PHM: Mining Periodic High-utility Itemsets

Philippe Fournier-Viger¹, Jerry Chun-Wei Lin², Quang-Huy Duong³, Thu-Lan Dam^{3,4},

- School of Natural Sciences and Humanities, <u>Harbin Institute of Technology</u> Shenzhen Graduate School, China
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, China
- College of Computer Science and Electronic Engineering, Hunan University, China Faculty of Information Technology, Hanoi University of Industry, Vietnam

High-utility itemset mining

Input

a transaction database

TID	Transaction
T_1	(a,1),(b,5),(c,1),(d,3),(e,1),(f,5)
T_2	(b,4),(c,3),(d,3),(e,1)
T_3	(a,1),(c,1),(d,1)
T_4	(a, 2), (c, 6), (e, 2), (g, 5)
T_5	(b,2),(c,2),(e,1),(g,2)

a unit profit table

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

minutil: a minimum utility threshold set by the user (a positive integer)

High-utility itemset mining

Input

a transaction database

TID	Transaction
T_1	(a, 1), (b, 5), (c, 1), (d, 3), (e, 1), (f, 5)
T_2	(b,4),(c,3),(d,3),(e,1)
T_3	(a,1),(c,1),(d,1)
T_4	(a, 2), (c, 6), (e, 2), (g, 5)
	(b,2),(c,2),(e,1),(g,2)

a unit profit table

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

minutil: a minimum utility threshold set by the user (a positive integer)

Output

All high-utility itemsets (itemsets having a utility \geq minutil) For example, if minutil = 33\$, the high-utility itemsets are:

{b,d,e}2 transactions	{b,c,d} 34\$ 2 transactions
{b,c,d,e} 40\$ 2 transactions	{b,c,e} 37 \$ 3 transactions

Utility calculation

a transaction database

TID	Transaction
T_1	$(a, 1), (\underline{b}, \underline{5}), (c, 1), (\underline{d}, \underline{3}), (\underline{e}, \underline{1}), (f, \underline{5})$
T_2	$(b,4), (\overline{c},3), (d,3), (\overline{e},1)$
$\mid T_3 \mid$	(a,1), (c,1), (d,1)
T_4	(a, 2), (c, 6), (e, 2), (g, 5)
	(b,2),(c,2),(e,1),(g,2)

a unit profit table

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

The **utility** of the itemset {b,d,e} is calculated as follows:

$$u(\{\mathbf{b},\mathbf{d},\mathbf{e}\}) = (5x2)+(3x2)+(3x1) + (4x2)+(2x3)+(1x3) = \mathbf{36}$$

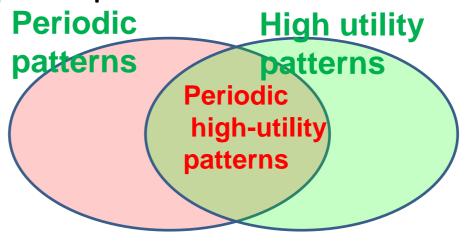
$$utility in \qquad utility in \qquad transaction T_1 \qquad transaction T_2$$

Problem

High-utility itemset mining

- is useful for discovering profitable itemsets.
- but not designed for discovering recurring customer behavior
- e.g. a customer buy {wine, cheese} every week

We propose a new type of patterns:



How to measure the periodicity?

Several studies:

- PFP-Tree, MKTPP, ITL-Tree, PF-tree, MaxCPF
- —In general, a periodic pattern has no period greater than a maximum periodicity threshold (maxPer), set by the user.

Period of an itemset

The number of transactions between each occurrence of an itemset

TID	Transaction
T_1	(a,1),(c,1),
T_2	$(e,1)$ _2
T_3	(a,1),(b,5),(c,1),(d,3),(e,1)
T_4	(b,4),(c,3),(d,3),(e,1) 2
T_5	(a,1),(c,1),(d,1)
T_6	(a,2),(c,6),(e,2) 1
T_7	(b,2),(c,2),(e,1)

e.g. The periods of the itemset {a,c} are: 1,2,2,1,1

The maximum period of {a,c}: 2

Period of an itemset

The number of transactions between each occurrence of an itemset

TID	Transaction
T_1	$\{a,c\}$
T_2	{ <i>e</i> }
T_3	$\{a,b,c,d,e\}$
T_4	$\{b, c, d, e\}_{2}$
T_5	$\{a,c,d\}$
T_6	$\{a, c, e\}$ 1
T_7	$\{\overline{b}, \overline{c}, e\}$

e.g. The periods of the itemset {a,c} are: 1,2,2,1,1

The maximum period of {a,c}: 2

Limitation

 An itemset is automatically discarded as non periodic if it has a single period of length greater than the maxPer threshold

- Our solution: two novel measures:
 - Average periodicity
 - Minimum periodicity (which excludes the first and last periods)

Novel definition of periodic pattern

An itemset X is **periodic** if:

- $-minAvg \le avgper(X) \le maxAvg$
- -Minper(X) ≥ minPer
- -Maxper(X) ≤ maxper

where minAvg, maxAvg, minPer, maxPer are parameters set by the user.

These new parameters give more flexibility to the user.

Example

	Number of occurrences	Minimum periodicity	Maximum periodicity	Average periodicity
Itemset	support $s(X)$	minper(X)	maxper(X)	avgper(X)
{b}	3	1	3	1.75
$\{b,e\}$	3	1	3	1.75
$\{b, c, e\}$	3	1	3	1.75
$\{b,c\}$	3	1	3	1.75
$\{d\}$	3	1	3	1.75
$\{c,d\}$	3	1	3	1.75
{a}	4	1	2	1.4
$\{a,c\}$	4	1	2	1.4
{ <i>e</i> }	5	1	2	1.17
$\{c,e\}$	4	1	3	1.4
$\{c\}$	6	1	2	1.0

Theoretical results

Lemma 1 (Relationship between average periodicity and support). Let X be an itemset appearing in a database D. An alternative and equivalent way of calculating the average periodicity of X is avgper(X) = |D|/(|g(X)| + 1).

Lemma 2 (Monotonicity of the average periodicity). Let X and Y be itemsets such that $X \subset Y$. It follows that $avgper(Y) \geq avgper(X)$.

Lemma 3 (Monotonicity of the minimum periodicity). Let X and Y be itemsets such that $X \subset Y$. It follows that $minper(Y) \geq minper(X)$.

Lemma 4 (Monotonicity of the maximum periodicity). Let X and Y be itemsets such that $X \subset Y$. It follows that $maxper(Y) \geq maxper(X)$ [12].

Theorem 3 (Maximum periodicity pruning). Let X be an itemset appearing in a database D. X and its supersets are not PHUIs if maxper(X) > maxPer.

Theorem 4 (Average periodicity pruning). Let X be an itemset appearing in a database D. X is not a PHUI as well as all of its supersets if avgper(X) > maxAvg, or equivalently if |g(X)| < (|D|/maxAvg) - 1.

First lemma is an efficient way of calculating the average periodicity. Theorem 3 & 4 are used to reduce the search space.

The PHM algorithm

An algorithm for mining periodic high utility-itemsets

It performs a depth-first search. {} $\{a\}$ {d} $\{a,d\}$ $\{c,d\}$ $\{a,b\}$ {a,c} {b,c} $\{b,d\}$ $\{a,b,d\}$ $\{a,b,c\}$ $\{a,c,d\}$ $\{b,c,d\}$

It applies the theorems to prune the search space.

 ${a,b,c,d}$

The PHM algorithm (cont'd)

- The algorithm is inpsired by the FHM algorithm for high-utility itemset mining.
- PHM annotates each itemset with its list of transactions (tid-list)
 - **e.g.** the tid-list of {a,c} is $T_{1,}T_{3,}T_{5,}T_{6}$ the tid-list of {d} is $T_{3,}T_{4,}T_{5}$ the tid-list of {a,c,d} is $T_{3,}T_{5}$
- Tid-lists allows quickly calculating the periods of any itemset.
- The tid-list of any itemset can be calculated by intersecting tid-lists of smaller itemsets.

Algorithm 1: The PHM algorithm

- **input**: D: a transaction database, minutil, minAvq, maxAvq, minPer and maxPer: the thresholds output: the set of periodic high-utility itemsets
- 1 Scan D once to calculate $TWU(\{i\})$, $minper(\{i\})$, $maxper(\{i\})$, and $|g(\{i\})|$ for each item $i \in I$:
- $2 \gamma \leftarrow (|D|/maxAvg) 1;$

14

15 end

- 3 $I^* \leftarrow \text{ each item } i \text{ such that } \text{TWU}(i) \geq minutil, |g(\{i\})| \geq \gamma \text{ and }$ $maxper(\{i\}) \leq maxPer;$
- 4 Let \succ be the total order of TWU ascending values on I^* ;
- **5** Scan D to build the utility-list of each item $i \in I^*$ and build the EUCSstructure;
- 6 Search $(\emptyset, I^*, \gamma, minutil, minAvg, minPer, maxPer, EUCS, |D|);$

Algorithm 2: The Search procedure

```
input : P: an itemset, Extensions OfP: a set of extensions of P, \gamma, minut
             minAvg, minPer, maxPer, the EUCS structure, |D|
   output: the set of periodic high-utility itemsets
1 foreach itemset Px \in ExtensionsOfP do
       avgperPx \leftarrow |D|/(|Px.utilitylist| + 1);
       if SUM(Pxy.utilitylist.iutils) \geq minutil \wedge
         minAvg \le avgperPx \le maxAvg \land Px.utilitylist.minp >
         minPer \land Px.utilitylist.maxp \leq maxPer \land then output Px;
       if SUM(Px.utilitylist.iutils) + SUM(Px.utilitylist.rutils) > minutil \land
 4
         avgperPx \geq \gamma and Px.utilitylist.maxp \leq maxPer then
            ExtensionsOfPx \leftarrow \emptyset;
 5
           foreach itemset Py \in ExtensionsOfP such that y \succ x do
                if \exists (x, y, c) \in EUCS \ such \ that \ c > minutil) then
                    Pxy \leftarrow Px \cup Py;
                    Pxy.utilitylist \leftarrow \texttt{Construct}\ (P, Px, Py);
                    ExtensionsOfPx \leftarrow ExtensionsOfPx \cup \{Pxy\};
10
11
                end
12
            end
           Search (Px, ExtensionsOfPx, \gamma, minutil, minAvg, minPer, max) 16 return UtilityListPxy;
13
             EUCS, |D|;
       end
```

Algorithm 3: The Construct procedure

```
input : P: an itemset, Px: the extension of P with an item x, Py: the
              extension of P with an item y
   output: the utility-list of Pxy
 1 UtilityListOfPxy \leftarrow \emptyset;
 2 foreach tuple \ ex \in Px.utilitylist \ do
        if \exists ey \in Py.utilitylist \ and \ ex.tid = exy.tid \ then
            if P.utilitylist \neq \emptyset then
                Search element e \in P.utilitylist such that e.tid = ex.tid.;
 5
                exy \leftarrow (ex.tid, ex.iutil + ey.iutil - e.iutil, ey.rutil);
            end
            else
 8
                exy \leftarrow (ex.tid, ex.iutil + ey.iutil, ey.rutil);
            end
10
            period_{exy} \leftarrow calculatePeriod(exy.tid,UtilityListOfPxy);
11
            UpdateMinPerMaxPer(UtilityListOfPxy, period_{exy});
12
            UtilityListOfPxy \leftarrow UtilityListOfPxy \cup \{exy\};
13
        end
14
15 end
```

Pseudocode

Experimental Evaluation

Datasets' characterictics

Dataset	transaction count	distinct item count	average transaction length
Retail	88,162	16,470	10.30
Chainstore	1,112,949	46,086	7.26
Foodmart	1,559	4,141	4.4
Mushroom	8,124	120	23

Retail, Foodmart and Chainstore are real-life transaction datasets from retail stores.

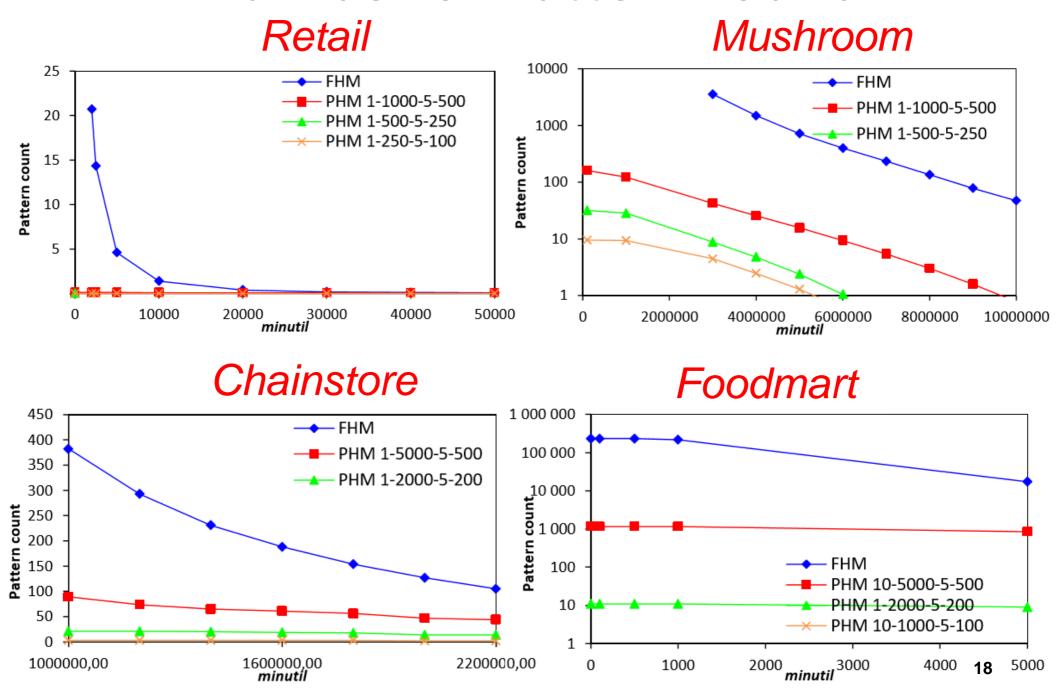
Mushroom is a dense dataset with long transactions

Experimental Evaluation

Compared algorithms

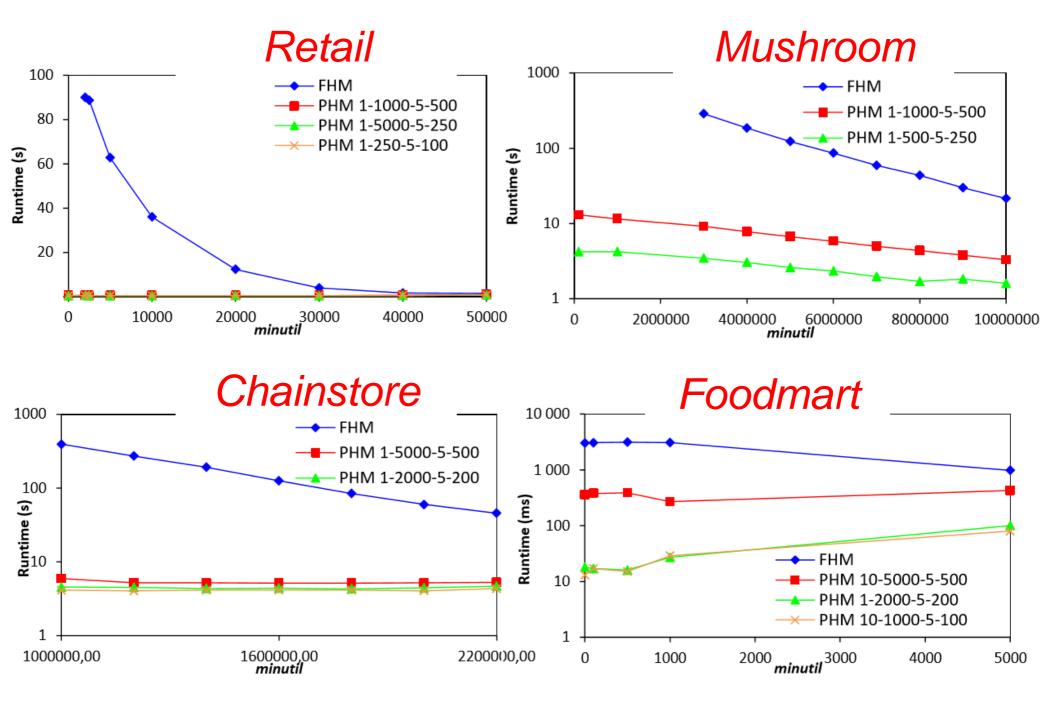
- We compared PHM with the state-of-the-art FHM algorithm for high-utility itemset mining.
- FHM find all high-utility itemsets
- PHM V-W-X-Y denotes the PHM algorithm with minper = V, maxper = W, minAvg = X, and maxAV G = Y.

Number of Pattern found



The PHM algorithm can filter many non periodic patterns.

Execution times



PHM can be much faster than FHM because it filters many non periodic patterns

Other observations

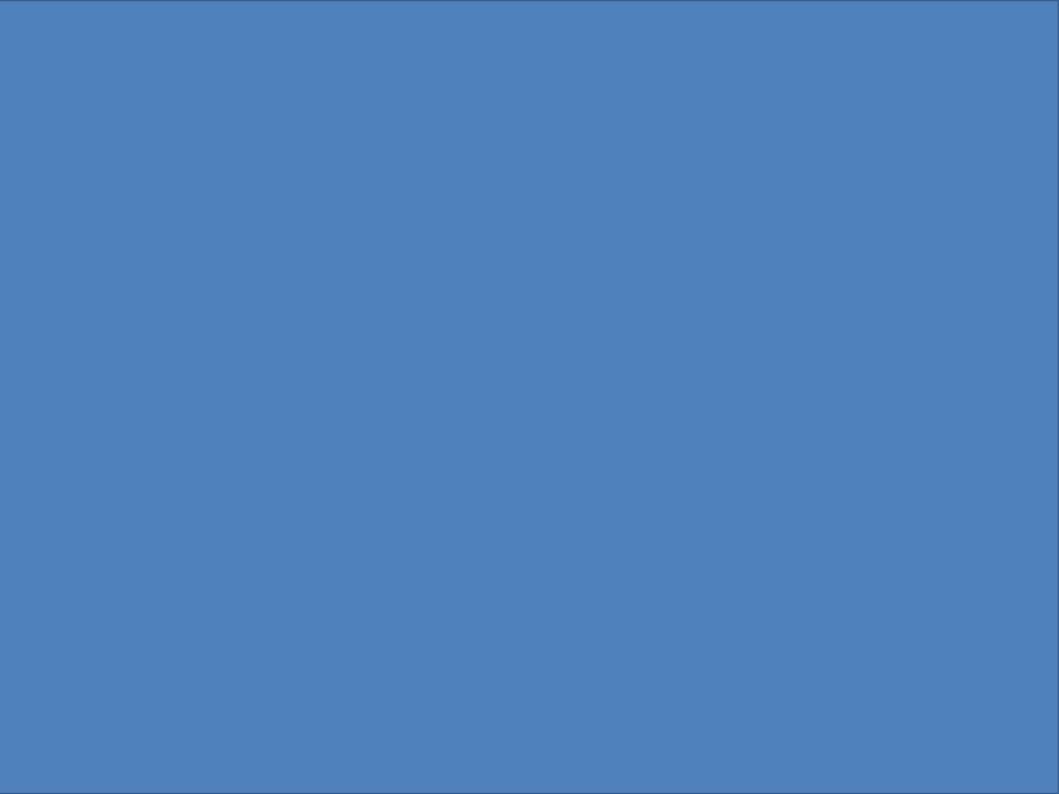
- Some interesting patterns were found. For example: products 32,48, and 39 are periodically bought with an average periodicity of 16.32, a minimum periodicity of 1 and a maximum periodicity of 170.
- PHM can use up to 10 less memory then FHM.
 - For example, on Chainstore and minutil = 1,000,000, FHM and PHM 1-5000-5-500 respectively consumes 1,631 MB and 159 MB of memory.

Conclusion

- Contributions:
 - ➤ New type of pattern: **periodic high-utility itemsets**
 - Two new periodicity measures: average periodicity and minimum periodicity, and their properties.
 - > A novel algorithm, named PHM
- > Experimental results:
 - > PHM eliminate a large number of non-periodic patterns.
 - > Can be much faster than FHM in many cases.
- Source code and datasets available as part of the SPMF data mining library (GPL 3).

Thank you. Questions?

Open source Java data mining software, 120 algorithms http://www.phillippe-fournier-viger.com/spmf/



An Open-Source Data Mining Library

Introduction

Algorithms

Download

Documentation

<u>Datasets</u>

FAQ

License

Contributors

<u>Citations</u>

<u>Performance</u>

Developers' guide

Mailing-list

Blog

<u>Forum</u>

279624 visitors since 2010-02

Introduction

SPMF is an open-source data mining mining library written in Java, specialized in pattern mining.

It is distributed under the GPL v3 license.

It offers implementations of 120 data mining algorithms for:

- · association rule mining,
- · itemset mining,
- · sequential pattern mining,
- · sequential rule mining,
- sequence prediction,
- · periodic pattern mining,
- · high-utility pattern mining,
- clustering and classification

The source code of each algorithm can be easily integrated in other Java software.

Moreover, SPMF can be used as a standalone program with a simple user interface or from the command line

SPMF is fast and lightweight (no dependencies to other libraries).

The current version is v0.99j and was released the 16th June 2016.