore, and foodmart datasets contain anonymized
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Algorithm 3: The Intersect procedure

input : Px: the extension of P with an item x,
Py: the extension of P with an item y

output: the tid-list of Pxy

1 TidListOfPxy ← ∅;
2 foreach Tid v ∈ Px.tidlist such that v ∈ Py.tidlist do
3 periodv ← calculatePeriod(v,TidListOfPxy);
4 UpdateMinPerMaxPer(TidListOfPxy, periodv);
5 TidListOfPxy ← TidListOfPxy ∪ {v};
6 end
7 return TidListOfPxy ;

customer transactions from retail stores, while the mushroom dataset is a dense benchmark
dataset. The datasets have been chosen because they represents the main types of data
encountered in real-life scenarios (dense, sparse and long transactions). Let |I|, |D| and A
represents the number of transactions, distinct items and average transaction length of a
dataset. Characteristics of the four datasets are presented in Table 3

Table 3: Dataset characteristics

Dataset |I| |D| A Type
retail 88,162 16,470 10.30 sparse, many items
mushroom 8,124 119 23.0 dense, long transactions
chainstore 1,112,949 46,086 7.26 sparse, many transactions
foodmart 4,141 1,559 4.4 sparse, short transactions

The experiment consisted of running the PFPM algorithm on each dataset with fixed
minPer and minAvg values, while varying the maxAvg and maxPer parameters. To be
able to compare PFPM with Eclat, Eclat was run with the γ value calculated by PPFM.
Execution times, memory consumption, and number of patterns found were measured for
each algorithm. All memory measurements were done using the Java API.

For each dataset, values for the periodicity thresholds have been found empirically for
each dataset (as they are dataset specific), and were chosen to show the trade-off between the
number of periodic patterns found and the execution time. Note that results for varying the
minPer and minAvg values are not shown because these parameters have less influence on
the number of patterns found than the other parameters. Thereafter, the notation PFPM V-
W-X represents the PFPM algorithm with minPer = V , maxPer = W , and minAvg = X.
Fig. 2 compares the execution times of PFPM for various parameter values and Eclat. Fig.
3, compares the number of PFPs found by PFPM for various parameter values, and the
number of frequent itemsets found by Eclat.
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Figure 2: Execution times
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Figure 3: Number of patterns found

It can first be observed that mining PFPs using PFPM is generally much faster than
mining frequent itemsets. On the retail dataset, PFPM is up to four times faster than Eclat.
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On the mushroom and chainstore datasets, no results are shown for Eclat because it cannot
terminate whithin 1,000 seconds or ran out of memory, while PFPM terminates in less than
10 seconds. The reason is that the search space is huge for these datasets when the minimum
support is set to γ. The PFPM algorithm still terminates on these datasets because it only
searches for periodic patterns, and thus prunes a large part of the search space containing
non periodic patterns. On the foodmart dataset, PFPM can be up to five times faster than
Eclat depending on the parameters. But it can also be slightly slower in some cases. The
reason is that foodmart is a sparse dataset and thus the gain in terms of pruning the search
space does not always offset the cost of calculating the periodicity measures. In general,
the more the periodicity thresholds are restrictive, the more the gap between the runtime
of Eclat and PFPM increases.

A second observation is that the number of PFPs can be much less than the number of
frequent itemsets (see Fig. 3). For example, on retail, 19,836 frequent itemsets are found for
maxAvg = 2, 000. But only 110 frequent itemsets are PFPs for PFPM 1-1000-5, and only 7
for PFPM 1-250-5. Some of the patterns found are quite interesting as they contain several
items. For example, it is found that items with product ids 32, 48 and 39 are periodically
bought with an average periodicity of 16.32, a minimum periodicity of 1, and a maximum
periodicity of 170. A similar reduction in terms of number of patterns is also observed on the
three other datasets. This demonstrates that the PFPM algorithm is effective at filtering
non periodic patterns, and that a huge amount of non periodic patterns are found in real-life
datasets. Memory consumption was also compared, although detailed results are not shown.
It was observed that PFPM use up to four and five times less memory than Eclat on the
retail and foodmart datasets, depending on parameter values. For example, on retail and
maxAvg = 2, 000, Eclat and PFPM 1-5000-5-500 respectively consumes 900 MB and 189
MB of memory.

6. Conclusion

In this paper, we have proposed the use of three periodic measures for the discovery
of periodic frequent patterns: the minimum periodicity, the maximum periodicity, and the
average periodicity. Using three measures provides the advantages of giving more flexibil-
ity to the users. Properties of the novel minimum utility and average utility measures
have been studied. Moreover, an efficient algorithm named PFPM (Periodic Frequent
Pattern Miner) was proposed to efficiently discover all frequent periodic patterns using
these measures. An experimental evaluation on real datasets shows that the proposed
PFPM algorithm is efficient, and can filter a huge number of non periodic patterns to
reveal only the desired periodic patterns. The source code of the PFPM algorithm and
datasets will be made available as part of the SPMF open source data mining library [13]
http://www.philippe-fournier-viger.com/spmf/. For future work, we will consider de-
signing alternative algorithms to discover more complex types of periodic patterns.
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