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Abstract

This paper presents a novel framework, called PSAC-PDB, for analyzing and
classifying protein structures from the Protein Data Bank (PDB). PSAC-PDB
first finds, analyze and identifies protein structures in PDB that are similar to
a protein structure of interest using a protein structure comparison tool. Sec-
ond, the amino acids (AA) sequences of identified protein structures (obtained
from PDB), their aligned amino acids (AAA) and aligned secondary structure
elements (ASSE) (obtained by structural alignment), and frequent AA (FAA)
patterns (discovered by sequential pattern mining), are used for the reliable
detection/classification of protein structures. Eleven classifiers are used and
their performance is compared using six evaluation metrics. Results show that
three classifiers perform well on overall, and that FAA patterns can be used
to efficiently classify protein structures in place of providing the whole AA se-
quences, AAA or ASSE. Furthermore, better classification results are obtained
using AAA of protein structures rather than AA sequences. PSAC-PDB also
performed better than state-of-the-art approaches for SARS-CoV-2 genome se-
quences classification.

Keywords: Protein structures, SARS-CoV-2, Spike, SPM, PDB, DALI,
Classification.

1. Introduction

Proteins, the building block of all living organisms, are one of the fundamen-
tal macromolecule families that can perform more than one function and govern
biology, by being extensively involved in almost all biological mechanisms [1].
Proteins contribute to our understanding of human health and therapies for
particular diseases. Proteins contain long chains of amino acids (called protein
sequences) that are connected and fold into three-dimensional (3D) structures.
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Structural biology experimental techniques [2]| such as Cryo-EM (electron mi-
croscopy) and X-Ray crystallography are commonly used to view, in atomic
resolution, how proteins assemble, function and interact. Experimental meth-
ods for structure determination of proteins are slow, costly and cannot be used
to determine the structure of some proteins. Thus, computational methods are
quite desirable for the prediction and classification of protein structure from
sequence information.

For optimal protein structure alignment and comparison, various computa-
tional tools have been proposed and developed in the last two decades such as
DALI [3], GrAfSS [4], FATCAT [5], MICAN-SQ [6], MADOKA [7], DeepAlign
[8], Cassert [9], iPBA [10], Fr-TM-Align [11], TM-ALign [12], FAST [13] and
PDBeFold [14]. Among publicly available structure comparison algorithms,
DALI is the most popular and best known for comparing protein structures
from the PDB database [4, 5, 7]. The SCOP database [15] and its extensions
[16, 17, 18, 19] use a combination of manual curation and automated methods to
provide detailed information for structural and evolutionary relationships among
all known protein structures. Protein structural classification and prediction is
an important research topic and the recent use of deep learning methods [20, 21]
to accurately predict protein structures has greatly increased the scope of com-
parative structural studies that was constrained in the past by the labor and
cost required in experimental structure acquisition.

Some recent machine and deep learning-based studies focused on the clas-
sification and detection of diseases by analyzing genome sequences obtained
from online databases for genomic data such as GenBank [22] and GISAID
[23]. For example, some studies [24, 25, 26] took advantage of CpG (or CG)-
based features to classify genomes of the SARS-CoV-2 virus. Representative
genomic sequences were discovered by Lopez-Rincon et al. [27] by combining
a deep learning method with explainable Al techniques. Naeem et al. [28] de-
veloped a classification system that extracted features from genome sequences
using the discrete Fourier transform and seven moment invariants. The clas-
sification method of Randhawa et al. [29] uses an intrinsic genomic signature
with a machine learning-based alignment-free (AF) method. Ahmed and Jeon
[30] classified genome sequences of four viruses (SARS-CoV-1, SARS-CoV-2,
MERS and Ebola) by using ML algorithms. Singh et al. [31] used biomarkers,
that were extracted from the genome sequences of coronaviruses on the basis of
three-base periodicity, for the classification of SARS-CoV-2 from other coron-
aviruses. Most of these studies focused on virus genome sequences and finding
important features in them that are then used for classification. To the best
of our knowledge, no study has been published on the classification of protein
structures based on pattern mining, particularly for harmful viruses, in Protein
Data Bank (PDB) [32].

The main aim of this study is to investigate how structural alignment method
such as DALI 3] and sequential pattern mining (SPM) [33], a special case of
structured data mining, can be used for the analysis and classification/detection
of protein structures given their abundance in the PDB. More specifically, based
on the analysis of amino acids (AA) sequences of protein structures and their



secondary structure elements (SSE), a novel approach called PSAC-PDB is pro-
posed to:

1. Find and determine the protein structures in PDB that are similar to a
protein structure of interest. Identified similar protein structures are then
analyzed and compared by using a structural alignment technique to find
aligned AA and SSE. Moreover, SPM is used to analyze the AA sequences
of similar protein structures to discover frequent AA and their frequent
patterns.

2. Detect and classify the protein structures. Four kinds of classification are
carried out that are based on the (1) amino acids (AA) sequences, (2)
aligned AA (AAA) sequences, (3) aligned secondary structure elements
(ASSE) sequences and (4) frequent AA (FAA) patterns. Three text-based
and eight integer-based classifiers are used for classification and their effi-
cacy is accessed with six evaluation metrics.

As a case study, the proposed PSAC-PDB approach was applied to investi-
gate SARS-COV-2 [34] by considering its Spike (S) protein [35, 36] as the protein
structure of interest. We discovered that using SPM to first find frequent AA
patterns in the AA sequences of protein structures and using these patterns yield
better classification performance than using only the AA sequences, AAA and
ASSE. Additionally, classification with AAA outperformed classification with
AA. Using ASSE for classification produced poor results. Three classifiers (two
text-based and one integer-based) performed well, on overall. Moreover, text-
based classifiers required more time for training and testing than integer-based
classifiers. The performance of PSAC-PDB was also compared with the state-
of-the-art approaches for SARS-CoV-2 classification and detection from genome
sequences and results show that PSAC-PDB outperforms these approaches. We
believe that the developed framework and obtained results will benefit the re-
search community in general, and specifically crystallographers and biochemists.

The rest of the paper is divided into three sections: Section 2 presents
the proposed PSAC-PDB method, as well as the protein structure types and
datasets. Section 3 presents and discusses the obtained results. Finally, Section
4 draws a conclusion and outlines some future research directions.

2. PSAC-PDB

The proposed PSAC-PDB method (Figure 1) for the analysis and classifica-
tion of protein structures in PDB consists of three main steps:

1. Similar protein structures identification: The first step is to find and iden-
tify protein structures in PDB that are similar to a protein structure of
interest. Here our interest is in the S protein structures of SARS-CoV-2.
Similar protein structures are found using DALI via the PDB90 search
strategy.
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Figure 1: Schematic of the PSAC-PDB method for the analysis and classification of proteins
structures in PDB. PSAC-PDB is applied in three main steps: (1) Identification of similar
protein structures in PDB, (2) Analysis of similar protein structures by using structural align-
ment and SPM, and datasets creation, and (3) Classification of protein structures by training
various classifiers using the created datasets.

2. Protein structures analysis and Datasets Development: Three main activ-
ities are performed in this step: (1) Pairwise structural alignment of AA
and SSE of protein structures. (2) Protein structures AA sequences are
analyzed using SPM to discover common AA and the frequent AA (FAA)
patterns. (3) AA, AAA, ASSE and FAA are stored in four datasets.

3. Protein structures classification: The datasets for AA, FAA, AAA and
ASSE sequences are used for the classification of protein structures. The
classification task is composed of two main parts: (1) The training phase
contains two phases, which are AA, FAA, AAA and ASSE representation,
and classifier training, and are performed sequentially. (2) The testing
phase consists of three phases, AA, FAA, AAA and ASSE representation,
hypothesis prediction, and evaluation.

PDB now contains over 0.202 million structures, in which 0.173 million are
X-Ray structures and 14,511 are Cryo-EM structures’. Manually finding and
selecting structures for analysis and classification is difficult and time consuming.
Thus, Step 1 helps in finding protein structures in PDB. The AA sequences
of selected protein structures are then analyzed in Step 2 and the developed
datasets for AA, AAA, ASSE and FAA are then used for classification and
detection. Next, we provide some details for DALI and SPM.

DALI optimizes a set of one-to one correspondences between two protein
(sub)structures, say A and B, that maximizes the DALI score:

LALI LALI 2)dA — dP 7(‘15}“5)2
DALIAB: Z Z <6M>6 2D
=1 j=1 ig T4

where LALI is the number of aligned residue pairs, # = 0.2, D = 20 A and

df‘j, dg are intra-molecular Ca—Ca distances in structures A and B respectively.
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For random pairwise comparison, DALI 45 score increases with the number of
residues in the compared proteins. In DALI, Z-score is used to describe the
statistical significance of DALI4p:

4. _ DALLyp —m(L)
AB — Oé(L)

where L = \/LaLp is the geometric mean length of structures A and B. The
relation between the mean score m, standard deviation ¢ and L was derived
empirically from a large set of random pairs of structures. Fitting a polynomial
gives the following approximation:

(L) 7.954+0.71L — 2.59E L% —1.92E7%L% if L <400
m =
m(400) + L — 400, if L > 400

For the standard deviation, an empirical estimate is o(L) = 0.5 x m(L). The
Z-score is computed for every possible pair of domains and the highest value is
reported as the Z-score of the protein pair. Thus DALI’s Z-score is an optimized
similarity score defined as the sum of equivalent residue-wise Ca-Ca distances
among two proteins. For two proteins, the larger the Z-score, the greater the
similarity, which corresponds to the optimal set of residue equivalence obtained
by permuting the equivalent structural patterns by Monte Carlo optimization.
A Z-score < 2 is considered as a spurious similarity and should be ignored [37].

DALI supports three types of database searches (PDB, PDB25 and AlphaFold-
Database (AF-DB)), as well as two types of structure comparisons (pairwise and
all against all). Proteins in secondary structures are traditionally characterized
with three states: (1) helix (H), strand (E) and Coil (C). The Dictionary of
Secondary Structure of Proteins (DSSP) [38] offers a finer classification of the
secondary structures by extending the three general states into eight states.
DALIT uses the secondary structure assignments by DSSP.

Beside DALI, other protein structures similarity searching and analysis tools
such as PDBeFold [14] and FATCAT 2.0 [5] also provide the pairwise alignment
and comparison for the similar protein structures. PDBefold can be used to
search similar protein structures in the whole PDB and SCOP databases or any
subset of SCOP. Whereas FATCAT searches for similar protein structures in
the subsets of PDB, SCOP and ECOD [39] databases. Table 1 compares the
characteristics of three above servers. Another recent tool GrAfSS [4] searches
the PDB to identify known structural arrangements or 3D motifs in protein
structures. However, GrAfSS cannot perform the pairwise structural similarity.
The main reason to use DALI in this work is that it is developed purely for the
protein structure similarity searching and analysis in the PDB database.

Generally, to find various kinds of patterns in different data types, multi-
ple algorithms have been developed. Frequent Itemset Mining (FIM) [40] and
Association Rule Mining (ARM) [41] are the two most popular pattern min-
ing problems. FIM finds items (symbols) sets that have a support (frequency)
that is equal to or greater than a minimum support threshold selected by the
user. ARM’s goal is similar to FIM. However, patterns in ARM are represented



Table 1: Comparison of three protein structure servers. Input types are represented as 1:
PDB ID, 2: SCOP ID, 3: Protein structure coordinate file.

DALI PDBeFold FATCAT
Input format 1,3 1,2, 3 1,2, 3
Databases searched against PDB, AF | PDB, SCOP | PDB, SCOP, ECOD
Multiple structural alignment Yes Yes No
Dendrogram and Heatmap for Yes No No
multiple structures
Scoring functions used Multiple Multiple Multiple

as rules rather than sets. ARM computes not only the support but also the
confidence (an estimation of the conditional probability) of a rule.

However, both ARM and FIM do not work well on time-based data and do
not take into account the sequential ordering of events such as the ordering of
the nucleotides and AA in genome sequences. To address that issue with FIM
and ARM, the task of SPM was proposed. SPM [33] analyze sequential data by
discovering interesting (sub)sequences in a set of sequences. SPM can also ana-
lyze time series data. Various measures are used to evaluate the interestingness
of a (sub)sequence. For example, the measure based on finding sub(sequences)
occurrence frequency, (sub)sequences length, and the profit subsequences gener-
ate. As SPM can process data encoded as sequences of symbols or events, it has
been used in many real life applications such as in bioinformatics [42, 43], proof
sequence analysis [44], e-learning [45], text analysis [46, 47], energy reduction
in smarthomes [48], malware detection [49], and webpage click-stream analysis
[50].

The three steps of the proposed PSAC-PDB method are described in more
details next.

2.1. Similar proteins Structures Identification in PDB

The SARS-CoV-2 protein structure with PDB ID (PID) 6VSB [35] (de-
posited to PDB on 10 February 2020) is used as the query structure. The main
reason to select 6VSB as query structure is that it is one of the earliest S pro-
tein structures deposited in PDB. 6VSB contains three chains (A, B and C)
and 1,288 AA. Using 6VSB Chain B as the query structure, DALI returned 397
structures via PDB90 search. PDB90 is a non-redundant subset of PDB struc-
tures. In a PDB90 subset, structures from PDB are found that are less than
90% identical as a sequence. After removing the same structures with different
chains, the number of structures is reduced to 388. Note that PDBeFold found
1,156 similar structures against 6VSB Chain B and FATCAT found 91 similar
structures against 6VSB Chain B in 90% non-redundant PDB dataset.

We also used BLAST [51], one of the most famous algorithm for biological
sequence comparison, to see the first 100 structures that are the most similar to
the query structure. Interestingly, all those 100 structures returned by BLAST
belong to the S protein structures of SARS-CoV-2. Whereas with DALI, the
similar protein structures against the query structure (6VSB with Chain B)



varies from coronaviruses to various other enzymes and proteins. The similar
structures obtained can be divided into three types (families):

1. S protein structures of SARS-CoV-2 (SSC2),
2. S protein structures of other viruses and organisms (SO), and
3. Protein (enzyme) structures for others (O).

In the similar protein structures obtained via the PDB90 search in DALI,
approximately 13.65% (53 out of 388) belong to the first type (S protein struc-
tures of SARS-CoV-2), approximately 12.37% (48 out of 388) belong to the
second type (S protein structures of other viruses and organisms). Remaining
belong to the third type (structures of others). The AA sequences of all 388
structures are then obtained from the PDB. Some sequences have multiple AA
sequences due to multiple chains. Thus, the downloaded sequences are refined
to only include the sequences for the chain which is similar to the query struc-
ture. Table 2 provides statistics about the structures that belong to each of the
three families.

Table 2: Structures distribution according to their families.

Structures | Samples | AA FAA MinL, MaxL, ASL
SSC2 53 20 | L,S, T, V,G 127, 1380, 1074
SO 48 20 | S,L,V,T, G 135, 1469, 847
O 287 22 | L,G,S, V,A 69, 4646, 375
Total 388 22 | L,S,G,V,T 69, 4646, 526
FAA: Frequent AA

For each structure type, the number of distinct AA, and the five most fre-
quent AA are shown in the third and fourth columns of Table 2. On average,
an AA sequence of SSC2, SO and O contain approximately 1,074, 847 and 375
AA. The five most frequent AA in SSC2 are Leucine (L) (8.30%), Serine (S)
(8.05%), Threonine (T) (7.43%), Valine (V) (7.42%) and Glycine (G) (7.11%).
In SO, the five most frequent AA are: S (8.52%), L (8.50%), Valine (V) (7.78%),
T (7.39%) and G (6.76%). The five most frequent AA in O are: L (8.05%), G
(7.62%), S (7.42%), V (6.73%) and Alanine (A) (6.48%). The third family, O,
has 22 distinct AA because the amino acid B that can be either Asparagine (N)
amino acid or Aspartic (D) amino acid is present twice in one structure (PDB
ID: 2FMD) and the amino acid X that can be any of the 20 AA is present once in
three structures (PDB IDs: 1C1F, 1UMZ, 4CG4), twice in one structure (PDB
ID:3IPV) and six times in one structure (PDB ID: 3USU).

2.2. Protein Structures Analysis and Datasets Development

SPM is used on the AA sequences of three protein structures families to dis-
cover frequent AA and their patterns. To efficiently use SPM, AA sequences are
first transformed into a suitable electronic format where the "AAs to integers"
abstraction is used, where each AA is converted into a distinct positive integer.
Some key concepts related to sequences and SPM are discussed next.



Let AA be the set of all distinct AA in sequences. An amino acids set
AAS is a set of AA such that AAS C AA. The notation |AAS| denotes the
set cardinality. AAS has a length k (called k-AAS) if it contains k AA, i.e.,
|AAS| = k. For example, consider the set of AA={A, V, C, T, N, K}. Then,
the set {4, V, T, K} is an AA set that contains four AA. On AA, a total order
relation is defined for facilitating the discovery of patterns. This order is used as
processing order for searching the patterns and is generally the lexicographical
order. Now, an AA sequence is a list of AA sets S = (AAS;, AAS,, ..., AAS,),
such that AAS; C AAS (1 < i < n). An AA dataset AAD is a list of AA
sequences AAD = (51,52, ..., S,), where each sequence has a unique identifier
(ID). For instance, Table 3 shows an AAD that has five AA sequences.

Table 3: An AAD sample.

ID AA sequence

1 | (..VWTDLYGCLV.....)
2 (....LIQEVIFSTL.....)
3 (....DIQSMFYACN.....)
4 (....TCFGDNEIVQ.....)
5 (....LRPFERDISN.....)

To make an AAD more suitable for SPM, AA sequences are converted into
sequences of integers. Thus, in the final AAD, each line represents the AA
sequence for a protein structure and each AA is replaced by a unique positive
integer. For example, the AA A and C are replaced by 1 and 3 respectively.
Moreover, AA are separated from each other by a single space followed by a
negative integer -1. A negative integer -2 is appended at the end of each line to
indicate the end of the sequence. Table 4 shows the integer sequences for the
AA sequences of Table 3.

Table 4: AA sequences conversion to integer sequences.

ID AA sequence

1 122-123-120-14112-125-1713-112-122-1-2
2 12-19-117-15-122-1916-119-120-112-1-2
3 4-19-117-119-113-16125-11-13-114-1-2
4 20-13-16-17-14114-1519-122-117-1-2
5 112-118-116-16-15-11814-19-119-114-1-2

After the dataset development, the next step is to extract patterns from the
AA sequences. An AA sequence S, = (a1, aa,...,ay) is present or contained in
another AA sequence Sg = (51, f1, ..., Bm) iff there exist integers 1 < i < iy <
... < inp < m, such that a1 C Bi1, a2 C Bia, ..., & C Bim (denoted as S, T Sg).
If S, is present in Sz, then S, is a subsequence of Sg. In SPM, the support
measure is used mostly to investigate the importance and interestingness of
(sub)sequences. The support of S, in AAD is the total number of sequences
(S) that contain S,, and is represented by sup(Ss):



sup(Sqy) = {S|Sa TS AS € AAD}|

A sequence S is a frequent sequence (also called sequential pattern) iff sup(S) >
minsup, where minsup (minimum support) is a threshold determined by the
user. An AA sequence can generally have up to 22° — 1 distinct subsequences.
Thus, using the naive approach to compute the support of all possible subse-
quences is infeasible. However, various efficient algorithms are now present that
can find all sequential patterns without exploring all the search space of all
possible subsequences.

Two operations are used by SPM algorithms to traverse the search space
of sequential patterns, that are: s-extensions and i-extensions. A sequential
pattern S, = (a1, g, ..., ) is a prefiz of another pattern Sz = (61, 81, -, Bm)s
ifn<m,a =p1, azs =0, ..., ap_1 = Bn_1, Where «,, is equal to the first
|| items of B, according to the < order. Note that SPM algorithms follow
a specific order < to avoid considering the same potential patterns twice. The
choice of < does not affect the final result of SPM algorithms. For an item
x, S is an s-extension of S, if Sg = (o, as, ..., an, {x}). Similarly, S, is an
i-extension of S, for an item z if S, = (o, as,...,a, U {x}). SPM algorithms
generally either employ a breadth-first search or depth-first search. Next, some
SPM algorithms used in this work are briefly introduced.

For FIM, Apriori [52] is the first and most popular algorithm that can find
frequent itemsets (e.g. sets of AA) in a database. Apriori starts by searching
for items that occur frequently. These items are then extended to find larger
itemsets that appear frequently enough. On the other hand, the TKS (Top-k
Sequential) [53] and CM-SPAM [54] algorithms are some efficient and new algo-
rithms. TKS finds the top-k sequential patterns in a database. The parameter
k, set by the user, represents the number of sequential patterns that TKS needs
to extract. TKS uses the basic candidate generation procedure of the SPAM
algorithm and a vertical database representation. The vertical database rep-
resentation allows to count the patterns support by avoiding costly database
scans. Thus, vertical SPM algorithms are preferred in this work as the dataset
contains long sequences of AA. TKS also uses many strategies to reduce the
search space and utilize a PMAP (Precedence Map) data structure for avoiding
the costly operations of bit vector intersection. CM-SPAM examines the whole
search space to extract frequent sequential patterns in a dataset. CM-SPAM
uses the CMAP (Co-occurrence MAP) data structure to store information re-
lated to co-occurrences of items. CM-SPAM can efficiently discover sequential
patterns as it employs a vertical database representation and uses a powerful
search space pruning mechanism.

AA sequences of protein structures and sequential frequent patterns discov-
ered in them by using TKS and CM-SPAM are used separately to classify protein
structures to different types. Moreover, DALI is used to not only find similar
protein structures but for the structural alignment of similar protein structures
too. In DALI, the main measure used to assess similarity between protein struc-
tures is the Z-score. DALI provides two blocks in structural alignment: one for



the aligned AA (AAA) sequences and one for the aligned SSE (ASSE). Thus,
AA sequences (downloaded from PDB), FAA patterns (discovered by using SPM
algorithms) and AAA and ASSE sequences (discovered through DALI) of pro-
tein structures are stored in respective datasets. Thus, we have four datasets
for protein structures: (1) AA sequences, (2) FAA, (3) AAA and (4) ASSE.

2.8. Classification

The third step is to classify protein structures into three types using the four
datasets of AA, FAA, AAA and ASSE sequences.

A A sequences of proteins are generally long (see Table 2). A close inspection
of the AA sequences dataset revealed that almost all sequences contain the
same AA tens or even hundreds of times, sometimes repeated consecutively.
We believe that this repetition of AA in protein sequences can be replaced
with frequent sequential AA for better classification performance. In the results
section, we found that the resulting frequent patterns indeed provided better
classification performance. More precisely, PSAC-PDB utilizes the frequent
sequential patterns in AA sequences obtained by using two SPM algorithms for
the classification of protein structures.

Two standard methods are used for classification, which are binary classifi-
cation and multi-class (MC) classification. Binary classification is done on four
datasets to train a model to classify three structure types separately. For a
selected structure type, binary classification (Definition 1) assigns “class name”
to each sequence from four datasets corresponding to that type and label all
other sequences as “Others”.

Definition 1. Let C be the set of three protein structures classes (types). For a
selected protein structures class ¢ € C, a sequence Y, in four datasets, is labeled
with respect to ¢ as:

Y, — {c, ify=c, (1)

Others, otherwise

According to Equation 1, class labels that belong to ¢ will be labeled as c,
while others are labeled as Others to then train a binary classifier. For example,
for the first type of protein structures, Equation 1 will assign "SSC2" to AA,
FAA, AAA and ASSE sequences that belong to that type and "Others" to AA,
FAA, AAA and ASSE sequences that belong to the other two types.

On the other hand, in multi-class classification, the three types of protein
structures in four datasets are labeled with their respective class name. This
means that in the four datasets, the sequences that belong to the first, second
and third types are labelled as SSC2, SO, and O respectively.

Six metrics are used to evaluate and compare the performance of classifiers,
which are: (1) accuracy, (2) false positive rate (FPR), (3) recall, (4) precision,
(5) F1 score and (6) Matthews correlation coefficient (MCC). In this work,
the accuracy (ACC) is defined as the percentage of correctly classified protein
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structures types divided by the total number of protein structure types. Thus,
ACC is defined as:

TP+TN
TP+TN+ FP+ FN

where TP stands for true positives (number of protein structures correctly
identified as belonging to a given protein structure type), FP is the false posi-
tives (number of protein structures incorrectly identified as belonging to a given
protein structure type), FN is the false negatives (number of protein structures
incorrectly identified as not belonging to a given protein structure type) and
TN is the true negatives (number of protein structures correctly identified as

not belonging to a given protein structure type).
The other five measures, FPR, precision, recall, f-measure and MCC are

calculated as follows:

ACC =

FP
FPR=FpiTN
Recall(R) = TPz—ﬂi—ipFN
Precision(P) = TPT+7PFP
F —measure =2 x ]]jj_g

TP xTN —-FP x FN

MCC =
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Eleven ML algorithms are used for classification, which are: (1) NB (Naive
Bayes), (2) SVM (Support Vector Machine), (3) kNN (k-Nearest Neighbors),
(4) KStar (K*), (5) J48 (Decision Tree), (6) Random Forest (RF), (7) Logistic
Regression (LR), (8) CNN (Convolutional Neural Network), (9) ZeroR, (10)
MNBT (Multinomial Naive Bayes Text) and (11) Stochastic Gradient Descent
Text (SGDT) [55, 56].

The first eight (NB, SVM, kNN, K*, J48 RF, LR and CNN) are integer-
based classifiers and the last three (ZeroR, MNBT, SGDT) are text (string)-
based classifiers. Four different tokenization strategies are used in string-based
classifiers, that are (1) Word Tokenizer, (2) NGram Tokenizer, (3) Charac-
ter NGram Tokenizer and (4) Alphabetic Tokenizer. The effect of those four
tokenizers on the performance of classifiers is discussed in the next section.
Standard 10-fold cross validation is used to evaluate the performance of the
classifiers. Users and interested readers can use the PSAC-PDB as follows:
First find the similar structure against a particular structure of interest (called
the query structure) by using DALI Identified similar structures can then be
analyzed in DALI for multiple structural alignment, structures superimposition,
phylogenetic analysis, etc. The AA of protein structures can then be analyzed
with SPM algorithms. The AA, AAA, ASSE and FAA can then be used for
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the classification of identified protein structures. DALI is available online? and
SPM algorithms implementations can be downloaded using SPMF software.

3. Results

The experiments were done on a workstation with a fifth-generation Core i7
processor and 32 GB of RAM. The SPMF data mining library [57], developed in
Java, was used to analyze and discover patterns in the dataset of AA sequences.
SPMEF is an open-source cross-platform framework, specialized in pattern mining
tasks, which offers implementations of more than 230 data mining algorithms.
The open-source WEKA software [58], developed in Java, was used to train
and test the classifiers on four datasets. WEKA was selected because it can
run on various platforms and offers not only classifiers for machine learning but
also tools for data preparation and meta learners. Moreover, it also provides a
graphical interface, along with its command line interface, that is easy to use.
Results obtained by applying the SPM algorithms on the AA sequences dataset
are discussed next, followed by DALI and classification results.

3.1. Frequent Patterns

First, the Apriori algorithm is applied on the AA dataset for protein struc-
tures of three types to find frequently occurring AA (Table 5). The top five
AA in the whole dataset (named All that contains AA sequences of all protein
structures) are: L, S, G, V and T. Whereas in the AA sequences dataset for
protein structures of three types SSC2(SO) and O, the top five AA are: L, S,
T,V,G(S,L,V, T,G) and L, G, S, V, A respectively. The frequent sets of AA
discovered by Apriori are unordered. Moreover, Apriori does not ensure that
AA from an AA set appear contiguously in a sequence. Thus frequent patterns
of larger length discovered by Apriori are uninteresting and do not provide any
useful information. Note that Apriori cannot discover sequential patterns as it
ignores the sequential relationship among AA.

SPM algorithm such as TKS and CM-SPAM overcome the drawbacks of
Apriori as they can discover more meaningful patterns and information. The
TKS algorithm is applied on the AA sequences dataset to find the top-k sequen-
tial patterns of AA. Unlike TKS, the CM-SPAM algorithm requires setting the
minsup threshold. Some AA frequent patterns discovered by the TKS and CM-
SPAM algorithms, in the whole dataset and in the dataset for three types, with
varying length are shown in Table 6. Table 6 provides some useful information
related to frequent occurrences of AA patterns in the protein structures. Note
that patterns discovered by the CM-SPAM algorithm are almost the same as
those obtained by the TKS algorithm.

Overall, we found that the pattern mining process was quite fast. It is ob-
served that by decreasing minsup in Apriori and CM-SPAM, and increasing the

2ekhidna2.biocenter.helsinki.fi/dali
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Table 5: Extracted frequent AA.

AA | Frequency(All) | Frequency(SSC2) | Frequency(SO) | Frequency(O)
A 13,093 3,568 2,546 6,979
C 3,559 1,426 9,96 1,137
D 11,417 2,724 2,026 6,667
E 10,113 2,189 1,565 6,359
F 10,547 3,452 2,300 4,795
G 15,005 4,051 9,747 8,207
H 4,477 1,036 7,84 2,657
I 11,483 3,185 2,374 5,971
K 10,286 2,631 1,638 6,017
L 16,863 4,733 3,453 8,677
M 3,096 5,38 5,45 2,013
N 12,736 3,904 2,706 6,126
p 9,397 2,776 1,777 4,844
Q 8,983 2,824 1,883 4,276
R 8,002 1,909 1,450 4,643
S 16,044 4,585 3,462 7,997
T 14,024 4,232 3,003 6,789
\Y% 14,647 4,229 3,161 7,257
w 2,950 5,24 3,67 2,059
Y 8,529 2,440 1,886 4,203

Table 6: Extracted frequent sequential AA patterns by using the TKS and CM-SPAM.

All SSC2 SO o
KLS AAL YYR CAG
ELVL GLAE VUDD VUDD
n DAGFI LLKLL TLAPD AGLAD
M GLAEEL CDEIPI SLTDDV GRGLVP
& SLLESLL FAQQVKN FVREFNK HHHHHHS
ANQFNSAI AAAYYYV KTPQMYTLK QTVAVEFD
TLADAGFIK HADQLWPTP PDPLKNTKR SGLVNRGSN
VLPPLLTDEM IADTTDAVRD NNYPAIPTND WEDIDIEFLG
IVNNTVYDPLQ | KAHFPRDGFA | MAYRFNGIGEL | FLGKDTTKFQV
CGPKKSTNLVKN | LKPFERDISTD | LRPFERDISNVA | DEIDIEFLGKED
LLS AAE YYR CAG
ELLL CDIP VYDP DEFD
s CPFGE DAGFI TVYDP ADGLA
< QPTESI ECDIPI SITTEV GLVPRG
% RDIADTT ECDIPI SITTEV GLVPRG
E' NCTEVPVA GAAAYYVG QMYKTPTLK QTVAVEFF
®) TLADAGFIK HADQLTPTW QMYKTPTLK QTVAVEFF
AENSVAYSNN AADTTAAVRD NNTIAIPTNF WDEIDIEFLG
FTISVTTEILP KAHFPREGVF | MAYRFNGIGVT | FLGKDTTKVQF
CGPKKSTNLVKN | LKPFERDISTE | LRPFERDISNVP | DEIDIEFLGKDT

k parameter of TKS, more frequent patterns can be discovered, while the run-
time and the memory usage increases. During execution, the three algorithms
worked efficiently on the dataset.
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3.2. DALI Results

The results of the pairwise sequence alignment by using DALI on 12 protein
structures against the query structure is presented. DALI aligned more than
970 AA in 12 structures and the first 300 AA alignment is shown in the upper
block of Figure 2. The most frequent AA in each column (structure) are colored.
The uppercase letters represent those positions that are structurally equivalent
with the query structure. The second part (lower block) in Figure 2 shows
the secondary structure states. The most frequent SSE are: Coil or turn (L),
followed by a-helix (H) and (-sheet (E). Note that two structures (6NB7 and
6CS2) belong to SARS-CoV, 6JX7 to Feline infectious peritonitis (FIP) virus,
5108 to Human Coronavirus-HKU1, 6M5Y to sugar binding protein and 50CQ
to the hydrolase enzyme.

Figure 2: AAA and ASSE in 12 structures obtained by using DALI. 6VSB is used as the query
structure.

DALI also reports the root-mean square deviation (RMSD) of aligned Ca-
atoms, LALI (number of aligned Ca-atoms), NRES (number of AA residues
in the target structure) and IDEN (% identity of AAA) for similar protein
structures. Table 7 lists the DALI’s outputs for 12 protein structures against
the query structure. High Z-score, LALI, NRES and low RMSD means that
the structure is most similar (high IDEN) to a query structure (6VSB here).
Note that DALI does not generate alignments with low RMSD as it maximizes
the Z-score (a geometrical similarity score), defined in terms of similarities of
intramolecular distances. An alignment is considered “better” if it has both
smaller RMSD and larger LALL If both RMSD and LALI are smaller or larger,
it is not possible to establish an order between the alignments. The AAA and
ASSE of protein structures are also used for the classification.

Figure 3 compares the first similar 100 protein structures on the basis of their
Z-score (blue colored line), RMSD (orange colored line), LALI (black colored
Bar), NRES (gray colored bar) and IDEN (red colored line). Generally high
Z-score and LALI mean that the protein structures are most similar and the
opposite is true for RMSD. We can see that as we move from right to left (from
most similar to dissimilar), RMSD value increases whereas LALI and Z-score
decreases. In some cases (left side), protein structures are more similar even for
low Z-score and LALI. This shows that only one measure, particularly Z-score
or RMSD cannot determine the (dis)similarity of protein structures.
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Table 7: DALI results for 12 structures against the query structure.

Structures PID | Z-score | RMSD | LALI | NRES | IDEN

7TAD1B 48.8 3.6 792 935 97

TQ6QA 48.2 1.6 965 1013 99

TRASA 48.1 2.7 762 917 97

7TN9CB 48.1 1.7 778 812 99

TSN3A 47.8 2.9 803 925 97

6NB7B 40.7 5.0 822 1032 77

6CS2C 35.7 2.0 797 893 78

6Z0ZC 32.9 3.3 964 1070 99

6JXT7A 28.0 8.7 604 1245 28

5108A 27.4 3.9 801 958 31

6M5YA 8.4 8.1 132 270 8

50CQB 5.7 3.8 136 279 6
E | 3
00 jiie 30 g

o i LLLriil 0

Figure 3: Comparison of first 100 similar protein structures against the query structure.

8.8. Classification Results

Three text-based classifiers (MNBT, SGDT and ZeroR) are used for the
binary and multi-class (MC) classification in three datasets (AA, AAA and
ASSE). Whereas for the dataset of FAA patterns identified by TKS and CM-
SPAM, both integer and text-based classifiers are used.

3.8.1. AA, AAA and ASSE

MNBT and SGDT are used with four tokenization strategies: (1) Word-
Tokenizer (WT), (2) NGram-Tokenizer (NGT),(3) CharacterNGramTokenizer
(CNGT) and (4) AlphabeticTokenizer (AT). The first one is a simple technique
to tokenize the strings. The second tokenizer splits a string into an n-gram
with user specified minimum and maximum grams. Whereas, the third tok-
enizer splits a string into all character n-grams it contains on the basis of user
specified maximum and minimum values for n. In both NGT and CNGT, the
maximum and minimum grams were set to 3 and 1 respectively. The fourth tok-
enizer forms tokens from contiguous alphabetic sequences only. Table 8 provides
the results for the classifier metrics with the following format: AA ( f&‘%). For
example, the first entry 86.34 (M) indicates that for the SSC2 type, MNBT

86.30
achieved ACC of 86.34% on the AA dataset and 86.30% ACC on AAA and
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ASSE datasets respectively. Three strategies WT, NGT and AT generated the
same results for both classifiers. Whereas the CNGT strategy performed better
than WT, NGT and AT on both classifiers. The results for the ZeroR on AA,
AAA and ASSE for various parameters were the same as NMBT’s results with
WT, NGT and AT strategies. On the three datasets (for AA, AAA and ASSE),
SGDT with CNGT strategy performed better, overall, than MNBT with the
same strategy for binary classification. For multi-class classification, results are
provided for MNBT as SGDT cannot be used for this type of classification.

Table 8: Classifiers performance on three datasets (AA, AAA and ASSE) with different tok-
enization strategies.

T P MNBT SGDT
ype WT CNGT WT™ CNGT
ACC | 86.34(5C30) | 94.84(3022) | 87.62(5520) | 96.39(283%) |
FPR | 0.s63(158) | 0119(H8) | o 780(T5) | 0.0117(88K%)
~ P 2(3) 0.952(3258) | 0.892(%) 0.964(2:70
3 R |o0. 863(? 2) 0.948(%) 0 876(8:223) 0.964(§;§§§)
e F1 2(%) 0.950(g=553) | 0.829(3) 0.964 (925
MCC 2(3) 0.793(583%) | 0.287(2) | 0.847(3311
ACC | 87.62(33%) [ 92.78(ox8) | 87.62(3L-59) 93(Z20
FPR | 0.876(15%). | 0.3s6(120) | oso(B) | 0.a0a(b3ke
p (%) 0.923(%%%) () 0.926(o'5es)
2 R | 0.876(3378) | 0.928(292%) | 0.876(2:26) 0.930(§ §§§)
F1 2(%) 0.922(8‘9720) 2(%) 0.924(5:22%
MCC 2(%) 0.631(2:033) 2(3) 0.640(2:619
ACC | 73.96(Z30) [ 90.20(2-8) | 75.25(220) | 95. 3(950 )
FPR 0.740(;5%@%?) 0.278(%) 0 703([5);33%%) 0. 119(3 115
P 2(2) 0.914(0388) | 0g15(2) " | 0.955(8:851)
o | R | oma(zs) | ool | oms0ns) | 0.95a(d )
F1 (%) 0.894(feg) | 0.658(5) | O. 952(0 95
MCC 2(%) 0.742(%) 0.193(3) | o0.878(8:51
ACC | 73.96(2350) 1 92.26(3-51) NE) (=)
FPR 0.740(3;%3). 0.157(54%9) -(2) -(2)
o p ?(5) 0.921(%5%2) (=) (=)
= R | 0.740(%%) | 0.923(%5%) -(2) (=)
Fl M) [ 0916(65%) | ~(5) (=)
MCC ?(5) 0.829(5%) -(2) -(2)

*: MNBT performed similarly on WT, NGT and AT strategies.
**: SGDT performed similarly on WT, NGT and AT strategies.

Using AA sequences of proteins structures for binary classification, MNBT
(SGDT) achieved 94.84%(96.39%), 92.78%(93%) and 90.20%(95.3%) for three
types respectively with CNGT strategy. For Multi-class classification, MNBT
with CNGT strategy yield 92.26% accuracy on the AA dataset. Except for
the SO type, MNBT and SGDT accuracy is improved further on AAA dataset,
which shows that AAA provide more reliable information for classification. On
the other hand, using ASSE sequences for classification generated poor results
(except for MNBT with CNGT strategy on SO) compared to AA and AAA
sequences, particularly for multi-class classification. The main reason for this is
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that ASSE sequences only contain three elements. SGDT with different strate-
gies on three datasets was slow (took minutes for training and testing) compared
to MNBT (took seconds for training and testing).

Paired t-test (corrected) in WEKA is used to check which of three text-
based classifiers are significantly better than others. ZeroR is selected as the
baseline. Both MNBT and SGDT with CNGT strategy performed significantly
better than ZeroR. For MNBT and SGDT, the later performed better than the
former on the three datasets for binary classification. However, the test results
confirmed that the difference in the performance of MNBT and SGDT on three
datasets is not that significant.

8.8.2. FAA

TKS and CM-SPAM were used to discover frequent 100 and 200 sequential
patterns in the AA dataset. Thus we have four sub-datasets for FAA: TKS100,
TKS200, CM-SPAM100 and CM-SPAM200. These sub-datasets are further
processed to make sure that the patterns contain (1) 5 to 10 (5-10) and (2) 10
to 15 (10-15) frequent AA in each pattern. The reason to consider two different
numbers of discovered patterns (100 and 200) and two different number for the
patterns length (5-10 and 10-15) is to investigate their effect on the classifiers
performance.

Obtained accuracy of the binary and multi-class classification for patterns
discovered with TKS and CM-SPAM are provided in Table 9 and Table 10
respectively. The results for classifiers metrics are shown with the following

. 100.5—10(100.10—15) . 68.66(69.33)
format: 500 5—10(200 T0-15) For example, consider the NB ACC of 52.76(61.33)

in Table 9. It indicates that an ACC of 68.66% is obtained on 100 patterns
where each pattern contains 5-10 frequent AA discovered by TKS, 69.33% ACC
is obtained using 100 patterns and 10-15 frequent AA in each pattern identified
by TKS, 62.16% ACC is obtained using 200 patterns and 5-10 frequent AA in
each pattern from TKS and 64.33% ACC using 200 patterns and 10-15 frequent
AA in each pattern found by TKS, respectively. This format for metrics is used
to reduce the total number of Tables.

All eight integer-based classifiers performed better on patterns discovered by
CM-SPAM as compared to TKS. Tree based classifiers (RF and J48) performed
better than NB, SVM, kNN, CNN and LR on patterns discovered by TKS. K*
performed better than J48 on TKS patterns while NB performed less well than
others. To use the text-based classifiers on FAA patterns, each integer in the
corpus is replaced with its respective AA letter. The main reason to use text-
based classifiers is to check whether they perform better than integer-based
classifiers. Both MNBT and SGDT with CNGT strategy performed better
than integer-based classifiers on FAA patterns discovered by using TKS and
SGDT performed better than MNBT. On FAA patterns discovered by using
CM-SPAM, K* and RF performance is almost similar with negligible difference.
RF performance is better than MNBT and almost similar to the SGDT with
negligible difference. Tree-based classifiers performed better because all the
patterns in the datasets are used in the classification process where each pattern
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Table 9: Classifiers accuracy results on patterns extracted by TKS.

Classifier SSC2 SO (0] MC
NB 68.66(69.33) 64.66(70) 53.36(34.66) 17.66(60)
62.16264.33) 63.33262.66; 56(71) 38.5(40.83)
SVM 72(67) 66.66(66.66 66.66(70) 41(50.33)
66.66(66.66) | 66.66(66.66) 66.6656666; 37.66(39.16)
KNN 72.66(93) 68.33(95) 70.66(94.33 60.66(91)
76.33568.66; 70.5(68.16) 70.16(77.83) | 59.5(58.16)
K* 92.33(98.33 88.66(99.33) 90.33(99) 86.66(98.66)
91.66%72.16) 90.33(78.33) 90.5(89.5) 8733569.33)
748 87(96) 88.33(96) 87(97.33) 82.33(95.66)
88.5(72.66) 88.5(72.66) 84.33(39.16) 80&6564‘66)
RF 93.33(98) 92(98.6) 91.66(99.3) 90(98)
92.6757216; 91(73.333 93595.33; 89.83569)
CNN 71.66(67.33 65.33(63 62(75.33 43.33(49)
65.5(66.83) 66.5(65.5) 67.66(67.66) 35.33540)
LR 71(67) 64.66(64) 63(76.66) 41.33(47)
65.16(66.5) 66.66(65.5) 67.33(67.5) 35.33(39.5)
MNBT 94.66(99.66) | 92.33(99.66) | 94.66(99.66) | 92.33(99.33)
89.33%88,833 9166(89.33; 96.83(98.5) 90.5(88.83)
SGDT 98.66(99.66 96.66(99.66 96.66(99.66) —(-)
96.33(85.83) 94.5(86.83) 94.5(99) )

only contain FAA, which are considered as features. CNN classifier was slowest
among all integer-based classifiers.

Table 10: Classifiers accuracy results on patterns extracted with CM-SPAM

Classifier SSC2 SO (@) MC
NB 08.33(97.33) 79(90.66) 75.33(32.33) 79(85.66)
90.33(71.5) | 88.66(88.66 75.66(69.83 80.33(63.16)
SVM 97(93.33) 73.33(83.33 72.66(66.33 73.66(75)
90.83(73.83 91.83(92.5) 77.83(70.16) | 83.83(67.83
KNN 96.66(93.66 87.33(95.66) 85.66(92) 86.33(91.66
82.66(84.5) 92(95.83 30.16(83.83 71.86(31.5)
K* 100(99.33) 96.33(99 95.66(97.66 89.66(98)
86.83(88.33 98(99.16) 87(88.5) 86.16(87.16)
748 99.33(99.33 94.66(98.66) | 94.66(97.66) 93.66(98)
92(90.16) 98(98) 93.16(89.16) | 93.16(89.16)
RF 99.33(99.66) 96(99.66) 96.33(98) 96(99)
38(88.66 98.66(99.16 88.16(88.5) 88(88.33)
CNN 93.66(92 73.33(82.33 80(61.66) 73.66(75.66)
90.5(70.83) | 90.83(93.33) 76.5(68.16) 82.83(66)
LR 96.66(97) 79(62) 73.33(62) 79(78.66)
89.66(71.66) 91.33(93 76.16(68.5) 83.16(66)
MNBT 97(93.66) 95.33(99 93.66(93) 93(93.33)
86.16(87.33) 93.5(89.83) 86.83(89.83) | 83.5(36.83)
SGDT 100(99) 98(99.66) 99.33(99) —(-)
88(38.33) 98.83(99.66) | 87.66(89.16) )

For TKS patterns, most of the classifiers performed better, overall, on 100
patterns as compared to 200 patterns. Moreover, classifiers performed better
when patterns contained more FAA (10-15) compared to patterns that contain
less FAA (5-10). For CM-SPAM, most of the classifiers performed better on 100
sequences as compared to 200 for SSC2, O types and multi-class classification.
For the SO type, the opposite, classifiers performed better on 200 FAA patterns
than 100 FAA patterns, is true. The same trend was observed for the patterns
length. All classifiers performed better on 10-15 FAA for SSC2, O types and
multi-class classification. For SO type, classifiers performed better on 5-10 FAA.
Overall, RF performed better than other integer-based classifiers with both TKS
and CM-SPAM patterns. Compared to text-based classifiers, RF performed
better (similar) than MNBT(SGDT) with CM-SPAM patterns. The complete
results of RF on TKS and CM-SPAM patterns are provided in Table 11 and
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12 respectively. Note that RF generated high values of MCC meaning that it
was able to correctly predict in most of the four categories of confusion matrix
(TP, FN, TN and FP) even when the O type sequences are more (287) than
SSC2 (53) and SO (48). These results indicate that most of the integer-based
classifiers and text-based classifiers generated better results for classification of
protein structures by using FAA as compared to the text-based classifiers results
obtained on AA and AAA datasets

Table 11: Results for RF on patterns extracted using TKS.

P SSC2 SO (0] MC
ACC 93.33(98) 92(98.6) 91.66(99.3) 90(98)
92.67572.16) 91(73.33) 93(95.33) 89.83(69)
FPR | 0-123(0.080) | 0.120(0.012) | 0.127(0.013) | 0.050(0.010)
0.12450.437§ 0.13850,3383 0.12550.071§ 0.051%0.155;
P 0.937(0.980 0.920(0.987 0.916(0.993 0.901(0.980
0.92850.708) 0.910%0.767; 0.93250.953) 0.899%0.687;
R 0.933(0.980) | 0.920(0.987 0.917(0.993) | 0.900(0.980
0‘92750.722) 0.910%0.773; 0‘93050.953) 0.898%0.690;
F1 0.932(0.980) | 0.919(0.987 0.916(0.993) | 0.900(0.980
0.92550.703§ 0.90950.7653 0.92850.953§ 0.89850.6883
MCC | ©0:850(0.955 0.818(0.970 0.810(0.985 0.850(0.970
0.834(0.703) | 0.795(0.467) | 0.842(0.894) | 0.848(0.534)

Table 12: RF results on patterns extracted with CM-SPAM.

P SSC2 SO o MC
ACC | 99:33(99.66) 96(99.66) 96.33(98) 96(99)
38(88.66) 98.66599.16% 88.16(38.5) 88(38.33)
FPR | 0:003(0.002) | 0.060(0.002 0.038(0.030) | 0.020(0.005)
0.14850.139§ 0.02450.017; 0.15250.145§ 0.06050.058;
P 0.993(0.997 0.960(0.997 0.964(0.980 0.960(0.990
0.88050887) 01)87%0.992; 0.88150885) 0882%0.884;
R 0.993(0.997) | 0.960(0.997 0.963(0.980) | 0.960(0.990
0.880(0.887) 0.98750.992; 0.88220.885) 0.88050.883;
F1 0.993(0.997 | 0.960(0.997 0.963(0.980) | 0.960(0.990
0.88050.887§ 0.98750.992; 0.88150.885§ 0.88150.884;
MCC | 0:985(0.993 0.910(0.993 0.918(0.955 0.940(0.985
0.731(0.746) | 0.970(0.981) | 0.733(0.741) | 0.821(0.825)

We also performed paired t-test (corrected) in WEKA to check whether RF
is significantly better than other seven integer-based classifiers or not. The
comparison results for the ACC of classifiers is provided in Table 13. The
entries before bracket are for the TKS and in the brackets are for CM-SPAM.
Bold entries for classifiers are those that performed significantly lower than
RF. Whereas the Underline entries for classifiers show that they performed
significantly better than RF. K* performed almost similarly to RF on patterns
discovered with TKS and CM-SPAM. This means that the difference in the
performance of K* and RF is not that significant in most cases. Whereas J48
performed significantly better than RF on the CM-SPAM 200 patterns with
each pattern containing 5-10 for multi-class classification, SSC2 and O binary
classification.

In summary, overall results show that frequent sequential AA patterns can
be used more efficiently for the classification and detection of protein structures
in place of providing the whole AA sequences, AAA and ASSE. From Table 2
we can see that protein structures contain hundreds of AA on average in each
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Table 13: Paired t-test results for classifiers.

Dataset RF NB SVM kNN K J48 IR CNN
T | 88.97(96.43) | 47.77(78.20) | 40.40(74.63) | 60.67(86.63) | 86.23(96.33) | 80.27(93,27) | 41.23(78.97) | 42.07(73.90)
ol 2 | 97.60(99.10) | 59. 73(85 93) | 50.57(75.90) | 90.50(91.63) | 98.23(97.93) | 94.97(98.40) | 46.83(80.17) | 46.83(75.07)
= 3 SJ 1.5(87 55) | 38.35(80.23) | 37.32(84.25) | 58.12(77.47) | 86.48(85.73) | 81.30(92.60) | 36.33(83.45) | 36.35(83.05)
4 52(8.18) | 41.78(63.37) | 40.93(68.17) | 58.12(81.63 | 69.55(87.42) | 62.83(89.30) | 40.27(66.37) | 40.40(67.13)
1 94 27(99 40) | 67.67(98.30) | 71.90(96.73) | 78.40(96.63) | 93.43(99.87) | 89.43(99.33) | 71.10(97.77) | 71.37(93.73)
&1 2 | 98.50(99.43) | 69.80(96.97) | 68.13(93.13) | 93.60 (94.17) | 98.87(99.03) | 95.73(99.33) | 67.40(96.67) | 67.60(91.97)
2| 3 | 92.08(88.12) | 63.67(90.35) | 66.67(90.97) | 75.45(83.38) | 91.45(87.30) | 87.18(91.47) | 65.15(90.13) | 65.05(90.33)
4 | 70.95(88.57) | 64. 77(72 28) | 66.67(74.32) | 68.15(84.22) | 72.00(88.15) | 68.33(90.02) | 66.13(72.55) | 65.90(72.23)
T [ 92.07(96.27) | 64.33(77.30) | 66.10(78.90) | 70.03(89.17) | 89.63(96.37) | 85.17(94.27) | 64.73(79.23 | 64.97(79.63)
ol 2 |9823(99.77) | 69. 13(90 60) | 66.67(82.30) | 95.27(95.97) | 99.17(99.00) | 96.27(98.13) | 63.80(83.87) | 63.83(83.10)
A | 3 | 91.43(98.60) | 63.47(88.30) | 66.67(91.40) | 70.05(91.82) | 90. 97(97 43) | 85.97(98.00) | 66.23(91.20) | 66.18(90.85)
4| 77.45(99.27) | 63.22(88.45) | 66.67(92.70) | 69.73(95.77) | 77.88(98.90) | 70.22(97.83) | 65.73(92.85) | 65.83(92.75)
T | 91.03(97.17) | 64.77(74.77) | 66.63(72.93) | 72.10(88.47) | 89.27(96.37) | 86.57(94.30) | 64.20(73.77) | 64.13(73.63)
o| 2 | 98.97(9853) | 84.93(80.27) | 76.53(66.33) | 93.03 (92.60) | 98.83(97.77) | 96.33(97.83) | 76.43(62.27) | 75.83(62.30)
3 | 92.35(88.08) | 57.07(75.67) | 66.67(77.85) | 70.53(79.70) | 91.75 (86.93) | 86.97(93.08) | 67.85(76.87) | 67.78(90.85)
4 | 95.87(88.38) | 70.73(69.72) | 66.67(70.32) | 78.20 (83.22) | 89.13(83.17) | 88.50(89.10) | 67.63(68.32) | 67.47(68.23)

1: 100(5-10), 2: 100(10-15), 3: 200(5-10), 4: 200(10-15)

sequence. However, the patterns discovered with SPM algorithms in PSAC-
PDB contain 15 AA at most. Moreover, FAA patterns contained 8-10 distinct
AA. Whereas the original AA sequences can contain 20 distinct AA. On three
datasets (AA, AAA and ASSE), SGDT performed better than MNBT but the
difference is not significant. AAA can be used more reliably for the classification
and detection as compared to the AA sequences of protein structures. RF, J48
and K* performed better than NB, SVM, kNN, LR and CNN on FAA patterns
discovered by using TKS and CM-SPAM. Interestingly, patterns discovered by
TKS and CM-PAM are very similar to each other (see Section 3.1) but the
integer-based classifiers performed better on FAA patterns of CM-SPAM com-
pared to the FAA patterns of TKS. Majority of the classifiers performed better
on 100 patterns that contain more FAA (10-15).

3.3.3. Comparison

PSAC-PDB performance was compared with recent studies for the detection
and classification of SARS-CoV-2 from genome sequences. The comparison for
binary classification and multi-class classification is provided in Table 14. For
binary classification, the RF (highlighted in bold) results of PSAC-PDB are
better than those of RF [24, 25, 31|, KNN [27], SVM [30]. RF [26] performed
similarly to PSAC-PDB(RF) but its performance depends on three features and
their integration. The first similarity feature requires the comparison of each
SARS-CoV-2 genome sequence with the RaTG13 (bat coronavirus) sequence.
The other two features are based on finding the CG content in SARS-CoV-2
genome sequences. The existing methods (listed in Table 14) only performed the
binary classification. PSAC-PDB can be used for both binary and multi-class
classification. Some studies [28, 29] achieved 100% accuracy but their results
are not included in Table 14 because their datasets contained a small number
of genome sequences. For multi-class classification, RF results are included
instead of MNBT because RF was faster than MNBT and achieved the overall
best ACC, R, P, F1 and MCC of 99%.
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Table 14: Comparison of PSAC-PDB with state-of-the-art SARS-CoV-2 detection methods.

Type | Best Classifiers | ACC | FPR R P F1 | MCC
RF [24] 0.93 - 0.93 | 0.93 | 0.93 -
. RF [25] 0.98 - 0.98 | 0.98 | 0.98 -

= RF [26] 0.99 0.99 | 0.99 | 0.99 | 0.99
.5 KNN [27] 0.98 - - - - -
SVM [30] 0.97 - 0.77 1 0.97 | 0.97 -
RF [31] 0.97 | 0.37 - - - -

PSAC-PDB(RF) | 0.99 | 0.003 | 0.99 | 0.99 | 0.99 | 0.985

MC | PSAC-PDB(RF) | 0.99 | 0.003 | 0.99 | 0.99 | 0.99 | 0.99

4. Conclusion

PDB plays an important role in the global dissemination of molecular struc-
tures of biological molecules. A novel framework (named PSAC-PDB) was pre-
sented in this paper, which can be used for the analysis and classification of
protein structures in PDB. The framework first finds protein structures similar
to a protein structure of interest. The identified similar protein structures are
(1) analyzed with structural alignment and sequential pattern mining (SPM),
and (2) classified by using (a) AA sequences, (b) AAA and ASSE (obtained by
using a protein structures comparison tool) and (¢) FAA patterns (obtained by
using SPM). Three text-based and eight integer-based classifiers were used to
reliably predict/classify and their performance was checked against six metrics.
Two text-based classifiers (MNBT and SGDT) and three integer-based classi-
fiers (RF, K* and J48) performed better overall. Obtained results indicated that
limited (or short) AA sequences that only contain frequent sequential AA can
be used to reliably predict and classify protein structures. Moreover, classifiers
performed better on AAA compared to AA sequences of protein structures.
PSAC-PDB achieved better results than recent approaches for SARS-CoV-2
genome sequences classification. PSAC-PDB is not limited to any particular
protein structure, such as S protein of SARS-CoV-2, and can be used generally.
For future, some research directions are:

e Extending the framework to (a) classify other viruses such as SARS-CoV-
1, MERS, Ebola, and influenza and other protein classes. and (b) analyze
and classify the S protein structures of SARS-CoV-2 that belong to various
variant families such as Alpha, Delta, and Omicron.

e Considering the maximal and closed frequent patterns of AA and sequen-
tial rules between frequent AA as features for the analysis and classifica-

tion. Moreover, sequence prediction models can be used to predict the
next AA.

e Using alignment-free (AF) methods [59, 60| for comparison of AA se-
quences of protein structures, and

e Using emerging or contrast pattern mining [61] to find contrasting frequent
patterns in AA for the analysis and classification of protein structures in
PDB.
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